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Flexible membranes which adhere to a substrate surface along striped surface domains were theoretically
studied using a “superposition” approach and Monte Carlo (MC) simulations. In the “superposition” approach,
the fluctuation-induced repulsion between the membrane and the nonadhesive surface domains was
approximately taken into account as a local potential. A detailed comparison of this superposition approach
and the MC data shows that the strength of the fluctuation-induced potential depends both on the boundary
conditions and on the physical quantity under consideration and, thus, must be viewed as a fit parameter.
The shape of the adhering membrane which consists of unbound membrane arches between bound membrane
segments is accessible to experiments using, for example, reflection interference microscopy.

Introduction

When dissolved in water, lipid bilayers and other
biomimetic membranes form a large variety of structures
in which the membranes experience mutual interactions,
such as multilamellar vesicles, oriented bunches and
stacks, and “myelin structures” consisting of multilamellar
cylinders. In addition, these membranes can adhere to a
macroscopic interface such as the container wall or the
watersair interface.

There are several experimental methods by which one
can probe the adhesion of such a membrane to another
surface: (i) With the surface force apparatus, one can
measure the direct interaction between two rigid bilayers
which have been immobilized onto mica surfaces (see, for
example, ref 1); (ii) the cohesion of two membranes can
be controlled by micropipet aspiration. In this case, the
flexibility of the membranes can be changed by varying
the lateral tension (see, for example, ref 2); and (iii) the
adhesion of one flexible membrane to a solid surface can
be studied by reflection interference microscopy (see, for
example, ref 3.

From the theoretical point of view, the interactions
which control these adhesion phenomena are governed
by the interplay of direct interactions arising from the
forces between the molecules and of the loss of entropy
arising from the steric hindrance of the two surfaces. This
interplay was first studied by Helfrich using simple scaling
arguments.4 A systematic theory was developed by Lip-
owsky and Leibler using renormalization group methods.5
In addition, much information on the adhesion of laterally
homogeneous membranes has been obtained by Monte
Carlo (MC) simulations.6-9

Recent work on membrane adhesion has focused on the
interaction of laterally inhomogeneous systems. Examples
are the adhesion of membranes via anchored stickers,10-14

membranes with junctions,15 the interactions of mem-
branes which are subject to a laser trap and to an external
pressure,16-18 or the adhesion of membranes to topologi-
cally rough or stepped surfaces.19,20

In this article, we are concerned with the adhesion of
membranes to laterally structured or imprinted surfaces
which contain some adhesive domains. Such structured
surfaces can be produced by a variety of experimental
methods such as elastomer stamps (see, for example, refs
21 and 22); vapor deposition through grids (see, for
example, ref 23); photolithography of amphiphilic mono-
layers (see, for example, ref 24); lithography with colloid
monolayers;25 atomic beams modulated by light masks;26

microphase separation in diblock copolymer films;27 or
deposition of polymeric micelles.28

Thus, imagine a lipid bilayer or another biomimetic
membrane adjacent to an imprinted surface. This surface
consists of two types of domains which attract and repel
the membrane, respectively. The membrane will then
assume a laterally nonuniform state consisting of bound
and unbound segments. We will focus here on the situation
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in which the attractive surface domains are strongly
attractive, and the bound membrane segments are es-
sentially immobilized on top of these surface domains.
What remains to be determined is the shape of the
unbound membrane segments adjacent to the nonadhesive
surface domains.

In this article, we will consider a particularly simple
geometry consisting of a lattice of parallel, adhesive
stripes. We will first study this system using a self-
consistent or “superposition” method in which the effects
of the shape fluctuations are incorporated approximately
using an effective fluctuation-induced potential. To es-
timate the quality of this approximation, we also perform
extensive MC simulations for the same problem. A detailed
comparison of the self-consistent calculation and the MC
data shows that there is no unique fluctuation-induced
potential. Instead, the strength of this potential depends
both on the boundary conditions and on the physical
quantity under consideration and must be viewed as a fit
parameter.

Superposition Approach

Adhesion to Laterally Homogeneous Surfaces. For
laterally homogeneous systems, the effect of the shape
fluctuations has often been treated in an approximate
way using an entropic or fluctuation-induced potential.
For a membrane adjacent to another surface or wall, the
latter potential has the general form Vfl ) cflT2/2κl 2 as
originally proposed by Helfrich,4 where T denotes the
temperature in energy units,29 κ the bending rigidity of
the membrane, and l is the mean separation between
membrane and surface.

In a more systematic treatment, this entropically
induced interaction arises from the renormalization of
the hard wall interaction.5 Its strength, which is governed
by the dimensionless coefficient cfl, depends on the
boundary conditions used to confine the membranes.10

The value of cfl has been determined by MC simulations
and was found to vary from cfl = 0.08 for a single membrane
between parallel walls6 to cfl ) 0.115 ( 0.005 for a
membrane subject to an external pressure.7,9,10

In the latter case, the membrane is pushed by an
external pressure, P, toward a hard wall, and the entropic
or fluctuation-induced potential Vfl has a well-defined
meaning: it is defined in such a way that the mean
separation follows from -∂Vfl(l )/∂l ) P. It must be
emphasized, however, that this potential is defined only
with respect to this specific physical observable.

In general, the interpretation of the entropic or fluctua-
tion-induced interaction is subtle even for laterally
homogeneous systems. First, in the presence of attractive
van der Waals interactions, a simple superposition of the
latter interactions and the fluctuation-induced interac-
tions is not correct, as first pointed out in ref 5. Second,
the fluctuation-induced interaction is often derived using
a collision picture in which the membrane is envisaged to
undergo frequent collisions with the other surface. The
latter picture is also incorrect as shown by an explicit
calculation of the contact probabilities.30 Finally, there is
no reason to believe that the fluctuation-induced potential
defined via -∂Vfl(l)/∂l ) P will apply to other quantities
such as the free energy or the correlation length.

All of the limitations of the superposition approach just
reviewed for the case of laterally homogeneous systems

should also apply to laterally inhomogeneous or nonuni-
form systems as discussed next.

Adhesion to Laterally Inhomogeneous Surfaces.
First, we will describe the partition function which we
would like to calculate in order to determine the shape of
the membrane which is attracted to some adhesive surface
domains. In the absence of lateral tension, thermal
fluctuations of fluid membranes are governed by their
bending elasticity. In the Monge parametrization, the
configurations of the membrane are described by the
displacement field l(x,y) which measures the local separa-
tion of the membrane from the substrate. As usual, x and
y denote Cartesian coordinates in the plane of the
substrate. For an oriented membrane, the Hamiltonian
has the generic form

where κ is the bending rigidity as before. For two
interacting membranes with separation field l and bending
rigidities κ1 and κ2, the symbol κ denotes the effective
bending rigidity κ ) κ1κ2/(κ1 + κ2). The partition function
Z of the system is the functional integral over all possible
membrane configurations weighted with the Boltzmann
factor exp[-H{l}/T]:

The prime at the integral sign indicates that the functional
integral is restricted to positive separation fields l(x,y)
and to configurations which satisfy the boundary condi-
tions imposed by the strong adhesive surface domains to
which the membrane is attached. Because of these
restrictions, an explicit analytical evaluation of the
partition function Z and the free energy F ) -T ln Z
becomes untractable.

Within the superposition approach, the effect of the
thermal membrane fluctuations is now taken into account
as a local repulsive potential added to the bending energy
which leads to the free energy functional

The differential equation for the shape profile lh ) lh(x,y)
is obtained from the first variation, ∂(∆F ) ) 0, of this free
energy functional (see Appendix A). As a result, one obtains
the Euler-Lagrange equation:

which has to be supplemented by a suitable set of boundary
conditions for l at the pinning sites. An estimate for the
free energy is achieved by inserting the solution l ) lh of
eq4 back into eq 3:

Precisely speaking, ∆F is a free energy difference with
respect to the flat state lh ) lo at large pinning distances
lo (see below).

The superposition approach just described has been
previously used for membranes which are subject to an
external pressure which acts to push the membrane

(29) The temperature T in energy units corresponds to kBT′ where
T′ is the temperature in Kelvin and kB denotes Boltzmann’s constant.

(30) Hiergeist, C.; Lipowsky, R. Physica A 1997, 244, 164.

H{l} ) ∫ dx dy κ

2
(∇2l)2 (1)

Z ) ∫′ Dl(x,y)e-H{l}/T (2)

∆F{l} ) ∫ dx dy [κ2(∇2l)2 +
cflT

2

2κl2] (3)

κ∇4l )
cflT

2

κl3
(4)

∆F ) ∫ dx dy [κ2(∇2lh)2 +
cflT

2

2κlh 2] (5)
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toward the wall.17,18 Here, we will study the membrane
behavior in the absence of such a pressure, which
eliminates one parameter from the problem and leads to
shape profiles which exhibit some universal features.

SpecificGeometry: ParallelContactLines. We will
now focus on a particularly simple geometry which consists
of parallel stripes as shown in Figure 1. The length of
these stripes is denoted by L| and the distance between
the stripes is denoted by L⊥.

The stripes represent adhesive surface domains pre-
pared, for example, by a monolayer of adhesive or sticky
molecules. The surface domains between the stripes, on
the other hand, are nonadhesive and exert a purely
repulsive hard wall interaction onto the membrane. As a
consequence, the membrane will assume a laterally
nonuniform state consisting of bound and unbound
segments adjacent to the adhesive and nonadhesive
surface domains, respectively.

We focus on the situation of strongly adhesive stripes
which essentially immobilize the membrane at a small,
uniform separation lo from the substrate surface. Between
these strongly bound segments, the membrane is unbound
because it is pushed away from the nonadhesive surface
domains by thermally-excited shape fluctuations. These
unbound segments will be characterized by an average
shape profile lh ) lh(x,y), which represents the local
separation of the membrane from the nonadhesive surface
domains. In general, the local separation lh(x,y) will exceed
the separation lo from the adhesive stripes and will
increase with the lateral distance x from those stripes. An
equivalent geometry is provided by a pair of membranes
which are pinned together at striped domains.

We now apply the superposition approach to this specific
geometry. If the parallel length L| of the adhesive stripes
is much larger than the stripe distance L⊥ (see Figure 1)
we can assume translational symmetry in the y-direction
parallel to the stripes. The difference free energy of the
superposition approach, eq 5, then can be written as

and the Euler-Lagrange eq 4 reads

with a shape profile lh ) lh (x), which only depends on the

coordinate x. Because of the fixed membrane distance lh )
lo along the contact lines of the membranes, the boundary
conditions at x ) 0 and x ) L⊥ are given by

and

The second boundary condition, eq 9, is necessary in order
to have a finite contact curvature. The shape profile lh(x)
is determined by the Euler-Lagrange eq 7 and the
boundary conditions are determined by eqs 8 and 9. For
large lo, and thus for large lh, the fluctuation potential in
eq 6 declines to zero, and the solution of the Euler-
Lagrange eq 7 at the conditions in eqs 8 and 9 is the flat
membrane state with constant shape profile lh(x) ) lo.
Equation 6 gives the free energy difference with respect
to this flat state described by the profile lh(x) ) lo which
is achieved for large lo.

Because of the reflection symmetry of the membrane
with respect to x ) L⊥/2, it is sufficient to consider only
one-half of the membrane between the adhesive stripes.
For this purpose, we need two boundary conditions at x
) L⊥/2. These boundary conditions follow directly from
the smoothness of the membrane and the symmetry at x
) L⊥/2 and are given by

It is interesting to note that the second boundary condition
in eq 10 also follows from the minimization of the free
energy with respect to the value lmax ≡ l(L⊥/2) of the
separation at the position of the symmetry plane (see
Appendix A). For a reduction of the parameters and a
simplification of the notation, it is convenient to introduce
the rescaled shape profile

The Euler-Lagrange eq 7 then can be written in the form

and the difference free energy (eq 6) reads:

The boundary conditions for ú(x) at x ) 0 and x ) L⊥/2 are

At first sight, the problem seems to depend on the
two parameters úo and L⊥, which enter via the integral in
eq 13 and the boundary conditions in eqs 14 and 15.

Figure 1. Two types of surface domains: Strongly adhesive
stripes (black)andrepulsivesurfacedomains (white).The length
of the adhesive stripes is denoted by L|, their distance is denoted
by L⊥.

∆F ) L| ∫0

L⊥ dx [κ2(∂2lh
∂x2)2

+
cflT

2

2κlh2] (6)

κ
∂

4lh
∂x4

)
cflT

2

κlh3
(7)

lh|x)0 ) lh|x)L⊥
) lo (8)

∂lh
∂x|x)0

) ∂lh
∂x|x)L⊥

) 0 (9)

∂lh
∂x|x)L⊥/2

) 0 and ∂
3lh

∂x3|
x)L⊥/2

) 0 (10)

ú(x) ) cfl
-1/4 lh(x)xκ/T (11)

∂
4ú

∂x4
) 1

ú3
(12)

∆F ) L|Txcfl∫0

L⊥/2
dx[(∂2ú

∂x2)2

+ 1
ú2] (13)

ú(0) ) cfl
-1/4loxκ

T
≡ úo,

∂ú
∂x|x)0

) 0 (14)

∂ú
∂x|x)L⊥/2

) 0, ∂
3ú

∂x3|
x)L⊥/2

) 0 (15)
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However, the difference free energy (eq 13) is invariant
under the scale transformation

because the shape profile ú, which is the solution of the
Euler-Lagrange eq 12 with the boundary conditions in
eqs 14 and 15, scales as (x,ú) f (bx, bú). So we have

and with the choice b ) 1/úo for the scaling factor b, i.e.,
by taking the rescaled contact separation úo as the unit
length scale, the difference free energy can be written as

With b ) 1/L⊥, the stripe distance L⊥ is taken as the unit
length scale which leads to

Thus, the relevant parameter turns out to be the ratio
L⊥/úo of the stripe distance L⊥ and the rescaled contact
separation úo. The difference free energy (eq 13) is
essentially determined by the function Φ1(L⊥/úo) in the
case where úo is taken as the unit length scale, and by
Φ2(úo/L⊥) when L⊥ is considered as the unit length.
According to eqs 18 and 19, the functions Φ1 and Φ2 are
related via

Results. The numerical integration of the differential
eq 12 with the boundary conditions in eqs 14 and 15 and
the subsequent calculation of the difference free energy
(eq 13) is carried out with a MATHEMATICA program31

which can be found in Appendix B. The results were
confirmed with MAPLE and routines of the NAG library,
respectively.32

Shape Profiles. In Figure 2, we see numerical results
of the rescaled shape profile ú for several ratios úo/L⊥ of
the rescaled contact separation úo and the stripe distance
L⊥. The shape profiles of Figure 2 show an increase of the
maximum membrane separation úmax ) ú(L⊥/2) with
decreasing contact separation úo for given stripe distance
L⊥. In Figure 3, the maximum separation úmax in units of
L⊥ is displayed as a function of L⊥/úo. Both figures
demonstrate that the overall shape profile strongly
depends on changes of the rescaled separation úo at the
boundary of the membrane.

Free Energy. It is instructive to display the difference
free energy (eq 13) via both scaling functions Φ1 and Φ2
defined in eqs 18 and 19. In Figure 4a, we see the scaling
function Φ1 as a function of L⊥/úo in a double-logarithmic
representation. The scaling function Φ1, where the re-
scaled contact distance úo was taken as the unit length
scale, refers to the situation in which úo and the length
L| of the adhesive stripes are fixed, but the stripe distance

L⊥ can be varied. Thus, Φ1 can be understood as a
fluctuation-induced contribution to the interaction po-
tential of the adhesive stripes. It is implicitly assumed
here that the relation L⊥ , L| is fulfilled for all values of
L⊥.

For small values of L⊥/úo, the function Φ1 is linear in L⊥.
This just reflects the fact that for L⊥/úo , 1, the membrane
is essentially flat due to the boundary constraints. Then,
only the fluctuation potential contributes to the dimen-
sionless free energy, and from eq 13 we conclude that Φ1
) L⊥/(2úo). Note, however, that this free energy contribu-
tion of the fluctuation potential is an artifact of the
superposition approach: Because of the boundary con-
straints, contacts between membrane and wall do not occur
for L⊥/úo , 1, and the fluctuation repulsion should be
irrelevant. This artifact can only be overcome by taking
the value cfl ) 0 for the fluctuation coefficient at small
L⊥/úo. A more detailed discussion of the parameter-
dependence of the effective fluctuation coefficient will be
given in the next sections where we compare results from
the superposition approach and from MC simulations.

It is more difficult to explain the behavior of Φ1 for
larger values of L⊥/úo, where first a maximum is reached
for L⊥/úo ≈ 20, and then Φ1 tends to the constant value Φ1
) 2.105. The latter cannot be explained by a scale
invariance of the shape profiles for large L⊥/úo, (see Figure
2). Unfortunately, a comparison with MC data is not
possible at high values of L⊥/úo, (see below).

In Figure 4b, we see the scaling function Φ2 which
depends on L⊥/úo. It is natural to choose Φ2 as a
representation of the difference free energy (eq 13) in

(31) MATHEMATICA. Wolfram Research Inc. Champaign, IL.
(32) MAPLE. Waterloo Maple Inc. Ontario, Canada; NAG Fortran

Library (Numerical Algorithms Group, Oxford, U.K.

Figure 2. Rescaled shape profiles ú(x) of the superposition
approach in units of the stripe distance L⊥. The ratio of the
rescaled contact distance úo and the stripe distance L⊥ is úo/L⊥
) 10-1, 10-2, 10-3, 10-4, 10-5, and 10-6 (center, from bottom to
top),

Figure 3. The rescaled maximum separation úmax ) ú(L⊥/2) in
units of the stripe distance L⊥ as a function of the decadic
logarithm of L⊥/úo where zo is the rescaled contact separation.

(L|, L⊥, úo) f (bL|, bL⊥, búo) (16)

∆F

Txcfl

) L| f̂ (L⊥,úo) ) bL| f̂ (bL⊥, búo) (17)

∆F

Txcfl

)
L|

úo
f̂ (L⊥

úo
, 1) ≡ L|

úo
Φ1 (L⊥

úo
) (18)

∆F

Txcfl

)
L|

L⊥
f̂ (1,

úo

L⊥
) ≡ L|

L⊥
Φ2 (úo

L⊥
) (19)

Φ1 (L⊥

úo
) )

úo

L⊥
Φ2 (úo

L⊥
) (20)
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experimental situations where the distance L⊥ and length
L| of the adhesive stripes are fixed, but the rescaled contact
separation úo can be varied. In accordance with eq 20 and
Figure 4a, the function Φ2 is inversely proportional to
úo/L⊥ at small values of úo/L⊥ and scales as Φ2 ∼ (úo/L⊥)-2

for large values of úo/L⊥.

Monte Carlo Simulations of the Pinned
Membrane

Discretization and Implementation of the Bound-
ary Conditions. We now discuss our MC simulations for
the same adhesion problem as studied in the last section,
i.e., for a membrane which is irreversibly attached to a
pair of parallel adhesive stripes at a contact separation
lo with respect to the plane of the substrate. For the
simulations, we need a discretized distance field lx,y, where
(x,y) denotes the site of a square lattice with coordinates
xa and ya, a being the lattice constant. In the MC
simulations, the lattice constant a enters as a new length,
compared to the superposition approach. In real mem-
branes, this length corresponds to a molecular length,
e.g., the thickness of the membrane. At the contact lines
with x ) 0 and x ) L⊥ ≡ N⊥a (see Figure 1), the membrane
distance is equal to lo:

At y ) 0 and y ) L| ≡ N|a, we assume periodic boundary
conditions:

For a stripe length L| with L| . L⊥, the results of the
simulation are only weakly dependent on L| because the
correlation lengths in the y-direction are approximately

proportional to the width L⊥ of the membrane stripe. The
discretized Hamiltonian can be written as

where the discretized Laplace operator ∆d is given by ∆dlx,y
) lx+1,y + lx-1,y + lx,y+1 + lx,y-1 - 4lx,y, and κ again denotes
the bending rigidity. The term proportional to F reflects
the contribution of the boundary sites with x ) 0 and y
) N⊥a to the bending energy because for l-1,y ) l0,y ) lo
and lN⊥+1,y ) lN⊥,y ) lo, the boundary curvatures are given
by ∆dl0,y ) l1,y - lo and ∆dlN⊥,y) lN⊥-1,y - lo. In the following,
we only consider one-half of the Wigner-Seitz cell around
each boundary site to be part of the membrane. Thus, we
take F ) 1/2. In the continuum limit with large L⊥/a and
lo/a, the boundary energy term leads for positive F to shape
profiles with vanishing boundary gradient at x ) 0 and
L⊥ ) 0 as demanded by the boundary conditions in eq 9.
For F ) 0, however, boundary gradients do not contribute
to the bending energy, and the Hamiltonian (eq 23) with
boundary conditions (in eq 21) then corresponds to a
membrane with given contact distance lo but free boundary
gradients.

Integration Method To Determine the Free En-
ergy. Our aim is to determine the free energy difference
∆F with respect to the state with lo ) ∞, as well as the
shape profiles as a function of the contact distance lo or
the rescaled contact distance zo ) (lo/a)xκ/T for given
stripe width L⊥ and length L| . L⊥. Defining the rescaled
distance field zx,y ) (lx,y/a)xκ/T, the Hamiltonian (eq 23)
with F ) 1/2 can be written in the form

and the partition function reads

with N ) (N⊥ - 1)N|. A direct evaluation of partition
functions by MC simulations is difficult.33,34 We therefore
study average quantities which represent derivatives of
ln Z with respect to some system parameter, and determine
each quantity as a function of this parameter. The partition
function is then obtained by integration. A classical variant
is the relation

Taking into account the temperature dependence of the
rescaled contact distance zo ) (lo/a)xκ/T, the integration

(33) Binder, K., Ed. Applications of the Monte Carlo Methods in
Statistical Physics; Springer: Berlin, 1984.

(34) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;
Clarendon Press: Oxford, 1987.

Figure 4. Double-logarithmic plot of: (a) Φ1 as a function of
the ratio L⊥/úo of the stripe distance L⊥ and rescaled contact
separation úo; (b) Φ2 as a function of úo/L⊥. The scaling functions
Φ1 and Φ2 are both proportional to the difference free energy
∆F (see eqs 18 and 19).

l0,y ) lN⊥,y ) lo (21)

lx,N|+1 ) lx,1; lx,0 ) lx,N|
(22)

H ) ∑
x)1

N⊥-1

∑
y)1

N| κ

2a2
(∆dlx,y)

2 + F∑
y)1

N| κ

2a2
[(l1,y - lo)

2 +

(lN⊥-1,y - lo)
2] (23)

H

T
) ∑

x)1

N⊥ - 1

∑
y)1

N| 1

2
(∆dzx,y)

2 + ∑
y)1

N| 1

4
[(z1,y - zo)

2 +

(zN⊥-1,y - zo)
2] (24)

Z ) [ ∏
x)1

N⊥ - 1

∏
y)1

N| ∫0

∞
dlx,y] e-H/T )

(Ta2

κ
)N/2

[ ∏
x)1

N⊥ - 1

∏
y)1

N| ∫0

∞
dzx,y] e-H/T (25)

d ln Z

dT
)

1

Z{[ ∏
x)1

N⊥ - 1

∏
y)1

N| ∫0

∞
dlx,y] e-H/TH

T2} ) 〈H
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then leads to

Thus, this approach requires the determination of the
reduced internal energy 〈H/T〉.

To improve the statistics, we found it more useful to
consider

and integrate subsequently to obtain

If d ln Z/dzo is known for sufficiently many values of the
rescaled contact distance zo, the difference of the free
energies between the state with zo ) ∞ and a state with
finite zo can be determined by interpolation and integra-
tion. At zo ) ∞, the average d ln Z/dzo is equal to zero, and
the free energy then is invariant with respect to changes
of zo. This can also be seen from the second line of eq 28
which takes into account the symmetry of the partition
function Z with respect to the plane z ) zo because then
the mean rescaled shape profile 〈zx,y〉 is equal to zo
independent of x and y.

According to eqs 24 and 25, the partition function can
be written as

where Z̃ ) [∏ x)1
N⊥-1 ∏y)1

N| ∫0
∞ dzx,y]e-H/T only depends on the

rescaled contact distance zo ) (lo/a)xκ/T. From this, we
conclude the following considering the T-dependence of
Z:

This equation connects the average 〈H/T〉 and d ln Z/dzo.
At zo ) ∞, we have d ln Z/dzo ) 0, and therefore 〈H/T〉 )
N/2 in accordance with the equipartition theorem. We
also see from eq 31 that 〈H/T〉 has to be equal to N/2 for
zo ) 0, too.

Results. In Figures 5 and 6, we see MC results for
〈H/T〉/N and (d ln Z/dzo)/N| as a function of the rescaled
contact distance zo for L⊥/a ) N⊥ ) 24, 32, and 40. The
data are averages from simulations with 2 × 107 MC steps
per lattice site and the reduced stripe lengths L|/a ) N|

) 110, 150, and 200, respectively. The ratios of L|/L⊥ are
large enough to guarantee that the averages are inde-
pendent of L|. This was checked by running simulations

with different values of L| as well as by measuring the
correlation functions. Because the statistical errors for (d
ln Z/dzo) are considerably smaller than the errors of 〈H/
T〉, we use the data of Figure 6 to extract the free energy
∆F through interpolation and integration according to eq
29.

The resulting free energy differences between the state
with zo ) ∞ and states with finite zo are shown in Figure
7. Because of the fluctuation repulsion, ∆F increases with
decreasing zo. The free energies (L⊥/L|) (∆F/T) per qua-
dratic stripe segment coincide at large values of zoa/L⊥ )
zo/N⊥. This is a consequence of the scale invariance of the
bending energy in the continuum limit with large L⊥/a
and zo/a. In this limit, the shape profiles, the free energy
and other physical quantities become independent of the
lattice spacing a.

At small values of zoa/L⊥, discretization effects lead to
deviations of the three curves for L⊥/a ) 24, 32, and 40.
The discretization becomes noticeable at values of zo )
(lo/a)xκ/T around 1: first the curve for L⊥/a ) 24 splits
off; at smaller values of zoa/L⊥ also the curves for L⊥/a )
32 and 40 differ from each other. A comparison of the
curves suggests that the free energy for L⊥/a ) 40 should
be almost unaffected by the discretization until values of

Figure 5. Monte Carlo results for the internal energy per
lattice site 〈H/T〉/N as a function of the rescale contact separation
zo for the reduced stripe distances L⊥/a ) N⊥ ) 24, 32, and 40.
The number of lattice sites is N ) (N⊥ -1)N| where N| ) L|/a
denotes the length of the adhesive stripes in units of the lattice
constant a.

Figure 6. Monte Carlo results for (d ln Z/dzo)/N| as a function
of the rescaled contact separation zo for the reduced stripe
distances L⊥/a ) 24, 32, and 40, where Z denotes the partition
function and N| ) L|/a is the length of the adhesive stripes in
units of the lattice constant a. The statistical errors are smaller
than the symbol sizes.

∆F
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T2〉 dT

) ∫To

T1 2
zo

〈HT〉 dzo

dT
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) ) -∫zo,1

zo,2 d ln Z
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(29)
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κ )N/2
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〈HT〉 ) T d ln Z
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dzo

dzo
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2
-
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d ln Z

dzo

(31)

Adhesion of Membranes to Striped Surface Domains Langmuir, Vol. 16, No. 24, 2000 9343



zoa/L⊥ around 0.02 or L⊥/(zoa)≈50. However, discretization
effects, arising from the influence of the lattice spacing a,
should not be seen as a mere numerical artifact because
a corresponds to a microscopic length scale of the
membrane, e.g., themembranethickness.Thismicroscopic
length is a natural cutoff for the membrane fluctuations;
on scales smaller than this cutoff, shape fluctuations are
not possible.

Comparison of the two Methods

Shape Profiles. We now compare the outcome from
the MC simulations with corresponding results from the
superposition approach. In Figure 8, we see shape profiles
for L⊥/a ) 40 and zo ) 8, 6, 3, 1, and 0.1. The data points
originate from MC simulations with 2 × 107 steps per
lattice site, and statistical errors are smaller than the
symbol sizes. The full lines are results from the super-
position approach with values of cfl which were fitted to
the MC data following the method of least squares. It has
to be noted that the rescaled contact distances of this
section, zo, and of section 2, úo, are not identical but are
related by úo ) cfl

-1/4zoa, where a is the lattice spacing.

The fit values are given in the caption of Figure 8 and
represented graphically in Figure 9.

Using optimal values for the fluctuation coefficient cfl,
the agreement of the shape profiles for given zo is rather
good. This is not trivial, because the fluctuation approach
implies rather crude approximations, as discussed previ-
ously. As a systematic deviation, the shape profiles from
the superposition approach lie at the membrane edges
below and in the membrane middle above the MC data.

In Figure 9, we see fit values for cfl as a function of the
rescaled contact distance zo for L⊥/a ) 40. Three regimes
can be distinguished: (i) At large values of zo, collisions
of the membrane with the substrate do not occur due to
the fixed membrane boundaries at the adhesive stripes.
The values for cfl therefore rapidly decline to zero with
increasing zo. (ii) In a regime of small rescaled contact
distances zo j 1, the influence of the lattice spacing a of
the MC simulations becomes noticeable. The superposition
approach, however, is a continuum theory due to lack of
a microscopic length scale, and therefore effectively
contains fluctuations also on length scales smaller than
a. These fluctuations lead to an additional repulsion for
small zo, compared to the MC simulations. In the naive
fit of the fluctuation coefficient, this effect is corrected by
a relatively small value of cfl. (iii) In an intermediate regime
with 1 j zo j 4, the values for zo are close to 0.10 and reach
a maximum.

Free Energy. A comparison of the results for the free
energy difference ∆F ) F(zo) - F(zo ) ∞) can be seen in
Figure 10. The full line for (L⊥/L|)∆F comes from an

Figure 7. Dimensionless free energy (L⊥/L|) (∆F/T) per
quadratic membrane segment resulting from the interpolation
of the data in Figure 6 and the subsequent integration according
to eq 29. The stripe distance L⊥ is given in units of the lattice
constant a, the stripe length is denoted by L|, and zo is the
rescaled contact separation of the membrane.

Figure 8. Comparison of rescaled shape profiles z(x) from
Monte Carlo simulations (data points) and from the superposi-
tion approach (lines) for the reduced stripe distance L⊥/a ) 40
and the rescaled contact distances zo ) 8, 6, 3, 1, and 0.1. The
fit values of the fluctuation coefficient are cfl ) 0.085 for zo )
8, cfl ) 0.082 for zo ) 6, cfl ) 0.100 for zo ) 3, cfl ) 0.098 for zo
) 1, and cfl ) 0.071 for zo ) 0.1; for a graphical representation,
see Figure 9.

Figure 9. The fluctuation coefficient cfl as obtained from fitting
shape profiles of the superposition approach to Monte Carlo
data for simulations with reduced stripe distance L⊥/a ) 40
and several values of the rescaled contact separation zo (see
also Figure 8).

Figure 10. Comparison of the dimensionless free energy per
quadratic stripe segment (L⊥/L|)(∆F/T) from the Monte Carlo
data for the reduced stripe distance L⊥/a ) 40 and from the
superposition approach with the fluctuation coefficients cfl )
0.115 (upper dashed line) and cfl ) 0.025 (lower dashed line).
Here, L| denotes the length of the adhesive stripes, and a is the
lattice constant.
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interpolation and integration of the MC data for d ln Z/dzo
at the reduced stripe width L⊥/a ) 40, and the dashed
lines correspond to results in the superposition approach.
The upper dashed line is the free energy (eq 13) for the
solution of the shape eq 12 with the boundary conditions
shown in eqs 14 and 15 with L⊥/a ) 40, úo ) cfl

-1/4zoa, and
cfl ) 0.115. This value for cfl has been derived from MC
simulations of membranes pushed together by an external
pressure, (see Introduction). For the lower dashed line,
the fluctuation parameter cfl ) 0.025 has been fitted to
reach optimal agreement with the MC curve in the range
1 < zo < 10. This fit value of cfl is considerably smaller
than (i) the values for average parallel membranes which
range between 0.08 and 0.115 (see Introduction) and (ii)
the values for cfl derived from the fitting to the mean MC
shape profiles which range between 0.06 and 0.11 for 1
< zo < 10 (see Figure 9).

Conclusion and Outlook

From these results, we conclude that there is no unique
fluctuation-induced potential, i.e., no repulsive potential
which applies to arbitrary boundary conditions. Instead,
the coefficient cfl depends on the boundary conditions
arising from the pinning geometry. In this article, the
coefficient cfl was determined for a membrane which is
locally pinned to a substrate at parallel adhesive stripes.
This was achieved by a comparison with MC simulations.
The geometry-dependence of the coefficient cfl implies that
cfl is a function of different length scales, e.g. a function
of the rescaled contact distance zo for given distance L⊥
of the adhesive stripes. In addition, different quantities
lead to different values of cfl within the superposition
approach: The fit value of cfl for the free energy is much
smaller than the fit values for the shape profile. Similar
behavior has also been observed for strings governed by
lateral tension (see ref 35).

Finally, we emphasize that the membrane shape as
theoretically determined here could be directly observed
experimentally. As mentioned, there are several experi-
mental methods by which one can prepare substrate
surfaces with adhesive surface domains. One could then
studytheadhesion ofvesicles to such surfaces andmeasure
the shape profile of the membrane within the contact area
using, e.g., interference contrast microscopy as in ref 3.
For the stripe geometry considered here, the water pockets
under the membrane arches are directly connected to the
surrounding solution, which implies that they can freely
adjust their volume and, thus, do not experience an
(effective) pressure. Furthermore, the membrane arches
will be unaffected by a lateral tension, Σ, as long as the
distance L⊥ between the stripes does not exceed the length
scale xκ/Σ which separates the rigidity-dominated re-
gime from the tension-dominated one. If L⊥ . xκ/Σ, on
the other hand, one has two different types of membrane
segments: up to lateral distances ∼xκ/Σ away from the
adhesive stripes, the membrane will attain the shape
profile described above; further away from the stripes,
the membrane will be tense and, thus, essentially flat.

Nomenclature

a ) lattice constant
b ) scaling factor
cfl ) fluctuation coefficient
∆F ) difference free energy
∆F ) free energy functional
ε ) variational parameter

f̂ ) scaling function
Φ1, Φ2 ) scaling functions
H ) effective Hamiltonian
κ ) (effective) bending rigidity
l ) separation field
lh ) separation profile (superposition)
lo ) contact separation
lhmax ) maximum separation lh (L⊥/2)
L| ) length of the adhesive stripes
L⊥ ) distance of the adhesive stripes
N| ) reduced stripe length L|/a
N⊥ ) reduced stripe distance L⊥/a
N ) number of lattice sites (N⊥ - 1)N|

F ) proportionality factor for the boundary energy
T ) temperature in energy units
Vfl ) fluctuation-induced potential
x, y ) spatial coordinates
z ) rescaled separation field (l/a)xκ/T (MC simulations)
zo ) rescaled contact separation (lo/a)xκ/T (MC simula-

tions)
ú ) rescaled separation cfl

-1/4lhxκ/T (superposition)
úo ) rescaled contact separation cfl

-1/4loxκ/T (super-
position)

úmax ) rescaled maximum separation ú(L⊥/2) (superposi-
tion)
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Appendix A: Variational Calculation
In this appendix, we minimize the free energy ∆F of the

membrane with respect to the separation lhmax ) lh(L⊥/2) in
the middle between the two adhesive stripes. Because
there are no constraints on lhmax, the equilibrium free energy
∆F is invariant under an infinitesimal displacement δlhmax
of lhmax. We thus consider a variation

of the equilibrium profile lh with

To simplify the notation, partial derivatives with respect
to x are denoted by primes and lh will be simply written
as l. The free energy ∆F can be written in the form

with

Because l is the equilibrium shape profile, we have

Integrating by parts, we obtain

(35) Lipowsky, R. Habilitation Thesis, LMU, München, 1987.

lh(x) + ε‚δlh(x) (A1)

δlh(0) ) δlh ′(0))δlh′(L⊥/2) ) 0, δlh(L⊥/2) ) δlhmax (A2)

∆F ) ∫0

L⊥/2
f(l, l′, l′′)dx (A3)

f ) 2L|[κ2 (l′′)2 +
cflT

2

2κl 2] (A4)

δ(∆F) )
d(∆F)

dε |ε)0
)

∫0

L⊥/2 [∂f
∂l

‚ δl + ∂f
∂l′ ‚ δl′ + ∂f

∂l′′ ‚ δl′′] dx ) 0 (A5)

δ(∆F) ) ∫0

L⊥/2 [∂f
∂l

- ∂

∂x
∂f
∂l′ + ∂

2

∂x2
∂f
∂l′′] ‚ δl dx +

[∂f
∂l′ ‚ δl + ∂f

∂l′′ ‚ δl′ - ∂

∂x
∂f
∂l′′‚ δl]0

L⊥/2

(A6)
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With eq A4, this yields

Because δ(∆F) vanishes for arbitrary variational functions
δl, the equilibrium shape profile l has to fulfill the shape
equation

Taking into account eq A2, we end up with

which is equivalent to the second boundary condition in
eq 10.

Appendix B: Numerical Integration of the
Euler-Lagrange Equation

In this appendix, we present a MATHEMATICA
program31 for the numerical integration of the shape eq
12 at the boundary conditions shown in eqs 14 and 15.
The program is an implementation of the so-called shooting
method: The differential eq 12 is first integrated for a
complete set of four boundary conditions at x ) 0, namely
the two conditions shown in eq 14 as well as ú′′(0) ) j(0)
) p and ú′′′(0) ) j′(0) ) q, then the parameters p and q
are varied until the solution fulfills the two boundary
conditions shown in eq 15 at x ) L⊥/2. For this purpose,
we define the two functions “firstDerivative”, ú′(L⊥/2), and
“thirdDerivative”, ú′′′L⊥/2) ) j′(L⊥/2), depending on p and
q. In the program, L⊥ is simply denoted by L, and the
separation ú by z. Derivatives with respect to x are
indicated by primes as in the previous appendix.

The integration of the differential equation for the four
given boundary conditions at x ) 0 is carried out with the
MATHEMATICA routine “NDSolve”. With the routine
“FindRoot”, values for p and q are determined for which
the boundary conditions shown in eq 15 at x ) L⊥/2 are
fulfilled with relative and absolute errors smaller than
10-6 (default error parameters of “FindRoot”). In the last
line of the program, the free energy (eq 13) is calculated.
The whole program is defined as a module depending on
the rescaled contact distance zo ) úo and the distance L⊥
of the adhesive stripes. The starting values of the routine
“FindRoot”, however, have to be adjusted roughly to the
given values of úo and L⊥. The shown starting values, for
example, are suitable for úo ) 0.1 and values of L⊥ below
104. Because of the scale invariance of the free energy, it
is sufficient to determine ∆F for an arbitrary value of úo
as a function of the ratio L⊥/úo, compare eq 18.

MATHEMATICA program:

freeEnergy[zo•,L•]: ) Module[
{x,z,j,p,q,curve,firstDerivative,thirdDerivative,

pqSolution,solutionCurve},

curve[p•,q•]: ) NDSolve[{z′′[x]))j[x],j′′[x]))1/z[x]∧3,
z[0]))zo,z[0]))0,j[0]))p,j[0]))q},
{z,j},{x,0,L/2},MaxStepsf1000];

firstDerivative[p•,q•]:)z′[L/2]/.curve[p,q][[1]];

thirdDerivative[p•,q•]:)j′[L/2]/.curve[p,q][[1]];

pqSolution ) FindRoot[
{firstDerivative[p,q]))0, thirdDerivative[p,q]))0},
{p,0.001,0.002},{q,-0.001,-0.002},MaxIterationsf100];

solutionCurve ) curve[p/.pqSolution, q/.pqSolution];

NIntegrate[Evaluate[(j[x]∧2 + 1/z[x]∧2)/.solutionCurve][[1]],
{x,0,L/2}]

LA000708R

δ(∆F) ) 2L|∫0

L⊥/2 [κ∂
4l

∂x4
-

cflT
2

κl3 ] ‚ δl dx +

2κL|[l′′ ‚ δl′ - l′′′ ‚ δl]0
L⊥/2 (A7)

κ
∂

4l
∂x4

)
cflT

2

κl3
(A8)

δ(∆F) ) -2κL⊥l′′′(L⊥/2) ‚ δlmax ) 0 (A9)
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