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Molecular motor cycles are studied in the framework of stochastic ratchets in
which the motor moves along a 1-dimensional track, can attain M internal
states, and can undergo transitions between these levels at K spatial positions.
These ratchets can be mapped onto a stochastic network of KM discrete states.
The network is governed by a Master equation, fulfills a vertex rule, and satis-
fies detailed balance in the absence of enzymatic activity and external force. Any
pathway of the motor cycle which leads to a forward or backward step of the
motor corresponds to a certain sequence of transitions spanning this network.
The dependence of the motor velocity on the transition rates can be determined
for arbitrary values of K and M and exhibits some simple and universal fea-
tures.

KEY WORDS: molecular motor; motor cycle; stochastic ratchet; stochastic
network; motor velocity.

1. INTRODUCTION

The transport of vesicles and other cargo in the living cell is based on
molecular motors which move along cytoskeletal filaments. The move-
ments of these motors involve several time regimes: (I) In the short time
regime, the motor molecule undergoes a cycle of conformational changes
which is coupled to ATP hydrolysis. This motor cycle leads to a single
‘‘power stroke’’ and, thus, to a single step along the filament. In the pres-
ence of a sufficient amount of ATP, the corresponding time scale is of the
order of 10 milliseconds. This time scale increases with decreasing ATP
concentration as soon as the process becomes limited by the diffusion of
ATP molecules towards the motor; (II) In the intermediate time regime, the



motor stays bound to the filament and performs a directed walk along it.
These walks typically consist of about a hundred steps along the filaments;
and (III) In the long time regime, the motor undergoes random walks
arising from many diffusional encounters between the motors and the
filaments.

In this article, we study theoretical models for the motor cycle which
governs the short time regime (I) and determine the corresponding trans-
port properties for the directed walks of the motor in the intermediate time
regime (II). These models, which we have introduced in previous work, (1–3)

are stochastic ratchets equivalent to diffusion-reaction models or composite
Markov processes, see, e.g., ref. 4, with space-dependent transition rates
and represent generalizations of the two-state models considered in
refs. 5–9. The stochastic ratchets are characterized (i) by a spatial coordi-
nate x which describes the displacement of the motor molecule along the
filament, (ii) by M internal states which represent the various conforma-
tions the molecule can attain for a fixed value of x, and (iii) by K spatial
positions per motor cycle at which the motor molecule can undergo transi-
tions between these different internal states. As reported in ref. 2, these
ratchet models can be mapped onto stochastic networks with KM discrete
states.

Motor cycles are often discussed using the terminology of biochemical
reactions and enzyme kinetics. One then talks of kinetic pathways which
are coupled to the conformational changes of the motor molecule. Here
and below, we will use the term ‘‘pathway’’ to represent a cyclic sequence
of molecular conformations which leads to a forward or backward step of
the molecular motor along the filament. Within the network representation
of the KM ratchets, each such pathway corresponds to a cyclic path which
spans this network in the x-direction, i.e., in the spatial direction parallel to
the filament.

The transport properties of bound motors in the intermediate time
regime (II) have also been studied in many experiments. The most impor-
tant property is their velocity which has been measured for several cyto-
skeletal motors such as two-headed kinesin, (10–18) one-headed kinesin, (19)

myosin V, (20–22) and dynein (23–25) which move along microtubuli or actin
filaments.

For two-headed kinesin, the motor velocity has been measured as a
function of two control parameters. The first such parameter is provided by
the ATP concentration C, i.e., by the concentration of the fuel molecules.
The second control parameter is given by the external load force F which is
usually applied by an optical trap. Several experiments have shown that
the average motor velocity v increases monotonically with C and exhibits
a saturation behavior. In addition, the data for zero or small F could be
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fitted by the hyperbolic form v(C) 4 vmaxC/(Cg+C). (10, 12, 14) More recently,
Visscher et al. (18) have found that such a fit is even possible over the whole
range of accessible forces as given by 0 [ |F| [ 5.6 pN provided one uses
F-dependent fit parameters vmax and Cg which leads to

v(C, F) 4 vmax(F) C/[Cg(F)+C]. (1.1)

This relation is reminiscent of the Michaelis–Menten relation for the rate of
enzymatic reactions. An analogous relation has also been proposed for the
experimental data on myosin V. (21, 22)

As shown in our previous work, (2, 3) the Michaelis–Menten-type rela-
tion as given by (1.1) represents the simplest relationship of a whole family
of more general velocity-concentration relations. These more general rela-
tionships provide a classification scheme for the chemomechanical coupling
of molecular motors. On the one hand, it follows from this scheme that the
Michaelis–Menten-type relation (1.1) applies to motor cycles which exhibit
the following simplifying features: (i) there is only a single pathway leading
to a forward step, (ii) this pathway involves only one ATP hydrolysis which
obeys Michaelis–Menten kinetics, and (iii) there are no pathways leading to
backward steps. On the other hand, this classification scheme also shows
that one will, in general, observe velocity-concentration relationships which
differ from (1.1) as soon as (i) there is more than one possible pathway
which leads to a forward step, or (ii) there is a pathway which involves
more than one ATP hydrolysis, or (iii) there are pathways which lead to
backward steps.

The force dependence of the two parameters vmax(F) and Cg(F) in
(1.1) reflects the molecular force potentials as discussed in ref. 1 for ratchet
models and a variety of sawtooth potentials. More recently, Fisher and
Kolomeisky (26) found that the force dependence as observed experimentally
by Visscher et al. (18) can be understood in terms of discrete sequential
models in which the motor steps along a linear track of discrete binding
sites by passing through a sequence of intermediate states. (27, 28) The latter
sequence represents a particular pathway of the motor molecule and, thus,
should correspond to a certain cyclic path across the KM networks dis-
cussed here.

Our article is organized as follows. In Section 2, we will first define our
general class of ratchet models as previously studied in refs. 1 and 2. As
mentioned, the motor is described by M internal states and can undergo
transitions at K spatial locations per motor cycle. When the spatially local-
ized rates are parametrized by delta functions, these ratchet models can be
mapped explicitly onto a network of KM discrete states as discussed in
Section 3. A general algorithm to obtain the stationary states of these
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networks is described in Section 4. The general classification scheme is dis-
cussed in Section 5 for the current-rate relationships and in Section 6 for
the velocity-concentration relationships. The underlying ATP hydrolysis
which keeps the system out of equilibrium is discussed in Section 6.1. In
this latter section, we also discuss (i) the chemical equilibrium between
ATP, ADP and inorganic phosphate, and (ii) the ADP concentration as a
possible control parameter.

As mentioned, the possible pathways of the motor cycle correspond to
certain closed paths which span these networks in the x-direction and repre-
sent cycles in the graph theoretic sense. This is explained in more detail at
the beginning of Section 3, compare Fig. 2 below. In fact, the total current
across the network can be decomposed in such a way that each contribution
corresponds to a certain network-spanning cycle, see Section 5.1.

In the present article, we focus on the generic properties of the KM
ratchets, which are valid for all values of M and K, and emphasize their
representation in terms of stochastic networks. In a subsequent article, (29)

we will discuss several specific examples of KM ratchets with K [ 4 and
M [ 4.

2. STOCHASTIC RATCHET DYNAMICS

2.1. Time Evolution with M Internal States

Within the theoretical approach used here, the movement of the motor
molecule along the filament is described by the spatial coordinate x. For
cytoskeletal and other linear motors, one useful choice for x is the dis-
placement of the center-of-mass of the motor parallel to the filament.
A similar approach should apply to rotary motors where x would represent
an appropriate angular coordinate.

For a given value of x, the motor molecule must be bound to the
filament but can still attain many different conformations. These different
internal states will be labeled by the discrete index m with m=1, 2,..., M.
In addition, the motor can undergo transitions between these states at a
discrete set of K spatial positions per motor cycle.

Depending on the molecular architecture of the motor, one may iden-
tify several discrete subgroups of internal states. If the motor has only one
enzymatic domain or head, this head can attain a discrete number of states
corresponding to (i) no substrate, (ii) adsorbed ATP, (iii) adsorbed
ADP/P, and (iv) adsorbed ADP. In each of these states, the motor may
adopt a different conformation which will experience different interactions
with the filament. If the motor has two heads, a and b, one has three
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groups of internal states corresponding to (I) two bound heads, (II) bound
head a, and (III) bound head b.

In general, the motor conformation also involves internal degress of
freedom which vary in a continuous fashion. For example, one may tilt a
two-headed motor molecule, which is bound by one head, and simulta-
neously move its unbound head without changing the position of its center-
of-mass. In the theoretical framework considered here, these continuous
degrees of freedom are also discretized. On the one hand, this is convenient
from a computational point of view. On the other hand, such a discretiza-
tion does not represent a real limitation compared to a continuous descrip-
tion (such as the one proposed in ref. 30, for example) since one may
include many intermediate states by choosing a sufficiently large value
of M.

The stochastic dynamics of the molecular motor is now described by
the probability densities Pm(x, t) to find the motor at position x and in the
internal state m. For a given position x, the densities Pm may change (i)
because of lateral diffusion in state m which leads to lateral currents Jm or
(ii) because of transitions between the different internal states. Therefore,
the probability densities Pm satisfy the continuity equations

“Pm(x, t)/“t+“Jm(x, t)/“x=Im(x, t) (2.1)

with the transition current densities Im. In order to discuss the formal
properties of these equations, it will be convenient to visualize the M
internal states as M levels. In the following, the terms ‘‘internal state’’ and
‘‘level’’ are synonymous.

The lateral currents Jm depend on the molecular interaction potentials
Um(x) and on the external force F which define the effective force potentials

Vm(x) — [Um(x) − Fx]/T (2.2)

where T is the temperature in energy units. As mentioned, the subscript m
labels the different internal states of the motor corresponding to the differ-
ent conformations of the motor molecule for fixed value of x. Now, assume
that we ‘‘freeze’’ the motor in a specific conformation corresponding to
a certain value of m and that we displace this ‘‘frozen’’ state along the
filament. At position x, the motor molecule will then feel the force
− “Um(x)/“x arising from its interactions with the filament.

We will assume that the x-dependence of the molecular interaction
potentials Um(x) exhibits a characteristic length scale denoted by a. In fact,
we will focus on periodic potentials for which a represents the potential
period and Um(x+a)=Um(x).
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Using the effective force potentials defined by (2.2), the lateral currents
Jm have the Smoluchowski– or Fokker–Planck form (31, 4)

Jm(x, t) — − Dm
5 “

“x
Vm(x)+

“

“x
6 Pm(x, t)

= − Dme−Vm(x) “

“x
[eVm(x)Pm(x, t)]. (2.3)

where the parameter Dm represents the small-scale diffusion coefficient in
level m. The corresponding friction coefficients are given by T/Dm as
follows from the Einstein relation. This generalizes the ratchet models
studied in refs. 1 and 2 where all levels were taken to have the same friction
coefficient.

The transition current densities Im depend on the transition rate func-
tions Wmn=Wmn(x) \ 0 from state m to state n and have the generic form

Im(x, t) — C
n

− [ − Pm(x, t) Wmn(x)+Pn(x, t) Wnm(x)] (2.4)

where the prime at the summation sign indicates that n is restricted to n ] m.
Summation of (2.4) over m leads to ;m Im(x, t)=0 since the double

sum over m and n contains each term twice and with opposite sign. It then
follows from the sum over the M continuity equations for Pm as given by
(2.1) that the position probability density Ptot — ;m Pm evolves according to

“Ptot(x, t)/“t+“Jtot(x, t)/“x=C
m

Im(x, t)=0. (2.5)

with the total lateral current Jtot(x, t) — ;m Jm(x, t). The latter equation is
obvious since we implicitly assume that the motor stays bound to the fila-
ment. Therefore, in the present situation, the probability to find the motor
in a bound state is conserved.

Real molecular motors detach from the filament after a certain
number of motor cycles and then undergo random walks which consist of
alternating sequences of bound and unbound motor states, i.e., of directed
walks along the filaments and nondirected diffusion in the aqueous solu-
tion. The properties of these walks, which will not be considered here, have
been studied in refs. 32–35.

2.2. Transitions at K Spatial Locations

As mentioned in the introduction, stochastic models of the form as
given by (2.1)–(2.4) have been primarily studied for transition rate functions
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Wmn which do not depend on the spatial coordinate x. (4) In contrast, we will
focus here on the case for which these transition rate functions are spatially
localized as recently studied in the context of molecular motors. (8, 1, 2)

Thus, the transition rate functions are assumed to be localized in space
at the discrete set of positions x=xk with k=1,..., K and 0 [ x1 < · · ·
< xK < a and are expressed as (1, 2)

Wmn(x) — C
k

wmn(xk) aW d(x − xk) (2.6)

where wmn(xk) \ 0 are transition rates, aW ° a represents a molecular
‘‘localization’’ length, and d(z) is Dirac’s delta function. The parametriza-
tion (2.6) in terms of delta functions is useful since the ratchet models can
then be solved analytically as described in Section 3.

2.3. Stationary States

We will now focus on stationary states for which the probability den-
sities Pm satisfy “Pm/“t=0 which implies “P/“t=0 for the position prob-
ability density P. It then follows from the continuity equation (2.5) for P
that the total lateral current Jtot=;m Jm=const.

For such a stationary state, integration of the expressions (2.3) for the
lateral currents Jm leads to

Pm(x)=Pm(xg) e(xg, m | x, m) −
1

Dm
F

x

xg

dy Jm(y) e(y, m | x, m) (2.7)

with the exponential functions

e(x, m | y, n) — exp[Vm(x) − Vn(y)]=1/e(y, n | x, m) (2.8)

which depend on the effective force potentials Vm(x)=[Um(x) − Fx]/T as
defined in (2.2). Note that all exponential functions which enter in (2.7)
have n=m which implies that this equation is not affected by the substitu-
tion Vm(x) Q Vm(x)+cm with x-independent terms cm. The exponential
functions defined in (2.8) satisfy the simple product rule

e(x1, m | x2, m) e(x2, m | x3, m)=e(x1, m | x3, m). (2.9)

Further below, we will evaluate the general relation (2.7) for various
choices of x and xg.
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In order to have a well-defined stationary state, we will consider the
finite interval 0 [ x < a and use periodic boundary conditions with the
‘‘box normalization’’

F
x1+a

x1

dx Ptot(x)=F
x1+a

x1

dx C
m

Pm(x) — 1 (2.10)

which implies one motor particle per box and, thus, the motor velocity
v=aJtot. This normalization is particularly convenient for periodic poten-
tials Um(x) for which the box size is identified with the potential period and
Um(x+a)=Um(x).

2.4. Detailed Balance

If there is no enzymatic activity and the applied force F=0, the
system must obey detailed balance (db). This implies that the probability
densities Pm(x)=Pdb

m (x) and the transition rate functions Wmn(x)=Wdb
mn(x)

satisfy

Pdb
m (x) Wdb

mn(x)=Pdb
n (x) Wdb

nm(x). (2.11)

Thus, the transition current density as given by (2.4) is identically zero
and all levels are decoupled. Furthermore, the current Jm=Jdb

m must also
vanish for each level m since F=0 and there is no coupling to another
level. It then follows from the expression (2.3) for the lateral currents that
Pm(x) ’ exp[ − Um(x)/T] which is the usual Boltzmann weight for the
equilibrium distribution. Finally, insertion of this Boltzmann weight into
(2.11), leads to the relation

Wdb
mn(x)=e[Um(x) − Un(x)]/TWdb

nm(x)=eVm(x) − Vn(x)Wdb
nm(x). (2.12)

When the transition rate functions are localized and parametrized as in
(2.6), the corresponding transition rates wmn(xk)=wdb

mn(xk) satisfy (2)

wdb
mn(xk)=eVm(xk) − Vn(xk)wdb

nm(xk)=e(xk, m | xk, n) wdb
nm(xk) (2.13)

where the exponential function e(x, m | y, n) has been defined in (2.8).
In order to emphasize the deviations from detailed balance, the transi-

tion rates wmn(xk) will now be divided up according to

wmn(xk)=wdb
mn(xk)+Dmn(xk) (2.14)
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with the balanced parts wdb
mn and the unbalanced parts Dmn arising from the

enzymatic activity.
It is instructive to consider the case of no enzymatic activity but finite

external force F ] 0. Since Vm(x)=[Um(x) − Fx]/T, the force F drops out
from the prefactor exp[Vm(x) − Vn(x)] in the detailed balance relation
(2.12). Thus, one might be tempted to conclude from (2.3) that the proba-
bility distribution is now given by Pm(x) ’ exp[ − Vm(x)]. This solution is,
however, not acceptable since (i) it would imply the unphysical result
Jm=0 and (ii) it does not fulfill the periodic boundary conditions. In con-
trast, the physically acceptable solution must have the same periodicity as
the underlying molecular potentials (31) and must, in general, lead to a finite
lateral current Jm ] 0.

3. STOCHASTIC NETWORK AND MASTER EQUATION

We will now show that the stationary states of the stochastic dynamics
as defined in the previous section can be reduced to a set of relations
between the probabilities Pm(xk), i.e., between the probabilities to find the
motor at position x=xk in level m. Thus, we will reduce the dynamics to a
discrete set of KM motor states labeled by (k, m). It is further convenient
to represent this discrete set of states in terms of a network of vertices,
again denoted by (k, m), see Fig. 1. These discrete states are connected by
directed edges or di-edges which represent local transition currents between
the states. The form of these transition currents will be determined in the
next subsections.

m = 1

m = 2

...
.

m = M

k = 1        k = 2         ....           k = K                                                     k   

.

Fig. 1. Network of discrete motor states represented by vertices (k, m) with 1 [ k [ K and
1 [ m [ M. For fixed m, each pair of adjacent locations k and k+1 is connected by a pair of
horizontal di-edges (i.e., directed edges). Since the network is periodic in the horizontal direc-
tion, the first column with k=1 and the last column with k=K are also connected as indi-
cated by the broken di-edges. For fixed k, each pair of internal states, m and m −, is connected
by a pair of vertical di-edges. In the graph on the left, only a subset of all vertical di-edges is
shown for simplicty. In the graph on the right, all vertical di-edges are indicated for one value
of k.
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The network shown in the left part of Fig. 1 looks 2-dimensional but
each vertex (k, m) is connected to M − 1 other vertices (k, m −) at the same
x-position and to the two vertices (k − 1, m) and (k+1, m). Since M can be
large, any finite lattice with any dimensionality d=1+d+ can be mapped
onto such a network. The periodic boundary conditions in the x-direction
imply a pair of di-edges between the vertices (k=1, m) and (k=K, m) for
all values of m.

At this point, it is useful to view the network shown in Fig. 1 as a
directed graph and to borrow some elementary concepts from graph
theory. (36) Thus, we define a walk in the network to consist of a sequence of
vertices where each subsequent pair of vertices is connected by a di-edge
contained in the network. Furthermore a path in the network is a walk for
which no vertex occurs twice, and a cycle is a closed path.

Because of the periodic boundary conditions, any path which starts at
vertex (k=1, m), spans the whole network parallel to the x-direction, and
ends at vertex (k=K, m), compare Fig. 2, can be completed to a cycle if
one adds the di-edge between (k=K, m) and (k=1, m). We will refer to
these cycles as positive s-cycles since they traverse the network in the posi-
tive x-direction (the prefix ‘‘s’’ stands for ‘‘spanning’’). Cycles which tra-
verse the network in the opposite direction will be called negative s-cycles,
see Fig. 2.

In the biochemical literature, one usually refers to the main pathway
of an enzyme which is often drawn as a cycle of chemical reactions. In the
present context of molecular motors, various schemes for such a main
pathway have been proposed, see, e.g., ref. 37. Within the theoretical
framework described here, the main pathway should be identified with that
positive s-cycle which carries the largest current, for each value of x, across
the network. In general, this sequence need not be unique. Indeed, any
positive or negative s-cycle of the network corresponds to a possible
pathway which leads to a forward or backward motor step, respectively.

k = 1        k = 2        k = 3 k = 1       k = 2       k = 3 

m = 1

m = 2

...
.

m = M

Fig. 2. Spanning cycles or s-cycles in the directed graph of the network as indicated by the
sequences of thick arrows: (left) Positive s-cycle and (right) Negative s-cycle spanning the
network in the positive and negative x-direction, respecitively.
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3.1. Local Currents

The spatially localized transition rate functions as given by (2.6) imply
relatively simple expressions for the local currents between the different
states (k, m). In order to show this, we first define the local transition
current

Jmn(xk) — Pm(xk) wmn(xk) aW \ 0 (3.1)

which represents the current from state (k, m) to state (k, n). Likewise, the
transition current from state (k, n) to state (k, m) is given by Jnm(xk). These
two currents correspond to a pair of di-edges which connect the two ver-
tices (k, m) and (k, n) and which have a vertical orientation in Fig. 1. The
total current which flows from (k, m) to (k, n) is equal to Jmn(xk) − Jnm(xk).

In order to obtain expressions for the lateral currents Jm(x), we insert
the localized transition rate functions (2.6) into the current densities Im as
in (2.4) and integrate the continuity equation “Jm/“x=Im. This leads to

Jm(x)=J̄m+ C
K

k=1
DJm(xk) h(x − xk) (3.2)

with x-independent coefficients J̄m and the current discontinuities

DJm(xk) — C
n

− [ − Jmn(xk)+Jnm(xk)] (3.3)

where h(x) is Heaviside’s step function with h(x)=0 for x < 0 and
h(x)=1 for x > 0. As before, the prime at the summation sign indicates
that n is restricted to n ] m.

Note that ;m DJm(xk)=0 for all xk since the double sum over m and
n again contains each term twice and with opposite sign. Therefore, sum-
mation of (3.2) over m leads to the total lateral current Jtot=;m Jm=
;m J̄m.

The currents Jm(x) as given by (3.2) are piece-wise constant functions
of x. It follows by direct inspection of this equation that the lateral current
Jm(xk, xk+1) from state (k, m) to state (k+1, m) is given by

Jm(xk, xk+1)=J̄m+ C
k

q=1
DJm(xq)

=J̄m+ C
k

q=1
C
n

− [ − Jmn(xq)+Jnm(xq)] (3.4)
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which is equivalent to

Jm(xk, xk+1)=Jm(xk − 1, xk)+C
n

− [ − Jmn(xk)+Jnm(xk)]. (3.5)

The relation as given by (3.5) represents a conservation law for all
local currents connected to a given state (k, m). In order to visualize this
relation, we will now divide the lateral currents Jm(xk, xk+1) into two con-
tributions, one for the current from (k, m) to (k+1, m) and another one
for the current in the opposite direction from (k+1, m) to (k, m). In order
to do this, we start from the general relations (2.7) which express the
probability densities Pm in terms of the currents Jm. Using (2.7) with the
choice x=xk+1 and xg=xk with k=1, 2,..., K − 1, one finds

Jm(xk, xk+1)=Pm(xk)
em(xk, xk+1)
Em(xk, xk+1)

− Pm(xk+1)
1

Em(xk, xk+1)
(3.6)

with the E-functions

Em(x, y) —
1

Dm
F

y

x
dz em(z, y)=

1
Dm

F
y

x
dz exp[Vm(z) − Vm(y)]. (3.7)

The first term in (3.6) corresponds to the transition current from state
(k, m) to state (k+1, m), the second term to the current from (k+1, m)
to (k, m). In Fig. 1, these two transition currents are drawn as a pair of
horizontal di-edges.

The E-functions as given by (3.7) depend on the molecular force
potentials Um(x) and on the applied force F via the effective force poten-
tials Vm(x)=[Um(x) − Fx]/T. Note that Em(x, y) \ 0 for all values of x
and y with x < y.

3.2. Vertex Rule

At this point, it is useful to introduce a somewhat different notation.
First, the probabilities to find the motor in the discrete states (k, m) are
now denoted by

P(k, m) — Pm(xk) aW (3.8)

where we used the localization length aW to make P(k, m) dimensionless.
Secondly, we introduce the forward transition rate

W(k, m | k+1, m) —
em(xk, xk+1)

Em(xk, xk+1) aW

(3.9)
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and the backward rate

W(k+1, m | k, m) —
1

Em(xk, xk+1) aW

(3.10)

Using these definitions, the relation (3.6) for the lateral currents becomes

Jm(xk, xk+1)=P(k, m) W(k, m | k+1, m) − P(k+1, m) W(k+1, m | k, m)
(3.11)

Likewise, we rewrite the interlevel current Jmn(xk) as given by (3.1) in
the form

Jmn(xk) — P(k, m) W(k, m | k, n) (3.12)

with

W(k, m | k, n) — wmn(xk) (3.13)

Finally, insertion of these relations into the local conservation law
(3.5) leads to

0=C
n

− [ − P(k, m) W(k, m | k, n)+P(k, n) W(k, n | k, m)]

− P(k, m) W(k, m | k+1, m)+P(k+1, m) W(k+1, m | k, m)

− P(k, m) W(k, m | k − 1, m)+P(k − 1, m) W(k − 1, m | k, m). (3.14)

The terms with a minus sign are the transition currents which flow out of
the state (k, m), those with a plus sign are the currents which flow into this
state. For the network representation in Fig. 1, this implies the vertex rule
that, at each vertex (k, m), the sum of all outgoing currents, represented by
di-edges pointing away from the vertex, is equal to the sum of all incoming
currents, represented by di-edges pointing towards the vertex. This vertex
rule resembles Kirchhoff’s first rule for electric circuits.

3.3. Equivalent Master Equation

Inspection of the vertex rule as given by (3.14) shows that it has the
same form as the the transition matrix of a Master equation. Indeed, the
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stationary solutions for the stochastic ratchets considered here are identical
to the stationary solutions of the Master equation as given by

“P(k, m)/“t=C
n

− [ − P(k, m) W(k, m | k, n)+P(k, n) W(k, n | k, m)]

− P(k, m) W(k, m | k+1, m)+P(k+1, m) W(k+1, m | k, m)

− P(k, m) W(k, m | k − 1, m)+P(k − 1, m) W(k − 1, m | k, m).
(3.15)

which describes the temporal change of the probability to find the motor in
state (k, m) in terms of the various transition currents.

In this way, the ratchet dynamics is shown to be equivalent to the
stochastic network of KM discrete states. As explained in the previous
subsection, all transition rates W of the network which enter in the Master
equation (3.15) can be calculated in terms of the parameters of the
underlying Fokker–Planck dynamics defined in Section 2. Detailed balance
again applies for F=0 and for the balanced transition rates W(k, m | k, n)
=Wdb(k, m | k, n) — wdb

mn(xk). Using the definitions (3.9) and (3.10) for the
forward and backward rates W(k, m | k+1, m) and W(k+1, m | k, m), it is
easy to check that each pair of terms in (3.15), which corresponds to a pair
of di-edges connecting the same pair of vertices in the network, cancels
separately.

Finally, one should note that the representation of the dynamics in
terms of a Master equation has another advantage: such a representation is
rather convenient in order to study the dynamics by numerical methods.

4. SOLUTION PROCEDURE FOR GENERAL K AND M

4.1. Transfer Matrix and Linear Algebra

The stochastic network described in the previous section has two
simplifying features: the x coordinate is 1-dimensional and satisfies periodic
boundary conditions. The first property can be used in order to define a
transfer matrix which relates the states at xk with the states at xk+1. More
precisely, the conservation law for the local currents as given by (3.5) and
the expression (3.6) for the lateral currents can be rewritten into a recursion
relation of the form

[J(xk, xk+1), P(xk+1)]=[J(xk − 1, xk), P(xk)] T(xk, xk+1) (4.1)
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where [J, P] — [J1,..., JM, P1,..., PM] is a row vector with 2M components
and T is a 2M × 2M transfer matrix.

The recursion relation (4.1) can be used in order to express all lateral
currents and all probability densities in terms of the densities Pm(x1) and
the lateral currents J̄m which enter the system from x < x1, see (3.2). Thus,
in order to solve the problem, we need a set of 2M equations for the 2M
unknowns J̄m and Pm(x1).

2M − 1 of these equations can be constructed using the periodic
boundary conditions (PBCs). First, we obtain M − 1 linear and homoge-
neous equations from the PBCs for M − 1 of the M lateral currents Jm(x).
As mentioned, ;m DJm(xk)=0 for any value of xk which makes one of the
M PBCs linearly dependent on the other M − 1. Secondly, the PBCs for the
M densities Pm(x) provide another set of M linear and homogeneous
equations. Finally, one linear but inhomogeneous equation is obtained
from the normalization condition (2.10). This set of 2M linear equations
may be written in the form

[J̄, P(x1)] A=[J̄1,..., J̄M, P1(x1),..., PM(x1)] A=[0,..., 0, 1] (4.2)

which defines the 2M × 2M matrix A. Each of the first M − 1 columns of A
corresponds to the PBC for one lateral current Jm, each of the next M
columns to the PBC for one density Pm, and the 2Mth column to the
normalization condition. The solution of (4.2) is given by

[J̄, P(x1)]=[0,..., 0, 1] A−1=[0,..., 0, 1]
C

det A
(4.3)

where the matrix elements of C are the cofactors

Cij — (−1) i+j det A[j, i] (4.4)

and A[i, j] is the (2M − 1) × (2M − 1) matrix obtained from A by erasing
its ith row and jth column.

Finally, we want to calculate the total current Jtot=;M
m=1 J̄m which

determines the motor velocity v via v=aJtot. It now follows from (4.3) and
(4.4) that

Jtot= C
M

m=1
J̄m= C

M

m=1
(−1)2M+m det A[m, 2M]/det A. (4.5)

Note that the total current must not depend on the labeling of the
discrete set of states. Thus, it must be invariant (i) if we permute the labels
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m for the M levels and (ii) if we shift the labels k of xk by any integer using
the PBCs xK+1=x1.

4.2. Dependence on the Transition Rates

A detailed study of the linear set of equations reveals that one can
make some general statements about the dependence of the matrix A on
the transition rates wmn(xk). The properties of A imply related properties of
its determinant, its cofactors, and the total current as given by (4.5). All of
these properties can be summarized in the following set of rules.

(A1): All matrix elements of A, which depend on wmn(x1), are located
in the (M+m)th row of A and are linear in wmn(x1). This follows from the
observation that wmn(x1) enters the problem only via the product
Pm(x1) wmn(x1), compare (3.1). This immediately implies the next rule

(A2): The determinant det A and the cofactors Cij ’ det A[j, i] are
multilinear in the transition rates wmn(x1). This together with the relabeling
invariance of the total current (4.5) implies

(A3): Both the determinant det A and the cofactor sum

C
M

m=1
(−1)2M+m det A[m, 2M] (4.6)

are multilinear in the transition rates wmn(xk) for all k.

(A4): All matrix elements of A which depend on wmn(xK) are located
in the two columns of A corresponding to the two PBCs for Jm and Jn. This
follows from the observation that the reduction to the 2M variables J̄m and
Pm(x1) can be achieved by (K − 1) transfer matrixes T(xk, xk+1) with k ] K.
Futhermore, for any pair of m and n, one may choose a set of (M − 1)
PBCs which does not contain the PBC for Jn. For this choice, all matrix
elements which depend on wmn(xK) are located in the mth column; and

(A5): All terms occuring in the first (M − 1) columns of A are pro-
portional to at least one transition rate wmn(xk). As mentioned, the mth
column corresponds to a PBC for the lateral current Jm which can be
expressed in terms of the current discontinuities DJm(xk) according to

C
K

k=1
DJm(xk)/aW= C

K

k=1
C
n

− [ − Pm(xk) wmn(xk)+Pn(xk) wnm(xk)]=0. (4.7)

Inspection of this equation shows that each term is proportional to at least
one transition rate which implies the rule (A5).
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5. UNIVERSAL FEATURES OF TOTAL CURRENT

5.1. Transition Rate Dependence of Total Current

Using the properties (A1)–(A5) as described in the previous section,
one finds that the functional relationship between the total current Jtot and
the transition rates wmn(xk) exhibits some generic or universal features. In
order to discuss these features, it will be often convenient to use the short-
hand notation

wr with 1 [ r [ N — KM(M − 1) (5.1)

for wmn(xk). The parameter N is equal to the number of all vertical di-edges
in the network of KM discrete states as shown in Fig. 1.

The generic features of the current-rate relationship can be summa-
rized in terms of the following rules:

Rule 0. The dependence of the total current Jtot on the transition
rates wr has the form

Jtot=
Pol1(w1, w2,..., wN)
Pol2(w1, w2,..., wN)

(5.2)

with two polynomials Pol1 and Pol2. This follows from (4.5) since the
determinants are polynomials in the matrix elements of A, and each of
these matrix elements can contain products of the transition rates.

Rule 1. Both polynomials are multilinear in all wr, i.e., each term T

of both Pol1 and Pol2 behaves as

T ’ w
z1
1 w

z2
2 · · · w

zN
N with zr=0, 1, (5.3)

i.e., it cannot contain powers wz
r with z \ 2. This follows from (A3) when

used in the expression (4.5) for the total current.

Rule 2. Each polynomial term T contains at least M − 1 factors wr,
i.e.,

C
r

zr \ M − 1 for each T. (5.4)

This follows directly from (A5). Furthermore, each polynomial term T

contains at most K(M − 1) factors wr, i.e.,

C
r

zr [ K(M − 1) for each T. (5.5)
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k = 1        k = 2       k = 3 k = 1       k = 2       k = 3 

m = 1

m = 2

...
.

m = M

Fig. 3. (Left) A localized cycle or l-cycle at k=2 which does not contribute, compare rule 4
in the text; and (Right) Pair of opposite s-cycles: These two s-cycles correspond to two terms
in Pol1 which cancel if the system satisfies detailed balance, see rule 6 in the text.

This follows directly from the next two rules 3 and 4. Note that this
maximal number K(M − 1)=N/M grows as ’ M whereas the total
number N=KM(M − 1) of all rates wr grows as ’ M2 for large M.

Rule 3. No term T contains a product of the form wmn(xk) wmo(xk).
This follows directly from (A1).

As defined at the beginning of Section 3, a cycle in the directed graph
of the network is a closed walk for which no vertex occurs twice. In order
to state the next rule, we define localized cycles or l-cycles to be those
cycles for which all vertices have the same x-position and, thus, the same
value of k, see the left graph in Fig. 3.

Rule 4. No term T contains a product of the form wmn(xk) wnm(xk).
This follows directly from (A4). Such a product corresponds to the smallest
possible l-cycle. Likewise, no term T contains a product of the form

wmmŒ(xk) wmŒmœ(xk) · · · wnm(xk). (5.6)

The latter products correspond to all possible l-cycles at x=xk with
1 [ k [ K.

At the beginning of Section 3, we introduced the notion of s-cycles
spanning the whole network, see Fig. 2. First, note that l-cycles cannot
occur within s-cycles; indeed, if an l-cycle were contained in an s-cycle, one
vertex would occur twice in the s-cycle which is not possible by definition.
Furthermore, there is a direct connection between s-cycles and the terms of
Pol1 as provided by the next rule.

Rule 5. For F=0, each term T of Pol1 can be mapped onto an
s-cycle of the network. In general, this mapping is not one-to-one and
several terms will be mapped onto the same s-cycle. The smallest such
s-cycles involve a pair of transitions which connect two levels in opposite
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directions at two different x-locations. The latter s-cycles lead to polyno-
mial terms of the form

T ’ wmn(xk) wnm(xl) with k ] l. (5.7)

The latter rule can be deduced from the limiting case of detailed balance
which is stated next.

Rule 6. If all transition rates satisfy detailed balance with wr=wdb
r as

in (2.13), one has

Jtot ’ Pol1(wdb
1 , wdb

2 ,...)=0 for F=0. (5.8)

In fact, each term of Pol1 corresponding to a certain s-cycle is cancelled by
another term corresponding to the opposite s-cycle, i.e., to the cycle which
consists of the same vertices but has the opposite orientation, see the right
graph in Fig. 3. This pair-wise cancellation is based on the exponential
functions e(x, m | y, n) as defined in (2.8) which enter (i) via the expressions
(3.6) for the lateral currents and (ii) via the relation (2.13) for the balanced
transition rates wdb

nm(xk).
The above set of rules 1–6 has been previously reported in ref. 2. In

the present article, rule 2 has been extended and now contains the upper
bound (5.5), rule 4 has been generalized to arbitrary l-cycles, see (5.6), and
rules 5 and 6 have been stated in a more explicit form.

5.2. Dependence on Unbalanced Transition Rates

Since the balanced transitions do not contribute to the total current,
let us now focus on the unbalanced transitions which have rates of the form

wmn(xk)=wdb
mn(xk)+Dmn(xk) with Dmn(xk) > 0 (5.9)

as introduced in (2.14) or, using our short hand notation,

wr=wdb
r +Dr with Dr > 0. (5.10)

The total number of such unbalanced transitions per motor cycle will
be denoted by Q which satisfies the obvious inequality

Q [ N=KM(M − 1). (5.11)

The simplest nontrivial network corresponds to (K, M)=(2, 2) for
which one has Q [ 4. It will also be convenient to relabel the unbalanced
parts of the transition rates (5.10) according to

Dq with 1 [ q [ Q. (5.12)
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The simplest situation is provided by Q=1. In this case, rule 1 leads
to

Jtot(D1, F)=
a0(F)+a1(F) D1

b0(F)+b1(F) D1
(5.13)

with a0(F=0)=0 as follows from rule 6.
For Q=2, the dependence of the total current on the unbalanced rate

constants D1 and D2 has the general form

Jtot(D1, D2, F)=
a0+a1D1+a2D2+a12D1D2

b0+b1D1+b2D2+b12D1D2
(5.14)

where all coefficients a and b again depend on the external force F with
a0=0 for F=0.

Likewise, for Q \ 3, rule 1 implies that the total current Jtot(D1,..., DQ)
is given by the ratio of two multilinear polynomials, the degree of which is
bounded from above both by Q and by K(M − 1),3 and rule 6 leads to a0=0

3 In general, Q may exceed K(M − 1). In this case, one must have unbalanced transitions
which emanate from the same vertex or which correspond to l-cycles in the network. Such
transitions can contribute to the total current via different s-cycles.

for F=0.
The generic features just described are valid for an arbitrary number

of balanced transitions. Thus, we could add more and more balanced
transitions in order to attain balanced rate functions Wdb

mn(x) which vary
continuously with x. This implies that the generic current-rate relationships
should also be valid for transition rate functions

Wmn(x)=Wdb
mn(x)+C

q
Dq aW d(x − xq) (5.15)

where the functions Wdb
mn(x) satisfy detailed balance but have an otherwise

arbitrary x-dependence and the summation over q depends on the level pair
(m, n).

On the other hand, if one studies ratchets for which the unbalanced
parts of the transition rate functions Wmn(x) are described by continuously
varying functions, one obtains a stochastic resonance and the total current
exhibits a maximum at sufficiently large transition rates. (8, 7) In the context
of the stochastic network considered here, this would correspond to the
limit of large Q.

The current-rate relationships discussed so far represent the most
general forms consistent with a given value of Q. If the network exhibits
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some additional constraints or symmetries, some of the F-dependent poly-
nomial coefficients will be identically zero. One example is provided by
Q=2 with two unbalanced transitions which emanate from the same
vertex (k, m). In this case, one has a12=b12=0 in (5.14) as follows from
rule 3. Another example is provided by the strongly unbalanced limit in
which one ignores all balanced transitions. In this limit, both relationships
(5.13) and (5.14) simplify since rule 2 implies that the zeroth order coeffi-
cients a0 and b0 vanish for all F while the first order coefficients a1 and a2

now vanish for F=0 as follows from rule 6.

5.3. Other Types of Networks

Since the ratchet models considered here are equivalent to the net-
works introduced in Section 3 and displayed in Fig. 1, the above classifica-
tion scheme for the rate dependence of the total current also applies to
these networks. As mentioned, any (finite) lattice in (1+d+ ) dimensions
can be mapped onto such a network.

It is interesting to note, however, that these networks need not be as
regular as in Fig. 1. Indeed, each such network is completely defined by its
graph, i.e., by the set of its vertices and by the pairs of di-edges which
connect these vertices. Thus, we can distort the network shown in Fig. 1 in
an arbitrary way and still get the same classification for the relationship
between the total current and the unbalanced rates. Likewise, starting from
a regular network as in Fig. 1 but for large values of K and M, we can
eliminate many of the pairs of di-edges by setting the corresponding transi-
tion rates equal to zero. In this way, we can obtain networks of completely
different ‘‘shapes.’’

The only constraint which is essential are the periodic boundary con-
ditions which imply that the vertex (k=1, m) is directly connected, by a
pair of di-edges, to the vertex (k=K, m) for all values of m. Between these
two ‘‘slices’’ at m=1 and m=M, one can then have many kinds of differ-
ent networks. In particular, it is not difficult to see that these networks may
contain unbalanced transitions corresponding to di-edges which run paral-
lel to the x-coordinate.

6. UNIVERSAL FEATURES OF MOTOR VELOCITY

Finally, let us return to the problem of molecular motors for which the
total current Jtot determines the motor velocity v via v=aJtot. In this case,
the number Q of unbalanced transitions is equal to the number of possible
catalytic steps per motor cycle. In order to estimate this number for a
specific motor, one should focus on its catalytic domains or heads.
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Conventional kinesin, for example, has two heads and a long tail. Since we
are not interested in the various conformations of this tail, we want to focus
on a two-headed kinesin which walks in a processive way but has the
shortest possible tail.4 As such a motor walks along the filament, it will

4 Kinesin seems to be characterized by a long-ranged interaction between the tail and the motor
domains since the tail blocks the catalytic activity if it is not bound to some cargo. (38) This
regulation mechanism is not included in our models.

undergo many balanced and a few unbalanced transitions as explained next.

6.1. Balanced Versus Unbalanced Transitions

Thus, let us imagine to watch the motor protein and the filament with
a rather high resolution. Since we use the context of classical statistical
mechanics, the resolution cannot become arbitrarily high, but we could
imagine to resolve structures of the order of a few angstroms. On such a
scale, we would see small groups of atoms which are expected to behave
classically, i.e., we could presumably describe the movements of these
groups by position and momentum variables. Now, most of the motion
which we would observe on this scale is due to thermal fluctuations which
satisfy detailed balance since our systems have constant temperature and
pressure.

The molecular motor cycle contains several adsorption and desorption
processes. First, one head of the motor molecule may bind to and unbind
from the filament. Likewise, ATP can bind to one of the heads, and ADP
and/or the phosphate ion (Pi) can unbind from such a head after the
hydrolysis. In general, the reverse processes of ATP unbinding and ADP
binding are possible as well. If we replace ATP by a nonhydrolyzable
analogue such as AMP-PNP, we suppress the hydrolysis step of the motor
cycle, and all of these adsorption and desorption processes correspond to
balanced transitions. From this point of view, the only processes which
should be described by unbalanced transitions are chemical reaction steps
at which a chemical or covalent bond is broken or reshuffled.

For cytoskeletal motors, this chemical reaction is provided by the
hydrolysis of ATP which can be summarized by the reaction scheme

ATP ? ADP+Pi (6.1)

where Pi denotes the phosphate ion. In chemical kinetics, one introduces
two reaction rate constants, o1 and o2, and assumes that chemical equilib-
rium is reached as soon as

o1 CATP=o2 CADP CP (6.2)
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where CATP, CADP, and CP are the concentrations of the three molecular
species. In the framework considered here, the state of the motor before
and after the hydrolysis corresponds to two states (k, m) and (k, n). Thus,
in order to describe the deviation from equilibrium and detailed balance, it
seems natural to define the unbalanced parts of the hydrolysis step via the
transition rates

Dmn(xk)=eVm(xk)o1(F) CATP — ô1(F) CATP (6.3)

and

Dnm(xk)=eVn(xk)o2(F) CADPCP — ô2(F) CADPCP (6.4)

between these two motor states. As indicated, the reaction rate constants
will, in general, depend on the external force F.

In typical motor experiments, one usually starts from the situation in
which one has a relatively large concentration of ATP but (almost) no
ADP. If these systems contain only a small number of motors, they are well
separated from the state of chemical equilibrium over the accessible time
scales of the experiments. In this limit of small CADP, one may use

Dmn(xk)=ô1(F) CATP and Dnm(xk) % 0. (6.5)

In the literature on cytoskeletal motors, the ATP hydrolysis contained
in the motor cycle is often described by several substeps. As an example,
consider one motor domain of two-headed kinesin (K) bound to a micro-
tubule (M). This bound state is believed to be rather stable until an ATP
molecule arrives and binds to K. The bound K/ATP then leads to the
hydrolysis step as given by (6.1) after which Pi and ADP unbind from K.
Thus, one has the sequence M/K+ATP Q M/K/ATP Q M/K/ADP/Pi

Q M+K/ADP+Pi. The latter sequence is typically assumed to follow
Michaelis–Menten kinetics (39) which implies that the corresponding unbal-
anced transition rate Dmn(xk) is given by (1, 2)

[Dmn(xk)]−1=[õ1(F) CATP]−1+[õ2(F)]−1 (6.6)

with reaction rate constants õ1 and õ2 which again may depend on the
external force F.

In principle, the molecular motor could contain allosteric domains
which bind regulatory molecules. The transition rate Dmn(xk) could then
exhibit a sigmoidal dependence on CATP as found for allosteric enzymes. (39, 2)
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6.2. Rate Dependence of Motor Velocity

We can now combine the general relationships between the total
current Jtot and the unbalanced transition rates as described in Section 5
with the specific forms for these unbalanced rates as discussed in the pre-
vious subsection. In this way, we obtain the functional dependence of the
motor velocity v=aJtot on the ATP concentration and on the external
force. As for the current-rate relationships, this functional dependence is
primarily determined by the total number Q of unbalanced transitions per
motor cycle. In order to simplify the discussion, we will implicitly assume
that both K and M are large and that Q [ K(M − 1).

If the motor has a single head, one expects to have only one hydrolysis
step per motor cycle which implies Q=1. If the motor has two identical
heads, one will have Q=2 if both heads must be in a unique conformatio-
nal state in order to have an ATP hydrolysis reaction at one of these heads.

In general, one would expect that each head of a two-headed motor
should have a unique state in order to become catalytic, but the second
head may still have some conformational freedom. If one head can be
active for two or three different conformations of the other head, one has
Q=4 or Q=6, respectively. If the two heads are not identical as applies,
e.g., to certain kinesin constructs, one could also imagine motor cycles
characterized by Q=3 or Q=5.

For a certain value of Q, the models considered here lead to a certain
rate dependence of the total current as described in Section 5.2. Using the
dependence of the unbalanced transition rates Dmn(xk) on the various con-
centrations and on the external force F as discussed in Section 6.1, one
then obtains a certain dependence of the motor velocity on these control
parameters.

In our previous work, the unbalanced transition rates were taken to
have the Michaelis–Menten form as given by (6.6). One then obtains the
general functional relationships as given by (2)

v(C, F)=5 C
Q

n=0
gn(F) Cn6;5 C

Q

n=0
hn(F) Cn6 (6.7)

with C=CATP and g0(F=0)=0 (and Q [ K(M − 1) was implicitly
assumed). Thus, the velocity can be expressed in terms of the ratio of two
C-polynomials of degree Q with F-dependent coefficients. The same func-
tional relationships are obtained if one uses the somewhat different
parametrization of the unbalanced transition rates as given by (6.5).

In this way, one arrives at a general classification scheme for the func-
tional dependence of the velocity on the two parameters C and F which
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agrees, for Q=1, with the experimental observations on kinesin as
described by (1.1). For each value of Q, the functional relationships as
given by (6.7) are universal in the sense that they are valid (i) for any
number of balanced transition rates, (ii) for any choice of the molecular
force potentials, (iii) for arbitrary load force F, and (iv) for any force
dependence of the Michaelis–Menten reaction rate constants õ1(F) and
õ2(F) in (6.6) or of the reaction rate constant ô1(F) in (6.5).

As mentioned in Section 5.2, the current-rate relationships simplify if
some of the polynomial coefficients vanish for all F because of some addi-
tional constraint of symmetry. Likewise, some of the polynomial coeffi-
cients gn(F) and hn(F) in (6.7) may vanish for all F. This happens, e.g.,
for models with (K, M)=(2, 2) and (K, M)=(2, 3) in the strongly
unbalanced limit with Q=4 as studied for kinesins with two identical
heads. (1) This reduction in the polynomial degree is related to the symmetry
between the two identical heads. Since this symmetry is absent for kinesin
constructs which have two different heads, our theory predicts that the
corresponding velocity-rate relationship will also be different.

Finally, if one uses the unbalanced transition rates as given by (6.3)
and (6.4), our theory makes some definite predictions about the depen-
dence on the ADP and Pi concentrations which should be accessible to
experiments.
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GLOSSARY: LIST OF SYMBOLS

All symbols are treated as words which are ordered alphabetically.

d spatial dimensionality
Dm diffusion coefficient in lateral currents Jm

F applied (tangential) force; a load force corresponds to F < 0
C concentration of fuel molecules such as ATP
Cg characteristic intermediate concentration
Im transition current density for internal state m
Jm lateral current for internal state m
Jtot total lateral current
K number of locations for transitions between internal states
aW molecular ‘‘localization’’ length for transitions rates
a period of molecular force potentials

Molecular Motor Cycles: From Ratchets to Networks 1165



M number of internal motor states
Pm probability density for internal state m
Ptot total or position probability density
Wmn spatially dependent transition rate function from state m to state n
wmn transition rate from state m to state n
x spatial coordinate for motor position
xk position at which motor undergoes localized transition
t time
T temperature in energy units
Um molecular force potential for internal state m
Vm effective force potential as defined in (2.2).
v motor velocity
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