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Wetting morphologies on substrates with striped surface domains
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The wetting and dewetting of chemically structured substrates with striped surface domains is
studied theoretically. The lyophilic stripes and the lyophobic substrate are characterized by different
contact angles, and 6, respectively. We determine the complete bifurcation diagram for the
wetting morphologiesi) on a single lyophilic stripe andi) on two neighboring stripes separated by

a lyophobic one. We find that long channels can only be formed on the lyophilic stripes if the contact
angled,, is smaller than a certain threshold valgig(V) which depends only weakly on the volume

V and attains thdinite value 6.() in the limit of largeV. This asymptotic value is equal to
Ocn() = arccosgr/4)=38° for all lyophobic substrates with;= /2. For a given value o®,
<#6(), the extended channels spread onto the lyophilic stripes with essentially constant cross
section. ©2002 American Institute of Physic§DOI: 10.1063/1.1506003

I. INTRODUCTION an essentially constant cross section or exhibit a single
bulge? Each channel has two ends which are bounded by
Many experimental methods have been developed bghort, transverse segments of the contact line.
which one can prepare chemically structured substrates that In our previous work?® we have studied lyophilic
exhibit patterns of lyophili¢or liquid attracting and lyopho-  stripes of finite length which areompletelycovered by the
bic (or liquid repelling surface domains. The linear size of wetting liquid. In such a situation, all segments of the contact
the surface domains can be varied over a wide range dfne are pinned to the boundary of thelomain, and the two
length scales from the millimeter down to the nanometerends of the channel have a fixed position, which is deter-
regime. We have recently shown that such chemically strucmined by the two ends of the underlying stripe. In the
tured surfaces lead tmorphological wetting transitionsit  present article, we will study a different situation corre-
which the wetting layer changes its shape or morphology irsponding to long lyophilic stripes which are onpartially
a characteristic and typically abrupt manhet. covered by the liquid as qualitatively discussed in Ref. 21.
A rather simple pattern of surface domains is given byOne again finds channels but the boundary condition at the
lyophilic stripes+y separated by lyophobic stripes Striped  two channel ends is rather different. Indeed, these two ends
domains in themillimeterrange can be created using screencan now move along the stripe, and the transverse segments
printing technolog$ or printed circuit board technologyin ~ of the contact line are characterized by fixed contact angle
order to obtain stripes with a width in timeicrometerange, 6=46,,.
one may use elastomer stanip&® vapor deposition through The different morphologies on a single lyophilic stripe
grids? photolithography of amphiphilic monolayets,do-  which is only partially covered by the wetting liquid are
main formation in Langmuir—Blodgett monolayéfselec-  displayed in Fig. 1. Four such morphologies must be distin-
trophoretic assembly of colloidé,or anisotropic rupture of guished:(I) a small spherical caf]l) an elongated channel
polymer films!® Finally, stripes in thenanometerrange state,(lll) a localized droplet which has no contact with the
could be produced wusing lithography with colloid lyophobic matrixs, and(IV) a localized droplet with a con-

monolayers?® atomic beams modulated by light masksni-  tact area which overlaps with th&domain.

crophase separation in diblock copolymer filfigr local One surprising result of our analysis is that the contact
oxidation of silicon surfaces induced by atomic forceangle ¢, on the lyophilic stripe exhibits a threshold value
microscopy'® Or(°) which separates two different wetting regimes. These

In general, the lyophilic domains, denoted fayand the  two regimes are characterized by qualitatively different be-
lyophobic substrate, denoted I8y are characterized by dif- havior as one deposits an increasing amount of liquid onto a
ferent contact angleg, and ¢, respectively. These contact single lyophilic stripe. If the stripe has contact angle
angles apply as long as the contact line is located on these 6.(«), the wetting layer forms a channel which becomes
two different surface domains. If the size of the wettinglonger and longer as one deposits more and more liquid. For
droplet is comparable to the domain size, it often happensf,> 6.,(«), on the other hand, such a long channel cannot
however, that the contact line @nnedto the y§ domain  be attained but only a short one which gradually transforms
boundary. In the latter situation, the contact angles not  into a localized droplet. In other words, it is easy to “paint”
fixed but may attain any value in the intervi) < 6< 5. long vy stripes provided),, < 6.,(c) but it isimpossibleto do

In the following, we will consider lyophilic surface do- so for 6,> 6.().
mains that have the shape of elongated stripes. When located For two neighboring lyophilic stripes separated by an
on such a stripe, the liquid forms a channel which may havéntervening lyophobic one, we find four morphologiés)
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between the two fluids has the same value at all points of the

fluid—fluid interfaceA, ; with surface are@A, 4. The inter-
facial free energy is then given by

f{AaB}:EaﬁlAaﬁl+JA dzx[zaa(x)_zgﬁ(x)]u (1)
apB

which is afunctional of the shape and position of thes
FIG. 1. Different liquid morphologies on a single lyophilic strige. small interface A g
spherical caffor reduced volumé//L3=0.1 and contact angle,=70°); ap . . .
(I) extended channéfor V/L3=5 and 6,=35°); (Ill) droplike state with The spatial re_glom/_ﬁ _OCCUpIed by the phasg is
contact line pinned to the surface domain boundéor V/Lf=1l, 0, bounded by the fluid—fluid mterfao%‘aﬁ_ and the Wett(_ad sur-
=40°, andf,=180°); (IV) Droplike state with contact line depinned from face of the substrated,;. Stable liquid morphologies are

the domain boundargfor V/L$=11, 6,=40°, and@s=130°). local minima of the interfacial energyl) under the con-
straint that
[Vel=V, )

an asymmetric small bridg€B) a long channel that covers
all three stripes(C) a localized bridge between the two lyo- i-€., for constant volum¥ of the 8 phase.
philic stripes, the contact line of which is pinned to the outer I the pressure differenc&éP=P ,— Pz between the two
boundaries of these stripes, af) a localized bridge with a  fluid phases is prescribed instead of the volumestable
contact line, which is detached from those surface domaifnorphologies are obtained as a minima of the free energy
boundaries. ~

Our article is organized as follows. We first introduce F{Aaﬁ}=2aBIAaB|+f A2X[ 3 0(X) =2 4 5(X)]
our theoretical framework and define the geometry of the Aap
striped surface domains in Sec. Il. We then determine the +AP[Vy|. (3)
different morphologies for a single stripe in Sec. Il where )
we numerically calculate the corresponding bifurcation dia- ' the volume ensemble, the pressure differeAéebe-
gram as a function o, and liquid volume. In Sec. IV, we Ween the phases represents a Lagrange multiplier, which
classify the wetting morphologies for two lyophilic stripes pecomes a function of the volumg for a minimal configura-
separated by an intervening lyophobic one and discuss tH&n ©f Ea. (1) under the constrain(2). The two sets of
corresponding morphological wetting transitions. In the lasEXtremal configurations are identical for both free energy
Sec. V, we derive stability criteria for the different wetting

functionals. In fact, all minimal configurations in the pres-
morphologies and calculate the valdg(=) for the (meta-  SUre ensemble are minimal configurations in the volume en-
stability limit of the channels in the limit of large volumes.

semble as well. The inverse relation is not necessarily true.
Thus, let us consider the pressure differeneg—P,
=—AP as a function of the volum& along a branch of

Il. THEORETICAL APPROACH morphologies, which are staple _in the yolume ensemble. If
S _ ) ) —AP=—AP(V) decreasesawith increasingV, the corre-
A. Minimization of interfacial free energies sponding morphologies cannot be stable in the pressure en-

In generaL the Shape of a ||qu|d drop|et on a solid sub_semble. One r8|atiV8|y Simple example for this situation is
strate reflects a variety of intermolecular forces and externarovided by a spherical liquid droplet, which is immersed in
constraints. In the following, we will ignore the effects of its vapor phase.
gra\/ity_ This app”es to drop|ets which mma”compared to The condition of Stationarity for the interfacial free en-
the so-called capillary length. For water at room temperature€rdy (1) under the constraint of constant volume of the liquid
the capillary length is about 3.8 mm. In addition, the dropletsPhase(2) leads to the Laplace formula
are taken to béarge compared to those microscopic Iength_ 23, M=P,—P, (4)
scales that are related to the small-scale structure of the dif-
ferent interfaces. In general, there are several such lengfi¢lating the pressure differené®;— P, across thexg inter-
scales such as the thermally excited roughness of the liquidface to the surface tensia, ; and the mean curvatuid of
vapor interface or the frozen roughness of the solid substratéle o3 interface, and to the Young equation

Finally, the droplets are also taken to be large compared to S -y
the correlation length of density fluctuations within the lig-  cosg= ME—UB (5)
uid, i.e., we stay away from any critical point of the liquid. ap

Under these simplifying assumptions, the shape of the dropexpressing the mechanical balance of interfacial tensions at

lets is primarily determined by their interfacial free energiesthe three-phase contact lin@.is the contact angle of the

or tensions. liquid phase to the substrate. Liquid configurations which
Now let us consider two fluid phasesand 8 (“liquid satisfy conditiong4) and (5) are extremaof the interfacial

and vapor” or “oil and water’) which are brought into con- free energy(1) under the volume constrai®) and not nec-

tact with a chemically structured planar substr@t@he sur-  essarily localminima

face tension ,; andX ,, of the fluid-substrate interfaces At each point of the three-phase contact line, the contact

depend on the positionwhereas the interfacial tensidh,;  angle 6 of an equilibrium configuration is uniquely deter-
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forces on each vertex of the triangulation driving the mesh to
a minimal configuration. During the minimization procedure,
the volume enclosed by the polyhedral surface has to be held
constant. Global constraints such as the volume constraint
are taken into account by additional Lagrangian forces acting
on the vertices, which are calculated at every minimizing
step. Deviations of the actual volume from the targeted vol-
ume accumulate during the calculations so that the targeted
volume has to be restored after every step in the minimiza-
tion procedure. To investigate the morphological bifurcation
FIG. 2. Stripe geometry of chemically structured substrate with lyophilic on a single lyophilic stripe W.e fixed .the height pf the center
and lyophobics domains. The width of these two domains is denoted. by of mass above the surface in certain runs. This global con-
andL, , respectively. straint allowed us to control the morphologies close to the
bifurcation point. Vertices and edges belonging to the contact
line are constrained to stay in the plane of the substrate.
mined by its position on the substrate if the interfacial ten-additional forces are applied to these vertices coming from
sions of the interfaces between the fluid phases and the suthe position dependent surface tensions of the structured sub-
strate vary smoothly. strate. Swapping of edges between different vertices is used
For those segments of the contact line that coincide withn order to avoid the formation of long and thin triangles in
a sharp boundary between a lyophilic domairand a lyo-  the mesh, which often cause stalling of the minimization
phobic domains, the Young's Eq/(5) is violated and has to  routine. Triangles can be added or removed from the model
be replaced by an inequali),< é< 6, as first pointed out in order to keep the size distribution of the edges in the
in Ref. 1. In the latter case, the equilibrium contact ar‘@l&‘e desired range. To monitor the morpho|ogy during the mini-
determined by the shape of theg interface at the minimal  mization and to decide if a stationary configuration was
configuration. reached, parameters such as the maximal height of the fluid—
B. Stripe geometry fluid interface above the substrate can be extracted from the

i ) triangulation.
To proceed, let us define the basic geometry of our sys-

tem which consists of a lyophobic substrate decorated with

lyophilic stripes, see Fig. 2. We assume that both the lyo-

philic v and the lyophobics domains form a single planar

surface, i.e., we ignore the topographical roughness that mdy)- WETTING OF ONE LYOPHILIC STRIPE

arise from the chemical inhomogeneity. The contact angles . . . o )

6, and 0, of the Iyophilic and lyophobic domains satisfy _ In this SF.,'(.ZIIOH,. we describe the liquid morphologles.orj a

0=6,<6,=m. In some cases, we will focus on the limiting smgle lyophilic stripe. We 'have found that'one must distin-

case of a completely lyophobic substrate wdth= 7 in order gwshfqur s_uc_h morpho_logles. In or_der to discuss these mor-

to eliminate one parameter from the problem. phologles_,_ it is _convenlent to consider the contact aqgle_ on
The stripe width is denoted by, . All stripes are suffi- the Iyoph|:I3|c striped,, gnd the reduced volume of the liquid

ciently long, so that the liquid phase that spreads along thBNaseV/L as the basic control parameters. In the absence of

stripe cannot reach the end of the striffer 6,>0). The topographic gnq chemical defects, which may act as pinning

distancel, between two stripes corresponds to the width ofc€Nters, all liquid morphologies can move freely along the

the lyophobic stripe between the lyophilic ones. direction of the lyophilic stripe. _
First, we discuss the parameter values for which one

encounters these different morphologies in a qualitative man-

ner. As one varies one of these parameters in a systematic
Minimal configuration of the interfacial free energ¥)  way, one may encounter a morphological transition. In the

under the volume constraiti) can be constructed analyti- present case, such a transition occurs between the channel-

cally whenever high symmetries of minimizers are expectediike state(Ill) and the bulgelike stat@ll ). The locus of these

But even for a high symmetry of the underlying substratetransitions has been determined over a wide range of param-

pattern, such as in the present case for stripes, one findgers as described in Sec. Il B.

enerically configurations which break this symmetry. In or- . - .

ger to stu?jly thesge systems in detail numeric)elll meth}(/)ds havpé' Classification of liquid morphologies

to be employed. For low volumes and arbitrary contact angle on the
Afirst step to tackle this problem is to apply dynamically lyophilic stripe, the droplets have the shape of spherical seg-

triangulated surfaces in the minimization procedure, whichments, which corresponds to the morpholdgyin Fig. 1.

can adapt to the final configuration. We mainly used the alThe three-phase contact line of these droplets has the shape

gorithm “surface evolver 2.14,” a free software developedof a circle, which may touch the boundary of the stripe in

by Brakke in the beginning of the last dec&daVithin this  one or two points. As the volume of the liquid phase is in-

numerical algorithm, the liquid interface is discretized andcreased, the fraction of the contact line, which is attached to

replaced by a mesh of triangles. The surface tension exerthe ys-domain boundary, grows. This attachment of the con-

tL,

< =<

L,

C. Numerical methods
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tact line from theys-domain boundary to the lyophilic stripe, 14 - Y
which may arise from a change of the parameteysor 12 hY 0 '
3 . . L N ch ¢
V/L7, doesnot lead to a discontinuous change of the liquid {
morphology. This is also true for the reverse process, i.e., for 10 :
the detachment of the contact line from the domain boundarye. 0, R §
in this small volume regime. Thus, there are no hysteresis> 8 . ¥
effects as the spherical droplet is transformed into a more ¢ 3
elongated channel. ~ N i
For larger vqumes\//Lf and sufficiently small contact 4 In "
anglest, < 6.,(V), two typical liquid morphologies(lI) and 5 D
(1), appear, which exhibit a contact line being partially at- {
tached to theys-domain boundary. These two morphologies 25 25 275 30 325 35 315 a0
(I and (lll) correspond to channels and to more droplike GY/deg

bulges, respectively, see Fig. 1.
For sufficiently large volume//L3, channel configura- FIG. 3. Bifurcation diagram for liquid morphologies on one lyophilic stripe.

tions have an almost constant cross section perpendicular {de two parameters, andV/Lf are the contact angle on the lyophilic stripe
the substrate and the stries. which is verv close to a se me%ﬁd the reduced volume of the liquid phase, respectively. The contact angle
u Ipes, which 1s very g the lyophobic substrate has the limiting valig= =. The roman num-

of a circular disk(as long as one does not approach the endsers (1), (1), and (i) correspond to the different droplet morphologies
of the channél In this regime, the maximal heigh,,, of introduced in Fig. 1. The full line witd= 6, represents the line of discon-
the channel is found to be of the order of the half—WiUli_MZ tinuous transitions from channel staigy to bulge stateglll ). The dashed

. . lines with 6= 6, and 8= 6., represent the instability lines for these two
of th_e |y0ph||.IC stripe, and the mean curvattl_)fleof the chan- morphologies. l'jlyhe dotted CI?nespare analytical estim)alltes for these instability
nel is nearlyindependenbf its volume provided the length jines as obtained in Sec. V below.
of the channel is much larger than the. Thus, as one adds

more liquid to such a channel, it grows at its ends without

changing its shape, and its mean curvatiteés primarily  morphological transitions from channel staté) to bulge

determined by the contact ang?e; on the Iyop_hilic stripe. state(lll). This line will be denoted by, = 6, (V) and cor-
In contrast, the bulge configuratighl ) attains the shape responds to the full line in Fig. 3.

of a spherical segment in the limit of large voluieand its Since the transition between channély and bulges
mean curvaturé/ decays to zero abl~1N** for large V. (M) is discontinuous, these two morphologies ameetg-
Furthermore, changes of the contact angledo not affect  staple for a certain parameter range beyond the transition
the mean curvature of the bulge significantly for lalde  |ine, The channel statél) is (metastable up to the instabil-
However, in the large volume limit, bulge configurations ity line 6.= 6,(V), which corresponds to one of the dashed
(IV) with partially detached contact lines start to appeariines in Fyig. 3. Likewise, the bulge stat#l ) is (metastable

Such a partial detachment is even found for liquids, whichyown to 9. = 0p,(V). Thus, for 6,(V)< 6.,<0.(V), both
are perfectly nonwetting on the lyophobic substrate, i.e., formorphologyies(ll) and(lll) can coexist. 7

Os=. Itis aIsp interesting to mentio_r) that the det_achm_ent The transition lined,= 6, (V) and the two instability
of the contact line relat_ed to Fhe transition from configurationj;,eg given by6, = 6,(V) and 6, = 6,(V) merge in the bi-
(1) to (IV) can occurin a dlsciontlnuous way. For the con-fyrcation point @,V,) with the numerically determined
tact _anglesey=4(_)_ andds=90°, for examplea, such a dis- \g)ues 0, ~=39.2° andvcr/Lf:2.85, see Fig. 3. Fom,
continuous transition occurs at the voludel1=1.42; the  ~ 4 the system does not exhibit a morphological transition
correspongmg hysteresis loop covers the volume intervayom channel statéll) to bulge statglll) but a gradual and
1.37<V/Li<1.61. smooth change from an extended to a more localized droplet.
The instability lined, = 6(V) for the channel state$l)
behaves in a peculiar and surprising way sifggV) attains
the asymptotic valu@.,()=38.2° in the limit of largeV,
see Fig. 3. This implies that the channel stdtbsare acces-
Since the droplets in regim@) are spherical caps, one sible for arbitrarily high volume of the liquid phase as long
can easily determine the parameter values for which thesas the contact angle on the lyophilic stripe satisfi
droplets touch the domain boundaries of the stripe. As men= 6.(«). Inspection of Fig. 3 also shows that the instability
tioned, the corresponding transition between drogletand  line 6,= 6,(V) for the bulge statedlll) decreases with in-
channeldll) does not exhibit any hysteresis effects. A tran-creasingV. For both instability lines, we will derive analyti-
sition between channel@l) and bulges(lll), on the other cal estimates in Sec. V below; these estimates correspond to
hand, is characterized by a discontinuous change of ththe dotted lines in Fig. 3.
maximal height },,, of the liquid phase above the substrate, So far, we have considered the volume as the basic con-
as can be seen by inspection of Fig. 1. Such a transitiotrol parameter. Another way to explore the bifurcation dia-
occurs as one varies the liquid volurivefor fixed contact gram shown in Fig. 3 is provided by variations of the contact
angled,,, provided this contact angle does not exceed a cerangle 6., for fixed volume. There are several experimental
tain critical valued,= 6.,. Thus, in the two-dimensional pa- methods to obtain such a variation. Indeed, any control pa-
rameter space spanned ¥yandd,,, one has a whole line of rameter that affects the interfacial tensipp will also af-

B. Morphological transitions and bifurcation diagram
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fect the contact angle since the Young'’s equat®nmplies
cosf,~1/%,,. One way to reduce the interfacial tension  o.125 (a)
2 ,p and, thusé,, is by adding surfactant molecules to the

system. This procedure is essentidtigversiblesince it is, o7
in general, difficult to remove the surfactant again. One ¢
method to vary the contact angle inreversiblemanner is )
provided by electrowetting, i.e., via the application of elec- &

tric fields as described by the Lippmann equation, see, e.g.  0.025
Ref. 23.

)

0.1

0.075

0.05

0

Channel Bulge

C. Unfolding the bifurcation 0.15 0.2 0.25 043 0.35 0.4

The numerical calculation of the liquid morphologies al- leom/ L1

lows us to apply additional global constraints to the shape of 6.15
the fluid—fluid interface. These additional constraints yield (b)
further control parameters, which can be used to resolve, 0/ ~ g
“unfold,” the bifurcation. One possibility is to apply a con- Y
straint to the maximal height,},, of the droplet but this often 2
leads to numerical instabilities; fixing the position of a single = 6.05

vertex, e.g., typically leads to thin, hairlike configurations of -
the surface around this vertex. Instead, we found it more

convenient to apply such a constraint to the height ¢f the 6.00
center of mass of the liquid.
Indeed, it is possible to keep the heightlat a constant 015 02 025 03 035 04
value during the minimization procedure. In this way, the L./ L,
variable |, provides a useful order parameter for the bifur-
cation. Plotting the minimal value of the interfacial free en- 18.25 ©)

ergy F(lcom for a giveno,, andV/Li’ under the constraint of
a fixed Lo, as a function of §,,, we find stable morpholo- - 18
gies as minima of that function, see Fig. 4. Furthermore, thesy
maximum between two minima represents the interfacial free &
“ H ” : H H : N
energy of a “mountain pass” configuration which fulfills the = 17.5
condition of Laplace and Young as well. Inspection of Figs. 3

17.75

and 4 shows that the bifurcation is of a cusp type correspond: 172 Bulge

ing to the formation of a double well potential from a single 17 Channel

well potential. Close to the bifurcation point, this potential is

anomalously flat as shown in Fig(b}, and the shape of the 0.2 0.4 | 0.6/ L 0.8 1
1

com

droplet will undergo large thermally-excited fluctuations.

FIG. 4. Interfacial free energl of the liquid layers as a function of the

IV. WETTING OF TWO LYOPHILIC STRIPES distance J,, of the center-of-mass from the substrate surféaefor contact
L . . ) ) angle#,=38° and several values of the reduced volwtie$. Each curve
Liquid morphologies, which are in contact with more has been shifted in such a way tfaequals zero at its global minimurth)

than one lyophilic stripe, appear on the striped pattern as thelose to the bifurcation point at,= f,~39.2° andV,,/L3=2.85; and(c)
volume of the droplets is increased. For simplicity, we will €10s€ to the transition point a,=30° andV/L3=10.
discuss only those liquid bridges which connect two neigh-
boring lyophilic stripes and, thus, spansagle lyophobic
stripe on the planar substrate. main pattern is spontaneously broken and the droplet is
shifted towards one of the lyophilic stripes. The correspond-
ing equilibrium shapes are characterized by contact lines
For small separationis, of the two lyophilic stripes and which are partially pinned to thgs-domain boundary or are
for small volumesV of the 8 phase, one encounters the drop-even partially pushed onto thdomain. On the other hand,
let morphology denoted byA) in Fig. 5. In this case, the no stable bridges were found for those volunvesr which
droplet has a shape which is close to a spherical cap, but it isne can accommodate the whole droplet on one of the lyo-
asymmetric with respect to a plane whicHiisperpendicular  philic stripes without touching thes domain boundaries.
to the substratgjji) parallel to the striped domains, afid) For small separatioh, and large volume/, two types
located in the middle between the two lyophilic stripes.of bridges exist in complete analogy with the droplet con-
Thus, a narrow lyophobic stripe separating two lyophilicfigurations on a single lyophilic stripe: Channellike bridges
ones has a relatively small overall effect on the droplet morare denoted byB) in Fig. 5 with an almost cylindricaks-
phology, but if the extensioB of the droplet is in the range interface and bulgelike bridges denoted () and (D) in
L,<D<2L4, the reflection symmetry of the underlying do- Fig. 5. The two bulgelike bridges are distinguished by the

A. Classification of liquid bridges
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B. Disconnected morphologies

As one increases the separation for fixed volumeV,
the bridge state becomes more and more unfavorable and
must eventually rupture. As explained before, the stripes
considered here are rather long so that we can ignore any
constraints arising from their ends. In such a situation, the
rupture of a bridge leads to an equilibrium state in which a
single droplet is located on one of the two lyophilic stripes.
FIG. 5. Different liquid bridges connecting two lyophilic stripéa) Asym- This follows from t_he obseryatlon that the interfacial free
metric bridge(for separationL, /L;=0.1, vqumeV/L§=0.5 and contact €NErgy has a certain convexity property.
angles §,=45°, 05=120°); (B) Channellike bridge(for L, /L,;=0.1, Thus, let us assume, for a moment, that the rupture of the
VIL}=15, 6,=30°, 6,=120°); (C) Bulgelike bridge with contact line bridge leads to a morphology which consists of two discon-
pinned to the domain boundariéfr L. /L,=1, V/ILi=15, 6,=30°, 6, nected droplets with volumas; andV, on the two lyophilic
=120°); and(D) Bulgelike bridge with contact line depinned from the o inas However, since both stripes are identical and have a
domain boundarieffor L, /L,=0.5,V/L1=15, §,=30°, 6,=80°). . .
uniform width, we can place both droplets onto the same
stripe and displace them along this stripe without changing
their free energy until they touch each other. If we now fuse
behavior of their contact line; fo(B), the contact line is them, we should always reduce the interfacial free energy.
pinned at the outer domain boundaries of the pair of stripesThis expectation is confirmed by our numerical work since
for (C) it detaches from these domain boundaries and makege found, for all liquid morphologies, that the interfacial free
an excursion across the lyophobic domains. Bulgelikeenergy is an increasing function of the volume which is con-
bridges are localized along the stripes whereas channellikgex upwards, i.e., the sum of the interfacial free energies for
bridges are rather extended and try to maximize the contagivo droplets with volumes/; andV, is larger than the in-
with the stripes. If we compare the two types of bridges forterfacial free energy of a single droplet with volunvg
the same set of parameter values, the bulgelike bridges haveyv, .
lower mean curvature. Thus, after a bridge has ruptured, the equilibrium mor-
Bridges of type(D), which are in contact with the outer phology consists of a single droplet located on one of the two
lyophobic domains, are more likely to occur if the contactstripes. Since both stripes are identical, these single droplet
angled s on the lyophobic domains is relatively small. On the states correspond to a spontaneously broken symmetry. Since
other hand, for the special choiég=30° andf;=120°, all  the system is finite, it will, in principle, undergo thermally
bridges observed in our numerical work were of ty#9,  excited fluctuations, which consist of states with two discon-
(B), or (C) providedV/L3<15. Furthermore, all morpholo- nected droplets on both stripes and which lead to a superpo-
gies(B) and(C) were symmetric both with respect to a plane sijtion of the two states of minimal free energy. However, as
perpendicular to the stripes and to the substrate and witlbong as the liquid volume is large compared to molecular
respect to a midplane parallel to the stripes and perpendiculailumes, the corresponding excess free energies are large
to the substrate. compared to the thermal energy, and these fluctuations will
The analogy between the liquid morphologies on twope very rare.
stripes as displayed in Fig. 5 and those on a single stripe as
in Fig. 1 is understandable since both lyophilic stripes merg
into one lyophilic stripe with twice the width in the limit of
small stripe separatioh, /L,. Therefore, in the limit of As an example, we will now discuss the bifurcation dia-
smallL, /L4, the different types of bridges, which connect gram for one specific choice of the contact angles given by
two lyophilic stripes of widthL; must become identical with  6,=30° and6,=120°. If these angles are fixed, the basic
the corresponding morphologies for a single lyophilic stripecontrol parameters are given by the reduced separation
of width 2L,. L, /L, between the two lyophilic stripes and the reduced
If the separatiori, exceeds a certain characteristic dis- vqumeV/Li. As shown in Fig. 6, the corresponding bifur-
tanceL? , which depends on the contact angles, only bulge<ation diagram contains the bridge statas and(B). A dis-
like bridges exist as stable shapes in the limit of large vol{inction between channellike bridge@B) and bulgelike
ume V. In this latter regime, the bulgelike bridges do not bridges(C) is not possible for the parameter values displayed
undergo any morphological transitiona, apart from the finain Fig. 6 since we find a smooth and gradual change ffBm
ruptures, as the volume is decreased. Furthermork, as  and(C) for vqumesV/L§< 15. As the separatioh, of the
decreased for consta’t, we find a gradual and smooth two lyophilic stripes is increased, the bridges rupture and we
change from the bulgelike bridges to channel-like bridgedind the equilibrium statedll) and (IV) for which the liquid
provided the volumé/ is sufficiently small. In analogy with is located on one of the two lyophilic stripes. For the contact
the results for a single lyophilic stripe, a shape bifurcation isangles chosen here, stable bulge statk$, for which the
expected to take place at a critical point with  (,V) contact line is pinned to the domain boundaries of the lyo-
=(L¢r, Ve, which should depend on the contact anglgs  philic stripes, have not been found.
and 65, but we found it difficult to determine this critical The bifurcation diagram shown in Fig. 6 contaifi$
point by our numerical minimization procedure. several full lines that correspond to the loci of morphological

e(':. Morphological transitions and bifurcation diagram
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L, and is, thus, curved in the bifurcation diagram shown in
Fig. 6(@). On the other hand, the bulge stéli¢) can become
unstable as one decreases its volufmeecause it transforms
into the channel stat@l) which is not affected by the pres-
ence of a second lyophilic stripe. The corresponding insta-
bility line is independent ok ; and is, thus, horizontal in the
bifurcation diagram of Fig. @).

As shown in Fig. &), the region of the bifurcation dia-
gram where the symmetric bridge staB is (metastable is
also bounded by two different instability lines which meet at
the point (, /L,,V/L3)=(0.10,0.21). As one increases the
stripe separatioh, for fixed volumeV, the bulge statéB)
ruptures and, then, decays into the single-stripe $tgteThe
corresponding instability line is characterized by a volume
V, which increases with increasing separatlon. On the
other hand, as one decreases the vol¥hier small separa-
tion L,, the symmetric bridge decays into an asymmetric
bridge statgA). Along the latter instability line, the volume
V increases with decreasiig and attains the finite value
V/L3=0.43 asL, goes to zero. This limiting shape is given
by a spherical cap with contact angle, and diameteD
:2L1

(b) In the limit of small volumes, one obtains the trivial
@O regime(l) in which the liquid is located within one stripe.
R Y S Y AT B Y R K TR XY This limit is attained as soon as the volume is smaller than
L,/L, the volumeV=V, of a spherical cap with contact anglg,

and diameteD=L,, i.e., forVo/L3:0.054. Inspection of
FIG. 6. (a) Bifurcation diagram for liquid morphologies on two lyophilic Fig_ 6(b) shows that the pointl(L /Ll,V/Li’):(O,VO/L?)
stripes within a lyophobic substrate as a function of the reduced SeDaratiofépresents the end point of both the transition line and the

L, /L, between the two stripes and of the reduced volumef; and(b) a . e . .
more detailed view of the same bifurcation diagram for small valuds, of instability line for the asymmetric bridge#,).

and V. In both figures, the contact angles afe=30° on the lyophilic
stripes andd;= 120° on the lyophobic substrate. Dashed lines are instabilityV. STABILITY CRITERIA FOR DIFFERENT

lines whereas full lines represent the loci of morphological transitions. MORPHOLOGIES

Bridge morphologies connecting the two stripes are denotéé pyB), and
(C) as in Fig. 5. For sufficiently large separatibn , these bridges rupture, In this section, we study thémetastability of several
and the liquid forms a channel staié) or a bulge statélV) on one of the  simple morphologies in order to estimate the corresponding
two lyophilic stripes as in Fig. 1. instability lines. First, we consider a channel on a single
stripe and the channel instability ling,= 6.,(V), compare
Fig. 3. Using a cylindrical segment of variable length, we are
transitions at which two states have the same free energy arthle to obtain the asymptotic estimaté(V)~ 65,
(i) broken lines that correspond to instability lines at which=arccos/4)=38° for large volumes/. We also estimate
a(metgstable state becomes unstable. In addition, this bifurthe asymptotic behavior of the bulge instability line on a
cation diagram also exhibits two triple points where threesingle stripe and of the channel instability lines on two
transition lines meet and where three different morphologiestripes.
can coexist. One triple point is located at. (,V)
=(Ly,Vy) With Ly/L;=1.85 andV,/L3=8.49, see Fig.
6(a). At this point, bridges of typéB) can coexist with two We use the simplified model displayed in Fig. 7 to in-
different single-stripe morphologies, a channel stiteand  vestigate possible channel configurations for a given contact
a bulge statélV) with a detached contact line. The secondangle 6, on the lyophilic stripe. It is instructive to approxi-
triple point is located at I(, ,V)=(L,Vy) with L /Ly mate such a channel morphology by a cylindrical segment
=0.05 andV,/L3=0.34, see Fig. ®). At this second point, for which the contact area is identical with the lyophilic
asymmetric and symmetric bridges of typ®) and(B) can  stripe. We attach the liquid-vapor interface at the ends to two
coexist with channel statdfl) on one of the two stripes. “neutral” walls perpendicular to the plane of the substrate
For the bulge-statélV) on a single stripe, the limit of and the stripe. Since the wall material does not prefer the
(metastability is given by two different instability lines. On liquid or the vapor, the contact angle of the liquid is equal to
the one hand, the statéV) can become unstable as one #/2 on these walls. In addition, these auxiliary walls can
decreases the separatibn of the two lyophilic stripes, be- freely adjust their position, which corresponds to the situa-
cause the contact line, which is located on the lyophabic tion where the liquid can spread laterally along the stripe.
domain, touches the domain boundary of the adjacent lyo- Now, let us consider these cylindrical configurations of
philic stripes. The corresponding instability line depends orthe liquid between the two auxiliary walls. The contact line

A. Stability of channels on a single stripe
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IFe(6,,0) 1
90 Z.p
with the two auxiliary functions

_ 4V

sind( 6 cosf—sinp)

9(6)= (sinf cosd— 6)° (14)
and
0
h(ﬁy,a)Eercosa—Z cost,. (15

o . In equilibrium, the lateral contact angle attains the
FIG. 7. Cylindrical channel segment bounded by two auxiliary walls at the lue 9= . hich the interfacial f ttai it
channel ends. These walls are taken to have the contact afgjl€or fixed value — 70 orw 'C. . e l.n erfacial iree energy attans 1ts
volume, the channel can be parametrized by its lehgth alternatively, by ~ global minimum. This impliegiF 4 0, 0)/96=0 or
its lateral contact angled along the contact line, which is pinned to thé _ _
domain boundary. The equilibrium value of this contact angle will be de- g( H)h(ﬂy ,0)=0 for 6= o (16)
noted byf. Since the functiorg(6) is strictly negative and monotoni-

cally increasing for &< <1, the solutions of Eq(16) sat-

is pinned to theys domain boundary and the liquid-vapor 1Sy h(8,,60)=0 or

interface forms the lateral contact anglevith the plane of 0o+ Sin 6(cosh,— 2 cosh,) =0, (17)

the substrate satisfying the inequality< 6= 6. It will be o ,

convenient to first assume that the contact argjeof the ~ Which is equivalent to

lyophobic substrate satisfigg= /2. 6o cosb,
By construction, the overall force acting on the walls 07=arcco%2 sin00+ 2 )

vanishes, which implies that the forces coming from the in-

terfacial tensions and the pressure difference between thEhe functioné,=6,(6o) as given by Eq(18) has a single

liquid and vapor phase have to balance one another. The ar&ximum for 0< o<, see Fig. 8. This maximum value is

of the liquid-vapor interface, s, as a function of the angle attained foréy= fo,= /2 and is given by

(18

0 and the lengthL of the cylinder, is given by -

L,Lo ] Hy,m—arcco%z)20.667&38.24 . (29
“sing’ © Therefore, Eqs(17) and (18) have no real solution fop,,
while the wetted area of the stripdg,, is simply = 0ym- This i_mplies that the elongated channel morphology

is not accessible for large volumdsand 6,> 6., .
Apo=LalL. (7 Note that the maximal valuéy,= 6, ,= /2 of the lateral
The interfacial free energ¥.(6,,6) of the cylinder be- contact angle can be attained provided the contact line does
comes not depin from theys domain boundaries for smaller values
of 6,. In general, the contact line stays pinned ufitjlhas
Fon=2ap(Aap—COSO,Ag,) (8) reached the valué,= 6 of the lyophobic substrate. There-

0 fore, our analysis is self-consistent as longés /2, as
=EQBL1L(W— COSHY). (9  assumed. Comparison with Fig. 3, which appliesfie= ,
shows thaty,, , represents the asymptotic limit of the chan-
If one keeps the volume of the liquid phase constant, ongel instability line 6.(V), and we conclude that
has

aw
V=LA, (10) Och(V) =~ Og(0) = arcco% Z) for large V (20
with the cross sectional areé of the cylindrical segment 4 0= 2.
L2(6—sin 6 coso) In Fig. 8, we have displayed all solutiog= 6,(6,) as

A= AsiP o (11) obtained from Eq(16). In general, these solutions represent

extrema, i.e., minima or maxima, of the interfacial free en-

For fixed volumeV and stripe width_,, the interfacial  ergy. In order to distinguish between these two types of ex-
free energyF ¢, becomes a function of the equilibrium con- trema, one has to calculate the second derivative

tact angled,, on the stripe and of the lateral contact angle 5
of the cylindrical channel. This function is given by I5F e 07'00)/2aﬁ:(4V/L1)g(00)‘9h(07'9)/‘90|9:00'
Fen(6,,0) 4V sin@cosb,— 0 4V cos Hy— 6y cot by
S L, "% singcoso—o (12 L %o siné, » (2
and its derivative with respect to the lateral contact arfgle which is positive for G< y;<7/2 but negative form/2< 6,
has the form <ar. Thus, all solutions with €& 6,<w/2 represent stable
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B. Stability of bulges on a single stripe

Next, let us consider the stability of bulges on a single
stripe and the corresponding instability line, which can be
parametrized a8, = 0, (V) or asV=Vy(6,); see Fig. 3. A
simple estimate fo=V,(¢,) can be obtained as follows.
For a given contact angle, on the lyophilic stripe, the vol-
ume of a large bulge will become asymptotically equal to the
volume of a spherical cap with mean curvatig,,. This
mean curvature of the bulge configuration cannot be much
smaller than the mean curvatuké.(#,) of a channel con-
figuration for the same contact angfe,. Indeed, forMy,
>M(6,), the bulge would continuously transfer liquid into
the channel and would finally disappear.

FIG. 8. Lateral contact anglé, of the channel along thes domain bound- If the contact angle on the hydrophoblc substrateﬂgs

aries as a function of the contact anglgon the lyophilic stripe according = 7 @S 1N Fig. 3, the bulge becomes a complete sphere in the
to Eq.(18). The lower branchifull line) represents stable channels whereas large volume limit. Close to the bulge instability line, the
the upper branckdashed lingcorresponds to unstable channels. The lower radius of the sphere is given bYMAUZ 1M ch(e ), which
branch has the asymptotic behaviiyy~v36,, for small 6, as indicated by implies the estimate Y

the dotted line. The arrow corresponds to the maximal valyg= 6.(%)
_ N . . ) A

“sjrSffct ;%z&.flz Points refer to numerical minimizations from the V=V, 07):477/[3Mch( 07)3] (25)

10 20 30 40
0, /deg®

for the bulge instability line. This is in good agreement with
the data obtained from numerical minimization of the inter-

minima of the interfacial free energy, whereas all solutionsfaCIaI free energy as indicated by the dotted line in Fig. 3.

with 7r/2< ,<7r correspond to unstable maxima. These two
types of solutions form two branches falp=6y(6,) as
shown in Fig. 8; the lower branch corresponds to stableC. Stability of channellike bridges on two stripes
channels whereas the upper branch represents unstable ones.
For the stable branch, the lateral contact angjevanishes
for small 6. An expansion of the various terms of E46)
in powers off, then leads to

Finally, let us consider the stability of channellike

bridges which cover two stripes; this is the morpholdBy

in Fig. 5. We will again use a cylindrical channel segment

bounded by two auxiliary walls as in Fig. 7 but the channel
o~v360, for small 6 (stable branch (22) now covers both hydrophilic stripes and the intervening hy-

drophobic one. The channel can again be parametrized by its

Note thatf,= /2 also represents the asymptotic limit of |ateral contact angl@; the equilibrium value of this contact

stability for long cylindrical channels with respect to peri- angle will again be denoted bg= 6o. The calculation de-

odic perturbations of the fluid—fluid interface as has beerscriped in Sec. V A now leads to the channel free energy
shown previously. The situation we have discussed here is )
somewhat different because the walls in Fig. 7 can move and e o
the lengthL of the channel can adjust freely. Fixing the po- Fer( 0, 07)_2“B(2L1+LL)L(W cosey) (26)
sition of the walls will enhance stability beyortig= /2, but .
this deviation will become arbitrarily small as the length of W!
the channel is increased. . 2L;cosf,+L, cosb,

As mentioned, the above analysis is self-consistent for  cos6,= oL L
0s=ml2. For 5<m/2, on the other hand, the contact line 1reL
will start to move onto the lyophobic domains as soon as then the limit of smallé,,, this implicit relation foréy becomes
lateral contact anglé, exceedsds. This depinning of the independent of, and leads to
contact line from theyé domain boundaries acts to truncate .
the stable branch in Fig. 8 and to reduce the maximal value  6,~(1—cosf,) (L, /L)' (28)
¢,,m for which one can have stable channel states. Indee%r smallL /L

/by

this maximal value is now given b . . .
9 y One may now repeat the analysis as given in Sec. VA,

th the effective contact angléy, which satisfies

(27)

05 cosf s T which implies that, in the large volume limit, two-stripe
Oym=arccoy 5 g * 5 | Sarccoyy ). (23 channels arainstablefor cosd,=<cosf,,,. Using the rela-
tions(19) and(23) for 6, ,, this instability criterion is found
Thus, we conclude that to be equivalent to
()~ 8 05 N C0SfO 24 1 L,
~ o0 )= — — JR—
(V)= O(o°) =arcco 2 sing, 5 (24) 6,=arccos X s+ 2(X& cosfs) L (29
for largeV and 05< /2. with
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Q,; N C0Sfs
2sinbs 2

for 05=/2,

Xs= (30

f0r 05< 7T/2

Thus, the region of(metgstability of the two-stripe
channel is restricted to small contact angles< 6., ,, and to

small values ofL, /L. This region is further reduced by a
second instability mechanism which leads to a decay of the
two-stripe channel into one-stripe channels. A simple esti-

mate of this latter instability can be obtained as follows.

As explained before, a long channel on a single stripe is

characterized by the lateral contact an@jealong the pinned
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contact line of the channel, see Fig. 7, which only depends

on the contact anglé,, of the lyophilic substrate. The corre-

sponding functional relationshig,= 6,(6,) as given by Eq.

FIG. 9. Stability regions of two-stripe channels as a function of the reduced

width L, /L, of the intervening lyophobic stripe and of the contact argyle

on the lyophilic stripes. Several such regions are shown corresponding to

(18) was displayed in Fig. 8 above. Elementary geometryifferent values of the contact angi on the lyophobic stripes. Each sta-

implies that such a channel has the mean curvaiireM ;
=singy(6,)/L, for a lyophilic stripe of widthL,. The corre-

bility region is bounded by two curves: the upper one follows from &6)
and describes the decay of the two-stripe channels into bulgelike configura-
tions; the lower one follows from E@31) and corresponds to the decay into

sponding Laplace pressure of this channel is given byhe stripe channels.

23 ,sM; as follows from the Laplace equatid4).

For a long channel which covers two lyophilic stripes,

on the other hand, the contact anglgdepends only on the
effective contact angléy as defined by Eq27). The latter

channel has the mean curvatué=M,=sin6y(6,)/(2L,
+L,), since it covers a stripe of total widthL2+L, , and
the Laplace pressure>2,sM,.

Now, assume that we bring the two-stripe channel in
contact with a one-stripe channel. The two-stripe chann
will be unstable and will be “sucked” into the one-stripe
channel if its Laplace pressure M, exceeds the Laplace
pressure~M, of the one-stripe channel. This implies that

the two-stripe channel becomes unstabl&if>M,. If we

express the mean curvatures in terms of the lateral conta

anglesf,, we obtain the instability criterion

sin[6o(8,)]1>(2+L, /Ly)sin[ 6o(6,)] (31

3
for the decay of two-stripe channels into one-stripe channeld€duced volume//L;

For small#, and smallL, /L, one has

00(0,)~V3(1—cosfs) VAL, /Ly)Y2 (32)

as follows from Eqgs(22) and (28). Using this asymptotic
expression forHo(@y), the instability criterion(31) becomes
equivalent to

0,<(1—coss) (L, /L)Y (33

for smallL, /L.

In summary, we have identified two different instability

mechanisms for two-stripe channels: decay into bulgelike

VI. SUMMARY AND OUTLOOK

In summary, we have determined the morphology of
wetting layers on substrates with striped surface domains.
For simplicity, we focussed on two rather simple patterns,
namely, (i) single lyophilic stripes andii) two lyophilic

e?tripes separated by a lyophobic one. For both cases, we

determined the different wetting morphologies using numeri-
cal minimization methods, see Fig. 1 and Fig. 5. In addition,
we derived stability criteria for the different morphologies
using simple parametrizations of the channels and bulges in
E(?rms of cylindrical and spherical segments, see Sec. V.

For the case of a single lyophilic stripe, the wetting mor-
phology is uniquely determined kijiree dimensionless pa-
rameters{i) the contact angl#,, of the lyophilic stripe(ii)
the contact angles of the lyophobic stripe, andiii) the
of the liquid wherel; is the width of
the lyophilic stripe. In Fig. 3, we display the bifurcation dia-
gram as a function of,, andV/L3 for 9;,= 7. This diagram
exhibits a morphological wetting transition from channels to
bulgelike states.

The instability line for the one-stripe channels is de-
scribed by#,= 6.(V). This instability line has the surpris-
ing property thatf.(V) attains thefinite value 6.,() for
large volumesV. This limiting value is calculated in Sec.
VA. For 6,=m/2, we find that it has the universal value
O.r(0) =arccosf/4)=38°; for 6s</2, the limiting value
f.(0) depends orfs and is given by Eq(24).

This property of the channel instability line implies that
the wetting liquid can form arbitrarily long channels in the

configurations andii) decay into one-stripe channels. The limit of large volumes provided, < 6.,(«). These channels
first instability mechanisn(i) destroys the two-stripe channel are characterized by a lateral contact angpef,, which is

for sufficiently large values of ¢, as estimated by the in-
equality (29). The second instability mechanidiin) is effec-
tive for sufficiently small values of ¢, as given by the in-
equality (31) or its asymptotic form(33). A combination of
the two inequalitieg29) and (31) leads to the stability dia-
gram shown in Fig. 9.

constant along those segments of the contact line, which are
pinned to theys domain boundaries. Furthermore, the lateral
contact angle, does not depend on the volume of the chan-
nel but only on the contact angle, of the lyophilic sub-
strate; compare Fig. 8. Far,> 6.(«), on the other hand,

no extended channels can be formed. Thus, we find that it is

Downloaded 21 Nov 2002 to 141.14.232.240. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



4306 J. Appl. Phys., Vol. 92, No. 8, 15 October 2002 M. Brinkmann and R. Lipowsky

impossibleto “paint” a long stripe if its contact angle satis- the contact angl®s< /2, the maximal value of the lateral
fies 6,> Ocp(). contact angle of the channel is given By,=6s. In this

For the case of two lyophilic stripes, the wetting mor- case, the contact lines should depin from th& domain
phology is uniquely determined bfpur dimensionless pa- boundaries, and the channels should gradually move onto the
rameters; it now depends on the reduced widthL; of the  lyophobic substrate. Fofs=w/2, on the other hand, the
intervening lyophobic stripe in addition to the three param-maximal value of the lateral contact angleég,,= =/2, and
eterse,,, 05, andV/L3, which were already relevant for the the channel network is expected to become unstable and to
single stripe geometry. For one particular choice of the condecay into a bulgy state. As long as the mesh size is large
tact angles as given by,=30° and 6;=120°, we have compared to the stripe width, it seems reasonable to expect
determined the bifurcation diagram in some detail; see Figthat the new equilibrium state will always exhibit a single
6. This two-dimensional diagram depends on the reduceblulge irrespective of the topology of the network, but this
width L, /L, and the reduced volumé/L3, and is limited, remains to be shown.
for numerical reasons, to relatively small volume#L3
<15. For this range of volumes, one finds a smooth crossPCKNOWLEDGMENTS
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