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14424 Potsdam, Germany ∗

Source:
in Stochastic Processes in Physics, Chemistry, and Biology; ed. by J.A. Freund
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Abstract. The behavior of single molecular motors such as kinesin or myosin
V, which move on linear filaments, involves a nontrivial coupling between the
biochemical motor cycle and the stochastic movement. This coupling can be
studied in the framework of nonuniform ratchet models which are characterized
by spatially localized transition rates between the different internal states of the
motor. These models can be classified according to their functional relationships
between the motor velocity and the concentration of the fuel molecules. The
simplest such relationship applies to two subclasses of models for dimeric kinesin
and agrees with experimental observations on this molecular motor.

1 Introduction and overview

Molecular motors are ubiquitous in living cells. Indeed, it has been recently re-
alized that all transport processes or movements which occur within the cell in a
coherent fashion are governed by such motors. Examples are provided by trans-
membrane transport of ions and macromolecules, regulated adhesion and fusion
of membranes, intracellular vesicle transport, cell division, and cell locomotion.
[1]

In general, one may distinguish several types of motors: (i) pumps which
are membrane proteins used to transport ions and small molecules across the
membrane † ; (ii) rotary motors such as the bacterial flagellar motor and F1–
ATPase which are again membrane–bound structures; and (iii) linear motors
which move along filaments.

In the following, I will focus on linear motors which move on filaments. and
which are processive in the sense that they make many steps before they detach
from the filament. Such motors are responsible for vesicle transport and for

∗Email: lipowsky@mpikg-golm.mpg.de
†It is amusing to note that these pumps act as Maxwell’s demons [2] who (or which!) are

able to sort two types of molecules into two different compartments.
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the (re)organization of the cytoskeleton. It has been estimated that a typical
eucaryotic cell might contain between fifty and a hundred different types of linear
motors [3]. Several superfamilies of molecular motors have been identified. One
of these families consists of kinesin and kinesin–related molecules which move
along microtubules [4].

During the last couple of years, new experimental techniques have been used
in order to measure the performance of these motors on the mesoscopic scale.
The most important property which quantifies this performance is the motor
velocity. This latter quantity has been studied for three different classes of motor
molecules: (i) Dimeric kinesin on microtubules [5, 6, 7, 8, 9]; (ii) Monomeric
kinesin on microtubules [10]; and (iii) Myosin V on actin filaments [11].

The functioning of molecular motors has also been studied from a theoretical
point of view using different types of motor models [12, 13, 14, 15, 16, 17, 18,
19, 20, 21]. In fact, the variety of models which can be found in the literature is
somewhat confusing. In this short review, I will discuss the present status of the
relation between theory and experiment and some recent attempts to clarify this
relation.

The paper is organized as follows. First, Section 2 contains a short summary of
the experimental information on dimeric kinesin and on the different theoretical
models which have been used to describe its motor properties. The nontrivial
coupling between the biochemical cycle and the mechanical movement can be
studied in nonuniform ratchet models with spatially localized transition rates as
defined in Section 3. These models lead to simple relationships between the motor
velocity and the fuel concentration, see Section 4, which can be used to classify
these models.

2 Experiment versus theory

So far, only a few experiments have been reported for monomeric kinesin and for
myosin V. Dimeric kinesin, on the other hand, has been experimentally studied
in considerable detail. This experimental work has provided several clues to the
latter motor, both with respect to its biochemical and geometric features on the
molecular scale and with respect to its motor properties which characterize its
performance on supramolecular scales.

2.1 Experiments on dimeric kinesin

Dimeric kinesin moves on microtubules as illustrated in Fig. 1. The microtubule
is a linear filament consisting of 13 protofilaments of tubulin molecules which
form a hollow cylinder. Each protofilament represents a 1–dimensional lattice
with a lattice constant of 8 nm. The motor consists of two identical amino–acid
chains which form two heads. Each kinesin head can act as an ATPase which
adsorbs and hydrolyses ATP. In addition, each head can bind to and unbind
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from the microtubule. Thus, each head has an ATP–adsorption domain and a
microtubule–binding domain.

All experimental studies are consistent with the view that dimeric kinesin
moves in a ’head–over–head’ (or ’hand–over–hand’) fashion, i.e., by alternating
steps in which one head moves forward while the other one remains bound to the
tubule. If the motor does indeed advance by this type of stepping motion, the
unbound head and the center–of–mass of the motor would move by 16 nm and
by 8 nm, respectively, during each step.

The relative displacement of the kinesin motor against the filament was deter-
mined by optical trap experiments. The most direct evidence comes from experi-
ments in which the filament is firmly attached to a solid substrate and the motor
molecule is anchored to a bead. This bead is grapped by the optical tweezers and
then brought into contact with the filament. In these experiments, one can di-
rectly measure the time evolution of the displacement of a single motor molecule
(plus the attached bead). From a large number of such displacement–versus–time
curves, one obtains average motor properties such as the motor velocity which
characterize the motor performance on length scales large compared to the step
size.

For dimeric kinesin, the motor velocity has been measured as a function of
two control parameters. The first such parameter is provided by the ATP con-
centration Γ, i.e., by the concentration of the fuel molecules. The second control
parameter is given by the external force F usually applied by the optical trap.

FIG. 1: Bound state of dimeric kinesin on a microtubule – The two heads of the
kinesin molecule are bound to two adjacent tubulin segments which are 8 nm
apart. In this cartoon, the stalk of the kinesin, which is about 50 nm, has been
reduced compared to the diameter of the microtubule, which is about 25 nm.
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Several experiments have shown that the motor velocity v increases monotoni-
cally with the ATP concentration Γ and exhibits a saturation behavior. In fact,
it has been found for dimeric kinesin that the data for v = v(Γ) can be fitted by
the functional form [5, 7, 8]

v(Γ) � vmaxΓ/(Γ∗ + Γ) (1)

for vanishing force F (or for small values of F ). Furthermore, if one uses vmax

and Γ∗ as F–dependent fit parameters, this functional form seems to apply over
the whole range of accessible load forces as given by 0 ≤ |F | ≤ 5.6. [9]

In the presence of an external load force, the motor velocity is observed to
decrease monotonically with increasing load. The precise functional dependence
of velocity versus force has been a matter of some controversy. In fact, if the
load force is applied to the motor via an attached bead, one generates two force
components, one which is tangential to and one which is normal to the filament
[7] Since the tether between the bead and the kinesin molecule is not expected
to behave as a linear spring, the force applied by the optical trap may not be
simply proportional to the tangential force acting on the motor molecule. In view
of these uncertainties, I will focus here on the concentration dependence of the
motor properties.

2.2 Different types of theoretical models

Any molecular motor acts as a processive enzyme, the activity of which requires
a certain conformational state of the motor. Since the movement of the motor is
directly related to its conformation, one has a nontrivial coupling between this
movement and the enzymatic activity of the motor. This coupling represents
a nontrivial constraint on the modelling of molecular motors. Several types of
motor models have been studied which differ in the basic assumptions about this
coupling. One can distinguish three different cases:

(i) Tight–coupling models – In these models, one assumes that the bio-
chemical cycle is independent of the mechanical movement and that the latter
movement simply follows this cycle which consists of several conformational or
internal states [12, 5, 13, 7, 16, 20].
(ii) Uniform ratchets – Here, the degrees of freedom which are related to the
mechanical movement are taken into account explicitly. The motor can attain
several internal states and its position is described by a spatial coordinate, say
x. However, the enzymatic activity, which leads to transitions between these
internal states, is again taken to be independent of the conformation and, thus,
of the position x of the motor. Examples for these types of models are ratchets
with flashing potentials [14] and with several internal motor states but spatially
uniform transition rates [15, 17, 19].
(iii) Nonuniform ratchets or diffusion–reaction models – As in the uni-
form case, the motor can attain several internal states and its position is de-
scribed explicitly but, in addition, one now incorporates the crucial feature that
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the enzymatic activity depends on the spatial position. Thus, these models are
characterized by transition rates between the internal states which depend on the
spatial coordinate x. [15, 19, 21]
Models which are intermediate between case (ii) and (iii) correspond to ratchets
with flashing potentials where single potential segments can be switched inde-
pendently [18].

As far as the concentration dependence of the motor velocity is concerned,
these different types of models lead to the following relationships:

(i) Tight–coupling models – It is assumed that the enzymatic activity is
governed by Michaelis–Menten kinetics. [5, 7] This implies that the functional
dependence of the ATP–hydrolysis rate ω on the ATP concentration Γ is given
by ωhyd(Γ) = ωsatΓ/(Γ∗ + Γ). It then follows from the tight–coupling assumption
and the size ∆x for a single motor step that the motor velocity v is simply given
by v(Γ) = ωhyd(Γ)∆x. This agrees with the experimentally observed dependence
as in (1). It turns out, however, that this functional dependence also holds for a
large class of nonuniform ratchets, see below, and, thus, cannot be regarded as
strong evidence for tight coupling.
(ii) Uniform ratchets – These models lead to a functional form of the motor
velocity v which exhibits a maximum as a function of the transition rates. The
same behavior is found for flashing potentials with independent switching of single
potential segments. Since the ATP concentration Γ enters via these rates, these
models also predict that the motor velocity v = v(Γ) decreases for large Γ, in
disagreement with the experimentally observed dependence (1).
(iii) Nonuniform ratchets – These ratchets can lead to a motor velocity which
increases monotonically with the ATP concentration Γ. This was first found for
ratchets with two internal states and with localized transitions at two spatial
positions. [15, 19] We have recently generalized this theoretical framework and
introduced nonuniform ratchet models which are characterized by M internal
states and by transitions at K spatial locations within one potential period [21].
These models are described in the following Section 3. It is possible to determine
and classify the functional dependence v = v(Γ) for arbritrary M and K, see
Section 4. In particular, several classes of (M, K)–models can be identified which
lead precisely to the hyperbolic form as given by (1).

3 Nonuniform (M, K) ratchets

The theoretical framework used here is based on the time evolution of the proba-
bility densities Pm(x, t) to find the motor particle at center–of–mass coordinate x
and in internal state (or level) m which can attain M values m = 1, . . . , M . For
a given position x, each probability density Pm may change (i) because of lateral
diffusion in state m which leads to lateral currents Jm or (ii) becauce of transi-
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tions between the different internal states. ‡ Therefore, the probability densities
Pm satisfy the continuity equations ∂Pm(x, t)/∂t + ∂Jm(x, t)/∂x = Im(x, t) with
the transition current densities Im.

The lateral currents Jm depend on the molecular interaction potentials Um(x)
and on the external force F which define the effective force potentials

Vm(x) ≡ (Um(x) − Fx)/T (2)

where T is the temperature in energy units. Note that F is the force component
which acts tangential to the filament. The molecular interaction potentials Um(x)
are periodic with potential period �. For kinesin on microtubules, one has � = 16
nm. The lateral currents Jm then have the Smoluchowski– or Fokker–Planck form
[22, 23]

Jm(x, t) ≡ −Do

[
∂

∂x
Vm(x) +

∂

∂x

]
Pm(x, t) (3)

where the parameter Do represents the small–scale diffusion coefficient.
The transition current densities Im depend on the transition rates Ωmn =

Ωmn(x) from state m to state n and have the generic form

Im(x, t) ≡
∑
n

′
[−Pm(x, t)Ωmn(x) + Pn(x, t)Ωnm(x)] (4)

where the prime at the summation sign indicates that n is restricted to n �= m.
The transition rates Ωmn(x) are taken to be localized in space at the discrete set
of K positions x = xk with k = 1, . . . , K and 0 ≤ x1 < . . . < xK < � and are
expressed as

Ωmn(x) ≡
∑
k

ωmn(xk) �Ω δ(x − xk) (5)

where ωmn(xk) ≥ 0 are transition rate constants, �Ω � � represents a molecular
’localization’ length, and δ(z) is Dirac’s delta function. The parametrization
in terms of delta functions is useful since the nonuniform ratchets or reaction–
diffusion models can then be solved analytically. [21]

The ratchet models just defined contain both the applied force F which enters
explicitly in (2) and the fuel concentration Γ which enters via the transition
rate constants ωmn(xk) in (5). Explicit solution of these models shows that the
dependence on the rate constants and, thus, on the fuel concentration Γ exhibits
some generic or universal features. These universal features will now be discussed
for the motor velocity v = v(Γ).

4 Dependence on fuel concentration

In a stationary state, the velocity v is related to the total lateral current Jtot ≡∑
m Jm via v = �Jtot where � is the spatial period of the molecular interaction po-

‡These models can also be applied to rotary motors for which x represents an appropriate
angular coordinate.
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tentials. Thus, the concentration dependence of the motor velocity is determined
by the dependence of Jtot on the rate constants ωmn(xk).

4.1 Dependence on rate constants

First, let us consider a nonuniform ratchet with arbitrary M and K and let us
focus on a single rate constant ω ≡ ωmn(xk). Using a transfer matrix method,
one can show that all (M, K)–models lead to the simple functional dependence

Jtot(ω) =
a0 + a1ω

b0 + b1ω
(6)

for the total lateral current Jtot where the coefficients aj and bj with j = 0, 1
depend on the other model parameters.

Likewise, the dependence of the total lateral current on two transition rates,
say ω1 and ω2, is found to have the generic multilinear form

Jtot(ω1, ω2) =
a0 + a1ω1 + a2ω2 + a3ω1ω2

b0 + b1ω1 + b2ω2 + b3ω1ω2

(7)

with coefficients aj and bj which again depend on the remaining model parame-
ters.

The functional dependence as given by (7) represents the most general form.
In practise, some of the coefficients aj and/or bj in (7) may vanish. This can
happen, for instance, if some of the transition rate constants ωmn(xk) in (5)
are identically zero. The simplest example is given by a 2–state model with
(M, K) = (2, 2) and the transition rates

Ω12(x) = ω1�Ωδ(x − x1) and Ω21(x) = ω2�Ωδ(x − x2) . (8)

In this case, the coefficients a0 and b0 in (7) are identically zero and the coefficients
a1 and a2 vanish for F = 0.

4.2 Concentration dependence of motor velocity

As mentioned, the concentration Γ of the fuel molecules enters via the rate con-
stants ωmn(xk). First, assume that only one of these rate constants, say ω, is
Γ–dependent. If one assumes that the corresponding chemical reaction follows
Michaelis–Menten kinetics [24], one has

ω−1 = (c1Γ)−1 + c−1
2 . (9)

where c1 and c2 are two Γ–independent rate constants. If this is inserted into the
expression (6) for Jtot, one obtains the motor velocity

v(Γ) = vres + (vsat − vres)
Γ

Γ∗ + Γ
(10)

7



with the residual velocity vres ≡ v(Γ = 0) and the saturation velocity vsat ≡ v(Γ =
∞). The same v(Γ)–relationship may also apply if the motor cycle involves two
Γ–dependent rate constants ω1(Γ) and ω2(Γ). One example is provided by the
2–state model with the transition rates (8) when both ω1(Γ) and ω2(Γ) are related
to Γ via a Michaelis–Menten–type relation as in (9).

On the other hand, if the total lateral current Jtot(ω1, ω2) has the more general
form (7), the Γ–dependence of the motor velocity is given by

v(Γ) = vres + (vsat − vres)
cΓ + Γ2

Γ∗ + dΓ + Γ2
(11)

with two Γ–independent coefficients c and d.

4.3 Ratchets with (M, K) = (3, 2)

Let us now return to the case of two–headed motors. In general, the corresponding
ratchet models will be characterized by two locations with enzymatic activity. If
each head (i.e., each enzymatic domain) can be activated only at one of these
locations, one has only two Γ–dependent rate constants. One example for such
a model is provided by the previously described (2,2) ratchet with the transition
rates (8). If both heads can be activated at both locations, one has a ratchet
model with four Γ–dependent rate constants. One such model with M = 3
internal states and transitions at K = 2 locations will now be discussed.

As shown in Figs. 2 and 3, the three internal states are now labeled by m =
0, 1, 2. The ground state with m = 0 corresponds to a doubly–bound state of
the two–headed motor, i.e., to a state in which both heads are bound to the
microtubule. The excited state with m = 1 corresponds to a state in which one
of the heads, say head 1, is unbound while the second head 2 is still bound to
the tubule. Likewise, the second excited state with m = 2 corresponds to a state
in which head 2 is unbound and head 1 is bound. Since both heads are taken
to be identical (as for dimeric kinesin), the two force potentials U1(x) and U2(x)
for the two excited states have the same potential period � and are related via
U2(x) = U1(x − �/2), see Fig. 2.

The symmetry between the two heads also implies that the four transition
rates from the ground state to the excited states 1 and 2 and back to the ground
state must all be periodic with period � and must be related via Ω02(x) =
Ω01(x − �/2) and Ω20(x) = Ω10(x − �/2). Thus, one has to specify only two
of the four transition rates, say Ω01 and Ω10. The unbinding rate Ω01 depends on
two rate constants, ω1 ≡ ωtr and ω2 ≡ ωle, for the trailing and the leading head,
respectively, and is given by

Ω01(x) = ω1�Ωδ(x − �/2) + ω2�Ωδ(x) . (12)

Likewise, the rebinding rate Ω10(x) contains two different rebinding rate con-
stants, ν1 ≡ νtr and ν2 ≡ νle, and has the form

Ω10(x) = ν1�Ωδ(x − �/2) + ν2�Ωδ(x) . (13)

8



FIG. 2: Ratchet with (M, K) = (3, 2): Functional dependence of the molecular
force potentials Um for the three internal states m = 0, 1, 2 on the center–of–mass
coordinate x. The potentials U1 and U2 for the two excited states have potential
period � and are related via U2(x) = U1(x − �/2). The shaded vertical stripes
represent the localized transitions, compare Fig. 3.

FIG. 3: Ratchet with (M, K) = (3, 2): Transition rates at the two spatial loca-
tions x = x1 = 0 and x = x2 = �/2. The rate constants ω1 and ω2 characterize the
unbinding of the trailing and the leading head, respectively, the rate constants ν1

and ν2 the rebinding of these heads to the filament. The unbinding rate constants
ω1 and ω2 depend on the fuel concentration Γ.
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Thus, the 3–state model contains 2× 4 = 8 transition rates as shown in Fig. 3. If
the Γ–dependent unbinding rate constants ω1 and ω2 now satisfy ω1 ∼ ω2 ∼ ω(Γ)
with ω(Γ) as given by the Michaelis–Menten relation (9), this (3,2) ratchet leads
again to the simple v(Γ)–relationship as in (10). [21]

5 Summary and Outlook

In summary, the functional dependence of the motor velocity v on the concen-
tration Γ of the fuel molecules has been analysed for nonuniform ratchet models
with M internal states and transitions at K spatial locations. This functional
dependence is determined by the number of Γ–dependent rate constants and can
be classified into simple polynomial forms as in (10) and (11). In addition, two
subclasses of models for dimeric kinesin with (M, K) = (2, 2) and (M, K) = (3, 2)
lead to the simplest possible relationship (10) which agrees with the experimen-
tally determined fit as given by (1).

It is possible to extend the above analysis by incorporating the limiting case
of vanishing fuel concentration for which one must have detailed balance. This
leads to a generalized classification scheme for the motor velocity v = v(Γ, F ),
i.e., for the dependence of the velocity on the two control parameters Γ and F .
[25]

Acknowledgements I thank Thomas Harms for enjoyable collaborations and
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Glossary: List of symbols

All symbols are treated as words which are ordered alphabetically.

Do diffusion coefficient in lateral currents Jm

F applied (tangential) force; a load force corresponds to F < 0
Γ concentration of fuel molecules such as ATP
Γ∗ characteristic intermediate concentration
Im transition current density for internal state m
Jm lateral current for internal state m
Jtot total lateral current
K number of locations for transitions between internal states
� period of molecular force potentials
�Ω molecular ’localization’ length for transition rates
M number of internal motor states
ν rebinding rate constant
Pm probability density for internal state m
Ωmn spatially dependent transition rate from state m to state n
ω unbinding rate constant
ωmn transition rate constant from state m to state n
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x spatial coordinate for motor position
xk position at which motor undergoes localized transition
t time
T temperature in energy units
Um molecular force potential for internal state m
Vm effective force potential as defined in (2).
v motor velocity
vres residual velocity for small concentration Γ
vsat saturation velocity for large concentration Γ
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