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Wetting phenomena are theoretically studied for a slit pore or slab geometry between two structured
surfaces which contain stripes of lyophilic surface domains. Two different approaches are used and
compared: Monte Carlo simulations of lattice gas models and minimization methods applied to effective
interface models. Both types of calculations show that the wetting liquid often attains anvil-like bridges
which are not translationally invariant parallel to the surface stripes. As a control parameter such as the
liquid volume or the surface separation is changed, these bridges undergo morphological wetting transitions
to symmetric or asymmetric channel states.

I. Introduction

It has been recently realized that liquid phases which
are in contact with structured surfaces exhibit morpho-
logical wetting transitions.1-3 So far, these transitions
have been primarily studied for the simplest surface
geometry consisting of a single planar surface. If such a
surface contains striped surface domains which are
lyophilic, the wetting liquid forms channels which undergo
an abrupt transition to a nonuniform state with a single
bulge.2

In this article, we address the question of morphological
wetting transitions for a slit pore or slab geometry which
consists of two opposite surfaces with striped surface
domains. Such a surface geometry has been studied
previously using various theoretical methods such as
computer simulations,4 density functional theories,5 and
interface models.6 However, all previous studies were
constrained in one important way: the liquid morphology
was assumed to be translationally invariant parallel to
the surface stripes. In contrast, in the present study we
will allow the wetting liquid between the two surfaces to
adjust freely and to adopt states with no translational
symmetry. As a result, one then finds anvil-like bridges
as shown in Figure 1. We show that these anvil-like bridges
are generic rather than exceptional for all real stripes
which have a finite length.

From the experimental point of view, a slab geometry
with chemically structured surfaces has been realized,
for example, in ref 7 using screen printing technology. In
this case, the surface domains were circular and had a
size in the millimeter regime. Much smaller domain sizes
of the value of 30 nm have been created using the “tip”

of an atomic force microscope, which was brought into
contact with another flat surface.8 Other methods which
could be used, for example, to chemically structure the
two opposing surfaces of a surface force apparatus, include
elastomer stamps,9,10 vapor deposition through grids,11

photolithographyofamphiphilicmonolayers,12 lithography
with colloid monolayers,13 atomic beams modulated by
light masks,14 and microphase separation in diblock
copolymer films.15 If a structured slit pore or slab is
prepared by any of these methods, wetting within such a
geometry should typically lead to anvil-like bridges as
theoretically predicted here.
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J.; Leiderer, P. Colloid Monolayers as Versatile Lithographic Masks.
Langmuir 1997, 13, 2983-2987.

(14) Drodofsky, U.; Stuhler, J.; Schulze, T.; Drewsen, M.; Brezger,
B.; Pfau, T.; Mlynek, J. Hexagonal nanostructures generated by light
masks for neutral atoms. Appl. Phys. B 1997, 65, 755-759.

(15) Heier, J.; Kramer, E. J.; Walheim, S.; Krausch, G. Thin diblock
copolymer films on chemically heterogeneous surfaces. Macromolecules
1997, 30, 6610-6614.

Figure 1. Anvil-like bridge showing long sleeves. The length
to width ratio of the lyophilic stripes is L2/L1 ) 12. The ratio
of the wall separation to the width of the stripes is L⊥/L1 ) 1.2.
The reduced volume of the liquid is V/L1

3 ) 4.2.
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Our article is organized as follows. In section II, the
lattice gas models are introduced and details concerning
the Monte Carlo simulations are given. In section III, the
effective interface models and the numerical minimization
methods are presented. The different morphologies of the
liquid phase as obtained by both methods are described
in section IV. The relation between the chemical potential
and the mean curvature of the liquid-vapor interface in
the lattice gas model is considered in section V. The shape
or “phase” diagram obtained from the numerical mini-
mization of the interface model is presented in section VI.
Finally, in section VII our results are compared with those
obtained in previous studies that assumed periodic
boundary conditions and constant cross section of the
liquid morphologies along the stripes.

II. Fluid in a Slit Pore
A. Lattice Gas Model. We study equilibrium liquid

morphologies in the slit pore. Each wall of the slit is
primarily made of lyophobic material (δ) and contains a
lyophilic surface domain (γ) with the shape of a stripe of
finite length. Both stripes are identical and face one
another on the parallel walls.

Let us consider a lattice gas of particles interacting with
nearest neighbors on a simple cubic lattice. The lattice
gas is confined to a box with two opposed chemically
structured walls and periodic boundary conditions in the
directions parallel to these walls. The interaction potential
of every particle with the structured walls is short-ranged,
and its strength depends on whether the nearest neighbor
wall cell belongs to a lyophilic or lyophobic surface domain.

The lattice gas exhibits phase separation at low tem-
peratures, T < TC, and bulk chemical potential µ0 ) -3ε,
where the parameter ε denotes the interaction strength
between two nearest neighbor particles. For the sake of
clarity, we will discuss this phase separation in terms of
liquid-vapor coexistence. Thus, for T < TC and µ0 ) -3ε,
a high-density liquid phase (â) coexists with a low-density
vapor phase (R). In the canonical ensemble, this phase
coexistence occurs for intermediate particle number
densities F with FR(T) < F < Fâ(T).

Defining ni, the occupation number of the ith cell, to be
1 if there is a particle and 0 if there is not, the Hamiltonian
of the lattice gas, HLG, has the form

where Ω1 is the set of cells adjacent to the walls. The
parameter ε is the interaction strength between two
nearest neighbor particles, and εk is the interaction
strength of the wall with an adjacent particle. The latter
parameter reflects the chemical composition of the wall.
The absence of the kinetic energy in HLG produces a
temperature-dependent shift between the chemical po-
tential of the lattice gas, µ, and the chemical potential of
the classical fluid, µfluid, as given by

where a is the lattice spacing and ΛT ≡ h/(2πmpkBT)1/2 is
the thermal de Broglie wavelength. This shift does not
affect the differences in chemical potential at a given T,
and one has µfluid - (µ0)fluid ) µ - µ0.

We fix the number of particles in our simulation box
(canonical ensemble). In most of our lattice gas simula-
tions, the width L1 of the stripes is chosen to be 10 lattice
units and the length L2 of the stripes is 12 × L1, see Figure
2. The size of the box in the directions parallel to the

opposed walls is chosen to be large enough so that it does
not affect the shape of the dense phase (liquid). In the
simulations, the length of the box is set to 13 × L1 and its
width to 4 × L1. The separation of the two surfaces varies
from L⊥ ) 0.8L1 to L⊥ ) 1.6L1.

For simplicity, we choose the interaction energy εγ
between the particles and the lyophilic surface domains
to be equal to the interaction energy between two particles,
ε, and the lyophobic surfaces exert a simple hard core
repulsion on the particles. Thus, the interactions between
the walls and the particles are given by

at the γ and δ surfaces, respectively.The interactionenergy
εγ ) ε that we choose between the particles and the lyophilic
surface domains is the minimum value that leads at any
temperature to complete spreading of a homogeneous γ
substrate. On the other hand, the coupling εδ ) 0 that we
choose for the lyophobic parts of the walls (only hard core
repulsion) is sufficient to induce complete dewetting, that
is, contact angle π between the dense phase (liquid) and
the δ substrate.

If we map the particles of the lattice gas into spins
pointing up and the unoccupied cells into spins pointing
down, the lattice gas is equivalent to an Ising model. First,
we show that the lattice gas in the grand canonical
ensemble maps into the Ising model in the canonical
ensemble. Later, we consider how this mapping is modified
for the lattice gas in the canonical ensemble.

We use the change of variables ni ) (si + 1)/2 in the
lattice gas Hamiltonian in (1), so that the variable si takes
the value +1 if the ith cell contains a particle and -1 if
the cell contains none. As a result, the combination that
enters the grand partition function is now given by

with

HLG{ni} ) -ε∑
〈ij〉

ninj - ∑
k∈Ω1

εknk (1)

µ ) µfluid + 3kBT ln(a/ΛT) (2)

Figure 2. Geometry of the chemically structured slit pore
containing lyophilic γ and lyophobic δ surface domains: (a)
topview of striped surface domain and (b) sideview of opposing
surfaces.

εk ) εγ ) ε and εk ) εδ ) 0 (3)

HLG{si} - µN ) HI{si} ) -J∑
〈ij〉

sisj - ∑
k∈Ω1

Hksk -

H∑
k

sk + E0 (4)
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and the constant term

HI is the Hamiltonian of the spin-1/2 Ising model in an
external field H and in contact with walls which exert the
surface field Hk onto the adjacent layer of spins. Thus, the
grand canonical partition function of the lattice gas, ¥LG,
is proportional to the canonical partition function of the
Ising model, ZI, and one has ¥LG(ε, εk, µ) ) e-E0/kBTZI(J, Hk,
H).

From eq 5, the lyophilic areas of the walls, εγ ) ε,
correspond in the Ising model to surface domains with Hk
) Hγ ) J. The lyophobic areas, εδ ) 0, are characterized
by the surface field Hk ) Hδ ) -J. If the external field is
different from zero, H * 0, the Ising model is in a
ferromagnetic state (magnetization per spin, m * 0) at
any finite temperature. If H ) 0, there is a critical
temperature, TC, so that the Ising model is in a ferro-
magnetic state (m * 0) for T < TC and is in a paramagnetic
state (m ) 0) for T > TC. The case H ) 0 corresponds to
the lattice gas bulk coexistence which, from eq 5, occurs
at chemical potential µ0 ) -3ε. At H ) 0 and T < TC, m
has two equilibrium values, m ) (m0(T). The particle
number density is related to the magnetization per spin
via F ) (1 + m)/2. Thus, at T < TC, the lattice gas in the
grand canonical ensemble can be found in any superposi-
tion of the two states,

where interfacial contributions have been ignored.
For the lattice gas in the canonical ensemble, the same

substitution of the occupation numbers, ni, by the spin
variables, si, leads to

with the constant term

where the parameters J and Hk are again given by eq 5.
Thus, in the canonical ensemble, the lattice gas maps into
an Ising model in zero external field, H ) 0, with surface
field Hk. The number of states, that the lattice gas in the
canonical ensemble can access, is constrained by the
conservation of the number of particles, N ) ∑knk, which
translates into the conservation of the total magnetization,
M ) ∑ksk ) N(2F - 1). In the equivalent Ising model, N
stands for the number of cells in the lattice. This implies
that the canonical partition function of the lattice gas is
given by ZLG(ε, εk, N) ) e-E1/kBTZI(J, Hk, M).

If one fixes the density in the lattice gas for T < TC to
a value between the preferred densities of eq 6, the system
undergoes phase separation and forms domains with these
densities following the lever rule.

The magnetic symmetry sk T -sk, Hk T -Hk, and H T
-H maps into the particle-hole symmetry nk ) 0 T nk
) 1, εk - ε/2 T ε/2 - εk, and µ - µ0 T µ0 - µ. Thus, any
phenomena occurring, say, in the vapor phase at µ ) µ0

- ∆µ for the substrate interaction εk ) ε/2 - ∆εk will have
the symmetric image in the liquid phase at µ′ ) µ0 + ∆µ
for ε′k ) ε/2 + ∆εk. This particle-hole symmetry of the
lattice gas makes our results applicable to the dewetting
of a slit pore with walls which are primarily made of
lyophilic material and contain two opposing lyophobic
stripes.

B.MonteCarloMethod. We are interested in studying
thermodynamic equilibrium; to reduce relaxation times,
we use a nonlocal algorithm, the so-called nonlocal
Kawasaki dynamics.16 A step in this dynamics consists of
the following operations. (i) A particle and an unoccupied
cell in our simulation box are chosen at random. (ii) The
energy change ∆E of moving the selected particle to the
selected empty cell is computed from the Hamiltonian in
(1). (iii) If ∆E is negative or zero, the move is accepted. If
∆E is positive, the move is accepted with a probability
given by exp(-∆E/T), as in the Metropolis scheme. This
algorithm leads to relaxation times which are shorter than
for the standard (local) Kawasaki method, where the
particles can move only to next-neighbor empty cells. In
the standard Kawasaki dynamics, the redistribution of
the material in the lattice is limited by the time scale
needed for the diffusion of the particles. In the nonlocal
Kawasakidynamics, thenonlocalmovesallowtheparticles
to redistribute in the lattice without this restriction.
However, as far as equilibrium properties are concerned,
both dynamics lead to the same sampling of states because
both algorithms satisfy detailed balance.

C. Chemical Potential. If the two coexisting phases
R and â are sufficiently large, the chemical potential
attains its bulk value µ0 ) -3ε as mentioned. For finite
systems as studied here, the substrate surfaces or walls
and the Râ interfaces make a surface contribution to µ
and its value will, in general, differ from µ0 ) -3ε. To
compute µ in the latter case, we focus on a single lattice
site or cell i and treat this cell as a subsystem in chemical
equilibrium with the rest of the lattice gas.

The chosen cell interacts with six nearest-neighbor cells,
if it is located in the bulk away from the walls, and with
five such cells, if it is located directly adjacent to one of
the two walls. Each of these nearest-neighbor cells may
be empty or occupied by one particle. Now, consider, for
a certain cell i, a particular configuration Sm of m occupied
nearest-neighbor cells. For a bulk location, one has 0 e
m e 6, whereas 0 e m e 5 for a surface location. The
interaction energy of a particle located in the cell i with
the nearest-neighbor configuration Sm is given by E(Sm,
ni) ) -mεni for a bulk location and by E(Sm, ni) ) -(εσ +
mε)ni for a surface location.

This implies that the chosen cell i can be characterized
by the statistical weight or Gibbs factor f(Sm, ni) which is
proportional to exp[-(E(Sm, ni) - µni)/kBT]. The prob-
abilities or frequencies f(Sm, ni ) 1) and f(Sm, ni ) 0) can
be directly measured in the simulations. Following refs
17 and 18, these quantities may then be used in order to
determine the chemical potential via

To reduce the error in the estimate of the chemical
potential, we calculate it as the average of the chemical

(16) Newman, M. E. J.; Barkema, G. T. Monte Carlo Methods in
Statistical Physics; Oxford University Press: New York, 1999.
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Method in Statistical Physics. Springer-Verlag: New York, 1987.

J ) ε

4
Hk ) 1

2(εk - ε

2) H ) 1
2

(µ + 3ε) (5)

E0 t -
1

2
∑

k∈Ω1
(εk -

ε

4) -
1

2(µ +
3ε

2 )∑
k

F+(T) ) 1
2

(1 + |m0(T)|) and F-(T) ) 1
2

(1 - |m0(T)|) (6)

HLG{si} ) HI{si} ) -J∑
〈ij〉

sisj - ∑
k∈Ω1

Hksk + E1 (7)

E1 t -3εN -
1

2
∑

k∈Ω1
(εk -

ε

4) +
3ε

4
∑

k

(8)

µ/kBT ) ln[f(Sm, ni ) 1)/f(Sm, ni ) 0)] + E(Sm, ni )
1)/kBT (9)
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potentials obtained for the statistically most significant
Sm configurations.

D. Interfacial Shape. The underlying lattice intro-
duces an anisotropy in the interfacial free energy, giving
rise to privileged directions for the drops to have facets.
For liquid droplets as considered here, this effect of the
lattice is an artifact and can be reduced by fixing a
sufficiently high temperature which exceeds the roughen-
ing temperature of the interface. In general, the closer
the temperature is to the critical temperature, the more
isotropic is the interfacial free energy and the larger are
the thermal fluctuations. We choose a temperature T )
0.7TC, where TC = 1.128ε/kB is the critical temperature of
the three-dimensional bulk lattice gas.19 This temperature
is high enough to reduce the influence of the lattice but
still sufficiently far away from the critical temperature so
that the interfacial width, which is proportional to the
bulk correlation length, is still small.

Away from the interfaces, the particle number density
F has the values FR and Fâ in the R and â phases,
respectively. In the interfacial region, the density inter-
polates between these values. We may define the position
of the interface as the position of the surface of constant
density FRâ, with FR < FRâ < Fâ. This convention allows us
to compare the morphologies of the liquid phase in both
models studied here, the lattice gas and the effective
interface model.

To find the mean shape of the liquid phase in the lattice
gas simulations, one has to average the occupation
numbers in every cell for a set of configurations obtained
with the previously described algorithm, which determines
the probability for each cell to be occupied by a particle.
To define a sharp location for the interface, we consider
all cells with average density F e 0.5 to be occupied by
vapor and all cells with average density F > 0.5 to be
occupied by liquid.

One of the interesting morphologies observed in our
simulations is an anvil-like bridge with a lateral extension
which is small compared to the length of the stripes.
Because of the thermal fluctuations, these anvil-like
bridges can move along the stripes via diffusion. We want
to determine the average shape of one of these bridges.
First, we have to obtain the density profile of the bridge,
which is the average occupation number for each cell. The
diffusional motion of the bridge (which is very slow) is
avoided by computing the position of the center of mass
at every Monte Carlo step, and if it deviates from the
center of the box more than a certain threshold, the
configuration is shifted so that the center of mass stays
in the center of the box. Finally, we determine the local
density by dividing the sum of the occupation numbers at
every cell by the number of configurations.

As mentioned, the average shape of the liquid is
calculated for a fixed number of particles in the box.
Starting with an equilibrium configuration from a former
run with a similar number of particles and shifting this
number to the new value, we let it relax under nonlocal
Kawasaki dynamics for 106 Monte Carlo steps. After that
time, we perform a long run consisting of 5 × 106 Monte
Carlo steps and sample the occupation numbers of the
configurations after every 500 steps. Finally, the averages
are computed.

III. Fluid-Fluid Interface in a Slit Pore
A. Effective Interface Model. For large systems at

temperatures away from the critical point of the fluid, the

effective interface model can be employed to investigate
different morphologies of the liquid phase. Because the
liquid is essentially incompressible, contributions to the
free energy coming from the bulk are neglected and the
free energy of our system is equal to the sum of the free
energies of all interfaces. In principle, the interface
between the vapor and the liquid phase is roughened by
capillary waves but this effect is very small and can be
safely ignored. We consider the mean interfacial shape
which is defined by averaging the position of the interface.

As mentioned before, the vapor and the liquid phase
are labeled by Greek letters, R and â, and the lyophilic
and the lyophobic regions of the structured walls are
designated by γ and δ, respectively. We will focus on
wetting structures in the micrometer range for which
effects of gravity and line tension are negligibly small and
can be neglected. The interfacial free energy per unit area
of the liquid-vapor interface, ΣRâ, is taken to be inde-
pendent of the position of the interface as appropriate for
an interface between two fluid phases. In contrast, the
interfacial free energies per unit area between the
substrates and the vapor or liquid phase, ΣRσ(x) and
Σâσ(x), are functions of the position x parallel to the surface
or walls, σ. The effective free energy of our system, F,
depends on the shape and location of the liquid volume,
Vâ, on the structured walls and is given by

The spatial region occupied by the liquid phase, Vâ, is
bounded by the interfaces ARâ and Aâσ toward the vapor
phase and the substrate walls, respectively. |ARâ| denotes
the surface area of ARâ. The line of intersection between
the two interfaces, ARâ and Aâσ, is the contact line, LRâσ.

|Vâ| is the volume of the liquid phase for a certain
morphology Vâ. If the volume of the liquid phase has a
constant value, V, the functional

has to be minimized in the set of the states satisfying the
constraint

The parameter ∆P is a Lagrange multiplier and has
the physical meaning of the pressure difference, ∆P ≡ PR
- Pâ, across the liquid-vapor interface. If the volume
were not constrained to have a constant value, the last
term in (10) would give a nonzero contribution to the free
energy.

B. Equilibrium Shapes. The condition of stationarity
for the functional in (11) yields two equations which
express the mechanical equilibrium of the liquid-vapor
interface and the contact line. One is the well-known
Laplace equation,

for the pressure difference, ∆P ≡ PR - Pâ, which forces the
mean curvature, M, to be the same at all points of the
liquid-vapor interface. We define the mean curvature,
M, in such a way that it has a positive sign for a spherical
drop.

The second equation obtained from the first variation
of (11) is the Young equation, which ensures the equi-
librium of interfacial tensions in the direction parallel to

(19) Pawley, G. S.; Swendsen, R. H.; Wallance, D. J.; Wilson, K. G.
Monte Carlo renormalization-group calculations of critical behavior in
the simple-cubic Ising model. Phys. Rev. B 1984, 29, 4030-4040.

F{Vâ} ) ΣRâ|ARâ| + ∫Aâσ
dA[∑âσ(x) - ∑Rσ(x)] (10)

F̃ {Vâ} ) F{Vâ} + ∆P|Vâ| (11)

|Vâ| ) V (12)

∆P ) -2∑RâM (13)
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the substrate and perpendicular to the contact line at
every point x of the contact line. With the contact angle,
θ(x), measured between the liquid-substrate and the
liquid-vapor interface, this equation reads

Interfacial shapes satisfying (13) and (14) are stationary
but do not have to be minima of the functional in (11)
under the constraint in (12). Before we describe the specific
interfacial morphologies for the chemically structured slit
pore, we first want to discuss two generic properties of
these morphologies which can be derived from differential
geometry:

(i) For liquid drops sitting on a single flat substrate, the
mean curvature M of the liquid surface has to be positive.
This can be seen by looking at the equilibrium of the forces
normal to the substrate at the contact line. Because the
component normal to the substrate of the liquid-vapor
interfacial tension is always positive along the contact
line, the pressure difference across the liquid-vapor
interface, ∆P ≡ PR - Pâ, has to be negative to compensate
this force and keep the liquid surface in equilibrium, and
by the Laplace equation M has to be positive. In contrast
to this situation, the liquid-vapor interface for a drop
sitting between two parallel planar walls can have positive
or negative mean curvature depending on the contact
angles, volume of liquid, and distance between the walls.

(ii) The contact line lying within a lyophilic domain with
angle θγ ) 0 is always pinned to the γδ domain boundary
for M > 0 and may be detached partially or completely
from this boundary for M e 0. From the Laplace equation,
the mean curvature is the same for every point of the
liquid surface in equilibrium. Thus, it is sufficient to find
its value for a single surface point. At a point of the contact
line, x0, lying in the interior of a γ domain with contact
angle θγ ) 0, the normal curvature c1 of the liquid surface
in the direction tangential to the contact line has to vanish.
The normal curvature c2 in the direction perpendicular to
the contact line at the point x0 cannot be positive if the
contact angle θγ is zero at x0. Because the two normal
curvatures correspond to two orthogonal planes of inter-
section, the mean curvature M(x0) is given by M(x0) ) (c1
+ c2)/2, and we conclude that M(x0) e 0 and that the same
inequality must hold for all points of the liquid surface.
A more detailed derivation of this statement is given in
the Appendix.

C. Slit Pore Geometry. Let us now consider the slit
pore geometry described in the foregoing section. We set
θγ ) 0 for the lyophilic and θδ ) π for the lyophobic domains
of the substrate. If the contact line coincides with the
boundaries of the lyophilic domains, θ(x) may assume
values between θγ and θδ.20

The mean curvature of the configurations which mini-
mize the functional in (11) with respect to the volume
constraint in (12) depends on the volume of the liquid and
the geometry of the slit pore, which is determined by the
distance between the walls, L⊥, the length of the stripes,
L2, and the width of the stripes, L1. It is sufficient to use
the ratios L⊥/L1 and L2/L1 because the free energy in (11)
is homogeneous to the second degree if one scales all the
lengths of the slit pore. For a given geometry of the slit
pore, several minimal configurations, Vâ, may exist for a
fixed volume V, which form different branches of a

multivalued function Vâ(L⊥, L2, L1, V). This function has
at least one branch and is defined for any volume and
geometry of the slit pore, because we must find at least
one minimizer of the functional in (11) under the constraint
in (12) for every set of parameters. The mean curvature,
M, of the configurations belonging to these branches can
be displayed as a multivalued function depending on the
volume and the geometry of the slit pore, M(L⊥, L2, L1, V).

It may happen that a branch of solutions to the first
variational problem of the free energy in (11) under the
volume constraint in (12) consists of both stable and
unstable regions. The set of configurations dividing these
regions must also be part of another unstable branch of
solutions.21 This corresponds to the occurrence of a soft
mode or, equivalently, to the second variation of the
functional in (11) becoming positive semidefinite in the
subspace of variations which fulfill the volume constraint
in (12) to the first order.22,23

D. Minimization Method. We employed the software
package Surface Evolver, version 2.14,24 to study the
morphologies of a volume of liquid in the slit pore. The
surface of the liquid-vapor interface is discretized and
replaced by a net of small triangles. To minimize the free
energy in (10), we used the implemented conjugate
gradient descent method. The volume, that is held constant
throughout the minimization, is computed as a surface
integral over a vector field with constant divergence on
the liquid-vapor surface. The contact lines of the liquid
surface are constrained to the walls of the slit pore.
Contributions to the free energy coming from the interfaces
between the liquid phase and the walls are obtained by
line integrals along the contact lines, while the interfacial
energy of the liquid-vapor interface is proportional to
the area of all triangles forming the surface of the liquid.
We measure all interfacial tensions in units of the liquid-
vapor interface tension, ΣRâ.

Parameters such as the distance L⊥ between the walls,
the volume V of the liquid phase, and the contact angles
can be varied during the simulation. In most runs, only
the volume was changed by a script program, which also
maintained the structure of the net forming the liquid
surface. It can happen that triangles become very small
and collapse after some steps of the minimization pro-
cedure. Another typical problem is that long and thin
triangles occur whenever large changes in the shape of
the configurations take place. Routines which remove
undesirable triangles and keep the size of the edges in a
certain prescribed range are provided by Surface Evolver
and were used every time the volume was changed.
Utilizing the query commands of the Surface Evolver script
language, we also monitored parameters describing the
shape of the configurations such as (i) the diameter of
narrow necks within the bridges which form just before
they break up or (ii) the positions of some characteristic
points of the contact line.

We performed runs for a fixed length and width of the
stripes and computed the free energy for 150-300 different
values of the volume, depending on the range of volumes

(20) Lenz, P.; Lipowsky, R. Stability of Droplets and Channels on
Homogeneous and Structured Surfaces. Eur. Phys. J. E 2000, 1, 249-
262.

(21) Gillette, R. D.; Dyson, R. C. Stability of fluid interfaces of
revolution between equal solid circular plates. Chem. Eng. J. 1971, 2,
44-54.

(22) Vogel, T. Stability of a liquid drop trapped between two parallel
planes. SIAM J. Appl. Math. 1987, 47, 516-525.

(23) Zhou, L. On stability of a catenoidal liquid bridge. Pac. J. Math.
1997, 178, 185-198.

(24) Brakke, K. The surface evolver. Exp.erimental Math.ematics
1992, 1, 141-165.

cos θ(x) )
∑Rσ(x) - ∑âσ(x)

∑σâ
(14)
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and the shapes of the configurations. Up to 1000 mini-
mization steps were carried out for every value of the
volume, depending on the rate of convergence. We took
the final configuration obtained for a certain volume as
the initial configuration in the minimization procedure
for the next volume. If the volume is changed in sufficiently
small steps, changes in the configuration are also small,
which prevents the configurations from being destabilized
by these perturbations, except close to a discontinuous
morphological transition. The minimal and maximal
length of the edges within the triangulation are adjusted
to keep the number of vertexes in the range of 3000-5000
for the liquid surface. If the equilibrium configurations
exhibit certain symmetries, a smaller segment of the
surface can be employed to compute the interfacial free
energy. For example, if the shape has two symmetry planes
perpendicular to the walls, one along and the other across
the stripes, a segment of the liquid surface consisting of
a quarter of the total surface obtained by cuts along the
two symmetry planes can be used in the computations. In
this reduced model, the boundary of the liquid surface is
constrained to move on the symmetry planes with
prescribed contact angle π/2 with respect to these planes,
which is equivalent to the mirror boundary conditions.

To save computational time, a quarter of the total
liquid-vapor interfacewasemployed inour investigations.
One has to be careful with the stability analysis of the
bridges, as the number of stationary configurations can
be changed because of the constraint imposed by a
symmetry. An example of this behavior is the instability
of a liquid bridge with its contact line attached to a pair
of parallel and coaxial circles. The breaking of the liquid
interface is reported to be caused by an asymmetric mode,
if the ratio distance between the walls to diameter of the
circles is larger than 2.13.25 In the slit pore, a further
reduction of the surface segment employed in the numerics
to one-half of it, using the midplane between the two walls
as an additional plane of symmetry, enhances the stability
of the bridges if the ratioL⊥/L1 is larger than approximately
L⊥/L1 = 2.5. In this case, the elimination of the modes
which are asymmetric with respect to the midplane
between the walls leads to stable bridges in a wider region
of the parameters. Thus, the symmetry with respect to
the midplane between the walls cannot be used in the
numerical minimization to further reduce the size of the
system.

IV. Different Liquid Morphologies in the Slit
Pore

A. Bridges. Bridges are those states in which the liquid
connects both walls. We will speak of extended bridges
when the section of the liquid-vapor interface by the
midplane between the walls has a lateral extension which
is of the order of L2, see Figures 3c,d and 4c,d. These bridges
have their contact line attached to the γδ domain
boundaries, or, for larger volumes, the contact line
detaches and the bridges move onto the lyophobic surface
with contact angle θδ. In contrast to the extended bridges,
for an anvil-like bridge the lateral extension of the
midplane section is small compared to L2, see Figures
3a,b and 4a,b. Typically, an anvil-like bridge extends along
the two stripes forming flat channels or sleeves, see Figure
1. In the lattice gas model, the particles have finite size
and the sleeves of an anvil-like bridge cannot be flatter
than the size of the particles. The length of the sleeves
along the stripes will depend on the size of the particles,

the contact angle θγ of the liquid with the lyophilic surfaces,
and the mean curvature of the liquid-vapor interface. In
both the effective interface model and the lattice gas, we
choose an interaction between the liquid and the lyophilic
stripes that corresponds to θγ ) 0. At large distances from
the body of the bridge, the shape of the sleeves approaches
the shape of channels with almost translationally invari-
ant cross section. A channel with constant cross section
has necessarily positive mean curvature, which implies
that an anvil-like bridge with negative mean curvature
cannot have arbitrarily long sleeves.

For wall separationsL⊥/l⊥ < 1, where l⊥ is a characteristic
length that is close to L1 but depends on L2, and at
sufficiently low volumes of liquid, one can observe anvil-
like bridges which are freely mobile, that is, bridges with

(25) Meseger, J.; Slobozhanin, L. A.; Perales, J. M. A review on the
stability of liquid bridges. Adv. Space Res. 1995, 16, 5-14.

Figure 3. Bridges as obtained by minimization of the effective
interface model for slab geometry with fixed ratios L⊥/L1 ) 0.8
and L2/L1 ) 12. L⊥, L1, and L2 denote the wall separation, the
stripe width, and the length, respectively. The liquid volume
V increases from top to bottom: (a) V ) 0.5L1

3, (b) V ) 2L1
3,

(c) V ) 9L1
3, and (d) V ) 18L1

3.

Figure 4. Bridges as obtained from the lattice gas simulations.
The position of the interfaces corresponds to average local
density F ) 0.5. The slab geometry is characterized by fixed
ratios L⊥/L1 ) 1.6 and L2/L1 ) 12, where the lengths L⊥, L1, and
L2 are as in Figure 3. L1 is 10 lattice units. The number of
particles in the simulation box is (a) N ) 4L1

3, (b) N ) 6.4L1
3,

(c) N ) 18.6L1
3, and (d) N ) 37.3L1

3. White cubes represent the
lyophilic stripes.
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contact lines completely detached from the ends of the
lyophilic stripes. Because the liquid phase has no contact
to the ends of the stripes, a displacement of these bridges
does not cost any energy, see Figure 3a,b. For this kind
of bridge, the mean curvature as a function of the volume
remains nearly constant and negative in a wide range of
volumes, forming a plateau region in Figure 5. Bridges
which are formed for ratios L⊥/l⊥ > 1 also exhibit at low
volumes a plateau region in the mean curvature, but this
time the value of the mean curvature is positive in the
plateau, see Figure 5. In the continuous model, the positive
mean curvature requires the complete coverage of the
stripes by the liquid phase. Hence, the body of the bridge
will be connected to sleeves that extend to the ends of the
lyophilic stripes, see Figure 1. An anvil-like liquid bridge
with sleeves that cover the full length of the stripes “feels”
a force that tends to keep it in the middle of the stripes.
For small volumes, the body of the bridge is rather slim
as shown in Figures 3a and 4a. When one starts from
such a bridge and increases the liquid volume V, the body
of the bridge is extended parallel to the lyophilic stripes
while its mean curvature M remains unchanged, see the
plateau region in Figure 5.

It is instructive to compare our results with those from
previous studies4-6 that assumed the cross section of the
liquid morphologies (bridges and channels) to be always
translationally invariant along the stripes. In ref 6, an
effectively two-dimensional interface model representing
the cross section of the pore is used to determine the
equilibrium morphologies. In Figure 5, the dashed lines
correspond to the mean curvature M as obtained from
this two-dimensional model (multiplying the volume per
unit length by L2). For small V, the typical morphologies
in the three-dimensional model are anvil-like bridges
(Figure 1) that have a similar mean curvature for different
volumes leading to the plateau region in Figure 5. Such
bridges cannot occur in the two-dimensional constant cross
section model. For larger values of V, the bridges obtained
using the three-dimensional model have almost constant
two-dimensional cross-section, see Figures 3c and 4c. For
even larger volumes of liquid, the contact line detaches
from the γδ boundary, and the bridges bulge outward, see
Figures 3d and 4d.

B. Channels and Bulged Channels. The morphology
of wetting layers on a lyophobic substrate with a single
lyophilic stripe has been studied before.2,3 One starts with
a completely dewetted stripe of finite length and slowly
deposits a certain volume V of liquid on it. For small V,

the liquid forms a channel that has almost uniform cross
section along the stripe. This means that for small V the
channel has a shape similar to a cylindrical segment, with
the contact line attached to the γδ boundaries of the stripe.
If V is increased, the channel grows, keeping its cross
section almost constant along the stripe (homogeneous
channel). When the channel reaches a volume per unit
length close to (π/8)L1

2, where L1 is the width of the stripe,
it undergoes a transition to a state with a cross section
that changes strongly when we move along the stripe. In
this state, the largest part of the volume is concentrated
in a “bulge” that extends into the stripe forming flat sleeves
similar to the sleeves of an anvil-like bridge in the slit
pore. However, for a bulge on a single stripe, the contact
line cannot detach from the γδ domain boundary (if the
contact angle within the stripe is zero and the finite size
of the particles is not taken into account), because the
bulge has positive mean curvature for every volume.

For a long single stripe with L2/L1 J 18, the morpho-
logical transition between a homogeneous channel and a
channel with a single bulge is discontinuous, see ref 2. In
contrast, a single stripe of length L2/L1 j 18 exhibits not
a first order but a continuous transition at a certain
characteristic volume of liquid. In this case, the mean
curvature, M, of the stable states as a function of the
volume has only one branch, see Figure 6. For all ratios
L2/L1, two different stationary morphologies exist for a
given mean curvature, M, one at small volume (channel)
and the other at large volume (bulge).

Let us go back to the slit pore and discuss the behavior
of the broken bridges, that is, of the shapes with two
disconnected volumes. We allow the two bodies of liquid
to exchange volume with each other. It is clear that the
stable shapes of the volume of liquid on each one of the
stripes are minimizers of the functional in (11) with respect
to the volume constraint in (12) for the portion of volume
gained in stable equilibrium with the liquid on the other
stripe. If we couple two stable systems having the same
mean curvature, the resulting system does not need to be
stable. Nonetheless, all stable configurations for a system
consisting of two identical subsystems can be constructed
if the stable states of a single subsystem are known for
all volumes.

For the slit pore, different morphologies are expected
for different volumes, see Figure 7, if the volume of liquid
is not sufficient to bridge the walls. At low volumes, both
stripes are covered by a channel of almost constant cross
section. To fulfill the Laplace equation, both constant cross
section channels must have the same mean curvature and,
thus, the same volume (symmetric configuration). At large
volumes of liquid, one of the stripes is covered by a channel
with a bulge and the other is covered by a channel with
a cross section similar to the cross section of the sleeves

Figure 5. Mean curvature M of the liquid bridges as a function
of the liquid volume, for different ratios L⊥/L1. The thick lines
are obtained from numerical minimization of the three-
dimensional interface model. The dashed lines represent the
mean curvature in the effectively two-dimensional problem with
periodic boundary conditions along the stripes and bridges with
uniform cross section.

Figure 6. Mean curvature M of the channel on a single stripe
as a function of the rescaled volume V/L1

3, for L2/L1 ) 12.
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that extend from the bulge on the first stripe. In the case
of a bulge coexisting with a homogeneous channel, the
volume of the channel with the bulge can be much larger
than the volume of the other channel (asymmetric
configuration). Notice that because of the positive mean
curvature of all broken configurations, both stripes are
completely covered if the contact angle is zero within the
lyophilic domains.

When two bodies of liquid on two identical stripes of
length L2/L1 ) 12 are considered, the stationarity condition
demands that the mean curvature has to be the same and
positive for both bodies. The analysis for the single stripe
as discussed at the beginning of this section implies that
there are two stationary morphologies for a given mean
curvature. For two stripes, analogous arguments lead to
a bifurcation from one symmetric to two asymmetric and
one symmetric stationary configurations as the total
volume is increased, see Figure 8. The two asymmetric
configurations correspond to a homogeneous channel on
one stripe and a bulged channel on the other and are stable
for large V. For small V, a symmetric configuration with
two channels of almost constant and identical cross section
is stable, whereas for large V, the symmetric configuration
consisting of two bulges is unstable. Notice that although
the transition is continuous for a single stripe of length
L2/L1 ) 12, it is of first order when one considers two
identical stripes of this length in equilibrium. Here, we
assumed the stripes to be sufficiently far apart so that the
two liquid surfaces cannot intersect. In the slit pore, these
broken morphologies are in competition with the bridges
studied in the former section. A similar symmetry breaking

at increasing volumes has been found by Lenz and
Lipowsky1 for two identical circular lyophilic domains,
with the difference that in that case the transition is
continuous.

V. Chemical Potential versus Pressure
Difference

At equilibrium, the chemical potential must be the same
in the two coexisting phases, but the pressure will be the
same in both phases only if they are separated by a flat
interface, as required by the Laplace equation. Let us
consider the connection between the chemical potential
and the pressure difference across the liquid-vapor
interface, ∆P.26 At constant temperature, in each one of
the phases the chemical potential, µ, the pressure, P, and
the density, F, are related by the equations

By P0, we denote the saturated vapor pressure, which
is the coexistence pressure of the liquid at equilibrium
with its vapor across a planar interface. FR

0 and Fâ
0 denote

the density of the R and â phase, respectively, in this state.
Assuming that the â phase (liquid) is incompressible, we
integrate eq 15 for this phase from P0 to Pâ,

Starting from the equality of the chemical potential in
both phases at equilibrium,

we expand the chemical potential in the R and in the â
phase to first order in terms of (PR - P0) and (Pâ - P0),
respectively, and use (15), which leads to

Substituting (16) and ∆P ≡ PR - Pâ, the last equation
becomes

Thus, the difference in chemical potential between the
curvedandtheplanar interfaceandthepressuredifference
across the curved interface, ∆P, are proportional to each
other with a proportionality constant 1/(FR

0 - Fâ
0). Because

∆P is proportional to M, according to the Laplace equation
(13), µ ∼ M apart from an additive constant.

In Figure 9, we plot the chemical potential µ for bridges
in the lattice gas as a function of the number of particles
N in the box. In Figure 5, we plot the mean curvature M
against the volume V obtained from the numerical
minimization of the effective interface model. In both cases,
we start from large V and decrease it until the bridge
breaks. Figures 9 and 5 are very similar, because, as we
have shown, µ is linearly related to the mean curvature.
For a wide range of wall separations L⊥, two plateau
regions are observed for the functional dependence of M

(26) Rowlinson,J.S.;Widom,B. Molecular theoryof capillarity;Oxford
University Press: New York, 1989.

Figure 7. Disconnected channels as obtained within the
effective interface model: (top) symmetric configuration for
rescaled volume V/L1

3 ) 7 and (bottom) asymmetric configu-
ration for V/L1

3 ) 9, for the ratios L⊥/L1 ) 2 and L2/L1 ) 12.

Figure 8. Schematic diagram for the bifurcation of the
difference in volume, V1 - V2, between two volumes of liquid
on identical stripes as a function of the total volume, V1 + V2.
The symmetric branch beyond A, at V1 - V2 ) 0, and the
branches AB1 and AB2 refer to unstable configurations (dashed
lines).

∂µR

∂P
|T,PR

) 1
FR

and
∂µâ

∂P
|T,Pâ

) 1
Fâ

(15)

µâ(T, Pâ) - µâ(T, P0) ) 1
Fâ

0
(Pâ - P0) (16)

µâ(T, Pâ) ) µR(T, PR) (17)

Pâ - P0 ≈ Fâ
0

FR
0 - Fâ

0
(PR - Pâ) (18)

µâ(T, Pâ) - µâ(T, P0) ≈ ∆P
FR
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on V and the dependence of µ on N. The plateau region
at large V corresponds to bridges that detach from the
boundaries of the stripes, bulging outward onto the
lyophobic domains, see Figures 3d and 4d. The mean
curvatures of these bridges have similar values, decreasing
slightly with decreasing V. At a certain volume, the contact
line attaches to the boundaries of the stripes and the cross
section of the bridges becomes almost invariant along the
stripes, see Figures 3c and 4c. If V is decreased further,
M decreases quickly, until the plateau region at low V is
reached. In this plateau region, the body of the bridge
shrinks in length with decreasing V and forms an anvil-
like bridge, see Figures 3b and 4b. The mean curvature
of such an anvil-like bridge is almost constant within the
plateau region at low V. For even smaller values of V, the
mean curvature increases with decreasing V, as is expected
for a bridge that is close to rupture, see Figures 4a and
3a.

VI. Shape or “Phase” Diagram

Because thecontact angles on the lyophilic and lyophobic
domains are θγ ) 0 and θδ ) π, respectively, and the ratio
L2/L1 ) 12, the only parameters still adjustable are the
volume V and the ratio L⊥/L1 of the wall separation to the
stripe width.

The shape or “phase” diagram shown in Figure 10 has
been obtained from numerical minimization of the inter-

face model and specifies the regions where certain
interfacial shapes (configurations) are either global minima
of the free energy in (10) for a given value of V or only local
minima. The boundaries of the latter regions are analogous
to spinodal lines. Configurations are denoted by Roman
numbers which appear in the regions of the shape diagram
where these configurations are local or global minima.
We use brackets to indicate metastable states corre-
sponding to local minima.

For small ratios L⊥/L1, we find the bridges (labeled by
I) to have the lowest free energy. For larger values of
L⊥/L1, disconnected configurations with two channels are
more favorable. These can be symmetric (two identical
channels) or asymmetric (one channel and one bulged
channel) and are labeled by II and III, respectively. We
find a triple point for the bridges, I, and the two-channel
configurations, II and III, at the ratio L⊥/L1 = 2.70 and the
reduced volume V/L1

3 = 7.82. Two qualitatively different
mechanisms lead to destabilization of the disconnected
configurations II and III: (i) The exchange of liquid
between the two channels is included in the model as part
of the equilibrium conditions and, thus, is effective for
any value of L⊥. Such a instability gives rise to horizontal
“spinodals” in the shape diagram of Figure 10; (ii) If the
two channels touch each other, a bridge must be formed.
This latter mechanism depends on L⊥. The stability limit
of the bridges was detected by changing L⊥ or V in small
steps and minimizing the interfacial free energy after each
step. We estimate the relative error in the values at which
the interfacial shape becomes unstable to be less than 2%
for runs with constant L⊥. The relative error in the distance
of rupture is also smaller than 2% for runs with constant
V and increasing L⊥. To obtain these estimates, we
performed a series of runs using different interface
discretizations, that is, different size distributions of the
triangles forming the surface, and varied the step sizes
of the control parameter L⊥ or V.

VII. Summary and Outlook

In summary, we have studied the morphology of liquid
phases within chemically structured slit pores. For striped
surface domains, both the lattice gas models and the
effective interface models lead to liquid bridges which have
an anvil-like shape for a wide range of parameter values.
We also determined additional liquid morphologies con-
sisting of two disconnected channels, as discussed in
section IV.B. Another subtle aspect of our study is the
position of the contact line which can detach from the
boundary of the γ domain even for contact angle θγ ) 0
provided the (Râ) interface has negative mean curvature,
see sections III.B. and IV.A. To be specific, we have chosen
the terminology which is appropriate for a system close
to liquid-vapor coexistence. However, our results apply
equally well to two-phase coexistence in multicomponent
liquids for which the R and â phases are two different
liquids.

For simplicity, we have focused here on the simplest
geometry of the surface domains. Additional geometries
have been studied in ref 6 for bridges and channels with
constant cross section. These geometries include (i) relative
shifts of the two opposing stripes which act to shear and,
thus, to break the bridges and (ii) many parallel stripes
on both surfaces which lead to a whole cascade of
morphological wetting transitions. Likewise, one may
study the evolution of the wetting morphologies as one
tilts or rotates one surface with respect to the other. In
all of these cases, anvil-like bridges will again be present
for a wide range of parameter values.

Figure 9. Chemical potential µ in the lattice gas simulations
as a function of the number of particles N, for different values
of the ratio L⊥/L1. The width of the stripes, L1, is 10 lattice
units.

Figure 10. Shape diagram for the slit pore with L2/L1 ) 12 as
a function of the rescaled volume V and the rescaled wall
separation L⊥. The different morphologies of the channels and
the bridges in regimes I, II, and III are explained in section VI.
The coexistence curves and the metastability limits (or spin-
odals) correspond to the full and dashed lines, respectively.
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Appendix
To show the desired inequality M e 0, we choose a point

x0 of the contact line, LRâσ, lying in the interior of a γ
domain with θγ ) 0. A small part of the contact line around
x0 which is also located in the interior of the γ domain is
parametrized by a curve r1(t) where t is the arc length of
the curve with -|ta| < t < |tb| and r1(0) ) x0. Because we
assume the contact line to be smooth in the interior of the
γ domain, the tangent t1(t) and the curvature vector k1(t)
of this curve are defined for all t by

The contact line lies within the plane of the wall, which
implies that the tangent t1(t) and the curvature vector
k1(t) lie in the plane of the wall as well. From the theorem
of Meusnier, the normal curvature c1(x0) of the liquid
surface in the direction tangential to the contact line at
the point x0 is

with N̂Râ(x0) being the unit vector normal to the Râ
interface at the point x0, see for instance ref 27. Because
the contact angle θγ is equal to zero on the γ domain, the
vector normal to the wall, N̂σ, must be parallel to N̂Râ(x0),
which implies that c1(x0) has to be zero.

Let us now consider a cut through the surface of the
liquid by a plane perpendicular to the tangent vector t1(0)
at x0. The contour of the intersection between the liquid
surface and the plane close to the point x0 can be
parametrized by a smooth curve r2(t′), with t′ being the
arc length, 0 e t′ < η with η > 0, and r2(0) ) x0. By the
condition that the contact angle θγ is equal to zero in x0,
the tangent vector at the point x0, t2(0), has to lie within
the plane of the wall. Because the curve r2(t′) stays above
the planar wall, the curvature vector k2(0) of this curve
at x0 has to point toward the half-space above the planar
wall.

Because N̂Râ and N̂σ coincide at x0 for θγ ) 0, we find
the normal curvature of the Râ interface at x0 in the
direction perpendicular to the contact line, c2(x0), to be

Because the intersecting planes are perpendicular to
each other, the mean curvature M satisfies

List of Symbols

R vapor phase
â liquid phase
γ lyophilic substrate

δ lyophobic substrate
∆P pressure difference between the vapor and liquid

phase
ε coupling constant between particles in lattice gas
εγ coupling constant between particles and lyophilic

surface domains
εδ coupling constant between particles and lyophobic

surface domains
η positive real number
ΛT thermal wavelength
θ contact angle
µ chemical potential
µ0 chemical potential at bulk coexistence
µfluid chemical potential of the classical fluid
F particle number density
Σ interfacial energy
σ substrate surfaces or walls of the slit pore
Ω1 set of lattice cells adjacent to the walls
A surface
|A| area of the surface A
a lattice spacing in lattice gas
c normal curvature of the liquid surface
F free energy of all interfaces
F̂ free energy in the constant pressure ensemble
f frequency of a single cell configuration
H surface field in Ising model
HI Hamiltonian of Ising model
HLG Hamiltonian of lattice gas
I interval of real numbers
J coupling constant between spins in Ising model
k curvature vector
kB Boltzmann constant
LRâσ three phase contact line
L1 width of the γ stripes
L2 length of the γ stripes
L⊥ wall separation
l⊥ characteristic distance between the walls
M total magnetization in Ising model
M mean curvature
m magnetization per spin in Ising model
mp mass of a particle in the classical fluid
N number of cells in lattice model
N number of particles in lattice gas
n occupation number in lattice gas, n ) 0 or 1
N̂Râ normal to the liquid surface
N̂σ normal to the substrate
P pressure
r(t) parametrization of a curve
Sm local state around a particular lattice cell
s spin variable in Ising model, s ) -1 or +1
T temperature
t tangent vector of a curve
t arc length of a curve
V spatial region
|V| volume of the spatial region V
V volume of liquid phase
x0 point on the contact line
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t1(t) ) d
dt

r1(t) and k1(t) ) d2

dt2
r1(t)

c1(x0) ) -k1(0) N̂Râ(x0)

c2(x0) ) -k2(0) N̂Râ(x0) e 0

M ) 1
2

(c1(x0) + c2(x0)) e 0
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