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Adsorption of polymers anchored to membranes
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Abstract. Polymers, which are attached to a membrane at one of their ends, exert an entropic pressure,
which curves the membrane away from the polymers. It is shown that adsorption which arises from a
short-ranged potential between the polymer and the membrane has a large influence on the curvature of
the membrane, leading to a decrease of the entropically induced curvature. If one ignores the finite size
of the anchor segment, the polymer-induced curvature does not change sign and vanishes in the limit of
strong adsorption and a pure contact potential. If one includes the finite size of the anchor segment, the
membrane bends towards the polymer for sufficiently strong adsorption.

PACS. 36.20.-r Macromolecules and polymer molecules – 05.40.-a Fluctuation phenomena, random pro-
cesses, noise and Brownian motion – 82.70.-y Disperse systems

1 Introduction

Membranes, which are decorated by end-grafted polymers,
provide simple model systems for biological membranes,
such as the plasma membrane of the cell [1]. The back-
bone of the plasma membrane consists of a lipid bilayer
which is typically about 4 nm thick. In order to protect
the membrane from mechanical and chemical attack, the
bilayer is coated by polysaccharides attached to proteins
and lipids, which are embedded into the lipid bilayer.

In this paper, we investigate the influence of anchored
polymers on the properties of the lipid bilayer [2]. It has
been shown recently, that polymers, which are anchored
to the membrane on one side, induce a curvature such that
the membrane bends away from the polymers [3–6]. This
effect is due to the entropic interaction between polymer
and membrane, since both cannot penetrate each other.

In the case of anchored polymers, the membrane curva-
ture is induced by changes in the configurational entropy
of the polymer. This situation differs from the case of free
polymers in solution, where the membrane curvature is
determined by both the configurational and translational
entropy of the polymers [7,8]. For this latter situation,
contradictory results were obtained for the induced spon-
taneous curvature and for the rigidity of the membrane
[9–13].

In the following, we extend our previous studies of the
compound polymer/membrane system, in which the poly-
mers are attached to the membrane. In addition to the
entropic interaction between polymer and membrane, en-
ergetic interactions between the polymer segments and the
membrane [14,15] are now taken into account. To be spe-
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cific, we will focus on short-ranged square well and contact
potentials.

Our article is organized as follows. In Section 2, we
first explain the basic molecular geometry of the polymer-
membrane system; the molecular details are found to be
important since the polymer-induced curvature depends
on several molecular length scales. In Section 3, we de-
scribe our systematic perturbative approach which allows
us to calculate the membrane shape arising from the in-
teractions with the anchored polymer. We then apply this
method to contact potentials (Sect. 4) and square well po-
tentials (Sect. 5). The analytic results obtained in this way
are compared with the results of Monte Carlo simulations
in Section 6. The final Section 7 contains a summary and
a brief outlook.

2 Molecular geometry and length scales

The basic geometry of the polymer/membrane system stu-
died in this article is shown in Figure 1. In this cartoon,
an attempt has been made to visualize both the mem-
brane and the polymer with molecular resolution. Inspec-
tion of this figure shows that the system is characterized
by several molecular length scales. In polymer physics, one
usually tries to focus on those properties which are inde-
pendent of these small scales. We will show below, how-
ever, that the curvature induced by adsorbed polymers
exhibits a subtle dependence on these molecular length
scales. Therefore, we first present a short, qualitative dis-
cussion of these scales.

The flexible polymer chain anchored to the membrane
is visualized as a chain of jointed segments which repre-
sent the skeleton of the polymer together with its side
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Fig. 1. The different molecular length scales of the polymer/membrane system. (a) A small head group of the anchor molecule
and/or a flexible anchor/polymer bond can lead to zan < zV; and (b) a large head group of the anchor and/or a rigid an-
chor/polymer bond can lead to zan > zV.

groups. The flexibility of the chain arises from the rota-
tional isomerism of the jointed segments. The longitudinal
size, ap‖, of each polymer segment is mainly determined
by the length of the skeleton unit while the thickness, ap⊥,
of such a segment will usually depend on the bulkiness of
the sidegroups.

The flexible polymer chain is covalently bound to an
anchor segment which must have a hydrophobic part in
order to insert into the bilayer membrane. For a polymer
anchored at one of its ends as studied here, the anchor seg-
ment typically consists of an amphiphilic molecule with a
hydrophobic part inserted in the bilayer and a hydrophilic
head group which provides the attachment site for the flex-
ible polymer. This head group may have a size, aan, which
is comparable to or larger than the head groups of the lipid
molecules as shown in Figure 1a. In addition, the covalent
bond between the head group and the first segment of the
polymer chain will usually not exhibit the same rotational
isomerism as the jointed polymer segments. In particular,
the chemical structure of this bond may not allow any
bond rotation at all, as indicated in Figure 1b.

Now, consider the first polymer segment, which can
exhibit several orientations with respect to the anchor seg-
ment, and its distance zan from the membrane surface. For
the situation shown in Figure 1a, this distance is compa-
rable to the size aan of the anchor head group; for the case
in Figure 1b, zan ' aan + ap‖.

Finally, the system is characterized by the range zV

of the interaction potential between one polymer segment
and the membrane surface. This interaction potential can
exhibit (i) short-ranged contributions arising from direct
contacts between polymer side groups and membrane sur-
face and (ii) long-ranged contributions arising from van
der Waals forces between the various molecular subgroups.
In general, one will expect that zV is of the order of ap‖.

In the following, we will use a continuum description
for the polymer chain in which we basically ignore the
molecular scales ap‖ and ap⊥. We will, however, incor-
porate (i) the potential range zV and (ii) the anchoring
distance zan into our theoretical description. Somewhat
surprisingly, we find, both from analytical calculations
and from computer simulations, that the sign of the
polymer-induced curvature depends on the relative size of
zV and zan. This behavior, which, at first sight, seems to be
counter-intuitive, can be understood from the small free

energy differences between the polymer-membrane confor-
mations as discussed in Section 4.2 below.

3 Perturbative approach

The main property, which characterizes the shape of a
membrane, is its curvature. The energy related to bending
is governed by the bending rigidity κ [16], which leads to
the Hamiltonian

Hme{l} =
∫

d2x
κ

2
[
∇2l(x)

]2
(1)

for the so called Monge parametrization of the membrane
shape, where l(x) is the distance between the neutral sur-
face of the membrane and the two-dimensional reference
plane with coordinates x = (x1, x2). The topology of the
membrane is assumed to remain unchanged which implies
that the Gaussian curvature stays constant and needs not
be considered in our investigations. The Monge parame-
trization neglects configurations, in which the membrane
forms overhangs. Such configurations are rather unlikely
as long as the lateral size L of the membrane is small
compared to its persistence length [17]. If L is increased
towards the latter length scale, the bending rigidity is re-
duced by the shape fluctuations [18]. For most lipid bi-
layers, the value of the bending rigidity is found to be in
a range of κ ≈ 10−20 kBT , and the persistence length
∼ exp(4πκ/3kBT ) [19] is rather large, which justifies the
Monge parametrization.

As long as we do not confine the membrane by a po-
tential Vme(z), the membrane can freely diffuse in the z-
direction perpendicular to the plane of reference. In order
to calculate expectation values such as the average height
〈l(x)〉, it is helpful to eliminate the contribution of free
diffusion by subtracting the height of the anchor point
〈l(0)〉.

The polymer which is anchored on the membrane at
one end is taken to be an ideal or Gaussian chain. This
situation corresponds to polymers in θ-solvents, where the
excluded volume interactions are balanced by the van der
Waals attractions between the monomers. The important
quantity which characterizes the polymer configuration is
its end-to-end distance Rp, which is given by ap

√
N for
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an unperturbed ideal chain, where ap is the Kuhn length
providing the average bond length, and N is the number
of monomers. Denoting the internal length of the polymer
by s in such a way that s = 0 corresponds to the starting
point and s = 1 to the end-point of the polymer, we find
for the partition function of the anchored polymer

Zp{l} =
∫ ′
D{r} δ[r1(0)] δ[r2(0)] δ[r3(0)− l(0)]

× exp

[
−
∫ 1

0

ds

(
3

2R2
p

[
dr(s)

ds

]2

+
V (r(s), l)

T

)]
, (2)

where T is the temperature in energy units and the po-
tential V (r) = Nv(r) with the interaction potential per
polymer segment v. The potential contains the energetic
short ranged interaction between polymer and membrane.
Of course, V (r(s), l) depends on the distance of the poly-
mer bead located at r(s) to the membrane surface l(x).
The prime at the path integration indicates that r3(s) ≥
l(r1(s), r2(s)) + lme/2 according to the impenetrability of
polymer and membrane where lme denotes the membrane
thickness. In the other directions the polymer is not con-
fined and thus the integration extends from −∞ to +∞.

We normalize the polymer partition function Zp{l} by
the half space partition function Zp{l = 0} of a polymer
anchored on a flat surface [20]. Expanding the partition
function Zp to first order in l and integrating out the
polymer’s degrees of freedom, we obtain the expression

Zp{l}
Zp{0}

≈ 1 −
∫ 1

0

ds
∫ ∞
−∞

d2x P (s, x) l(x)

≈ exp
(
−
∫ 1

0

ds
∫ ∞
−∞

d2x P (s, x) l(x)
)
, (3)

which is, in fact, an expansion up to first order in the gra-
dients ∂l/∂x1 and ∂l/∂x2 [5] (here and below, the symbol
≈ stands for asymptotically equal). The function P is the
pressure (measured in units of T ) which the polymer ex-
erts on the membrane and is given by

P (s, x) =
9

2πR4
p

(
d
ds
〈z(s)〉hs

)(
3
2
x2

R2
p

1
s3
− 1
s2

)
× exp

(
− 3

2s
x2

R2
p

)
. (4)

The average distance 〈z(s)〉hs of the polymer segment s
from the reference plane now contains the information on
the potential. Irrespective of the special form of 〈z(s)〉hs,
the x-dependence of (4) is always such that the integrated
pressure vanishes, since no external forces are applied to
the system.

The total partition function of the compound system is

Zc =
∫
D{l} exp

(
−Hme{l}/T

−
∫ 1

0

ds
∫ ∞
−∞

d2x P (s, x) l(x)
)
. (5)

The mean shape profile of the membrane is obtained by
insertion of the pressure term (4) into (5), which yields

〈l(x)〉 − 〈l(0)〉 = − T

8πκ

∫ 1

0

ds
(

d
ds
〈z(s)〉hs

)
×
(
γ + Γ

[
0,

3
2s

x2

R2
p

]
+ ln

[
3
2s

x2

R2
p

])
(6)

where γ is the Euler constant and Γ is the incomplete
Gamma-function [21,22].

The rather simple x-dependence of equation (6) allows
us to calculate the mean curvature M(x) = −1/2〈∇2l(x)〉
induced by the polymer and the integrated (spontaneous)
curvature AM =

∫
d2x M(x) where A denotes the

surface area of the membrane. This leads to

AM =
T

4κ

(
〈z(1)〉hs − zan

)
(7)

which relates the membrane curvature to the average z-
distance of the last polymer bead, i.e. the free end of
the polymer in the half-space, and to the anchoring dis-
tance zan.

The polymer partition function in the z-direction sa-
tisfies the Schrödinger-type equation[

∂s −
R2

p

6
∂2
z +

V (z)
T

]
Z(zan, z|s) = 0 for 0 ≤ s ≤ 1.

(8)

So far we did not specify the explicit form of the poten-
tial. In the following we will consider two cases. First, we
investigate a contact potential with vanishing range. In
a further step we extend the calculation to the case of a
square well potential with energy step w and range zV. In
particular we perform extensive Monte Carlo simulations
in order to compare them with our analytic results.

4 Contact potential

The concept of a contact potential is an idealization. If
one starts from a general potential given by

V (z) =


∞ for z ≤ 0,
VI(z) for 0 < z ≤ zV,

= 0 for zV < z.

(9)

one has to solve the Schrödinger-type equation in the cor-
responding regions and match the different solutions. As
one can easily see, the solutions have to vanish at z = 0.
For 0 < z < zV it is not feasible to solve the equation in
closed form for an arbitrary z-dependence of VI(z). How-
ever, it is possible to calculate the solution outside the
potential range. The continuity and differentiability con-
ditions lead to a length scale, the so-called extrapolation



406 The European Physical Journal E

length lex, which characterizes the solution inside the po-
tential range without its explicit calculation [23]. At the
same time, the extrapolation length, which now contains
all the information on the specific form of VI(z), provides
the boundary condition

∂zZ(zan, z|s)
Z(zan, z|s)

∣∣∣∣
z=zV

=
1
lex

(10)

for the outer solution with zan and z > zV. In the limit
of vanishing potential range the lex-dependent polymer
partition function is given by [20]

Z(zan, z|s) =

√
3

2πs
1
Rp

[
exp

(
− 3

2s
(z − zan)2

R2
p

)
+ exp

(
− 3

2s
(z + zan)2

R2
p

)]
− 1
lex

exp

(
R2

p

l2ex

s

6
+
z + zan

lex

)

× erfc

(
Rp

lex

√
s

6
+

√
3
2s
z + zan

Rp

)
(11)

which allows us to calculate the expectation value of the
polymer end point in the half space.

We will start with the situation of a polymer directly
anchored to the membrane surface and later extend the
investigations to a finite size of the anchor segment.

4.1 Zero anchoring distance

In the limit in which the anchoring distance zan is small
compared to all other length scales, which corresponds
to the case of direct surface anchoring, insertion of equa-
tion (11) into equation (7) leads to

AM ≈ T

4κ
lex

(
exp(−R2

p/6l
2
ex)

erfc(Rp/
√

6lex)
− 1

)
(12)

which no longer depends on zan. The corresponding profile
of AM(Rp/lex) is displayed in Figure 2. The inverse extra-
polation length 1/lex provides a measure for the distance
from the adsorption/desorption transition which occurs
at 1/lex = 0. As one can already see in equation (7), the
spontaneous curvature is positive for all values of 1/lex,
since the expectation value of the polymer end point in
the half-space cannot be negative. Thus, the membrane
always bends away from the polymer.

In the limit of strong adsorption, the average shape
profile of the membrane is flat. The expectation value of
the polymer end-point is zero. In fact, all polymer beads
are located on the membrane surface and consequently do
not exert any pressure on it.

In the limit of strong desorption, we recover the re-
sult of a pure entropic interaction between polymer and
membrane [5].

For 1/lex = 0, i.e., at the adsorption/desorption transi-
tion, it is possible to calculate the corresponding polymer
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Fig. 2. The integrated curvature plotted versus the inverse
extrapolation length Rp/lex as obtained by the perturbative
calculation. The dashed line denotes the limiting curvature for
strong desorption.

pressure

P (x) =


−∞ x = 0
1
3

(
3

2π

)3/2 1
x3

(
x3

R3
p
(3 + R2

p
x2 ) exp(− 3

2
x2

R2
p
)

+
√

π
6 erfc(

√
3
2
x
Rp

)
)

x > 0

(13)

and the resulting membrane shape profile

〈l(x)〉 − 〈l(0)〉 = −Rp

4π
T

κ

{
x

Rp
erfc

(√
3
2
x

Rp

)

+
1√
6π

[
γ + 2

(
1− exp

(
−3

2
x2

R2
p

))
+ E

(
1,

3
2
x2

R2
p

)
+ ln

(
3
2
x2

R2
p

)]}
(14)

where E is the exponential integral function [22]. The
shape profile is displayed in Figure 3. In addition, we plot-
ted corrections for small 1/lex which were obtained numer-
ically. The limiting behavior for the shape profiles shown
above is always cone-like in the vicinity of the anchor and
catenoid-like far away from it.

Thus, within the self-consistent scheme described here,
the polymer-induced curvature has the same sign for all
values of the inverse extrapolation length 1/lex. This dif-
fers from our previous calculation in which the shape of
the membrane was constrained to be a spherical or coni-
cal segment: [14]. For these constrained shapes, one finds
that the curvature changes sign at lex = 0 (if one ignores a
possible curvature dependence of 1/lex). Within the self-
consistent scheme, a similar curvature switch is now found
as a function of the anchoring distance of the polymer as
shown in the next subsection.
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Fig. 3. The membrane shape profile close to the adsorp-
tion/desorption transition at Rp/lex = 0. For comparison, the
shape profile for strong desorption is also displayed.

4.2 Nonzero anchoring distance

In the experimental situation, the polymer is not necessar-
ily anchored immediately on the membrane surface, but
the anchor segment might protrude from the membrane
such that the anchoring distance zan from the surface is
nonzero. We will study the spontaneous curvature of the
membrane induced by polymers with an initial distance
zan of the starting point from the membrane.

The membrane spontaneous curvature is given by
equation (7) in which 〈z(1)〉hs depends parametrically on
zan. Using the partition function (11) for the averaging
one finds

AM(zan) =
T

4κ
(zan + lex)

[
−1 +

(
erf

(√
3
2
zan

Rp

)

+ exp

(
R2

p

6l2ex

+
zan

lex

)
erfc

(
Rp/lex + 3zan/Rp√

6

))−1
 .

(15)

The spontaneous curvature as a function of the anchor-
ing distance zan is shown in Figure 4 for different values
of Rp/lex. The important result is the change in the sign
of the curvature for nonzero zan. For large zan the cur-
vature approaches zero, since the polymer is not able to
influence the membrane anymore. It is easy to show that
the curvature sign changes at zan = −lex. Thus, we only
obtain a negative curvature where the membrane bends
towards the polymer, if we are in the adsorption region
with Rp/lex < 0. For Rp/lex ≥ 0 the curvature stays pos-
itive for all values of zan. In Figure 4 the limiting plot
for Rp/lex = 0 is given by the solid curve. For strong
adsorption the curvature becomes strongly negative for
non-vanishing values of zan.
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Fig. 4. The integrated (spontaneous) membrane curvature as
a function of the anchoring distance zan for different values of
the inverse extrapolation length Rp/lex. The curvature changes
sign at zan = −lex in the adsorption regime. The limiting plot
for Rp/lex = 0 is shown in the solid curve.

Thus, an increase in the anchoring distance zan can
change the sign of the polymer-induced curvature of the
membrane. At first sight, this behavior, which is also found
via Monte Carlo simulations, see Section 6 below, is some-
what surprising since a change in the anchoring distance
corresponds to a rather local perturbation of the polymer
conformations. It is important to note, however, that the
corresponding free energy differences are relatively small,
since they are of the order of T 2/κ, and, thus, can be
affected by a few degrees of freedom.

Indeed, it follows from equation (3) that the
free energy difference ∆F between the deformed and
the planar membrane shape is given by ∆F =
T
∫ 1

0 ds
∫∞
−∞ d2x P (s, x)l(x). Dimensional analysis then

implies the general scaling form

∆F = (T 2/κ)Φ(zan/Rp, Rp/`ex). (16)

For the completely desorbed state with 1/`ex = ∞, one
finds Φ(x,∞) = (1/4π) ln(x) for a cone with a lateral
membrane area corresponding to ∼ R2

p as previously cal-
culated in reference [3].

So far, we have focussed on the behavior of the mem-
brane segment which contains a single anchored poly-
mer. Now, consider vesicles covered with Np polymers.
We consider polymers anchored on the membrane in the
adsorption regime. If the polymer is anchored in a dis-
tance zan = |lex|+δz with δz > 0 and both |lex| and δz are
small compared to Rp, it is guaranteed that the induced
curvature is negative. The adsorption-induced curvature
is given by

M
(ad)

= − T

4κ
δzBΓp (17)

where Γp = Np/A is the polymer coverage and B
denotes the absolute value of the square bracket in
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equation (15). Furthermore, the curvature induced by the
repulsive polymer/polymer interaction yields a contribu-
tion which is quadratic in the coverage density,

M
(pp) ≈ T

4κ
b2RpΓ

2
p (18)

where b2 = 4πR2
p is the second virial coefficient, which

characterizes the repulsive interaction in a low-density ap-
proximation. Since the latter contribution leads to the op-
posite curvature compared to M

(ad)
the membrane curva-

ture changes its sign as a function of the coverage density.
The density at which the sign changes is given by

Γ ∗p ≈
B

b2

δz
Rp
· (19)

For smaller densities the curvature is negative and thus the
membrane bends towards the anchored polymers whereas
for higher coverage densities the membrane bends away
from the polymers. Consequently, the polymer coverage
Γp provides another possible curvature switch.

5 Square well potential with zero anchoring
distance

In order to generalize the previous investigation on con-
tact potentials to more realistic potentials, and in order
to compare the analytic results with Monte Carlo simu-
lations, we will now investigate adsorption in square well
potentials with potential depth w, measured in units of T ,
and range zV.

We start with the stationary Schrödinger-type equa-
tion which results from equation (8) by Laplace transfor-
mation:[

t−
R2

p

6
∂2
z + V (z)

]
G(zan, z|t) = δ(zan − z). (20)

The Greens functions are given by

GI = A1 sin(
√

6q
zan

Rp
)
[
cos(
√

6q
z

Rp
) +A2 sin(

√
6q

z

Rp
)
]

for zan ≤ z ≤ zV,

GII = B sin(
√

6q
zan

Rp
) exp(−

√
6k

z

Rp
) for zan ≤ zV ≤ z,

GIII = C1

[
exp(
√

6k
zan

Rp
) + C2 exp(−

√
6k
zan

Rp
)
]

× exp(−
√

6k
z

Rp
) for zV ≤ zan ≤ z. (21)

Here and in the following, we use the wavenumber inside
the potential well q =

√
w − t and the wavenumber out-

side the well k =
√
t.

Let us furthermore focus on the limiting case where
the polymer is directly anchored on the membrane, i.e.

the anchoring distance zan = 0 in order to eliminate one
parameter from the problem. As a consequence, we only
need GI and GII in order to construct the complete Greens
function as given by

G(zan, z|t) = GI θ(zV − z) +GII θ(z − zV). (22)

The remaining task is to calculate the coefficients. The
correct treatment of the δ-function on the right-hand-side
of equation (20) leads to the prefactors A1 and C1,

A1 =
√

6
Rp

1
q

and C1 =
√

6
Rp

1
2k
· (23)

The other constants are determined by the continuity and
differentiability conditions at z = zV, which lead to

A2 =
q − k cot(

√
6qzV/Rp)

k + q cot(
√

6qzV/Rp)
,

B =
√

6
Rp

exp(
√

6kzV/Rp)
sin(
√

6qzV/Rp)(k + q cot(
√

6qzV/Rp))
,

C2 = exp
(

2
√

6k
zV

Rp

)
k − q cot(

√
6qzV/Rp)

k + q cot(
√

6qzV/Rp)
· (24)

In the desorption case and at the adsorption/desorption
transition, the solution of the Schrödinger-type equation
leads to a continuous spectrum of energies. The polymer
partition function is given by the inverse Laplace trans-
formation

Z(zan, z|s) =
1

2πi

∫ η+i∞

η−i∞
dt exp(st)G(zan, z|t), (25)

where η is a small positive number.
However, at the adsorption/desorption transition the

first bound state occurs with energy E1 = −t1 = 0. The
discrete energy levels are given by the solution of the
transcendental equation

k = −q cot
(√

6q
zV

Rp

)
. (26)

The partition function for the discrete spectrum of Nb

bound states with energies En = −tn = −(w − q2
n) is

given by

Z(b)(zan, z|s ≡ 1) =
Nb∑
n=1

exp(−En) G(b)
n (zan, z|En) (27)

with G
(b)
n composed in analogy to equation (22) and

G
(b)
n,I =

6
Rp

zan

Rp
qn

2qn cot(
√

6qn zVRp
)

√
6 zVRp

qn cot(
√

6qn zVRp
)− 1

sin(
√

6qn
z

Rp
)

for zan ≤ z ≤ zV,

G
(b)
n,II =

6
Rp

zan

Rp
qn

2qn cos(
√

6qn zVRp
)

√
6 zVRp

qn cot(
√

6qn zVRp
)− 1

× exp
(√

6qn
z − zV

Rp
cot(
√

6qn
zV

Rp
)
)

for zan ≤ zV ≤ z. (28)
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Fig. 5. The inverse extrapolation length 1/lex as a function
of the potential depth w for fixed value of the potential range
zV = 0.1Rp, as used in the Monte Carlo simulations.

The value of the inverse extrapolation length is given by
the logarithmic derivative of the solution inside the poten-
tial well evaluated at the first bound state which occurs,
namely

1
lex

=
√

6q1
Rp

cot
(√

6q1
zV

Rp

)
. (29)

At the adsorption/desorption transition and in the des-
orption range, in which there are no bound states, the
definition is extended to q1 =

√
w. In Figure 5 we plot the

inverse extrapolation length as a function of the potential
depth w for fixed potential range zV.

Let us in the following discuss the three limiting sit-
uations of (i) strong desorption corresponding to a large
positive inverse extrapolation length 1/lex, (ii) the adsorp-
tion/desorption transition for 1/lex = 0 and (iii) strong
adsorption for large negative 1/lex. We will be interested
in corrections to the result of the contact potential due to
the finite potential range zV.

As mentioned, we restrict the investigation to the situ-
ation, in which the anchor segment of the polymer is small,
Thus, we consider the polymer to be anchored directly on
the membrane surface and zan = 0.

5.1 Strong desorption

As one can easily verify via equation (29), the limit of
strong desorption, which corresponds to large positive
1/lex, can be obtained in two ways:

For constant w, the inverse extrapolation length
1/lex ∼ 1/zV for small zV and thus approaches the des-
orption case for large positive 1/lex. If one inserts the ex-
pansions for small zV into the solutions GI and GII of the
Schrödinger-type equation, the expectation value 〈z(1)〉hs

for the polymer end point is found to behave as

〈z(1)〉hs =

∫∞
0 dz zZ(0, z|s = 1)∫∞
0 dz Z(0, z|s = 1)

=
√
π

6
Rp + 2zV

z2
V

R2
p

|w|+O(z4
V). (30)

If this expansion is used in (7), one obtains the sponta-
neous curvature induced on the membrane as given by

AM ≈ 1
4
T

κ

√
π

6
Rp +

1
2
T

κ
zV

z2
V

R2
p

|w| (31)

for small zV. As one expects, in the limit of vanishing
zV one recovers the result for strong desorption, i.e. the
result where only the steric repulsion of polymer beads
and the membrane surface are taken into account. This
holds irrespective of the strength w of the initial square
well potential. If we now increase the range zV without
changing w, we also increase the mean z-distance of the
last bead, which immediately leads to an increase in the
induced spontaneous curvature.

There is another possibility of reaching the desorp-
tion limit, namely for fixed zV and large negative w.
Consequently, the polymer beads are repelled from the
potential well. Inside the potential range the solution GI

vanishes for large negative w, i.e. there is no polymer
bead inside the well except the anchor bead on the
surface. The remaining contribution is due to GII. Insert-
ing q =

√
w − t = i

√
|w|+ t leads to the spontaneous

curvature

AM ≈ 1
4
T

κ

(√
π

6
− 1√

6|w|

)
Rp +

1
4
T

κ
zV (32)

for large |w|. First, we note that we again recover the
result for strong desorption from the leading term of this
expansion.

Furthermore, equation (32) holds for all values of zV in
the limit of large |w|. For larger values of zV, this implies
that the Gaussian polymer which is fixed by the anchor
bead on the membrane surface, is strongly over-stretched
in the first bond between the anchor and the following
bead. This leads to the intuitive picture in which the end
point of the polymer is shifted by the value of zV in the z-
direction. However, for large zV this result is not physical
anymore, since it arises from an artifact of the Gaussian
model. The spring between anchor and first bead can be
extended to infinity, which is not true for real polymers.
The Gaussian model breaks down in this limit and is con-
sequently not applicable anymore.

On the other hand, we expect the predictions of equa-
tion (32) to be correct for small zV. We will use this re-
lation in order to compare our Monte Carlo data in the
region of large positive Rp/lex and fixed zV = 0.1Rp.

5.2 The behavior at the adsorption/desorption
transition

Here, we focus on the adsorption/desorption transition at
1/lex = 0. The adsorption/desorption transition, where
the first bound state (with energy t = 0) occurs, is given
by the first zero of the righthandside of equation (29).
The solution is √

6w
zV

Rp
=
π

2
· (33)
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The advantage of this restriction to 1/lex = 0 is due to the
possibility of varying zV and w according to equation (33)
in such a way that 1/lex stays constant. Inserting (33)
into q yields

q =

√
π2

24
R2

p

z2
V

− t =
π

2
√

6
Rp

zV
−
√

6
π
t
zV

Rp
+O(z3

V). (34)

In order to calculate the effect on the curvature we again
need 〈z(1)〉hs, i.e. the expectation value for the z-position
of the polymer end point. Inserting the solutions and
expanding in zV leads to

〈z(1)〉hs =

√
2

3π
Rp +

(π + 4)(π − 2)
2π2

zV +O(z2
V). (35)

As we expect, the first term of the expansion reproduces
the result for vanishing zV at 1/lex = 0. Since the cur-
vature is given by equation (7) and the prefactor of the
zV-term has the same sign as the term of order 1, we con-
clude that the membrane curvature is increased further, if
one increases zV.

There is another limiting case which is of interest to
study, namely the limiting behavior of the curvature and
membrane shape profile for large zV. It is clear by in-
tuition that in this case we have to obtain the limit of
strong desorption again, since the polymer is not affected
by a potential gradient, i.e. by the corresponding force,
anymore.

The only Greens function which survives the limiting
process (if we neglect the asymptotic corrections in zV)
is GI . In fact, the insertion of the limiting q = i

√
t leads,

as expected, to the half space propagator and, in conse-
quence, to the same spontaneous curvature as for strong
desorption.

5.3 The limit of strong adsorption

The limit of strong adsorption, corresponding to large neg-
ative 1/lex is not governed by the continuum of scattering
states but by the bound states of the Schrödinger-type
equation (8).

Again, the main task is to calculate the average
z-distance of the polymer endpoint in the half-space.
Using the definition of equation (27) one finds

〈z(1)〉hs =
∑Nb
n=1 exp(−En)

∫∞
0

dz z G(b)
n (0, z|En)∑Nb

n=1 exp(−En)
∫∞

0 dz G(b)
n (0, z|En)

·

(36)

Since the bound states are given by the transcendental
equation (26) it is not possible to calculate 〈z(1)〉hs ana-
lytically. However, one limiting case is accessible, namely
the important limit of small zV � Rp. If we approximate
the polymer as an infinitely long chain, which is justified
for zV � Rp it is correct to apply the ground state ap-
proximation, i.e. it is justified to take into account only
the lowest bound state with lowest energy E1. This gives

〈z(1)〉hs =

∫∞
0

dz z G(b)
1 (0, z|E1)∫∞

0 dz G(b)
1 (0, z|E1)

· (37)

For large negative 1/lex one finds q1 ≈ πRp/
√

6zV. The
limiting ground state solution, which remains, is

G
(b)
n,I = 2π

1
zV

zan

zV
sin
(
π
z

zV

)
. (38)

Inserting and performing the integration finally yields in
the limit of strong adsorption the important result

〈z(1)〉hs =
zV

2
and AM =

1
8
T

κ
zV. (39)

Note that this result is correct also from an intuitive point
of view. The limit of strong adsorption in a square well
potential of range zV in the z-direction is equivalent to
the situation of confining a polymer between two parallel
plates in a distance zV. We expect the average position in
the z-direction to be zV/2.

However, if zV is increased we have to take into account
higher energy levels, at least the ground state and the
neighboring level. The reason for this is the assumption of
the infinite polymer length in ground state approximation.
Irrespective of the size of zV the expectation value always
stays at 〈z(1)〉hs = zV/2. An additional length scale which
includes the finite end-to-end distance Rp does not occur.
Only if we take into account the second energy level, the
additional length scale occurs and respects the finite Rp.
This always leads to a lowering of 〈z(1)〉hs as we expect. In
particular for large zV we expect the bound state contri-
bution to lead to an expectation value which is identical
with the result for strong desorption and thus governed
only by Rp and not by zV anymore. This is shown in the
following subsection.

5.4 Bound states for large potential range zV

Bound states in the limit of strong adsorption are given
by the condition qn = nπRp/

√
6zV with integer n. The

remaining solution in the limit of large zV is GI . Inserting
qn one ends up with

G
(b)
n,I = 2nπ

1
zV

zan

zV
sin
(
nπ

z

zV

)
. (40)

Dividing numerator and denominator of equation (36) by
exp(−E1) yields the numerator

∫ zV

0

dz z G(b)
1,I +

Nb∑
n=2

exp(E1 −En)
∫ zV

0

dz z G(b)
n,I . (41)

The denominator follows in analogy. Insertion of the en-
ergy differences and integration lead to the average dis-
tance

〈z(1)〉hs =

∞∑
n=1

(−1)n−1 exp(−n2x)

∞∑
n=1

exp(−n2x)−
∞∑
n=1

(−1)n exp(−n2x)

zV.

(42)
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Fig. 6. Adsorption behavior in the limit of strong adsorption
for zV/Rp � 1 (left) and for zV/Rp � 1 (right). The polymer
on in the small slot is strongly deformed, whereas the polymer
in the large slot is unperturbed.

It is possible to evaluate the sums analytically, which
finally yields

〈z(1)〉hs =
√
π

6
Rp and AM =

T

4κ

√
π

6
Rp. (43)

The result recovers the limit of strong desorption. This is
expected, since the polymer is not affected by the poten-
tial gradient anymore, if the potential step located at zV is
at a much larger distance from the surface than the poly-
mer beads. Therefore we obtain the same polymer and
membrane configuration as in the case of no adsorbing
potential, see Figure 6.

6 Comparison with Monte Carlo simulation

We will now compare the analytic results with Monte
Carlo simulations. In the simulation, both the membrane
and the polymer are discretized. The membrane can move
continuously in the perpendicular direction above a two
dimensional lattice x(i,j) with lattice constant am. The
configuration of the membrane is determined by its height
l(i,j) above the lattice point x(i,j). We use periodic bound-
ary conditions in the lateral directions.

The discretized Laplace operator which is used in the
membrane Hamiltonian is given by

∇2
dl

(i,j) = l(i+1,j) + l(i−1,j) + l(i,j+1) + l(i,j−1) − 4l(i,j).
(44)

The curvature energy difference for the membrane seg-
ment (i, j) yields

∆Hme = κ
{(
l̃(i,j) − l(i,j)

)(
l(i+2,j) + l(i−2,j) + l(i,j+2)

+ l(i,j−2) + 2
[
l(i+1,j+1) + l(i−1,j+1) + l(i+1,j−1)

+ l(i−1,j−1)
]
− 8

[
l(i+1,j) + l(i−1,j) + l(i,j+1)

+ l(i,j−1)
]

+ 10
[
l̃(i,j) + l(i,j)

])}
, (45)

where we take into account twelve next neighbors. We use
a single-site-move algorithm, in which we compare the en-
ergies of two configurations {l̃N} and {lN}, which differ
in the randomly chosen value of l at position (i, j). In

addition, one has to consider the impenetrability of poly-
mer beads and membrane segment and the change in the
polymer/membrane-interaction potential due to the move.

The decision whether or not to accept the new con-
figuration follows the Metropolis-algorithm which ensures
detailed balance.

The anchored polymer is described by the bead-spring
model, in which the neighboring point like beads are cou-
pled by a harmonic spring. This model corresponds to
an ideal chain. The Kuhn length ap provides the aver-
age bond length. One Monte Carlo step of the compound
system corresponds to a single move of each membrane
segment and each polymer bead. Averages calculated in
the Monte Carlo simulations take into account 107 Monte
Carlo steps.

Due to the periodic boundary conditions we simulate
a membrane covered by a regular lattice of anchored poly-
mers in which the anchoring distance of the polymers is
given by the lateral size of the membrane lattice. This size
is chosen about eight times larger than the polymer end-
to-end distance Rp, which corresponds to the dilute cov-
erage (mushroom) regime, i.e. the polymers do not pene-
trate each other.

The square well potential, which acts on each bond,
is included by measuring the distance in z-direction of a
polymer bead and the membrane segment which is located
beneath the bead. In this case, each bead represents the
corresponding polymer bond, on which the potential acts.
In order to approach the continuum limit, it is therefore
necessary to choose the discretization of the polymer, i.e.
the bond length, smaller than the potential range zV .

The interesting quantity which we are going to mea-
sure is the induced spontaneous curvature of the mem-
brane. The integrated curvature of all membrane segments
vanishes, because of the periodic boundary conditions.
Therefore, we choose an area of integration corresponding
to a circle of radius Rp, which is basically the area over
which the polymer interacts with the membrane. The area
contains the 13 inner membrane segments in the vicinity
of the anchor. Results vary slightly if one increases the
integration area, but do not change the diagram qualita-
tively, see the inset of Figure 7. The major contribution
to the curvature arises from the cone-like bend of the an-
chor segment. It is therefore justified to choose the area
small in order to avoid boundary effects. The integrated
curvature as a function of the inverse extrapolation length
is shown in Figure 7. The solid curve displays the analytic
solution for the curvature in case of a contact potential.
Since we do not use a contact potential in the simula-
tion, but a square well of range zV = 0.1Rp, the results of
the contact potential will be shifted according to our ana-
lytic calculations. The shifts are displayed in the diagram
for the limiting cases of strong adsorption and desorption,
respectively, and for the adsorption/desorption transition.
For strong adsorption, the curvature does not vanish, since
the polymer can still move in a volume of height zV above
the membrane. Thus, the polymer still exerts a pressure
on the membrane, leading to a small but positive curva-
ture, analytically given by zVT/8κ in the limit of large
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Fig. 7. The integrated curvature AM versus the inverse ex-
trapolation length 1/lex as obtained by the perturbative ap-
proach for a contact potential and by Monte Carlo simulations.
The dashed lines in the limits of strong desorption and adsorp-
tion and the cross at the adsorption/desorption transition are
the shifts due to the square well potential of range zV = 0.1Rp,
which is the potential used in the simulation. The Monte Carlo
data is obtained for κ/T = 1. The membrane discretization is
am/Rp = 0.5 and the polymer discretization ap/Rp = 0.0625.
Averages take into account 107 MC steps. In the inset, the de-
pendence of the integrated membrane curvature on the size of
the integration area (approximately circular) is displayed for
Rp/lex = 100. Note, that due to periodic boundary conditions
the curvature vanishes, if one integrates over the whole square
lattice. Therefore, the curvature in the inset decreases again
for larger integration area.

negative 1/lex. For the values of zV = 0.1Rp this leads to
a shift of A∆M = 0.0125RpT/κ, which we denoted by the
dashed line in the left part of the diagram.

At the adsorption/desorption transition we have cal-
culated the shift to higher curvatures if zV > 0, which is
given by A∆M ≈ 0.04RpT/κ, denoted by the cross in the
diagram at Rp/lex = 0.

For strong desorption the shift is given by A∆M =
0.025RpT/κ and denoted by the dashed line on the right
side of the diagram.

There is a general trend that the simulation data lie
below the analytic predictions. In addition to the already
mentioned effect due to the choice of the integration area,
there are two important reasons for the difference:

(i) Discretization effects: Both membrane and polymer
discretization influence the MC results. As mentioned, the
Kuhn length of the polymer ap is always chosen smaller
than the range of the potential zV = 0.1Rp, such that
ap = 0.0625Rp, corresponding to 257 polymer beads.

The membrane discretization is determined by the lat-
tice parameter am = 0.5Rp, corresponding to 289 mem-
brane segments. For finer discretization of both we come
closer to the analytic prediction.
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<l>/Rp
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Fig. 8. Membrane shape profiles as obtained by MC simu-
lations, using the same parameters as in Figure 7 for differ-
ent values of Rp/lex: (i) Rp/lex = 100 (triangle down), (ii)
Rp/lex = 25 (triangle left), (iii) Rp/lex = 0 (triangle up),
(iv) Rp/lex = −6.8 (triangle right), (v) Rp/lex = −17.8 (dia-
mond), (vi) Rp/lex = −41.6 (square) and (vii) Rp/lex = −100
(circle). The thin dashed lines in (i)-(vii) serve as a guide to
the eye in order to distinguish the MC data sets for differ-
ent values of Rp/lex. In addition, we display the analytically
obtained profiles for a membrane with free boundaries (bold
solid curves) and for a membrane with periodic boundaries,
using the same lateral membrane size as in the simulations
(bold dashed curves). The lower pair of bold curves shows the
shape profile in the limit of strong desorption, using the same
value of Rp/lex as in (i). The upper pair shows the shape profile
at the adsorption/desorption transition, using the same value
of Rp/lex as in (iii).

(ii) Boundary effects: Since we use periodic boundary
conditions the membrane shape profile differs from the
free boundary case, which we use in the analytic calcula-
tion. This is especially important, since we did not confine
the membrane by a harmonic potential, which leads to a
finite parallel correlation length. If the parallel correlation
length is small compared to the lateral membrane size one
expects boundary effects to be small. For zero potential,
on the other hand, the membrane is a self-similar object
with diverging parallel correlation length and, thus, is al-
ways influenced by the system boundaries.

In Figure 8 we plot the membrane shape profile for
different values of Rp/lex as obtained by the MC sim-
ulation. In addition, the analytic predictions for strong
desorption and for the adsorption/desorption transition
are also included (i) for free membrane boundaries (bold
solid curves) and (ii) for periodic boundaries, taking into
account 30 Fourier modes (bold dashed lines). Close to
the boundaries, the bold dashed profiles have vanishing
slope. The slope difference in the anchor point is due to
the finite number of Fourier modes which were taken into
account. Comparing the simulation data with the analytic
predictions at the adsorption/desorption transition and in
the limit of strong desorption, which were both obtained
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Fig. 9. Cross-sections of the membrane shape for different an-
choring distances zan of the polymer as obtained by Monte
Carlo simulations. The shape profiles 〈l〉 and the lateral co-
ordinate x1 are measured in units of the end-to-end distance
Rp of the polymer; the data are obtained by averaging over
6 × 106 Monte Carlo steps. The range of the square well po-
tential is zV = 0.1Rp, the strength is Rp/lex = −30, and
κ/T = 1. The discretization of the membrane in these sim-
ulations is of the same size as the polymer discretization:
am/Rp = ap/Rp = 0.25.

for the case of a contact potential, the simulation curves
slightly differ from the theoretical predictions, which cor-
responds to the observation in Figure 7.

Finally, in Figure 9, we present MC data for the depen-
dence of the membrane shape on the reduced anchoring
distance zan/Rp of the polymer. The range of the square
well potential is the same as in the previous simulations.
The strength of the potential is fixed to Rp/lex = −30.
Membrane and polymer discretizations are chosen to be
equal, am/Rp = ap/Rp = 0.25. In the figure, we display
cross-sections of the averaged membrane profiles parallel
to the x1-direction. The profiles are obtained by averaging
over 6×106 Monte Carlo steps. For zero anchoring distance
zan = 0, the membrane bends away from the polymer as
in the previous simulations. However, for the two nonzero
values zan > 0 displayed in Figure 9, the membrane bends
in the opposite direction, i.e., towards the polymer. Thus,
the membrane curvature changes sign as a function of the
anchoring distance zan

7 Conclusion and outlook

We have shown that the spontaneous curvature which is
induced by an anchored polymer is strongly influenced
by the attractive interaction between polymer and mem-
brane. In our perturbative approach, the spontaneous cur-
vature is directly coupled to the average distance of the
free polymer end point from the flat surface. The results
on the induced membrane curvature sensitively depend
on the distance zan of the anchor segment of the poly-
mer from the membrane surface, see Figure 1. As long

as the anchoring distance is small compared to all other
molecular length scales, it is justified to neglect zan and
to consider a polymer which is directly anchored on the
membrane. In this limit, the membrane bends away from
the polymer for all strengths of the interaction potential.
For strong adsorption, the polymer does not induce any
spontaneous curvature of the membrane.

For real systems, on the other hand, the anchoring dis-
tance zan may not be small compared to the other molec-
ular length scales, see Figure 1. For zan > 0, it is possible
to change the membrane curvature towards the polymer
in the adsorption regime. In this case, the polymer cover-
age density on the membrane can be used as a curvature
switch, if one takes into account the sterically induced re-
pulsive interaction between the polymers. One then finds
that the membrane curvature changes its sign at the in-
termediate coverage as given by (19).

In order to study a more realistic system, and in or-
der to compare the results with data from Monte Carlo
simulations, we also studied adsorption in a square well
potential of range zV and depth w. For the limiting case
zan = 0, in which the polymer is anchored directly on
the membrane surface, the square well potential quanti-
tatively, but not qualitatively, changes the results, which
were obtained for vanishing zV: The integrated membrane
curvature is increased. Especially, in the limit of strong
adsorption, the curvature does not vanish but has a small
positive value, governed by the mean distance of the poly-
mer end point above the surface zV/2. These results are
in good agreement with the MC simulations. These sim-
ulations also confirm that the polymer-induced curvature
of the membranes changes sign as one increases the an-
choring distance of the polymer.

Our theoretical study shows that the membrane cur-
vature induced by an anchored polymer which is attracted
towards the membrane surface depends on the molecular
architecture of the polymer anchor. Within our models,
this dependence arises from the relative size of the anchor-
ing distance zan and the range zV of the polymer/mem-
brane interaction potential. We have focussed here on the
simplest types of interaction potentials as provided by
square well potentials and by contact potentials corre-
sponding to the limit of zero zV. In more realistic models,
one would like to include (i) the precise spatial depen-
dence of the interaction potential arising, e.g., from van
der Waals forces or electrostatic forces, and (ii) the depen-
dence of these interaction potentials on the curvature of
the membrane surface. It is possible that these additional
features of the interaction potential will again affect the
sign of the polymer-induced curvature.

Glossary: List of symbols

The symbols are ordered alphabetically. Symbols with
subscripts are treated as combined words.

aan size of the anchor head group
ap Kuhn length
A area
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AM integrated membrane curvature
b2 second virial coefficient
En discrete energy levels
G(z0, z|t) polymer Greens function with energy −t
Γp polymer coverage density on the membrane
Hme membrane Hamiltonian
k wavenumber of the Greens function outside

the potential range
κ bending rigidity
l height of the neutral membrane surface
L lateral membrane size
lex extrapolation length
lme membrane thickness
M mean curvature
N monomer number of the polymer
Nb number of discrete energy levels
Np number of polymers
P polymer induced pressure on membrane

surface
q wavenumber of the Greens function inside

the potential range
r(s) spatial position of monomer s
Rp polymer end-to-end distance
s internal (contour) length of the polymer
t negative energy −E
T absolute temperature (generally in energy

units)
V interaction potential between polymer and

membrane
v2 harmonic potential parameter
w depth of the square well potential
x lateral directions x1, x2

z perpendicular direction
zan anchoring distance of the polymer
Zc compound partition function of polymer

and membrane
Zp polymer partition function
Zhs half-space polymer partition function
zV range of the square well potential

References

1. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K.
Roberts, P. Walter, Essential Cell Biology (Garland Pub-
lishing, Inc., New York, 1998).

2. R. Lipowsky, E. Sackmann, Structure and Dynamics of
Membranes (Elsevier, Amsterdam, 1995).

3. R. Lipowsky, Europhys. Lett. 30, 197 (1995).
4. C. Hiergeist, R. Lipowsky, J. Phys. II France 6, 1465

(1996).
5. M. Breidenich, R.R. Netz, R. Lipowsky, Europhys. Lett.

49, 431 (2000).
6. T. Bickel, C. Marques, C. Jeppesen, Phys. Rev. E 62, 1124

(2000).
7. E. Eisenriegler, A. Hanke, S. Dietrich, Phys. Rev. E 54,

1134 (1996).
8. E. Eisenriegler, J. Phys. Cond. Matt. 12, A227 (2000).
9. P.G. de Gennes, J. Phys. Chem. 94, 8407 (1990).

10. J.T. Brooks, C.M. Marques, M.E. Cates, Europhys. Lett.
14, 713 (1991).

11. R. Podgornik, Europhys. Lett. 21, 245 (1993).
12. T. Garel, M. Kardar, H. Orland, Europhys. Lett. 29, 303

(1995).
13. F. Clement, J.-F. Joanny, J. Phys. II France 7, 973 (1997).
14. C. Hiergeist, V.A. Indrani, R. Lipowsky, Europhys. Lett.

36, 491 (1996).
15. Y.W. Kim, W. Sung, Europhys. Lett. 47, 292 (1999).
16. W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
17. P.G. de Gennes, C. Taupin, J. Phys. Chem. US 86, 2294

(1982).
18. W. Helfrich, J. Phys. France 46, 1263 (1985).
19. L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).
20. E. Eisenriegler, Polymers near Surfaces (World Scientific,

Singapore, 1993).
21. M. Abramowitz, I.A. Stegun, Handbook of mathematical

functions (Dover Publications, Inc., New York, 1972).
22. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series,

and Products (Academic Press, San Diego, 1994).
23. P.G. de Gennes, Rep. Prog. Phys. 32, 187 (1969).


