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We study nucleation of liquid droplets from a one-component vapor phase on a planar lyophobic substrate,
δ, patterned with a number of lyophilic (easily wettable) circular domains, γ. The wettabilities of the
lyophilic domains and the lyophobic substrate are characterized by contact angles θγ and θδ, respectively.
Depending on the supersaturation of the vapor and on the contact angles θγ and θδ, nucleation of a droplet
on one of these circular domains proceeds through a free energy barrier with one or two maxima (a double
barrier). Barriers with two maxima occur for intermediate values of the supersaturation. In terms of the
dimensionless supersaturation ∆, this intermediate regime is given by sin θγ < ∆ < sin θδ for θγ < θδ <
π/2 and by sin θγ < ∆ < 1 for θγ < π/2 < θδ. We extend classical nucleation theory to account for the kinetics
of nucleation through a double barrier and apply this extension to the nucleation of droplets on lyophilic
circular domains.

1. Introduction

In recent years, experimental techniques have been
developed that allow the patterning of a substrate with
different types of surface domains, which have a molecular
thickness and an area in the mesoscopic scale and which
exhibit different wettabilities.1-7 For example, domain
sizes of 30 nm have been created using an atomic force
microscope, the “tip” of which was brought into contact
with a flat surface.8

The existence of new patterned surfaces has led to
increased theoretical efforts to understand wetting phe-
nomena in such systems; see refs 9-16 and the review in
ref 17. These efforts have been mainly concerned with the
equilibrium morphologies of wetting layers and droplets
on chemically patterned substrates. In particular, mor-

phological wetting transitions, that is, transitions in the
shapes of the wetting layers when the volume of liquid is
changed, have been discovered and studied for several
types and patterns of surface domains.11,13,16,17

In this article, we address the question of how mor-
phological wetting transitions affect the kinetics of the
vapor-liquid phase transition. In particular, we study
the kinetics of the condensation of droplets from a one-
component vapor phase on a lyophobic substrate patterned
with a number of lyophilic (easily wettable) circular
domains.

It was first pointed out by Gibbs that the metastability
of a vapor phase depends on the energy necessary to form
a critical nucleus, that is, a droplet of a certain critical
size.18 Droplets smaller than this critical size tend to
disappear, while droplets larger than the critical size tend
to grow. The corresponding excess free energy has an
activation barrier with its maximum at the critical size.
Classical nucleation theory describes droplet nucleation
and growth as a thermally activated process over this
free energy barrier.19-24 This applies both to droplets that
are formed in the bulk of the vapor phase (homogeneous
nucleation) and to those that grow at a chemically uniform
wall (heterogeneous nucleation).

The problem of finding the activation barrier for the
condensation of a droplet on a single lyophilic surface
domain has been studied theoretically.25,26 It was shown
that the condensation of a droplet on a lyophilic circular
domain proceeds through a barrier with one or two maxima
(a double barrier). In the present article, we will show
that free energy barriers with two maxima occur for
intermediate values of the supersaturation. In terms of
the dimensionless supersaturation ∆, this intermediate
regime is given by sin θγ < ∆ < sin θδ for θγ < θδ < π/2
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and by sin θγ < ∆ < 1 for θγ < π/2 < θδ, where θγ and θδ
are the contact angles of the liquid with the lyophilic and
lyophobic surface domains, respectively. In addition, we
extend classical nucleation theory and address the kinetics
of nucleation through such double barriers.

Our article is organized as follows. In section 2, we study
the barrier for the nucleation of a droplet on a lyophilic
circular domain. In section 3, we derive the equilibrium
cluster size distribution for the droplets condensed from
a vapor phase in contact with a substrate patterned with
a number of lyophilic circular domains. Section 4 is devoted
to the fundamental equations of the kinetic model used
in classical nucleation theory. In section 5, we solve the
problem of the nucleation through a double barrier in the
steady state. Finally, section 6 summarizes the most
relevant results.

2. Droplets on a Lyophilic Circular Domain

2.1. Three Regimes for Equilibrium Droplets. Let
us consider a certain amount of condensed liquid phase
â that is in contact with its vapor R and with a planar
substrate σ. Most of the surface of the substrate consists
of a lyophobic phase δ, but it also contains a lyophilic γ
domain. The latter surface domain is taken to be circular
with radius rγ. The contact angles on the lyophilic and on
the lyophobic surface regions are θγ and θδ, respectively,
with θγ < θδ. The substrate is rigid, and its composition
does not change during the wetting processes.

In this subsection, the droplet is in a stable state that
is characterized by a constant volume of liquid Vâ and
mechanical equilibrium of the interface between the vapor
R and the liquid â. Such a situation may correspond to a
liquid, which is nonvolatile on the experimentally relevant
time scales. In this case, the state of lowest free energy
corresponds to a droplet that forms a spherical cap and
that is in contact with the lyophilic γ domain.

In general, the â droplet on the σ substrate is bounded
by two interfaces: the R-â interface with area ARâ, and
the â-σ interface with area Aâσ. Its interfacial free energy
is then given by

with the corresponding interfacial tensions ∑ij. The
spherical cap is obtained if one minimizes this free energy
under the constraint of fixed volume Vâ. In fact, this
minimization leads to three different droplet regimes as
shown in Figure 1.11,25

The simplest way to characterize these different
droplet regimes is via the location of the contact line of
the droplet. In regime I, the contact line is located within
the lyophilic γ domain and the contact angle is θ ) θγ.
Likewise, regime III is characterized by a contact line on
the lyophobic surface region with θ ) θδ. Finally, in regime

II, the contact line is on top of the γ-δ domain boundary
and the contact angle θ can attain any value within the
range θγ e θ e θδ.

To characterize these regimes in more detail, it is useful
to recall some elementary features of spherical caps. These
caps have a constant curvature radius that we will denote
by R. Their volume is given by

with

which is equal to the ratio between the actual volume of
the droplet and the volume of a complete sphere with
equal curvature radius.

The three droplet regimes can now be defined by the
two boundary volumes

and

The two droplets with volumes Vâ ) V1 and Vâ ) V2 have
the same contact area Aγ ≡ πrγ

2, which is the area of the
lyophilic γ domain, but differ in their contact angles, which
are θ ) θγ and θ ) θδ, respectively.

These two boundary volumes define three intervals: 0
< Vâ < V1, which corresponds to regime I; the intermediate
volume range V1 e Vâ e V2 corresponding to regime II;
and V2 < Vâ, which defines regime III. Thus, the volumes
V1 and V2 correspond to the smallest and the largest
droplets in regime II, respectively.

The two interfaces bounding the spherical cap of radius
R have the areas ARâ ) 2πR2(1 - cos θ) and Aâσ ) πR2 sin2

θ. The latter area is smaller than the area Aγ ) πrγ
2 of the

lyophilic γ domain in regime I, is equal to Aγ in regime II,
and exceeds this area in regime III.

Another geometric quantity that can be used to uniquely
define the three droplet regimes is the height h of the
spherical cap, which is given by

and increases monotonically with increasing Vâ; see Figure
2.

In regime II, the radius of curvature R is related
to the contact angle θ by R ) rγ/sin θ, and the area
ARâ and the volume Vâ are related to the height h of

Figure 1. Three different regimes for a spherical droplet
located on a lyophilic circular domain. The actual contact angle
θ of the droplet is equal to θγ in regime I and θδ in regime III,
but satisfies θγ e θ e θδ in regime II.

∆F ) ARâΣRâ + Aâσ(Σâσ - ΣRσ) (1)

Figure 2. Geometry of a droplet that completely covers a
circular γ domain of radius rγ (regime II). The droplet forms a
spherical cap with curvature radius R, contact angle θ, and
height h.

Vâ ) Φ(θ)4/3πR3 (2)

Φ(θ) ≡ 1/4(1 - cos θ)2(2 + cos θ) (3)

V1 ≡ Φ(θγ)
4/3πR1

3 with R1 ≡ rγ/sin θγ (4)

V2 ≡ Φ(θδ)
4/3πR2

3 with R2 ≡ rγ/sin θδ (5)

h ) R(1 - cos θ) (6)
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the spherical cap by the expressions ARâ ) π(h2 + rγ
2) and

Vâ ) πh(h2 + 3rγ
2)/6, respectively.

Using these relations, one may now calculate the
interfacial free energy as given by eq 1, which leads to
the relations

for regime I,

for regime II, and

for regime III. These three equations also define the
interfacial free energy ∆F as a function of the droplet
volume Vâ. With the use of the implicit function theorem,
it is not difficult to show that both ∆F and the first
derivative ∂∆F/∂Vâ are continuous at the boundary
volumes V1 and V2 even though various functions such as,
for example, ∂R/∂Vâ, are not continuous at these points.

2.2. Droplets in Contact with a Supersaturated
Vapor. We will now move our system out of equilibrium
and consider a situation in which the vapor R is super-
saturated and, thus, in a metastable bulk state. In classical
nucleation theory, one determines the minimal work
necessary to form a droplet when the fluid is in contact
with a thermal reservoir at temperature T and with a
work reservoir at pressure P ) PR.27 If the droplet contains
Nâ molecules, this minimal work or excess free energy
has the general form

with the interfacial free energy ∆F as given by eqs 7-9.
We will now ignore the compressibility of the liquid and

take its particle number density to be constant and equal
to Fâ. Integration of the relation (∂µâ/∂P)T ) 1/Fâ, which
follows from the Gibbs-Duhem equation at a constant
temperature, then leads to

If we insert this relation into eq 10, the excess free energy
attains the simpler form

which depends on the supersaturation

where µR(T, PR) and µâ(T, PR) are the chemical potentials
in the vapor phase R and the liquid droplet â, both taken
at the vapor pressure PR.

Stationary droplet states correspond to those volumes
for which

For the interfacial free energy ∆F as given by eqs 7-9,
one finds after some algebra that

in all three regimes. When this is inserted into eq 14, one
obtains the rather simple relation

It follows that any stationary droplet state is characterized
by a curvature radius R that is equal to R/ ∼ 1/∆µ. Thus,
we will call R/ the stationary radius.

Because the interface bounding a stationary droplet
should be in mechanical equilibrium, the curvature radius
R of the droplet should also obey the Laplace equation

When inserted into eq 16, this latter relation leads to
∆µ ) (Pâ -PR)/Fâ. Using the definition 13 of the super-
saturation ∆µ and the integrated Gibbs-Duhem eq 11,
one then obtains the simple equality µâ(T, Pâ) ) µR(T, PR)
for the chemical potentials of the stationary droplet and
the supersaturated vapor. Starting from this latter
equality, we could have derived the relation 16 directly
from the Laplace eq 17 and the integrated Gibbs-Duhem
eq 11.

For a chemically patterned substrate as discussed here,
one may have more than one stationary droplet state for
a given supersaturation ∆µ. This is shown in the next
subsection using a simple graphical method.

2.3. Stationary Droplet States. To determine the
possible stationary droplet states, which are the states
that satisfy the relation R ) R/, we will now discuss the
functional dependence of the curvature radius R on the
droplet volume Vâ.

In regimes I and III, the contact angle is fixed and the
curvature radius R increases monotonically with increas-
ing volume Vâ. In regime II, the situation is different
because R may decrease or increase with increasing volume
Vâ in different ranges of Vâ depending on the values of the
contact angles θγ and θδ.

Let us define Vsp/2 ≡ (2π/3)rγ
3, which corresponds to the

volume of a half-sphere with radius rγ. In general, the
functional dependence of the curvature radius R on the
volume Vâ exhibits the following qualitative features:

(A) For θγ < θδ < π/2, one has V1 < V2 < Vsp/2. In this
case, the curvature radius R increases for small Vâ with
0 < Vâ < V1, decreases for intermediate Vâ with V1 < Vâ
< V2, and increases again for V2 < Vâ. Therefore, the
curvature radius R ) R(Vâ) has a minimum at Vâ ) V2,
where it attains the value R ) R2 ) rγ/sin θδ, see Figure
3A.

(B) For θγ < π/2 < θδ, one has V1 < Vsp/2 < V2. The
curvature radius R increases for small Vâ with 0 < Vâ <
V1, decreases for intermediate Vâ with V1 < Vâ < Vsp/2,
and increases again for Vsp/2 < Vâ. Thus, R ) R(Vâ) exhibits
a minimum at Vâ ) Vsp/2, where it attains the value R )
rγ; see parts B.1 and B.2 of Figure 3.

(C) For π/2 < θγ < θδ, one has Vsp/2 < V1 < V2. The
droplet never attains the shape of a half-sphere, and R
increases monotonically with Vâ in all three regimes; see
Figure 3C.

Using these general features of the functional depen-
dence of R ) R(Vâ), we can now classify the possible
solutions of R(Vâ) ) R/ ∼ 1/∆µ. First, we may distinguish
cases A and B from case C: For the latter case, π/2 < θγ
< θδ, R ) R(Vâ) increases monotonically for all values of

(27) Debenedetti, P. G. Metastable liquids; Princeton University
Press: Princeton, New Jersey, 1996.

∆F ) ∆FI ≡ ΣRâΦ(θγ)4πR2 (7)

∆F ) ∆FII ≡ ΣRâπ[h2 + rγ
2(1 - cos θγ)] (8)

∆F ) ∆FIII ≡ ΣRâ[Φ(θδ)4πR2 - πrγ
2(cos θγ - cos θδ)]

(9)

∆G ) ∆F + (PR - Pâ)Vâ + Nâ[µâ(T, Pâ) - µR(T, PR)]

(10)

µâ(T, Pâ) - µâ(T, PR) ) (Pâ - PR)/Fâ (11)

∆G ) ∆F - ∆µFâVâ (12)

∆µ ≡ ∆µ(T, PR) ≡ µR(T, PR) - µâ(T, PR) (13)

∂∆G/∂Vâ ) ∂∆F/∂Vâ - Fâ∆µ ) 0 (14)

∂∆F/∂Vâ ) 2ΣRâ/R (15)

R ) R/ ≡ 2ΣRâ/Fâ∆µ (16)

Pâ - PR ) 2ΣRâ/R (17)
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Vâ, and R(Vâ) ) R/ always has a single solution; see Figure
3C. For θγ < π/2, cases A and B, there is an intermediate
range of R/ values for which R(Vâ) ) R/ has more than one
solution, as can be seen by inspection of parts A, B.1, and
B.2 of Figure 3.

In case A, θγ < θδ < π/2, the minimum of R ) R(Vâ)
corresponds to R ) R2, and one has more than one solution
provided

More precisely, the equation R(Vâ) ) R/ has two solutions
both for R/ ) R1 and for R/ ) R2 and three solutions for
R2 < R/ < R1.

In case B, θγ < π/2 < θδ, the minimum of R ) R(Vâ)
corresponds to R ) rγ, and the condition to have more
than one solution is

Thus, the equation R(Vâ) ) R/ has two solutions both for
R/ ) R1 and for R/ ) rγ and three solutions for rγ < R/ < R1.

The character of these solutions can be inferred from
the general features of the excess free energy ∆G ) ∆G(Vâ),
as given by eq 12. This excess free energy vanishes for
Vâ ) 0 and goes to minus infinity for large Vâ. There-
fore, whenever R(Vâ) ) R/ has a single solution, this
solution corresponds to a maximum of the excess free
energy ∆G ) ∆G(Vâ). Likewise, if this relation has three
solutions, thesmall-volumeandthe large-volumesolutions

correspond to two maxima of ∆G ) ∆G(Vâ), whereas the
solution at intermediate Vâ corresponds to a minimum.
An example of the functional form of ∆G ) ∆G(Vâ) showing
two maxima is given in Figure 4. In the cases in which
R(Vâ) ) R/ has two solutions, one of them corresponds to

Figure 3. Functional dependence of curvature radius R on droplet volume Vâ for the four different parameter regimes A, B.1, B.2,
and C, as described in the text. The examples shown here correspond to the contact angles (A) θγ ) π/4 and θδ ) π/3, (B.1) θγ )
π/3 and θδ ) 3π/4, (B.2) θγ ) π/4 and θδ ) 2π/3, and (C) θγ ) 2π/3 and θδ ) 3π/4. The radii R, R1, and R2 are given in units of the
radius of the lyophilic circular domain rγ. The volumes Vâ, V1, and V2 are given in units of the volume of the half-sphere of radius
rγ, which is given by Vsp/2 ≡ (2π/3)rγ

3. In each case, the dotted curve corresponds to regime I, the dashed curve to regime II, and
the solid curve to regime III.

R2 e R/ e R1 (for θγ < θδ < π/2) (18)

rγ e R/ e R1 (for θγ < π/2 < θδ) (19)

Figure 4. Excess free energy ∆G as a function of the droplet
volume Vâ for parameter regime B.2 with a double barrier. The
contact angles are θγ ) π/4 and θδ ) 2π/3. The stationary radius
corresponding to the three extrema of ∆G ) ∆G(Vâ) is R/, )
1.06rγ, where rγ is the radius of the lyophilic domain. The volume
Vâ is given in units of the half-sphere volume as in Figure 3.
The excess free energy ∆G is normalized to its value at Vâ )
V1, where V1 is the volume of the smallest droplet in regime II.
The regions denoted by I, II, and III correspond to the regimes
of a droplet on a lyophilic circular domain.
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a maximum of ∆G ) ∆G(Vâ) and the other one to a shoulder
located either at the right or at the left of the maximum.

2.4. Different Nucleation Regimes. In a condensa-
tion experiment, one can change the stationary droplet
radius R/ by varying the supersaturation ∆µ, which
depends on the vapor pressure PR. To determine the
relation between these two quantities, let us briefly
consider a planar R-â interface in equilibrium. In this
case, the pressures in both phases are equal, that is,
PR ) Pâ ≡ P0. At a constant temperature, one has the
Gibbs-Duhem relations (∂µR/∂P)T ) 1/FR and (∂µâ/∂P)T )
1/Fâ, where FR and Fâ are the particle number densities in
the vapor and in the liquid phases, respectively. Integrat-
ing these equations between P0 and PR, one obtains

where we have assumed in the second (approximate)
equality that FR , Fâ and that the vapor behaves as an
ideal gas (PR ) FRT, with the temperature T measured in
energy units).

It is convenient to introduce thereducedsupersaturation
∆ via

In terms of this reduced supersaturation, the conditions
for the existence of more than one stationary droplet state,
eqs 18 and 19, become

and

respectively.
In Table 1, we have classified the maxima and minimum

of the activation barrier by the droplet regimes (I, II,
or III) in which they occur, for different values of the
reduced supersaturation ∆ ∼ 1/R/ and of the contact
angles θγ and θδ. In Figure 5, we plot ∆G ) ∆G(R/) in
the stationary states [maxima and minimum of ∆G )
∆G(Vâ)] for numerical examples of the cases detailed in
Table 1.

For π/2 < θγ < θδ, which corresponds to case C in Table
1, Figure 3, and Figure 5, there is only one stationary
droplet for any value of the supersaturation ∆ ∼ ∆µ. This
stationary droplet corresponds to a single maximum of
the excess free energy ∆G ) ∆G(Vâ) and represents a single
activation barrier for droplet nucleation. This is the same
situation as that for droplet nucleation on a chemically
uniform substrate.

For θγ < π/2, which applies to cases A, B.1, and B.2 in
Table 1, Figure 3, and Figure 5, on the other hand, we can
distinguish three different nucleation regimes: For small
supersaturations with ∆ < sin θγ, there is only one
stationary droplet corresponding to a single barrier of
the excess free energy ∆G ) ∆G(Vâ). For intermediate
supersaturations with sin θγ < ∆ < sin θδ in case A and
sin θγ < ∆ < 1 in cases B.1 and B.2, one has a double
barrier for nucleation. Hence, the excess free energy
∆G ) ∆G(Vâ) exhibits two maxima separated by a
minimum. The minimum corresponds to a droplet with
contact angle

Finally, for large supersaturations with sin θδ < ∆ in case
A and 1 < ∆ in cases B.1 and B.2, one has again only one
stationary droplet and, thus, a nucleation barrier with
only one maximum.

3. Equilibrium and Zero-Flux Distributions of
Droplet Sizes

Let us consider a lyophobic substrate patterned with N
lyophilic circular domains in contact with a vapor phase
at constant pressure PR. We make the following assump-
tions:

(i) The nucleation of droplets only occurs on the lyophilic
domains. The nucleation on the lyophobic surface or
directly in the bulk of the vapor phase is very unlikely in
comparison with the nucleation on the lyophilic domains.
Alternatively, one may assume that the nucleation on the
lyophobic surface and in the bulk of the vapor phase does
occur but has no effect on the condensation on the lyophilic
domains.

(ii) Neighboring lyophilic domains are located suf-
ficiently far apart so that the droplets do not exchange

Table 1. Maxima and Minimum of ∆G ) ∆G(Vâ) for Different Values of the Contact Angles, θγ and θδ, and of the
Stationary Radius, R/ ≡ 2Σrâ/Gâ∆µa

R/ ∆ regime I regime II regime III

(A) θγ < θδ < π/2
R/ < R2 sin θδ < ∆ 1 max

R2 < R/ < R1 sin θγ < ∆ < sin θδ 1 max 1 min 1 max
R1 < R/ ∆ < sin θγ 1 max

(B.1) θγ < π/2 < θδ and sin θδ < sin θγ
R/ < rγ 1 < ∆ 1 max

rγ < R/ < R1 sin θγ < ∆ < 1 1 max 1 min and 1 max
R1 < R/ < R2 sin θδ < ∆ < sin θγ 1 max
R2 < R/ ∆ < sin θδ 1 max

(B.2) θγ < π/2 < θδ and sin θγ < sin θδ
R/ < rγ 1 < ∆ 1 max

rγ < R/ < R2 sin θδ < ∆ < 1 1 max 1 min and 1 max
R2 < R/ < R1 sin θγ < ∆ < sin θδ 1 max 1 min 1 max
R1 < R/ ∆ < sin θγ 1 max

(C) π/2 < θγ < θδ
R/ < R1 sin θγ < ∆ 1 max

R1 < R/ < R2 sin θδ < ∆ < sin θγ 1 max
R2 < R/ ∆ < sin θδ 1 max

a The quantity ∆ ≡ rγ/R/ is the reduced supersaturation, where rγ is the radius of the lyophilic circular domain. The radii R1 and R2
are R1 ≡ rγ/sin θγ and R2 ≡ rγ/sin θδ. The condition sin θδ < sin θγ is equivalent to R1 < R2, and sin θγ < sin θδ is equivalent to R2 < R1.

∆µ ) ∫P0

PR( 1
FR

- 1
Fâ

) dP = T ln(PR/P0) (20)

∆ ≡ rγ/R/ ) (Fârγ/2ΣRâ)∆µ ≈ (TFârγ/2ΣRâ) ln(PR/P0) (21)

sin θγ e ∆ e sin θδ for θγ < θδ < π/2 (22)

sin θγ e ∆ e 1 for θγ < π/2 < θδ (23)

θ ) arcsin ∆ ) arcsin(rγ/R/) < π/2 (24)
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monomers directly with other droplets but only with the
vapor phase.

It has been previously shown that, in chemical (or
monomer exchange) equilibrium between droplets, the
pattern of droplets that forms at a lyophobic surface with
N lyophilic circular domains undergoes morphological
wetting transitions when the total volume of liquid Vâ is
changed.11 These transitions are governed by the inter-
facial free energy ∆FN of all N droplets that are in monomer
exchange equilibrium. In the limit of small contact angle
θγ, two types of stable droplet patterns are possible: (i)
all domains are covered by small droplets of the same size
and (ii) one domain is covered by a large droplet, whereas
the remaining N - 1 domains are covered by small droplets
that have, however, the same curvature as the large one.
The latter pattern is N-fold degenerate because the large
droplet can be located on any of the N lyophilic domains.

If such a droplet pattern is in contact with a super-
saturated vapor, its excess free energy is given by

where Vh â is the total volume of the condensed liquid. This
relation represents an obvious generalization of the excess
free energy (eq 12) for a single lyophilic domain. Indeed,
both free energies correspond to a family of interfacial
configurations that have a constant mean curvature
M ) 1/R and are parametrized by the volume of liquid.
These configurations should represent the typical states

of the system provided the domain numberN is sufficiently
small and the exchange of monomers between these
domains is sufficiently fast.

In the following, we will consider the limit of large N
and ensembles of droplets that can have any curvature
radius R and, thus, any mean curvature M. The volume
Vâ of a single droplet or cluster can be expressed in terms
of the number of monomers n that have joined to form it,
via

where Fâ is the particle number density in the â phase.
We will assume that the liquid phase is incompressible,
which implies that Fâ ) constant. Therefore, the monomer
number n also provides a convenient measure of the size
of the droplets or clusters.

Consider a state in which the system may contain
droplets of any size. Let us denote with fn the number of
droplets of size n. The excess free energy of the whole
system, ∆GN, between this state and a reference state at
the same temperature and pressure that contains only
vapor and no droplets is

where ∆Gn is the excess free energy in the formation of
a droplet of size n on a single lyophilic domain (see section

Figure 5. Excess free energy ∆G versus stationary droplet radius R/ for the four parameter regimes (A-C) with the same contact
angles as in Figure 3. The stationary radius R/ is given in units of the radius rγ of the lyophilic circular domain, and ∆G is normalized
to its value for R/ ) R1. In each case, the dotted curve corresponds to regime I, the dashed curve to regime II, and the solid curve
to regime III.

∆GN ) ∆FN - ∆µFâVh â (25)

Vâ ) n/Fâ (26)

∆GN ) ∑
n

fn∆Gn - T ln Ω (27)
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2) and ln Ω is the entropy of mixing (as before, the
Boltzmann constant kB has been absorbed into T). The
number of possible configurations that arise from dis-
tributing the clusters among the N lyophilic domains is
Ω ) N!/[(N - ∑i fi)!∏j fj !],where the total number of clusters
∑ifi is smaller or equal to N. Using Stirling’s formula as
given by ln n! ≈ n ln n - n, one obtains

In equilibrium with ∆µ e 0, one has

which leads to

Summing eq 30 for all sizes n, one has that at equilibrium
the total number of droplets in the whole system ∑if i

eq is

Inserting this expression into eq 30, one finally arrives at

This distribution will now be supplemented by two
boundary values, nl and nr, for the cluster size n. The
second value nr is necessary to analytically continue
expression 32 for the cluster size distribution to ∆µ > 0.

First, let us call nl the size of the smallest cluster that
can be distinguished from homophase (vaporlike) fluctua-
tions of the vapor phase.24 By definition, a cluster of size
nl may break into nl monomers and dissolve in the vapor
phase.

In addition to the lower bound n ) nl for the cluster
size, we must also introduce an upper bound n ) nr (where
the subscript r stands for “right boundary condition”). For
an undersaturated or saturated vapor with ∆µ e 0, the
expression as given by eq 32 yields the equilibrium
distribution of the droplet sizes. But, for a supersaturated
vapor with ∆µ > 0, the excess free energy ∆Gn behaves
as ∼-∆µn and exp(-∆Gn/T) diverges for large n. There-
fore, the sum in the denominator of eq 32 is infinite and
f n

eq ≈ 0 for all n, which means that the droplets grow to
infinite size and the system fills with liquid unless the
values of n are restricted to n e nr.

In classical nucleation theory, one assumes that for ∆µ
> 0 the distribution f n

eq as given by eq 32 but restricted
to the cluster size range nl e n e nr corresponds to a “quasi-
equilibrium” characterized by vanishing flux in the cluster

size space as will be explained in the next section.
Therefore, we will denote this zero-flux distribution by

where the prime indicates that the summation over i is
also restricted to nl e i e nr. If the total number of droplets
as given by ∑′nfn

0 is small compared to the number of
domains N, one has ∑′n exp(-∆Gn/T) , 1, and the zero-
flux distribution is given by the simple expression

4. Equations of the Kinetics

4.1.MasterEquations. Let us assume that the clusters
grow (shrink) via the attachment (detachment) of single
monomers. On one hand, the growth of the clusters is
governed by elementary reactions, consisting of the
combination of a single monomer C1 with a cluster Cn to
form a cluster Cn+l, that is,

On the other hand, the clusters shrink via reactions of the
form

corresponding to the evaporative loss of a single monomer.
Hence, the clusters of size Cn can disappear either by
decaying into Cn-1, through the loss of a monomer or by
growing into Cn+1 by the addition of a monomer.

If fn(t) is the number of clusters of size n at any instant
of time t, we may write

where

The attachment rate kn
+ is the number of monomers

that condense onto a droplet of size n per unit time, and
the detachment rate kn

- is the number of monomers that
evaporate from such a droplet per unit time. Because we
fix the supersaturation, the attachment and detachment
rates for a certain cluster of size n do not depend on the
time but only on the size of the cluster.

The quantity Jn(t) is the net number of clusters of size
n that grow to size n + 1 per unit time. We will call Jn(t)
the flux of clusters in the cluster size space. The relations
37 and 38 yield the master equations of the nucleation
process. A pictorial representation of the transitions
between clusters of nearest-neighbor sizes is given in
Figure 6.

4.2. Transition Rates. If the attachment of monomers
to the droplets occurs directly from the vapor, the
attachment rate kn

+ follows from the kinetic theory of
gases.28,29 If the vapor phase R is treated as an ideal gas

(28) Present, R. D. Kinetic theory of gases; McGraw-Hill: New York,
1958.

(29) Wu, D. T. Solid State Phys. 1997, 50, 37-187.

ln Ω ≈ -(N - ∑
i

fi) ln

N - ∑
i

fi

N
- ∑

i

fi ln
fi

N
(28)

∂∆GN/∂fn ) 0 for fn ) fn
eq (29)

fn
eq ) (N - ∑

i

fi
eq) exp(-∆Gn/T) (30)

∑
i

fi
eq ) N

∑
i

exp(-∆Gi /T)

1 + ∑
i

exp(-∆Gi /T)
< N (31)

fn
eq ) N

exp(-∆Gn/T)

1 + ∑
i

exp(-∆Gi /T)
(32)

fn
0 ) N

exp(-∆Gn/T)

1 + ∑
i

′ exp(-∆Gi /T)
for nl e n e nr (33)

fn
0 ≈ N exp(-∆Gn/T) for nl e n e nr (34)

C1 + Cn f Cn+1 (35)

Cn+1 f C1 + Cn (36)

d
dt

fn(t) ) Jn-1(t) - Jn(t) (37)

Jn(t) ) kn
+fn(t) - kn+1

- fn+1(t) (38)
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at temperature T and pressure PR, which contains
molecules of mass mp, this theory leads to

with the interfacial area

of the Râ interface. The quantities Fâ, n, and θ are the
particle number density in the â phase, the number of
monomers condensed to form the droplet, and the actual
contact angle of the droplet, respectively. The function
Φ(θ) has been defined in eq 3. The first factor sn on the
right-hand side of eq 39 is the sticking coefficient, with
0 < sn < 1, which corresponds to the probability that a
monomer, which collides with the n droplet, actually sticks
to it. The quantity PR/(2πTmp)1/2 is the Hertz-Knudsen
impingement rate of monomers onto a planar interface
per unit area.

Note that eq 39 is valid in any of the regimes (I, II, and
III) that we have distinguished for a droplet on a lyophilic
circular domain; see section 2.

For simplicity, we have assumed in eq 39 that all the
monomers that attach to the droplets come directly from
the vapor. It may also happen that most of the monomers
that condense onto the droplets are previously adsorbed
on the substrate and that the droplets grow by surface
migration of these monomers to the three-phase contact
line (or by a combination of monomers previously adsorbed
on the substrate and monomers coming directly from the
vapor). In this more general case, one would have to use
a different functional form to evaluate kn

+, but the theory
presented in this article would still apply.

The detachment rate kn
- is determined by the thermally

activated process of breaking the bonds that bind a
monomer to the rest of the cluster. Because there are no
simple expressions for the detachment rate, classical
nucleation theory relies on an artificial constrained
equilibrium hypothesis to estimate it. As explained in the
previous section, we imagine that a constraint is imposed
on the system such that there are no clusters with size
n > nr. The system is then described by the zero-flux
distribution fn

0 as given by eq 34. When this distribution
is inserted into eq 38, one obtains

or the detachment rate

5. Steady-State Nucleation

Let us consider a steady state in which the size
distribution of the clusters does not change with time t.
We denote such a steady-state cluster size distribution by
fn

s. In an experiment, the steady state is the plateau
region reached after a transient time in which the system
“forgets” the initial conditions and before the number of
lyophilic domains, where nucleation can still occur, has
been significantly reduced.

Because the cluster size distribution does not change
with time in the steady state, the relations 37 and 38
imply that the fluxes are time-independent and are equal
for all cluster sizes, that is, Jn ) Js for all n, where Js is
the steady-state flux. If the steady-state values for the
flux and the size distribution are inserted into eq 38, one
obtains

We will impose now the usual boundary conditions of
classical nucleation theory:

(i) Let us assume that the clusters of size n g nr are
removed from the system, broken up into monomers, and
added again to the system, so that the total number of
monomers is constant. As mentioned, the subscript r
stands for “right boundary condition”. This condition may
be implemented in our formalism by the definition

However, we will also assume that the zero-flux distribu-
tion for n ) nr is still given by eq 34.

(ii) For small clusters, fn
0 and fn

s are very large in
comparison with their values at the maxima of the double
barrier. Thus, it is reasonable to use the boundary
condition

where l stands for “left boundary condition”. As mentioned,
nl corresponds to the smallest cluster that can be distin-
guished from homophase fluctuations of the vapor phase.

The first and second maximum of the free energy barrier
are located at n ≡ na and n ≡ nc, respectively. As long as
nl , na and nr . nc, the nucleation rates should be
insensitive to the actual values of nl and nr.30

5.1. Discrete Model for Steady-State Nucleation.
It follows from eqs 42 and 43 that the steady-state flux
Js satisfies the relation

Summing the left- and right-hand sides of eq 46 from nl

(30) Kelton, K. F.; Greer, A. L.; Thompson, C. V. J. Chem. Phys.
1983, 79, 6261-6276.

Figure 6. Schematic representation of the transition fluxes
Jn and Jn-1 in cluster size space. The clusters that contain n
monomers are denoted by Cn. The quantity fn is the number of
clusters of size n, and the parameters kn

+ and kn
- are the

attachment and the detachment rates of monomers for a cluster
of size n, respectively.

kn
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2Φ2(θ)]1/3 1 - cos θ

2
(40)

0 ) kn
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- ) (fn
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0 )kn

+ (42)

J s ) kn
+ f n

s - kn+1
- f n+1
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f n
s ) 0 for n g nr (44)

f n
s ) f n
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J s
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0
)

f n
s
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0
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0
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Nucleation through a Double Barrier Langmuir, Vol. 20, No. 5, 2004 1993



to nr - 1 and applying the boundary conditions as given
by eqs 44 and 45, one obtains the equation

by which the steady-state flux Js is expressed in terms of
the zero-flux distribution f n

0 and the attachment rates kn
+.

Likewise, if we sum eq 46 from n to nr - 1 we obtain
the expression

for the steady-state distribution, where Js is given by eq
47.

5.2. Continuum Model for Steady-State Nucle-
ation. 5.2.1. Flux in the Steady State. Let us now assume
that n can be treated as a continuous variable. In this
continuum limit, the sum in eq 47 is replaced by an integral
and we obtain

Ifnucleationoccurs through a double freeenergybarrier,
it is convenient to divide the integral in eq 49 into two
parts, one for each of the maxima. If na and nc are the
values of n corresponding to the first and second maxima,
respectively, and nb is the value corresponding to the
minimum between these maxima (compare Figure 7), the
steady-state flux is given by

In this expression, the main contributions to the
integrals come from the vicinities of the maxima of
∆G(n). Let us approximate ∆G(n) in the neighborhood of
n ) na by its Taylor expansion truncated to second order.
Because n ) na corresponds to a maximum, ∆G′(na) ) 0
and ∆G′′(na) < 0. Inserting this truncated expansion in
f 0(n), one obtains the saddle-point approximation

with the so-called Zeldovich factor

The same saddle-point approximation close to the second
maximum leads to

with the second Zeldovich factor

Now we can approximate f 0(n) by eq 51 in the first
integral of eq 50 and by eq 53 in the second integral of eq
50.

Compared to f 0(n), the attachment rate k+(n) is a slowly
varying function of n, because k+(n) ∼ n2/3 from eqs 39 and
40. Thus, one can approximate k+(n) by its value at the
first maximum k+(na) in the first integral of eq 50 and by
its value at the second maximum k+(nc) in the second
integral.

Because the main contributions to the integrals in eq
50 come from the vicinities of the maxima of ∆G(n), the
values of these integrals do not change appreciably if one
extends their upper limits to infinity and their lower limits
to minus infinity. After these approximations in eq 50,
the integrals that are left are of the type ∫-∞

∞ exp(-ax2)
dx ) (π/a)1/2, with a > 0. In this way, one obtains

for the steady-state flux through a double free energy
barrier.

If one repeats the last calculation for a barrier with
only one of the maxima of the double barrier, say the one
at n ) na, one finds that the flux in the steady state is
k+(na)fa1

0(na)Za. If one has only the maximum at n ) nc,
the flux in the steady state is k+(nc)fc1

0(nc)Zc. The functions
fa1

0(n) and fc1
0(n) are the zero-flux distributions if there is

only the first maximum and only the second maximum of
the double barrier, respectively. Thus, we may define the
two fluxes

which are the classical results for the nucleation through
a barrier with a single maximum.31

With the help of eq 56, relation 55 can be written as

Thus, the inverse steady-state flux through a double
barrier is equal to the sum of the inverse steady-state
fluxes through two barriers with a single maximum.
Because these fluxes are positive quantities, it follows
from eq 57 that the steady-state flux through a double
barrier Js is smaller than both Jal

s and Jc1
s .

Notice that the depth of the minimum between the
maxima of the double barrier did not enter our result for
Js. As shown elsewhere, this depth is relevant for the time
evolution during the early stage of the nucleation process,
that is, before the system reaches the steady state. One
of us has solved the corresponding problem of transient
nucleation,32 from which one recovers the steady-state

(31) McDonald, J. E. Am. J. Phys. 1963, 31, 31-41.
(32) Valencia, A. Manuscript to be submitted for publication.

Figure 7. Excess free energy ∆G as a function of monomer
number or cluster size n for nucleation through a double barrier.
The two arrows correspond to the two fluxes J(na, t) and J(nc,
t) in cluster size space as discussed in the text.

f 0(n) ≈ f 0(nc) exp[Zc
2π(n - nc)

2] (53)

Zc ≡ x|∆G′′(nc)| /2πT (54)

J s ≈ [ 1
k+(na) f 0(na)Za

+ 1
k+(nc) f 0(nc)Zc

]-1
(55)

Ja1
s ≡ k+(na) fa1

0(na)Za and Jc1
s ≡ k+(nc) fc1

0(nc)Zc
(56)

1
J s

≈ 1
Ja1

s
+ 1

Jc1
s

(57)

J s ) ( ∑
n)nl

nr-1 1
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+fn

0)-1

(47)

f n
s ) J sfn

0 ∑
i)n

nr-1 1

ki
+fi

0
(48)

J s ) [∫nl

nr dn
k+(n) f 0(n)]-1

(49)

J s ) [∫nl

nb dn
k+(n)f 0(n)

+ ∫nb

nr dn
k+(n)f 0(n)]-1

(50)

f 0(n) ≈ f 0(na) exp[Za
2π(n - na)

2] (51)

Za ≡ x|∆G′′(na)|/2πT (52)
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solution (eq 57) for long times, which confirms that the
steady-state flux Js does not depend on the depth of the
minimum between the maxima.

5.2.2. Cluster Size Distribution in the Steady State. The
steady-state distribution can be obtained from eq 48. In
the continuous limit, one has

where Js is the steady-state flux that we have already
computed.

Using the same saddle-point approximations as those
in the previous subsection, one obtains

where Za and Zc are given by eqs 52 and 54, respectively,
and erfc(x) denotes the complementary error function
defined by33

The functional dependence of f s/f 0 on n is schematically
shown in Figure 8.

Let us call f a1
s (n) and f c1

s (n) the steady-state distribu-
tions for those cases in which there is only the first
maximum and only the second maximum of the double
barrier, respectively. Using the same approximations as
before and relations 56 for the corresponding fluxes, we
obtain

and

If one uses expression 34 for the zero-flux distribution,
one obtains fa1

0(na) ) f 0(na) and f c1
0 (nc) ) f 0(nc) at the

maxima of the double barrier, which implies

as follows from a combination of eqs 56, 59, 61, and 62.
If expression 63 is evaluated at n ) na and n ) nc, the

relation erfc(0) ) 1 together with the asymptotic behavior
erfc(x) ≈ 0 for large positive x and erfc(x) ≈ 2 for large
negative x lead to

and

where we have also employed relation 57 between the
different fluxes.

From eqs 61 and 62, one has fa1
s (n) ≈ 0 and fc1

s (n)/fc1
0(n)

≈ 1 for na , n , nc. Using these approximations in eq 63,
one obtains

6. Summary and Outlook
In summary, depending on the values of the super-

saturation and of the contact angles, θγ and θδ, in the
lyophilic and in the lyophobic surface domains, the free
energy barrier for the nucleation of a droplet on a lyophilic
circular domain can have a single maximum or two
maxima (a double barrier). The existence of a double
barrier is possible because of the nonmonotonic variation
of the radius of curvature R of the vapor-liquid interface
with the volume Vâ of the droplet.

We have shown that surface nucleation through a double
barrier occurs for intermediate values of the super-
saturation. It is convenient to describe this regime in
terms of the dimensionless supersaturation ∆ as defined
by eq 21. To have a double barrier for a circular surface
domain, this supersaturation must satisfy inequalities
22 or 23, which correspond to (i) sin θγ < ∆ < sin θδ for
θγ < θδ < π/2, that is, when both contact angles are smaller
than 90°, or (ii) sin θγ < ∆ < 1 for θγ < π/2 < θδ, that is,
when θγ is smaller and θδ is larger than 90°. No double
barrier is possible, on the other hand, if both contact angles
exceed 90°.

Thus, the largest range of supersaturations for which
surface nucleation at a lyophilic domain proceeds through
a double barrier is found in the limit of small θγ. In this
limit, the small supersaturation regime, which extends
over the range 0 < ∆ < sin θγ and which is characterized
by a single barrier, shrinks to 0. In such a case, for θδ >
π/2 one has a double barrier if the dimensionless super-
saturation ∆ satisfies 0 < ∆ < 1. In terms of the physical,
dimensional quantities, these inequalities are equivalent
to 0 < ∆µ < 2ΣRâ/Fârγ.

For a supersaturated vapor, one has ∆µ = T ln(PR/P0)
as given by eq 20, which implies ∆µ = T(PR - P0)/P0 if the
vapor pressure PR is close to the saturation pressure P0.

(33) Spiegel, M. R.; Liu, J. M. Mathematical handbook of formulas
and tables; McGraw-Hill: New York, 1998.

Figure 8. Example for the steady-state distribution f s divided
by the zero-flux distribution f 0 as a function of the monomer
number or cluster size n for nucleation through a double barrier
as given by eqs 59 or 63. The cluster sizes na and nc correspond
to the maxima of the excess free energy ∆G ) ∆G(n), and the
cluster size nb corresponds to the minimum between these
maxima; see Figure 7.
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Therefore, for contact angles θγ ) 0 and θδ > π/2, surface
nucleation proceeds through a double barrier if the
pressure difference satisfies 0 < (PR - P0)/P0 < 2ΣRâ/TFârγ.

As an example, let us consider the condensation of
water at room temperature with interfacial tension
ΣRâ = 72 mJ/m2 and particle number density Fâ =
30/nm3. The size rγ of the lyophilic surface domain is
taken to be rγ ≡ rj nm. One then arrives at the inequalities
0 < (PR - P0)/P0 < 1.2/rj for surface nucleation with a double
barrier. For relatively small surface domains with 1 j rj
j 10, such pressure differences should be experimentally
accessible. (For small domain sizes in the nanometer
regime, the line tension of the contact line will also
contribute to the excess free energy. It is not difficult to
incorporate these contributions into the theory presented
here.) For relatively large surface domains with rγ > 1 µm
or rj > 103, on the other hand, the experimental pressure
control of (PR - P0)/P0 must be better than 1/103 to access
the double barrier regime.

We have also solved the problem of the kinetics of
nucleation through a double barrier on N lyophilic circular
domains. We derived expressions for the flux and the
cluster size distribution in the steady state. Most remark-
ably, these quantities can be written as simple combina-
tions of the classical results for nucleation through a
barrier with a single maximum; see eqs 57 and 63.

In particular, we found that the inverse steady-state
flux through a double barrier is equal to the sum of the
inverse steady-state fluxes through two barriers with a
single maximum; see eq 57. Notice that the flux at the
steady state does not depend on the depth of the minimum
between the maxima. This result is confirmed by the
solution for the time evolution of nucleation in the
transient regime (i.e., the regime before the steady state
is established), as will be discussed elsewhere.32
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List of Symbols

R vapor phase
â liquid phase
γ lyophilic surface domain
∆ reduced supersaturation
δ lyophobic surface domain
θ actual contact angle of the droplet
θγ, θδ contact angle on a γ and δ domain
µR, µâ chemical potential in the R and â phase
∆µ supersaturation
FR, Fâ particle number density in the R and â phase
Σij surface tension of the ij interface
Φ(θ) wetting function
Ω number of complexions of the droplets on N

lyophilic circular domains

Aij surface area of the ij interface
Cn cluster of size n
∆F excess interfacial free energy
∆FN ∆F for N lyophilic domains
fn(t) discrete cluster size distribution at time t
f(n, t) continuous cluster size distribution at time t
f eq(n) equilibrium cluster size distribution
f 0(n) zero-flux distribution
fa1

0(n) zero-flux distribution if only first maximum
fc1

0(n) zero-flux distribution if only second maximum
f s(n) steady-state distribution
f a1

s (n) steady-state distribution if only first maximum

f c1
s (n) steady-state distribution if only second maximum

∆G excess Gibbs free energy for one lyophilic domain
∆GN excess Gibbs free energy for N domains (without

the mixing entropy)
∆GN excess Gibbs free energy for N domains (with the

mixing entropy)
J(n, t) flux of clusters in the size space
Js steady-state flux
Jal

s , Jc1
s flux in the steady state if only one of the maxima

of the double barrier exists
kB Boltzmann’s constant
kn

+, kn
- monomer attachment and detachment rate

M mean curvature
mp mass of a monomer
N number of lyophilic circular domains
n number of monomers in a cluster
na, nc first and second maxima of ∆G(n)
nb minimum between the maxima of ∆G(n)
nl smallest cluster size
nr largest cluster size
P pressure
P0 saturated vapor pressure
PR, Pâ pressure in the R and â phase
R radius of curvature of the R-â interface
R/ stationary radius of curvature
R1 R of a droplet of volume V1

R2 R of a droplet of volume V2

rγ radius of the lyophilic circular domains
sn sticking coefficient of the attachment rate
T temperature
t time
Vâ volume of one droplet
Vh â volume of liquid in the whole system
V1 smallest volume of a droplet in regime II
V2 largest volume of a droplet in regime II
Vsp volume of the sphere with radius rγ

Za, Zc Zeldovich factors at the maxima of ∆G(n)
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