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Structured Surfaces and Morphological Wetting Transitions
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Abstract. Recent theoretical and experimental studies have shown that structured surfaces, which contain patterns
of lyophilic surface domains, lead to morphological wetting transitions at which the wetting layer changes its shape
in a characteristic and typically abrupt manner. These transitions have been determined for several specific surface
domain patterns consisting of circular, striped, or ring-shaped domains, as well as for slit pores and slabs bounded
by striped surfaces. Such transitions are predicted to be rather generic and to occur for any type of structured surface.
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1. Introduction

The structured surfaces considered here consist of two
types of surface domains denoted by γ and δ. These
domains may form a variety of patterns as shown in
Fig. 1. The basic length scale of such a surface domain
pattern is provided by the linear size Lγ of the γ do-
mains. The spatial region above the structured substrate
is filled with a fluid phase denoted by α. In addition,
this region contains a certain amount of another liquid,
β, which wants to maximize its contact area with the
γ domains but tries to avoid the δ domains. Thus, the
γ and δ domains are lyophilic and lyophobic, respec-
tively, with respect to the β phase.

When a certain volume Vβ of the β phase is placed
onto the structured surface, it will form a wetting layer
which tries to maximize and minimize the contact with
the lyophilic γ and the lyophobic δ domains, respec-
tively. At the same time, the wetting layer will also try
to attain a state for which the area of the αβ interface is
as small as possible. These two contributions to the free
energy compete and lead, in general, to a morpholog-
ical wetting transition at a certain volume Vβ = Vc

of the β phase at which the shape of the wetting
layer changes in a characteristic and typically abrupt
manner [1–3].

This article is organized as follows. First, Section 2
contains a brief review of the various experimental
methods, by which one may construct structured sur-

faces, and describes three different types of experi-
ments, for which the volume Vβ of the β phase can
be varied in a controlled way. The systematic theo-
retical framework based on effective interface mod-
els is described in Section 3. One new aspect which
is emphasized in this section is that each pattern of
lyophilic γ domains can be characterized by a unique
volume Vγ . Section 4 discusses several types of sur-
face domain patterns and the corresponding wetting
morphologies: a droplet on a single surface domain, an
ensemble of droplets on several surface domains, chan-
nels and channel transitions, as well as bridges between
structured surfaces. The final chapter contains a brief
summary and an outlook.

2. Structured Surfaces and Wetting Layers

2.1. Construction of Surface Domains

A variety of experimental methods is available by
which one can create surface patterns with domain sizes
Lγ in the milli–, micro–, and nanometer range. In the
millimeter range, one may use screen printing tech-
nology in order to print hydrophobic coatings on glass
surfaces [4] or printed circuit board technology in order
to create lyophilic domains for molten tin-lead alloys
as used in soldering processes [5].

Several methods have been used to create struc-
tured surfaces with surface domains in the micrometer



106 Lipowsky

Figure 1. Top view of structured surfaces which contain lyuphilic
γ domains (grey) within a lyophobic matrix δ (white): (a) A regular
pattern of circular γ domains; (b) A regular pattern of quadratic
γ domains; (c) A pattern consisting of γ stripes; and (d) A large
quadratic γ domain containing smaller δ domains. The domain size
of the γ domains is denoted by Lγ .

range: (i) Elastomer stamps by which one can cre-
ate patterns of hydrophobic alkanethiol on metal sur-
faces [6–9]; (ii) Vapor deposition through grids which
cover part of the surface [10]; (iii) Photolithography
of amphiphilic monolayers which contain photosen-
sitive molecular groups [11]; (iv) Domain formation
in Langmuir-Blodgett monolayers transferred to solid
substrates [12]; (v) Unstable monolayers produced by
such monolayer transfer [13]; (v) Electrophoretic as-
sembly of colloids [14] or (v) Anisotropic rupture of
polymer films on top of a polymeric surface [15].

Furthermore, new experimental methods are being
developed in order to construct patterns with even
smaller domain sizes in the nanometer range. These
methods include lithography with colloid monolayers
[16], atomic beams modulated by light masks [17], mi-
crophase separation in diblock copolymer films [18],
or local oxidation of silicon surfaces induced by atomic
force microscopy [19].

2.2. Volume as Control Parameter

Now, consider such a structured surface in contact with
the bulk phase α, and let us place a certain amount of
β phase on top of this surface. In general, the α and the
β phase may represent any type of material and, thus,
can be fluid or solid. In order to be specific, we will
focus on the situation in which the β phase is a liquid
and the α phase is a vapor or another liquid.

After the β phase has been deposited on the struc-
tured surface, it will form a wetting layer which tries
to maximize its contact area with the lyophilic γ do-
mains, and, at the same time, to minimize the total area
of its αβ interface. Depending on the shape and the pat-
tern of these surface domains, the β phase may form
a variety of different wetting structures: a single drop,
which can have a nonspherical shape, a pattern of dis-
connected droplets, a perforated or continuous wetting
layer or even bridges between disconnected domains
within the substrate surface.

As mentioned in the introduction, the volume Vβ of
the β phase plays the role of a control parameter. This
parameter can be varied systematically in three types of
experiments which correspond to three different types
of equilibrium between the α and the β phase:

(i) The β phase is a nonvolatile liquid and the ex-
change of molecules between the α and the β

phase can be ignored on the relevant time scales.
In this case, the volume of the β phase is fixed and
does not change during the wetting process. If one
droplet of β phase is placed on a single lyophilic
γ domain, it will try to spread over the whole do-
main. The final state will usually correspond to
a state of minimal free energy. The situation is
somewhat more complex if the initial β drop is
large and covers several disconnected γ domains.
In such a situation, the state of minimal free en-
ergy may correspond to an ensemble of several β

droplets, but the β phase may not be able to attain
this state since it involves a change in its topology.
In other words, the rupture of the initial β drop into
several β droplets may represent a relatively large
activation barrier which prevents the β phase from
attaining its state of minimal free energy. In such
a situation, the wetting morphology represents a
state which is only locally stable or metastable.

(ii) The β phase is a volatile liquid which condenses
from a supersaturated vapor or liquid mixture α

onto the γ domains. Indeed, the activation barri-
ers for surface nucleation at the γ domains vanish
for small contact angle θ = θγ , and, thus, can be
much smaller than the activation barriers for ho-
mogeneous nucleation in the bulk α phase. The β

phase will then start to condense on these domains
even though the bulk phase α does not decay and
remains in its metastable state. In this case, the
total amount of β phase increases with time, but
if this growth process is slow, the resulting time
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evolution of the droplet morphology will corre-
spond to a sequence of equilibrium states. These
latter states have minimal free energy for a given
volume of condensed β phase; and

(iii) The β phase is a volatile liquid which is in thermal
and chemical equilibrium with the α phase. In this
case, the total amount of β phase is determined
by the total volume of the system and by the total
number of particles according to the usual Gibbs
rules.

3. Effective Interface Models

The different morphologies of the wetting layer can be
distinguished by the shape of the two types of inter-
faces bounding the β phase: (i) the αβ interface which
represents the contact region between the β and the α

phase, and (ii) the βσ interface which separates the β

phase from the structured substrate σ . The shape of
the βσ interface is taken to be fixed corresponding to
a rigid and inert substrate. The shape of the αβ inter-
face, on the other hand, is flexible and can adapt to the
underlying pattern of surface domains.

From the theoretical point of view, the shape of the
αβ interface is determined by the free energy of the
wetting layer. This free energy contains three different
contributions: the first contribution is proportional to
the volume of the β phase, the second to the area of the
αβ and the βσ interfaces, and the third to the length of
the contact line which represents the line of intersection
between the αβ interface and the structured surface.

3.1. Free Energy Contributions

The volume contribution to the free energy of the wet-
ting layer depends on the difference �P ≡ Pα − Pβ

between the pressures in the α and β phases. For a
given volume Vβ of β phase, the pressure difference
�P plays the role of a Lagrange multiplier which is
conjugate to the prescribed volume. If the α and β

phases are in thermal and chemical equilibrium, this
pressure difference is related to the chemical poten-
tials of the molecules. In the simplest case, one has
only one molecular species and, thus, only one chem-
ical potential µ = µ(T, P) which has two branches
µ = µα(T, P) and µ = µβ(T, P). The pressure dif-
ference is then given by

�P = Pα − Pβ ≈ [Nα − Nβ][µβ(T, Pβ) − µβ(T, P0)]

(1)

where Po = Po(T ) represents the pressure at αβ coex-
istence and Nα and Nβ are the particle number densities
of the two coexisting phases.

In addition to the pressure term, the volume free en-
ergy may depend on body forces such as gravity. In
the following, these terms will not be discussed explic-
itly even though one may easily incorporate them into
the theoretical description, see, e.g., [20]. In practise,
gravity becomes important as soon as the height of the
wetting layer exceeds the so-called capillary length

Lcap ≡ [2αβ/g�ρ]1/2 (2)

of the liquid where αβ is the interfacial tension of
the αβ interface, �ρ the difference in mass density
between the α and the β phase, and the gravitational
accelaration g = 9.81 m/s2. For water at room tem-
perature, one has αβ � 72 mJ/m2 and �ρ � 103

kg/m3 which leads to Lcap � 3.8 mm. Large droplets
sitting on a horizontal surface are flattened out by grav-
ity (which acts perpendicular to this surface) if their
height exceeds Lcap; they then assume the shape of a
flat ‘pancake’ with a thickness of the order of Lcap.

The second contribution to the free energy arises
from the interfacial tensions αβ and βσ of the αβ

and the βσ interface, respectively. Each of these two
contributions is proportional to the corresponding in-
terfacial area. In general, the β phase may consist of
several disconnected pieces which implies several dis-
connected segments of the αβ and the βσ interface.

The αβ interface, which separates two fluid phases,
is laterally homogeneous and thus characterized by uni-
form interfacial tension αβ . The βσ interface, on the
other hand, lies within the structured surface, which
is taken to be rigid and inert, but may have a chemi-
cally nonuniform composition. This leads to position–
dependent tensions βσ = βσ (x) and ασ = ασ (x)

where x ≡ (x1, x2) represents the surface coordinate of
the σ substrate.

Finally, the contact line, which may again consist
of several disconnected segments, contributes a free
energy term which is proportional to its total length.
The corresponding line tension will be denoted by �.
In general, this quantity can be positive or negative [21],
and may also depend on the surface coordinate x [3, 22].

3.2. Equilibrium Shapes of Constant
Mean Curvature

As explained in the previous subsection, we will focus
on wetting layers in the submillimeter regime for which
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the effects of gravity can be ignored. Minimization of
the total free energy then leads to the classical Laplace
equation and to a general Young equation. The Laplace
equation is given by

2Mαβ = Pβ − Pα = −�P (3)

which determines the mean curvature M of the (αβ)

interface.
In general, each point rI within the interface is char-

acterized by the mean curvature M(rI) ≡ [C1(rI) +
C2(rI)]/2 where C1 and C2 are the two principal cur-
vatures which are equal to the inverse curvature radii.
These two principal curvatures can be found as follows.
First, construct the unit vector N̂ normal to the interface
at the point rI . Next, consider a normal plane through
the point rI parallel to the normal vector N̂ . The contour
of the interface within this normal plane, the so-called
normal section, represents a planar curve for which one
may easily determine the curvature C at point rI . As
one rotates the normal plane around the normal vector,
the normal section and its curvature C at rI will, in
general, change. The two principal curvatures C1 and
C2 correspond to the minimal and the maximal values
of the curvature C of the normal section, respectively.
In more abstract terms, the two principal curvatures C1

and C2 represent the eigenvalues of the second funda-
mental form of the surface, and 2M = C1 +C2 is equal
to the trace of this form. This implies that M is invariant
under arbitrary reparametrizations of the surface.

The Laplace Eq. (3) has the remarkable consequence
that the mean curvature M has the same value for all
points within the αβ interface. This follows from (3)
since both the interfacial tension αβ and the pressure
difference Pβ − Pα are uniform for a fluid–fluid inter-
face. Note that the sign of M is opposite to the sign
of �P since the interfacial tension αβ > 0. Further-
more, the definition of M involves a sign convention
which is chosen in such a way that a spherical cap has
positive mean curvature M > 0.

The second equation obtained from the minimization
of the total free energy determines the contact angles
along the contact line. This generalized or modified
Young equation has the form [22]

αβ cos(θ(x)) = ασ (x) − βσ (x)

−�(x)Cαβσ − n̂ · ∇x�(x) (4)

where the variable Cαβσ is the curvature of the contact
line and n̂ is the unit normal vector which is perpendic-
ular both to the contact line and to the surface normal

N̂ at this line. The symbol ∇x is the 2–dimensional gra-
dient with respect to the coordinate x of the substrate
surface.

For contact lines which lie within a planar substrate,
the two line tension terms in (4) can be combined which
leads to

αβ cos[θ(x)] = ασ (x) − βσ (x) − ∇x · (n̂�(x))

(5)

If line tension can be ignored, the modified Young
equation has the same functional form as the usual
Young equation but with x-dependent interfacial ten-
sions ασ and βα [1]. Special cases of the line ten-
sion terms have been previously derived for planar
and homogeneous surfaces [23], for surface hetero-
geneities which are axially symmetric [24] and for het-
erogeneities which are translationally invariant with
respect to one surface coordinate [25]. The general
form of the line tension term as given by (4) and (5)
was first obtained in [22].

3.3. Reference Volume for Surface Domain Pattern

As emphasized, it follows from the Laplace Eq. (3) that
the stable and metastable states of the wetting layer are
characterized by shapes of constant mean curvature. A
similar shape problem is encountered (i) for soap bub-
bles [26] and (ii) for the surface of fluids which protrude
from several orifices of a tube [27]. From a mathemati-
cal point of view, the main difference between the shape
of bubbles and the wetting morphologies considered
here arises from the constraints which the underlying
pattern of surface domains imposes onto the position
of the contact line via the generalized Young Eq. (4).

The presice position of the contact line is, in general,
difficult to calculate. However, it is very instructive to
consider the limiting case in which this line is pinned
to the γ δ domain boundaries within the structured sur-
face, which implies that the contact area between the β

phase and the structured substrate surface is equal to the
area of the γ domains. One then has to calculate shapes
of constant mean curvature M with prescribed bound-
aries. For this problem, several mathematical theorems
are available which ensure (i) The existence of a con-
stant M surface as long as M is sufficiently small,
(ii) The nonexistence of such a surface if M is suf-
ficiently large, and (iii) The existence of two different
shapes with the same M , known as the ‘small’ and the
‘large’ solution, for an intermediate range of M values
[28–32].
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If one ignores exceptional cases, these theorems im-
ply that, for any prescribed position of the contact
line, there exists a shape of maximal mean curvature
M = Mmax. Therefore, if one considers the situation
in which the contact line is pinned to the γ δ domain
boundaries, any pattern of surface domains can be char-
acterized by a unique constant mean curvature shape
with M = Mmax. The volume of this latter shape pro-
vides a unique reference volume V = Vγ . Morphologi-
cal wetting transitions occur if the volume Vβ of the β

phase is of the same order of magnitude as Vγ .
It is instructive to discuss some examples. First,

consider the pattern of circular domains as shown in
Fig. 1(a). In this case, the maximal mean curvature
shapes consist of half spheres which have the same di-
ameter Lγ as the circular domains. Thus, the reference
volume Vγ is equal to Vγ = N (π/12)L3

γ where N
denotes the number of domains. For the long γ stripes
shown in Fig. 1(c), the maximal mean curvature shapes
are half cylinders the diameter of which is equal to the
width Lγ of the stripes. Finally, for ring–shaped do-
mains as studied in Ref. [5], the maximal mean curva-
ture shape is provided by nodoids.

3.4. Interfacial Versus Line Tensions

The relative magnitude of the free energy contributions
arising from the interfaces and from the contact line can
be estimated by dimensional analysis. As mentioned,
the contribution from the contact line is governed by the
line tension �. For a wetting layer with linear dimen-
sion Lβ , this free energy contribution is of the order of
Lβ�. The interfacial free energies, on the other hand,
are of the order of L2

βαβ which depends on the tension
αβ of the αβ interface. These two contributions are
comparable if the linear dimension Lβ of the wetting
layer is of the order of the characteristic length scale [3]

L∗
β ≡ |�|/αβ. (6)

Therefore, for Lβ � L∗
β , one can safely ignore the

free energy contributions arising from the tension of
the contact line.

The magnitude of L∗
β can be estimated from the ex-

perimentally observed values of αβ and �. The in-
terfacial tension αβ can be measured by a variety of
experimental methods; for water at room temperature,
one finds αβ � 72 mj/m2 as mentioned. A rough es-
timate for this interfacial tension can be obtained from
αβ � T/�2

mol where T is the temperature in energy
units and �mol represents a molecular length scale. For

�mol � 0.3 nm and room temperature, this leads to
αβ � 50 mJ/m2, i.e., to the correct order of mag-
nitude. Exceptionally small values for the interfacial
tension are observed close to a bulk critical point at
which the α and the β phase become identical.

The line tension � is more difficult to measure. In
fact, the numerical values for �, which have been de-
duced experimentally, vary over a wide range as given
by 10−11 J/m � |�| � 10−6 J/m [33–36]. In order
to obtain an intuitive understanding of this variation,
it is instructive to define an effective width �αβσ of
the contact line via |�| ≡ (T/�3

mol)�
2
αβσ . [3] The ob-

served range of |�|values then corresponds to the range
1 � �αβσ /�mol � 300 for the effective width of the con-
tact line. These different values for �αβσ presumably
reflect different types of small scale heterogeneities
which were present on the different substrate surfaces
used in the experiments.

As a typical example, consider an αβ interface char-
acterized by αβ � 72 mJ/m2 as appropriate for water
and a line tension |�| of the order of 10−9 J/m cor-
responding to an effective contact line width �αβσ �
3 nm. In this case, the characteristic size L∗

β as given by
(6) is � 30 nm, and contributions from the contact line
play no role for wetting layers with linear dimensions
in the micrometer regime.

3.5. Separation of Length Scales

The theoretical approach described above is rather ro-
bust since it depends only on a small number of pa-
rameters. Indeed, for a wide range of domains sizes
Lγ with L∗

β � Lγ � Lcap, the only relevant parameters
are the interfacial tensions (or the corresponding con-
tact angles). As explained in more detail below, this
approach has been used in order to determine the pa-
rameter dependence of the wetting layer morphologies
for a variety of surface domain patterns consisting of
circular domains [1], striped domains [2, 37], and ring-
shaped domains [5], as well as for slit pores or slabs
with striped surfaces [38, 39].

As one considers smaller surface domains with lin-
ear dimensions Lγ of the order of L∗

β , one should also
include the line tension terms. Since the contact line
sits directly on the substrate surface, its structure and
its tension will be sensitive to the local topography
and to the local composition of this surface. Thus, as
one studies smaller and smaller domain sizes Lγ and
looks at smaller and smaller wetting structures, addi-
tional length scales, which are related to the molecular
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structure of the substrate surface, will start to affect the
wetting behavior.

A particularly simple example is provided by very
thin wetting layers on substrate surfaces with an ide-
alized topography. If the wetting layer thickness � is
in the nanometer range, the layer experiences a body
potential arising from the molecular interactions with
the substrate. These interactions lead to an �-dependent
layer free energy. The corresponding disjoining pres-
sure was first studied by the Derjaguin school [40] and
can be calculated using the methods of statistical me-
chanics. For wetting of homogeneous and planar sur-
faces, such calculations have been performed both for
short-ranged [41, 42]. and for long-ranged forces [43–
45]. More recently, this approach has been extended to
structured surfaces using variational methods [46–52]
and computer simulations [53, 54].

On the molecular scale, the contact line corresponds
to the spatial region between a very thin wetting layer
close to the substrate surface, which is governed by
the molecular interactions with this surface, and more
distant segments of the αβ interface, which do not expe-
rience such interactions from the substrate. Therefore,
the effective width of the contact line will, in general,
depend on various molecular length scales such as (i)
The width of the γ δ domain boundaries; (ii) Additional
length scales related to quenched or frozen undulations
of these domain boundaries which increase the curva-
ture of these domain boundaries and can lead to folds
of the αβ interface emanating from the contact line
[3]; (iii) The correlation length for composition fluctu-
ations within a given surface domain which are taken
into account by the Cassie equation [22, 55, 56]; (iv)
The topographical roughness of the structured surface;
and (v) The intrinsic width of the αβ interface.

In the following, these various molecular length
scales, which may all contribute to the effective con-
tact line width, are assumed to be small compared to the
linear size Lγ of the surface domains. These molecular
scales are then irrelevant for the wetting layer mor-
phology and may be safely ignored in the theoretical
description.

4. Different Wetting Morphologies

4.1. Droplet on a Single Surface Domain

As a simple example, consider a single lyophilic γ do-
main which has a circular shape embedded in a lyopho-
bic δ matrix. If we place a small amount of liquid onto

Figure 2. Droplet on single lyophilic γ domain in a lyophobic δ

matrix: Depending on the droplet volume, the droplet state belongs to
regime (I) with contact angle θ = θγ , to regime (III) with θ = θδ , or
to the intermediate regime (II) in which the contact angle can freely
adapt its value within the range θγ < θ < θδ .

this domain, it forms a spherical cap with contact an-
gle θγ . As we add more liquid to this droplet, it grows
until it covers the whole γ domain. At this point, the
contact line sits on top of the surface domain boundary
γ δ. If we continue to add liquid, the contact area of the
droplet remains fixed while the contact angle grows un-
til it reaches the value θδ . Beyond this point, the droplet
starts to increase its contact area and to spread onto the
lyophobic matrix where it attains the contact angle θδ .

Thus, one must distinguish three different droplet
regimes (I)–(III), as indicated in Fig. 2. Regime (I)
corresponds to sufficiently small droplets which are
located within the γ domain and have contact angle
θγ . Regime (III) is given by sufficiently large droplets
which have spread onto the lyophobic matrix and have
contact angle θδ . For intermediate volumes, one en-
counters the droplet regime (II). In this latter regime,
the contact angle does not satisfy the Young equation.
Instead, the contact angle now fulfills the inequali-
ties [1]

θγ ≤ θ ≤ θδ for regime (II). (7)

In this regime, the contact line is pinned to the cir-
cular domain boundary and the αβ interface forms a
spherical cap. The latter shape is a simple example of
a constant mean curvature surface with a prescribed
boundary. It is not difficult to realize that the mean
curvature M is not monotonic with increasing droplet
volume but reaches a maximum value as the droplet at-
tains the shape of a half sphere, i.e., as the contact angle
attains the value θ = π/2. Thus, in this simple exam-
ple, the reference volume Vγ defined in Section 3.3
has the value Vγ = (π/12)L3

γ corresponding to a half
sphere of diameter Lγ .

For a circular domain boundary, it is difficult to en-
visage a shape which has a lower free energy than a
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spherical cap (in the absence of body forces as con-
sidere here). For regime (I) and regime (III), these caps
correspond to the usual droplet shapes for homoge-
neous γ and δ surfaces, respectively. In regime (II), on
the other hand, any shape for which the contact line is
partially pinned to and partially detached from the cir-
cular domain boundary will induce some folds along
the interface and, thus, should have a larger free energy.

The situation becomes more complex, however, if
the surface domain has a non-circular shape. In this
case, the contact line may consist of different segments
which are attached and detached from the γ δ domain
boundary, respectively. One example is provided by a
channel on a striped γ domain which develops a bulge,
see Section 4.3 below. If the contact angle θγ of the
lyophilic stripe is sufficiently small and the stripe is
sufficiently long, the bulge state of the channel is char-
acterized by a contact line which detaches itself par-
tially from the boundary of the lyophilic γ domain and
makes an excursion across the lyophobic δ matrix.

It is instructive to consider the limiting case of
strongly lyophilic and strongly lyophobic surface do-
mains with θγ = 0 and θδ = π , respectively. In this
situation, the αβ interface of the droplet is a constant
mean curvature surface with M > 0, and the contact
line cannot stay within the lyophilic γ domain [39].
Thus, there is no regime (I) and the contact line is
pinned to the γ δ domain boundary for small and in-
termediate volumes Vβ irrespective of the shape of the
γ δ domain boundary. For large volumes, on the other
hand, the contact line may detach partially from this do-
main boundary and make an excursion onto the lyopho-
bic surface with θδ = π . Similar behavior is found for
bridges within a slab bounded by two structured sur-
faces [38]. Irrespective of the precise behavior of the
contact line, the shape of the droplet will become more
and more spherical in the limit of large Vβ . This im-
plies that the mean curvature M decays for large Vβ

and, thus, exhibits a maximum as a function of Vβ for
any shape of the domain boundary.

4.2. Droplet Pattern on Several Surface Domains

The experimental procedures used to create structured
or imprinted surfaces typically generate whole arrays
or patterns consisting of many surface domains. There-
fore, let us consider a surface pattern consisting of
N identical surface domains, which are lyophilic with
θγ = 0, on an otherwise lyophobic surface with θδ = π .
For simplicity, the domains are taken to be circular. We

now place a certain amount of β phase onto these cir-
cular domains and look for the wetting morphology of
minimal free energy.

The droplets on the different surface domains must
all have the same mean curvature M because of the
Laplace equation 2Mαβ = Pβ − Pα as given by (3).
For a spherical cap, M is simply the inverse of the ra-
dius of the sphere. In addition, the contact area of these
droplets is fixed to be identical with the area of the
circular surface domains (since we look at the limiting
case with θγ = 0 and θδ = π and M > 0). This implies
that the ensemble of droplets can only consist of two
different types of droplets: small ones with contact an-
gle θsm and large ones with contact angle θla. If one
combines a small droplet with a large one in such a
way that they are pasted together along their flat con-
tact areas, one obtains a complete sphere which implies
θsm + θla = π .

One must now consider different arrangements con-
sisting of Nsm small and Nla large droplets with Nsm +
Nla = N as shown in Fig. 3. Somewhat surprisingly,
a systematic calculation of the corresponding free en-
ergies shows that only two of these possible arrange-
ments represent stable or metastable states [1]: (i) The
homogeneous droplet pattern, denoted by (A), consist-
ing of a chain of identical droplets see Fig. 3(a), and (ii)
heterogeneous droplet patterns denoted by (B) consist-
ing of only one large droplet and N − 1 small ones as
shown in Fig. 3(b). This pattern is N -fold degenerate
since the large droplet can sit on any of the N domains.
All other droplet patterns which contain two or more
large droplets are saddle points in shape space and must
eventually decay into the patterns (A) or (B).

The coexistence of the two morphologies (A) and
(B) is intimately related to the fact that the mean
curvature M of a single droplet exhibits a maximum
as a function of the droplet volume. Since this latter

Figure 3. Possible droplet patterns on a lattice of circular domains.
In each configuration, all droplets must have the same mean curvature
which implies that the small and the large droplet form a complete
sphere when pasted together along their flat contact area. Droplet
patterns such as (C) and (D) that contain more than one large droplet
are unstable and must decay either into the homogeneous pattern (A)
or into the inhomogeneous pattern (B) with only one large droplet.
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property holds for all surface domains as mentioned,
the (A) and (B) morphologies should be present for
any pattern of N domains with identical but arbitrary
shape. The same type of transition occurs for contact
angles θγ > 0 and θδ < π provided the wettability
contrast is not too small.

The transition from the (A) to the (B) morphology
can be understood intuitively if one considers the two
limits in which the volume Vβ is small and large, re-
spectively. In the limit of small Vβ , the β phase can
maximize its contact with the N lyophilic γ domains
without any constraint arising from the area of the αβ

interface. Thus, for small Vβ , the β phase will form
identical small ‘pancakes’ on all γ domains. However,
the total area of the droplet grows at least as ∼V 2/3

β and,
thus, becomes large for large Vβ . Therefore, as soon as
Vβ is large compared to Vγ , the β phase will prefer to
form one large droplet in order to minimize the area
of its αβ interface. Thus, the limits of small and large
volume Vβ lead to two different states, and one can an-
ticipate a morphological transition at an intermediate
value Vβ = Vc.

4.3. Channel Transitions

One example for a morphological wetting transition
which has been studied in some detail is the transition
of water channels on hydrophilic stripes as shown in
Figs. 4 and 5. [2]. The two micrographs displayed in
Fig. 4(a) and (b) show the state of the water channels
before and after the transition, respectively. Inspection
of this figure shows that each channel undergoes a tran-
sition from a state with uniform cross-section to a chan-
nel with a single bulge. These different states have also
been calculated within the theoretical framework de-
scribed above. Since the width of the lyophilic stripes
is 30 micrometers, the line tension contributions to the
free energy can be safely ignored. The bulge state was
calculated by numerical minimization using (i) avail-
able packages such as the Surface Evolver [57] and (ii)
a special code which was developed for the channel
geometry. As shown in Fig. 5, the theoretical shapes
agree rather well with the experimental observations.

In the experiments, the striped γ domains were cre-
ated by thermal vapor deposition of MgF2 onto a hy-
drophobic silicone rubber or thiolated gold substrate
through appropriate masks. The resulting hydrophilic
MgF2 stripes have a width of 30 µm and a contact angle
θ = θγ of about 5 degrees for water. Both the silicone
rubber and the thiolated gold had a contact angle θ = θδ

Figure 4. Channel transition of water channels on a striped surface.
(a) If the amount of water per channel is below the critical volume,
the channels are thin and homogeneous and their shape is given by
cylindrical segments; (b) If the water volume exceeds the critical
value, each channel develops a single bulge. The width of both the
hydrophilic and the hydrophobic stripes is 30 micrometers.

of about 108 degrees. The projected shape of the chan-
nel was studied by optical microscopy, the shape of the
contact line by surface plasmons. As shown in Fig. 5,
the contact line is found to detach from the hydrophilic
stripe and to make an excursion across the hydrophobic
surface domain.

The theoretical shapes have been determined by
mimization of the interfacial free energies of the wa-
ter channel. Contributions from the contact line can be
safely ignored since all linear dimensions of the water
channel are in the micrometer regime. Therefore, the
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Figure 5. Channel state with a bulge: Comparison of theory (left and experiment (middle) for the projected shape of the channel and for the
shape of the contact line. The drawing on the right shows the full 3-dimensional shape as determined theoretically.

only parameters which enter the calculation are the two
contact angles θ = θγ and θ = θδ of the hydrophilic
and hydrophobic domains, the geometry of the surface
domains, and the total volume Vβ of water condensed
onto these domains. Thus, the theory does not contain
any fitting parameter. In contrast to the experimental
observations, the theoretical calculations also provide
the full 3-dimensional shape of the bulge state.

Morphological transitions from a channel with uni-
form cross-section to a channel with a single bulge also
occur for ring-shaped surface domains consisting of an
annulus with a constant width [5]. In this latter case,
the appearance of the bulge spontaneously breaks the
rotational symmetry of the ring channel which implies
that the bulge position is degenerate. Therefore, angu-
lar displacements of this bulge do not cost any (free)
energy, and the corresponding interface deformation
represents a ‘soft mode’ which should be observable
for domains in the micrometer regime.

As explained before, the wetting structures consid-
ered here are not subject to external body forces such
as gravity which act directly on the sub-volumes of the
β liquid. The latter forces accelerate the β liquid and
may explicitly break the symmetry of the wetting ge-
ometry, see, e.g., [58]. In contrast, the morphological
transitions described here lead to spontaneous symme-
try breaking which is not related to an external force
field.

4.4. Bridges in Structured Slit Pores and Slabs

Another geometry which can be realized experimen-
tally are slit pores and slabs bounded by structured
surfaces [4, 19] The first theoretical studies addressed
sinusoidally structured substrates which were investi-

gated by Monte-Carlo simulations [53] and by varia-
tional methods [47]. These systems also exhibit mor-
phological wetting transitions as first pointed out in
[38].

The simplest pattern of surface domains consists of a
single pair of opposing lyophilic stripes, see Fig. 6. The
two surfaces are separated by L⊥, the two γ stripes have
width Lγ , lie parallel to each other but may be displaced
by �L as indicated in Fig. 6(c). If a certain amount of β

phase is placed within such a structured slab, this liquid
forms a bridge connecting the two stripes as long as the
surface separation L⊥ is sufficiently small, see Fig. 6(a)
and (b). For larger values of L⊥, this bridge will break
and form two separate channels as in Fig. 6(c).

If the striped surface domains are relatively long,
one may ignore effects arising from their ends. In such
a situation, the wetting morphologies are translation-
ally invariant parallel to the stripes and are completely
determined by their cross-section as shown in Fig. 6.
However, if one takes the finite length of the surface
stripes into account, one often finds bridges which are

Figure 6. Different β phase morphologies within a slit pore or
slab bounded by two structured surfaces which contain a lyophilic
γ stripe: (left) ‘Out’ bridge with positive mean curvature; (middle)
“In” bridge with negative mean curvature; and (right) Broken bridge
or 2-channel state. The width of the γ stripes is Lγ , the two surfaces
have separation L⊥, and the two stripes may be displaced laterally
by �L .
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localized in space and, thus, are far from any transla-
tionally invariant state [39].

As one varies the surface separation L⊥ or the lat-
eral displacement �L for fixed volume of β phase,
the bridge will deform and will then induce certain
restoring forces. For �L = 0, this restoring force acts
perpendicular to the surfaces and can be calculated via
K⊥ ≡ δFbr/δL⊥ where Fbr is the free energy of the
bridge state. The perpendicular force K⊥ vanishes for
a certain separation L⊥ = L⊥0 which corresponds to
a minimum of the bridge free energy and to a char-
acteristic contact angle θ = θ0 where θ is defined in
Fig. 6(b). This angle satisfies the simple relation [38]

tan θ0 = −Lγ /L⊥ for �L = 0. (8)

Thus, if one of the two surfaces can move in response
to the force arising from the liquid bridge, the contact
angle will spontaneously assume the value θ = θ0. This
optimal bridge will be an ‘out’ bridge as in Fig. 6(a).
since the relation (8) implies π/2 < θ0 < π .

In the case of many stripes on the two opposing sur-
faces of the slab, one has a whole sequence of mor-
phological transitions at which more and more bridges
break as one increases the surface separation L⊥ [38].

5. Summary and Outlook

In summary, structured surfaces which contain patterns
of lyophilic surface domains generically lead to mor-
phological wetting transitions. For a single surface, any
pattern of lyophilic γ domains can be characterized by
a reference volume Vγ corresponding to a unique con-
stant mean curvature shape. The latter shape is defined
by two properties: (i) The contact line is pinned to the
γ δ domain boundaries which implies that the contact
area between the β phase and the substrate surface is
equal to the γ domains; and (ii) The mean curvature at-
tains its maximal value M = Mmax. If a certain amount
ofβ phase is deposited on such a surface, it will undergo
a morphological wetting transition at a certain volume
Vβ = Vc which is of the same order of magnitude as
Vγ .

For two structured surfaces bounding a slit pore or
slab, the corresponding reference volume Vγ may be
defined to be equal to the sum of the two reference
volumes for the two surfaces. In this case, one has ad-
ditional bridge states which exert forces on the two op-
posing surfaces. For a fixed amount of β phase, these

forces vanish for a characteristic separation of the two
surfaces corresponding to a characteristic contact an-
gle θ = θ0 of the bridges. For a single pair of opposing
stripes, this contact angle is given by (8).

The morphological transitions discussed here occur
for a wide range of domain sizes Lγ from the millime-
ter to the nanometer regime. For intermediate domain
sizes between the capillary length Lcap, which is of
the order of millimeters, and the characteristic length
scale |�|/αβ , which is typically tens of nanometers,
the morphology of the wetting layer is primarily deter-
mined by the different interfacial tensions or the corre-
sponding contact angles. The various examples which
have been discussed explicitly in Section 4 belong to
this intermediate size regime.

It is straightforward to extend these calculations to
domain sizes, which are large compared to the capillary
length Lcap. One then has to include gravity which acts
as a body force and will flatten and/or distort the wet-
ting morphologies depending on the orientation of the
substrate surface. Likewise, one may study very thin
wetting layers which experience a body potential aris-
ing from the molecular interactions with the structured
substrate.

In this article, I have focussed on the situation in
which the β phase is a liquid and the α phase is a va-
por or another liquid. However, morphological wetting
transitions also occur if the wetting phase β is a solid.
In this case, the αβ interface has an anisotropic tension
and may be affected by elastic strains. Thus, the corre-
sponding shapes are more difficult to calculate but this
does not change the presence and the overall charac-
ter of the transition. One model system for which such
transitions have been explicitly determined is the sim-
ple cubic lattice gas which is also known as the Kossel
crystal. [59] Another process which involves morpho-
logical wetting transtions is surface melting adjacent
to a structured substrate.

Finally, wetting of structured surfaces also leads to
interesting time-dependent phenomena as studied in
[60–62] and is relevant for many applications such as
microreactors [3, 63] and microfluidics [13, 64, 65].
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