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Random Walks of Cytoskeletal Motors in Open and Closed Compartments
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Random walks of molecular motors, which bind to and unbind from cytoskeletal filaments, are studied
theoretically. The bound and unbound motors undergo directed and nondirected motion, respectively.
Motors in open compartments exhibit anomalous drift velocities. Motors in closed compartments gen-
erate stationary nonequilibrium states with spatially varying densities of the motor concentrations and
currents. “Traffic jams” on the filaments lead to a maximum of the motor current at an optimal motor
concentration. Quantitative estimates based on experimental data for bound motors indicate that these
transport phenomena are accessible to experiments.
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Biological molecules, organelles, and cells constantly
undergo riotous motion which may represent passive dif-
fusion or active processes driven by chemical reactions [1].
One intriguing example for active transport is provided
by the intracellular traffic of molecular motors along cy-
toskeletal filaments [2]. The movements of these motors
involve several time regimes: (I) the molecular dynam-
ics underlying the chemomechanical coupling, (II) the di-
rected walks of the motors bound to the filaments, and
(III) the random walks arising from many diffusional en-
counters between the motors and the filaments.

In this Letter, we address the long-time regime (III) and
study its interrelation with the transport properties of the
bound motors in regime (II). The latter properties have
been measured for several types of motors [3–10]. Two of
these motors, two-headed kinesin on microtubules [4] and
myosin V on actin filaments [9], were found to walk via
discrete steps with step sizes of 8 and 36 nm, respectively.

Regime (III) applies to the intracellular traffic which in-
volves transport over tens of micrometers or even many
decimeters as in the case of axons. The corresponding
transport properties depend on the motor-filament inter-
actions, on the arrangement of the filaments, and on the
geometry of the confining membranes. Inspired by these
biological processes, we study the transport of motors in
open and closed compartments with immobilized filaments
as shown in Fig. 1. In general, the filaments may be mobile
as well [11] or may be assembled and disassembled [2] but
these more complex processes will not be addressed here.

The directed walks of the bound motors can be charac-
terized by a walking time Dtb, which is the average time
period between binding and unbinding. For all cytoskele-
tal motors studied so far, Dtb was found to be of the order
of a few seconds [5–10]. On time scales large compared
to Dtb, the motors undergo random walks which consist of
alternating sequences of bound and unbound motor states.
Such walks were previously discussed for unbounded geo-
metries using scaling arguments [12].

In this Letter, we map the random walks of the molecu-
lar motors onto lattice random walks. This provides a gen-
eral theoretical framework into which one can incorporate
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(i) all transport properties of the bound motors as observed
experimentally, (ii) the large difference between the bound
and unbound diffusion coefficients, (iii) sticking probabili-
ties for motor rebinding, and (iv) arbitrary motor-motor
interactions. For unbounded geometries, some transport
properties can be calculated analytically [13]. Here we fo-
cus on the confined systems displayed in Fig. 1 for which
we describe two generic transport phenomena. In addition,
we report results of Monte Carlo (MC) simulations for a
specific parameter choice as appropriate for two-headed
kinesin.

First, we study the motion of a “tracer” motor within
open compartments as in Fig. 1(a)–1(c). Such a motor still
advances parallel to the filament but with a reduced veloc-
ity. For the half space and the slab, the velocity decays for
long times t as �1�t and y � 1�t1�2, respectively. For
an open tube, the velocity is reduced by a constant factor
which depends on the radius of the tube. This reduction
could be experimentally observed via fluorescent probes
and single-particle tracking.

Second, for closed compartments as in Fig. 1(d), we
find stationary nonequilibrium states with a motor con-
centration gradient between the two ends of the tube.
This gradient leads to a diffusive backflow of the motors
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FIG. 1. Open and closed compartments with one filament
(black rod) attached to the confining walls: (a) half space as
used in [4–7,9,10], (b) slab, (c) open tube, and (d) closed
tube. The motors are taken to move from the minus end of
the filament to its plus end. The length scale L� denotes the
thickness of the slab and the radius of the tube.
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which balances the bound motor current along the fila-
ment. This balance is strongly affected by the hard-
core repulsion (or mutual exclusion) between the motors:
These interactions lead to “traffic jams” on the filaments
even at relatively small motor concentrations. As a result
of these jams, we find that the bound current exhibits a
maximum at an optimal motor concentration.

In the presence of hard-core interactions, our models are
new variants of driven lattice gases or exclusion processes.
Related models have been previously studied for ionic con-
duction [14], nonequilibrium phase transitions [15,16], and
macroscopic traffic flow [17].

Our Letter is organized as follows. First, we summa-
rize the experimental results on bound motors and discuss
the diffusion coefficient of unbound ones. We then define
our random walk models, discuss the movement of single
tracer motors in the different open compartments, and de-
termine the density profiles of the motor concentrations
and currents within closed tubes.

The experimental results for bound motors [3–10]
are summarized in Table I. The walking time Dtb and
the walking distance Dxb are related via Dxb � ybDtb

where yb is the motor velocity along the filament. The
walking time Dtb depends on the overall ionic strength
[5,10], on the presence of certain ions such as magnesium
[C. Schmidt and M. Rief (private communication)], and
on the filament roughness arising from adsorbed tau
proteins [8] or from chemically altered tubulin [10].

The nondirected diffusive motion of the unbound mo-
tor, on the other hand, is governed by the diffusion coeffi-
cient Dub . This coefficient is given by the Stokes-Einstein
relation Dub � kBT��6phRhyd� [1], and depends on the
thermal energy kBT , on the dynamic viscosity h of the
solution, and on the effective hydrodynamic radius Rhyd

of the motor particle. At room temperature, this leads
to Dub � �hw�h� 3 �100 nm�Rhyd� 3 2.4 mm2�s with
hw � 0.9 mPa s �� cP� as appropriate for water [18].

We will now map the random walks of the motors onto
lattice random walks. The parameters of our lattice models
can be chosen in such a way that the lattice random walks
exhibit the same diffusion coefficient Dub, walking time
Dtb, bound state velocity yb , and bound state diffusion
coefficient Db as the real motors.

In our models, the motor particle moves on a cubic
lattice with lattice constant �. For simplicity, the filament
108101-2
is taken to consist of one protofilament which corresponds
to a one-dimensional line of binding sites [19]. The motor
can adsorb onto a filament binding site from nad adjacent
nonfilament sites with nad � 4 and 3 for a filament in
solution and attached to a wall, respectively.

Away from the filament, the hopping rates between any
two nearest neighbor sites are equal to 1�6t where the time
scale t for the unbound motor is given by t � �2�6Dub .
When the motor moves to a filament binding site, it ad-
sorbs with sticking probability pad . Once the motor is
bound to the filament, it is governed by a different time
scale denoted by tb: it can make a forward or back-
ward step to a neighboring filament site with rates a�tb

and b�tb , respectively, or unbind from it to an adjacent
nonfilament site with rate e�6tb . The dwell probabil-
ity g � 1 2 a 2 b 2 nade�6 defines the mean dwell
time tdw � tbg��1 2 g� and the mean step time ts �
tdw 1 tb � tb��1 2 g�.

The unbinding probability e is determined by the walk-
ing time Dtb via Dtb�tb � �6�nad 2 e��e. The bound
state velocity and diffusion coefficient are given by yb �
�ā 2 b̄���tb and Db � �ā 1 b̄ 2 �ā 2 b̄�2��2�2tb

with ā � a��a 1 b 1 g� and b̄ � b��a 1 b 1 g�.
In the MC simulations reported here, we focus

on two-headed kinesin, for which we ignore back-
ward steps [6] choosing b � 0. This leads to tb �
�1 2 2Db��yb ���yb and, via the entries in the first row
of Table I, to tb � 5.9 ms. The measured values of
yb and Db are recovered for a � 0.4975, g � 0.4987,
and e � 0.0075 which also implies ts � 11.8 ms and
Dtb�ts � 133. In addition, the bulk diffusion coef-
ficient is taken to be Dub � 4 mm2�s which implies
t � tb�1341, and the sticking probability pad � 1.

Now, consider an open compartment with one long fila-
ment attached to its surface as in Fig. 1. The motor con-
centration is small and the motor-motor interactions can
be ignored. The corresponding time evolution for the dis-
placement x of a single motor is shown in Fig. 2.

The simplest open compartment is a half-space geome-
try as in Fig. 1(a). The filament has coordinates �x, y �
0, z � 0�. When the motor unbinds from this filament,
it can explore the half space z . 0 in front of the sur-
face. The velocity y of the motor parallel to the filament
is equal to yb for its bound state but vanishes in its unbound
state. For long times t, the probability density P�� y, z, t�
TABLE I. Filament repeat distance �, bound state velocity yb , bound state diffusion coeffi-
cient Db , walking distance Dxb , and walking time Dtb as measured for high ATP concentration
and low load. The motors in [6,9,10] were attached to beads; the motors in [7] had no tails.
The bounds for myosin V follow from the low probability for backward steps.

� yb Db Dxb Dtb

(nm) �nm�s� �nm2�s� �mm� (s)

Two-headed kinesin [6] 8 680 1360
Two-headed kinesin [7] 8 710 2200 2 2.6
One-headed kinesin [7] 8 140 44 000 0.84 6.1
Dynein [10] 8 422 2.6
Two-headed myosin V [9] 36 &360 1.6 *4.5
108101-2
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FIG. 2. Simulation data for motor displacement x as a function
of time t in units of the filament repeat distance � and the mean
step time ts . The bottom, middle, and top lines are for the half
space, slab, and open tube, respectively. The slab thickness and
the tube radius are L� � 500�.

for the perpendicular motor coordinates has the scaling
form P�� y, z, t� � F� y�t1�2, z�t1�2��t where the factor
1�t arises from the normalization

R
dy dz P�� y, z, t � �

1. Thus, the probability Pb for the motor’s bound state
decays as Pb 	 c1padDtb�t and its velocity decays as
y � ybPb 	 c1padDxb�t for large t. Our MC data give
c1 � 0.50 while the analytical solution for the unbounded
space suggests c1 � 3�2p � 0.48. This implies that the
motor displacement x grows very slowly with time as
x�t� 2 x�to � 	 c1padDxb ln�t�to� for large t.

Within the slab, the parallel displacement of the motor
first exhibits the same time evolution as in the half space
until the motor is likely to diffuse back to the filament
after being reflected from the second surface which has a
separation L� from the first one. This happens after the
diffusion time Dt� � �2L��2�2Dub . For later times, the
motor velocity decays as y�t� 	 c2padDxb��Dt�t�1�2 and
its displacement evolves as x�t� 	 2c2padDxb �t�Dt��1�2;
our MC data give c2 � 1.16.

Next, the motor is placed in an open cylindrical tube
with radius L� as in Fig. 1(c). In this case, the velocity
initially decreases as in the other geometries until the motor
is confined by the walls of the tube. It then alternates be-
tween bound and unbound states with average lifetime Dtb

and Dt�, respectively. Thus, for t ¿ Dt�, the velocity at-
tains the finite value yeff � Dxb��Dtb 1 Dt��c3� which
behaves as yeff 	 c3padDxb�Dt� for large L�. Our MC
data yield c3 � 1.92.

Finally, consider a closed tube as in Fig. 1(d). Both
the tube and the filament now have the longitudinal length
Lk. Because of the confining walls, the motors cannot step
backwards at the minus nor forwards at the plus end of
the filament. For all other sites, we use the same hopping
probabilities as before. Since the filament strongly attracts
the motors, it becomes overcrowded or “jammed” even for
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relatively small motor concentrations. Thus, in order to
obtain reliable densities for the bound motors, one has to
take the hard-core repulsion (or mutual exclusion) of the
motors into account [20].

Within the closed tube, the active transport of the mo-
tors along the filament generates a concentration gradient
between the two ends of the tube. Any gradient, =rub , of
the unbound motor concentration rub induces a diffusive
current Jub � 2Dub=rub which acts to reduce the gradi-
ent. Therefore, the motor density will adjust in such a way
that this diffusive current Jub balances the bound current
Jb along the filament.

The balance between bound and unbound currents is
delicate, however, since the motors constantly bind to and
unbind from the filament, and the rebinding is strongly
reduced by traffic jams on the filaments. As long as the
number N of motors is sufficiently small, the filament still
provides many unoccupied binding sites and each diffus-
ing motor, which collides with the filament, rebinds to it
with the “bare” sticking probability pad . Therefore, each
unbound motor can diffuse back only over a certain dis-
tance before it is recaptured by the filament. This leads
to density profiles rb � rb�x� of the bound motors which
decay rapidly as one moves away from the plus end; see
Fig. 3 for N � 40.

For large N , on the other hand, the whole filament is
overcrowded or jammed, and each unbound motor has to
undergo many collisions with the filament before it can
reattach to it. As a result, the bound motor density rb�x�
is close to its maximal value over the whole length of the
tube as shown in Fig. 3 for N � 250.

Thus, as one increases the overall motor concentra-
tion r � N�pL2

�Lk, the filament starts to become over-
crowded at the plus end, and this traffic jam then spreads
towards the minus end with increasing r. At intermedi-
ate values of r, one has a density profile which inter-
polates between the two limiting cases; see Fig. 3 with
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FIG. 3. Closed tube: Local concentrations rb of bound motors
as a function of the coordinate x parallel to the filament in units
of �. The three curves correspond to different values of the total
number N of motors. The tube has length Lk � 200� and radius
L� � 25�; its plus end is at x � Lk.
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FIG. 4. Average current J̄b of bound motors (full circles) and
“jam” length L� (open circles) as a function of the total motor
number N . The parameters ts and Lk � 200� are the mean step
time and the filament length, respectively. The tube geometry
is the same as in Fig. 3. The current J̄b attains its maximal
value for N � 150; for this case, the jam has spread out to
L� � 0.77Lk; see Fig. 3.

N � 150 [21]. One simple way to characterize the den-
sity profiles is via the “jam” length L� which is defined by
rb�x � L���3 � 1�2; see Fig. 4.

In addition to the density profiles rb�x�, we also deter-
mined the profiles Jb � Jb�x� of the bound currents which
are maximal in the boundary region between the jammed
and the “free” part of the filament. The overall transport
along this filament can be characterized by the average cur-
rent J̄b �

R
dx Jb�x��Lk. As shown in Fig. 4, this quan-

tity exhibits a maximum as a function of the motor particle
number N . For small N , the average current grows linearly
with N ; for large N , on the other hand, the current de-
creases again since the average velocity of each bound mo-
tor is strongly reduced by the overcrowding of the filament.
For the chosen tube volume pL2

�Lk � 3.9 3 105�3, the
maximal current occurs for N � 150 motor particles. Us-
ing the repeat distance � � 8 nm for microtubules, this
motor particle number corresponds to a kinesin concentra-
tion of �3 mM.

If one starts with a random distribution of motors within
the closed tube, the qualitative features of the density pro-
files shown in Fig. 3 are observed after about 5 3 105 MC
steps. Since the time for one MC step is t � ts�2680 �
4.4 3 1026 s, this self-organization process is completed
after a couple of seconds. If each bound kinesin mo-
tor in the maximal current state hydrolyzes one adenosine
triphosphate (ATP) per step time ts, the total number of
ATP molecules consumed during this time corresponds to
about 20% of a 1 mM ATP solution [22].

In summary, we have shown that the random walks of
cytoskeletal motors exhibit anomalous drift velocities in
open compartments and self-organized concentration gra-
dients in closed ones. The latter gradients arise from
a balance between bound and unbound motor currents
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which is a generic feature of the systems studied here
[19]. Such a balance may also be effective for the mo-
tor traffic within biological cells which is, however, more
difficult to estimate since the unbound motors can stick to
other “particles” within the cytosol. Very recently, Nede-
lec et al. [23] used fluorescent microscopy to measure the
concentration profiles of kinesins within arrays of micro-
tubules. The same experimental method may be used in
order to observe the profiles displayed in Fig. 3.

*Permanent address: Institute for Theoretical Physics, Uni-
versity of Amsterdam, Valckenierstraat 65, 1018 XE Am-
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