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Wetting morphologies on substrates with striped surface domains
Martin Brinkmann and Reinhard Lipowsky
MPI für Kolloid und Grenzfla¨chenforschung, D-14424 Potsdam, Germany

~Received 30 April 2002; accepted for publication 17 July 2002!

The wetting and dewetting of chemically structured substrates with striped surface domains is
studied theoretically. The lyophilic stripes and the lyophobic substrate are characterized by different
contact anglesug and ud , respectively. We determine the complete bifurcation diagram for the
wetting morphologies~i! on a single lyophilic stripe and~ii ! on two neighboring stripes separated by
a lyophobic one. We find that long channels can only be formed on the lyophilic stripes if the contact
angleug is smaller than a certain threshold valueuch(V) which depends only weakly on the volume
V and attains thefinite value uch(`) in the limit of largeV. This asymptotic value is equal to
uch(`)5arccos(p/4).38° for all lyophobic substrates withud>p/2. For a given value ofug

,uch(`), the extended channels spread onto the lyophilic stripes with essentially constant cross
section. © 2002 American Institute of Physics.@DOI: 10.1063/1.1506003#
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I. INTRODUCTION

Many experimental methods have been developed
which one can prepare chemically structured substrates
exhibit patterns of lyophilic~or liquid attracting! and lyopho-
bic ~or liquid repelling! surface domains. The linear size
the surface domains can be varied over a wide range
length scales from the millimeter down to the nanome
regime. We have recently shown that such chemically str
tured surfaces lead tomorphological wetting transitionsat
which the wetting layer changes its shape or morphology
a characteristic and typically abrupt manner.1–3

A rather simple pattern of surface domains is given
lyophilic stripesg separated by lyophobic stripesd. Striped
domains in themillimeter range can be created using scre
printing technology4 or printed circuit board technology.5 In
order to obtain stripes with a width in themicrometerrange,
one may use elastomer stamps,6–10 vapor deposition through
grids,2 photolithography of amphiphilic monolayers,11 do-
main formation in Langmuir–Blodgett monolayers,12,13elec-
trophoretic assembly of colloids,14 or anisotropic rupture of
polymer films.15 Finally, stripes in thenanometerrange
could be produced using lithography with collo
monolayers,16 atomic beams modulated by light masks,17 mi-
crophase separation in diblock copolymer films,18 or local
oxidation of silicon surfaces induced by atomic for
microscopy.19

In general, the lyophilic domains, denoted byg, and the
lyophobic substrate, denoted byd, are characterized by dif
ferent contact anglesug andud , respectively. These contac
angles apply as long as the contact line is located on th
two different surface domains. If the size of the wetti
droplet is comparable to the domain size, it often happe
however, that the contact line ispinned to the gd domain
boundary. In the latter situation, the contact angleu is not
fixed but may attain any value in the intervalug,u,ud .1

In the following, we will consider lyophilic surface do
mains that have the shape of elongated stripes. When loc
on such a stripe, the liquid forms a channel which may h
4290021-8979/2002/92(8)/4296/11/$19.00
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an essentially constant cross section or exhibit a sin
bulge.2 Each channel has two ends which are bounded
short, transverse segments of the contact line.

In our previous work,2,20 we have studied lyophilic
stripes of finite length which arecompletelycovered by the
wetting liquid. In such a situation, all segments of the cont
line are pinned to the boundary of theg domain, and the two
ends of the channel have a fixed position, which is de
mined by the two ends of the underlying stripe. In t
present article, we will study a different situation corr
sponding to long lyophilic stripes which are onlypartially
covered by the liquid as qualitatively discussed in Ref.
One again finds channels but the boundary condition at
two channel ends is rather different. Indeed, these two e
can now move along the stripe, and the transverse segm
of the contact line are characterized by fixed contact an
u5ug .

The different morphologies on a single lyophilic strip
which is only partially covered by the wetting liquid ar
displayed in Fig. 1. Four such morphologies must be dis
guished:~I! a small spherical cap,~II ! an elongated channe
state,~III ! a localized droplet which has no contact with th
lyophobic matrixd, and~IV ! a localized droplet with a con
tact area which overlaps with thed domain.

One surprising result of our analysis is that the cont
angle ug on the lyophilic stripe exhibits a threshold valu
uch(`) which separates two different wetting regimes. The
two regimes are characterized by qualitatively different b
havior as one deposits an increasing amount of liquid on
single lyophilic stripe. If the stripe has contact angleug

,uch(`), the wetting layer forms a channel which becom
longer and longer as one deposits more and more liquid.
ug.uch(`), on the other hand, such a long channel can
be attained but only a short one which gradually transfor
into a localized droplet. In other words, it is easy to ‘‘pain
long g stripes providedug,uch(`) but it is impossibleto do
so for ug.uch(`).

For two neighboring lyophilic stripes separated by
intervening lyophobic one, we find four morphologies:~A!
6 © 2002 American Institute of Physics
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an asymmetric small bridge,~B! a long channel that cover
all three stripes,~C! a localized bridge between the two lyo
philic stripes, the contact line of which is pinned to the ou
boundaries of these stripes, and~D! a localized bridge with a
contact line, which is detached from those surface dom
boundaries.

Our article is organized as follows. We first introdu
our theoretical framework and define the geometry of
striped surface domains in Sec. II. We then determine
different morphologies for a single stripe in Sec. III whe
we numerically calculate the corresponding bifurcation d
gram as a function ofug and liquid volume. In Sec. IV, we
classify the wetting morphologies for two lyophilic stripe
separated by an intervening lyophobic one and discuss
corresponding morphological wetting transitions. In the l
Sec. V, we derive stability criteria for the different wettin
morphologies and calculate the valueuch(`) for the ~meta!-
stability limit of the channels in the limit of large volumes

II. THEORETICAL APPROACH

A. Minimization of interfacial free energies

In general, the shape of a liquid droplet on a solid su
strate reflects a variety of intermolecular forces and exte
constraints. In the following, we will ignore the effects
gravity. This applies to droplets which aresmallcompared to
the so-called capillary length. For water at room temperat
the capillary length is about 3.8 mm. In addition, the dropl
are taken to belarge compared to those microscopic leng
scales that are related to the small-scale structure of the
ferent interfaces. In general, there are several such le
scales such as the thermally excited roughness of the liqu
vapor interface or the frozen roughness of the solid substr
Finally, the droplets are also taken to be large compare
the correlation length of density fluctuations within the li
uid, i.e., we stay away from any critical point of the liqui
Under these simplifying assumptions, the shape of the d
lets is primarily determined by their interfacial free energ
or tensions.

Now let us consider two fluid phasesa and b ~‘‘liquid
and vapor’’ or ‘‘oil and water’’! which are brought into con
tact with a chemically structured planar substrates. The sur-
face tensionsSsb and Ssa of the fluid-substrate interface
depend on the positionx whereas the interfacial tensionSab

FIG. 1. Different liquid morphologies on a single lyophilic stripe.~I! small
spherical cap~for reduced volumeV/L1

350.1 and contact angleug570°);
~II ! extended channel~for V/L1

355 andug535°); ~III ! droplike state with
contact line pinned to the surface domain boundary~for V/L1

3511, ug

540°, andud5180°); ~IV ! Droplike state with contact line depinned from
the domain boundary~for V/L1

3511, ug540°, andud5130°).
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between the two fluids has the same value at all points of
fluid–fluid interfaceAab with surface areauAabu. The inter-
facial free energy is then given by

F$Aab%5SabuAabu1E
Asb

d2x@Ssa~x!2Ssb~x!#, ~1!

which is a functional of the shape and position of theab
interfaceAab .

The spatial regionVb occupied by the phaseb is
bounded by the fluid–fluid interfaceAab and the wetted sur-
face of the substrateAsb . Stable liquid morphologies are
local minima of the interfacial energy~1! under the con-
straint that

uVbu5V, ~2!

i.e., for constant volumeV of the b phase.
If the pressure differenceDP[Pa2Pb between the two

fluid phases is prescribed instead of the volumeV, stable
morphologies are obtained as a minima of the free energ

F̃$Aab%5SabuAabu1E
Aab

d2x@Ssa~x!2Ssb~x!#

1DPuVbu. ~3!

In the volume ensemble, the pressure differenceDP be-
tween the phases represents a Lagrange multiplier, w
becomes a function of the volume for a minimal configu
tion of Eq. ~1! under the constraint~2!. The two sets of
extremal configurations are identical for both free ene
functionals. In fact, all minimal configurations in the pre
sure ensemble are minimal configurations in the volume
semble as well. The inverse relation is not necessarily t
Thus, let us consider the pressure differencePb2Pa

52DP as a function of the volumeV along a branch of
morphologies, which are stable in the volume ensemble
2DP52DP(V) decreaseswith increasingV, the corre-
sponding morphologies cannot be stable in the pressure
semble. One relatively simple example for this situation
provided by a spherical liquid droplet, which is immersed
its vapor phase.

The condition of stationarity for the interfacial free e
ergy~1! under the constraint of constant volume of the liqu
phase~2! leads to the Laplace formula

2SabM5Pb2Pa ~4!

relating the pressure differencePb2Pa across theab inter-
face to the surface tensionSab and the mean curvatureM of
the ab interface, and to the Young equation

cosu5
Ssa2Ssb

Sab
~5!

expressing the mechanical balance of interfacial tension
the three-phase contact line.u is the contact angle of the
liquid phase to the substrate. Liquid configurations wh
satisfy conditions~4! and ~5! are extremaof the interfacial
free energy~1! under the volume constraint~2! and not nec-
essarily localminima.

At each point of the three-phase contact line, the con
angle u of an equilibrium configuration is uniquely dete
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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mined by its position on the substrate if the interfacial te
sions of the interfaces between the fluid phases and the
strate vary smoothly.

For those segments of the contact line that coincide w
a sharp boundary between a lyophilic domaing and a lyo-
phobic domaind, the Young’s Eq.~5! is violated and has to
be replaced by an inequalityug<u<ud , as first pointed out
in Ref. 1. In the latter case, the equilibrium contact angleu is
determined by the shape of theab interface at the minima
configuration.

B. Stripe geometry

To proceed, let us define the basic geometry of our s
tem which consists of a lyophobic substrate decorated w
lyophilic stripes, see Fig. 2. We assume that both the l
philic g and the lyophobicd domains form a single plana
surface, i.e., we ignore the topographical roughness that
arise from the chemical inhomogeneity. The contact ang
ug and ud of the lyophilic and lyophobic domains satisf
0<ug,ud<p. In some cases, we will focus on the limitin
case of a completely lyophobic substrate withud5p in order
to eliminate one parameter from the problem.

The stripe width is denoted byL1 . All stripes are suffi-
ciently long, so that the liquid phase that spreads along
stripe cannot reach the end of the stripe~for ug.0). The
distanceL' between two stripes corresponds to the width
the lyophobic stripe between the lyophilic ones.

C. Numerical methods

Minimal configuration of the interfacial free energy~1!
under the volume constraint~2! can be constructed analyt
cally whenever high symmetries of minimizers are expect
But even for a high symmetry of the underlying substr
pattern, such as in the present case for stripes, one
generically configurations which break this symmetry. In
der to study these systems in detail numerical methods h
to be employed.

A first step to tackle this problem is to apply dynamica
triangulated surfaces in the minimization procedure, wh
can adapt to the final configuration. We mainly used the
gorithm ‘‘surface evolver 2.14,’’ a free software develop
by Brakke in the beginning of the last decade.22 Within this
numerical algorithm, the liquid interface is discretized a
replaced by a mesh of triangles. The surface tension ex

FIG. 2. Stripe geometry of chemically structured substrate with lyophilig
and lyophobicd domains. The width of these two domains is denoted byL1

andL' , respectively.
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forces on each vertex of the triangulation driving the mesh
a minimal configuration. During the minimization procedur
the volume enclosed by the polyhedral surface has to be
constant. Global constraints such as the volume constr
are taken into account by additional Lagrangian forces ac
on the vertices, which are calculated at every minimizi
step. Deviations of the actual volume from the targeted v
ume accumulate during the calculations so that the targ
volume has to be restored after every step in the minim
tion procedure. To investigate the morphological bifurcati
on a single lyophilic stripe we fixed the height of the cen
of mass above the surface in certain runs. This global c
straint allowed us to control the morphologies close to
bifurcation point. Vertices and edges belonging to the con
line are constrained to stay in the plane of the substr
Additional forces are applied to these vertices coming fr
the position dependent surface tensions of the structured
strate. Swapping of edges between different vertices is u
in order to avoid the formation of long and thin triangles
the mesh, which often cause stalling of the minimizati
routine. Triangles can be added or removed from the mo
in order to keep the size distribution of the edges in
desired range. To monitor the morphology during the mi
mization and to decide if a stationary configuration w
reached, parameters such as the maximal height of the flu
fluid interface above the substrate can be extracted from
triangulation.

III. WETTING OF ONE LYOPHILIC STRIPE

In this section, we describe the liquid morphologies on
single lyophilic stripe. We have found that one must dist
guishfour such morphologies. In order to discuss these m
phologies, it is convenient to consider the contact angle
the lyophilic stripeug and the reduced volume of the liqui
phaseV/L1

3 as the basic control parameters. In the absenc
topographic and chemical defects, which may act as pinn
centers, all liquid morphologies can move freely along t
direction of the lyophilic stripe.

First, we discuss the parameter values for which o
encounters these different morphologies in a qualitative m
ner. As one varies one of these parameters in a system
way, one may encounter a morphological transition. In
present case, such a transition occurs between the cha
like state~II ! and the bulgelike state~III !. The locus of these
transitions has been determined over a wide range of par
eters as described in Sec. III B.

A. Classification of liquid morphologies

For low volumes and arbitrary contact angleug on the
lyophilic stripe, the droplets have the shape of spherical s
ments, which corresponds to the morphology~I! in Fig. 1.
The three-phase contact line of these droplets has the s
of a circle, which may touch the boundary of the stripe
one or two points. As the volume of the liquid phase is
creased, the fraction of the contact line, which is attached
thegd-domain boundary, grows. This attachment of the co
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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tact line from thegd-domain boundary to the lyophilic stripe
which may arise from a change of the parametersug or
V/L1

3, doesnot lead to a discontinuous change of the liqu
morphology. This is also true for the reverse process, i.e.,
the detachment of the contact line from the domain bound
in this small volume regime. Thus, there are no hystere
effects as the spherical droplet is transformed into a m
elongated channel.

For larger volumesV/L1
3 and sufficiently small contac

anglesug,uch(V), two typical liquid morphologies,~II ! and
~III !, appear, which exhibit a contact line being partially
tached to thegd-domain boundary. These two morphologi
~II ! and ~III ! correspond to channels and to more dropl
bulges, respectively, see Fig. 1.

For sufficiently large volumeV/L1
3, channel configura-

tions have an almost constant cross section perpendicul
the substrate and the stripes, which is very close to a segm
of a circular disk~as long as one does not approach the e
of the channel!. In this regime, the maximal heightl max of
the channel is found to be of the order of the half-widthL1/2
of the lyophilic stripe, and the mean curvatureM of the chan-
nel is nearlyindependentof its volume provided the length
of the channel is much larger than theL1 . Thus, as one add
more liquid to such a channel, it grows at its ends witho
changing its shape, and its mean curvatureM is primarily
determined by the contact angleug on the lyophilic stripe.

In contrast, the bulge configuration~III ! attains the shape
of a spherical segment in the limit of large volumeV, and its
mean curvatureM decays to zero asM;1/V1/3 for largeV.
Furthermore, changes of the contact angleug do not affect
the mean curvature of the bulge significantly for largeV.
However, in the large volume limit, bulge configuratio
~IV ! with partially detached contact lines start to appe
Such a partial detachment is even found for liquids, wh
are perfectly nonwetting on the lyophobic substrate, i.e.,
ud5p. It is also interesting to mention that the detachm
of the contact line related to the transition from configurat
~III ! to ~IV ! can occur in a discontinuous way. For the co
tact anglesug540° andud590°, for example, such a dis
continuous transition occurs at the volumeV/L1

3.1.42; the
corresponding hysteresis loop covers the volume inte
1.37,V/L1

3,1.61.

B. Morphological transitions and bifurcation diagram

Since the droplets in regime~I! are spherical caps, on
can easily determine the parameter values for which th
droplets touch the domain boundaries of the stripe. As m
tioned, the corresponding transition between droplets~I! and
channels~II ! does not exhibit any hysteresis effects. A tra
sition between channels~II ! and bulges~III !, on the other
hand, is characterized by a discontinuous change of
maximal height lmax of the liquid phase above the substra
as can be seen by inspection of Fig. 1. Such a transi
occurs as one varies the liquid volumeV for fixed contact
angleug , provided this contact angle does not exceed a
tain critical valueug5ucr . Thus, in the two-dimensional pa
rameter space spanned byV andug , one has a whole line o
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morphological transitions from channel state~II ! to bulge
state~III !. This line will be denoted byug5u* (V) and cor-
responds to the full line in Fig. 3.

Since the transition between channels~II ! and bulges
~III ! is discontinuous, these two morphologies are~meta!-
stable for a certain parameter range beyond the trans
line. The channel state~II ! is ~meta!stable up to the instabil-
ity line ug5uch(V), which corresponds to one of the dash
lines in Fig. 3. Likewise, the bulge state~III ! is ~meta!stable
down to ug5ubu(V). Thus, for ubu(V),ug,uch(V), both
morphologies~II ! and ~III ! can coexist.

The transition lineug5u* (V) and the two instability
lines given byug5ubu(V) andug5uch(V) merge in the bi-
furcation point (ucr ,Vcr) with the numerically determined
values ucr.39.2° and Vcr /L1

3.2.85, see Fig. 3. Forug

.ucr , the system does not exhibit a morphological transit
from channel state~II ! to bulge state~III ! but a gradual and
smooth change from an extended to a more localized drop

The instability lineug5uch(V) for the channel states~II !
behaves in a peculiar and surprising way sinceuch(V) attains
the asymptotic valueuch(`).38.2° in the limit of largeV,
see Fig. 3. This implies that the channel states~II ! are acces-
sible for arbitrarily high volume of the liquid phase as lon
as the contact angle on the lyophilic stripe satisfiesug

<uch(`). Inspection of Fig. 3 also shows that the instabil
line ug5ubu(V) for the bulge states~III ! decreases with in-
creasingV. For both instability lines, we will derive analyti
cal estimates in Sec. V below; these estimates correspon
the dotted lines in Fig. 3.

So far, we have considered the volume as the basic c
trol parameter. Another way to explore the bifurcation d
gram shown in Fig. 3 is provided by variations of the conta
angle ug for fixed volume. There are several experimen
methods to obtain such a variation. Indeed, any control
rameter that affects the interfacial tensionSab will also af-

FIG. 3. Bifurcation diagram for liquid morphologies on one lyophilic strip
The two parametersug andV/L1

3 are the contact angle on the lyophilic strip
and the reduced volume of the liquid phase, respectively. The contact a
on the lyophobic substrate has the limiting valueud5p. The roman num-
bers ~I!, ~II !, and ~III ! correspond to the different droplet morphologie
introduced in Fig. 1. The full line withu5u* represents the line of discon
tinuous transitions from channel states~II ! to bulge states~III !. The dashed
lines with u5ubu and u5uch represent the instability lines for these tw
morphologies. The dotted lines are analytical estimates for these insta
lines as obtained in Sec. V below.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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fect the contact angle since the Young’s equation~5! implies
cosug;1/Sab . One way to reduce the interfacial tensio
Sab and, thusug is by adding surfactant molecules to th
system. This procedure is essentiallyirreversiblesince it is,
in general, difficult to remove the surfactant again. O
method to vary the contact angle in areversiblemanner is
provided by electrowetting, i.e., via the application of ele
tric fields as described by the Lippmann equation, see, e
Ref. 23.

C. Unfolding the bifurcation

The numerical calculation of the liquid morphologies a
lows us to apply additional global constraints to the shape
the fluid–fluid interface. These additional constraints yie
further control parameters, which can be used to resolve
‘‘unfold,’’ the bifurcation. One possibility is to apply a con
straint to the maximal height lmax of the droplet but this often
leads to numerical instabilities; fixing the position of a sing
vertex, e.g., typically leads to thin, hairlike configurations
the surface around this vertex. Instead, we found it m
convenient to apply such a constraint to the height lcom of the
center of mass of the liquid.

Indeed, it is possible to keep the height lcom at a constant
value during the minimization procedure. In this way, t
variable lcom provides a useful order parameter for the bifu
cation. Plotting the minimal value of the interfacial free e
ergyF(lcom) for a givenug andV/L1

3 under the constraint o
a fixed lcom as a function of lcom, we find stable morpholo-
gies as minima of that function, see Fig. 4. Furthermore,
maximum between two minima represents the interfacial f
energy of a ‘‘mountain pass’’ configuration which fulfills th
condition of Laplace and Young as well. Inspection of Figs
and 4 shows that the bifurcation is of a cusp type correspo
ing to the formation of a double well potential from a sing
well potential. Close to the bifurcation point, this potential
anomalously flat as shown in Fig. 4~b!, and the shape of the
droplet will undergo large thermally-excited fluctuations.

IV. WETTING OF TWO LYOPHILIC STRIPES

Liquid morphologies, which are in contact with mo
than one lyophilic stripe, appear on the striped pattern as
volume of the droplets is increased. For simplicity, we w
discuss only those liquid bridges which connect two nei
boring lyophilic stripes and, thus, span asingle lyophobic
stripe on the planar substrate.

A. Classification of liquid bridges

For small separationsL' of the two lyophilic stripes and
for small volumesV of theb phase, one encounters the dro
let morphology denoted by~A! in Fig. 5. In this case, the
droplet has a shape which is close to a spherical cap, but
asymmetric with respect to a plane which is~i! perpendicular
to the substrate,~ii ! parallel to the striped domains, and~iii !
located in the middle between the two lyophilic stripe
Thus, a narrow lyophobic stripe separating two lyophi
ones has a relatively small overall effect on the droplet m
phology, but if the extensionD of the droplet is in the range
L1,D,2L1 , the reflection symmetry of the underlying do
Downloaded 21 Nov 2002 to 141.14.232.240. Redistribution subject to A
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main pattern is spontaneously broken and the drople
shifted towards one of the lyophilic stripes. The correspo
ing equilibrium shapes are characterized by contact li
which are partially pinned to thegd-domain boundary or are
even partially pushed onto thed domain. On the other hand
no stable bridges were found for those volumesV for which
one can accommodate the whole droplet on one of the
philic stripes without touching thegd domain boundaries.

For small separationL' and large volumeV, two types
of bridges exist in complete analogy with the droplet co
figurations on a single lyophilic stripe: Channellike bridg
are denoted by~B! in Fig. 5 with an almost cylindricalab-
interface and bulgelike bridges denoted by~C! and ~D! in
Fig. 5. The two bulgelike bridges are distinguished by t

FIG. 4. Interfacial free energyF of the liquid layers as a function of the
distance lcom of the center-of-mass from the substrate surface:~a! for contact
angleug538° and several values of the reduced volumeV/L1

3. Each curve
has been shifted in such a way thatF equals zero at its global minimum;~b!
close to the bifurcation point atug5ucr.39.2° andVcr /L1

3.2.85; and~c!
close to the transition point atug530° andV/L1

3510.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



e
k
ik
lli
ta
fo
ha

r
c
e

-
ne
wi
u

wo
e
rg
f

ct

ipe

is-
ge
o
ot
na

h
e

i

l

and
es
any
the

a
s.
e

the
n-

ve a
me
ing
se
rgy.
ce
e
n-
for

or-
two
plet
ince

ly
n-

rpo-
as
lar
large
will

a-
by
ic
tion
ed
r-

ed

we

act

yo-

al

e

4301J. Appl. Phys., Vol. 92, No. 8, 15 October 2002 M. Brinkmann and R. Lipowsky
behavior of their contact line; for~B!, the contact line is
pinned at the outer domain boundaries of the pair of strip
for ~C! it detaches from these domain boundaries and ma
an excursion across the lyophobic domains. Bulgel
bridges are localized along the stripes whereas channe
bridges are rather extended and try to maximize the con
with the stripes. If we compare the two types of bridges
the same set of parameter values, the bulgelike bridges
lower mean curvature.

Bridges of type~D!, which are in contact with the oute
lyophobic domains, are more likely to occur if the conta
angleud on the lyophobic domains is relatively small. On th
other hand, for the special choiceug530° andud5120°, all
bridges observed in our numerical work were of type~A!,
~B!, or ~C! providedV/L1

3,15. Furthermore, all morpholo
gies~B! and~C! were symmetric both with respect to a pla
perpendicular to the stripes and to the substrate and
respect to a midplane parallel to the stripes and perpendic
to the substrate.

The analogy between the liquid morphologies on t
stripes as displayed in Fig. 5 and those on a single strip
in Fig. 1 is understandable since both lyophilic stripes me
into one lyophilic stripe with twice the width in the limit o
small stripe separationL' /L1 . Therefore, in the limit of
small L' /L1 , the different types of bridges, which conne
two lyophilic stripes of widthL1 must become identical with
the corresponding morphologies for a single lyophilic str
of width 2L1 .

If the separationL' exceeds a certain characteristic d
tanceL'

* , which depends on the contact angles, only bul
like bridges exist as stable shapes in the limit of large v
ume V. In this latter regime, the bulgelike bridges do n
undergo any morphological transitiona, apart from the fi
ruptures, as the volume is decreased. Furthermore, asL' is
decreased for constantV, we find a gradual and smoot
change from the bulgelike bridges to channel-like bridg
provided the volumeV is sufficiently small. In analogy with
the results for a single lyophilic stripe, a shape bifurcation
expected to take place at a critical point with (L' ,V)
5(Lcr ,Vcr), which should depend on the contact anglesug

and ud , but we found it difficult to determine this critica
point by our numerical minimization procedure.

FIG. 5. Different liquid bridges connecting two lyophilic stripes:~A! Asym-
metric bridge~for separationL' /L150.1, volumeV/L1

350.5 and contact
angles ug545°, ud5120°); ~B! Channellike bridge~for L' /L150.1,
V/L1

3515, ug530°, ud5120°); ~C! Bulgelike bridge with contact line
pinned to the domain boundaries~for L' /L151, V/L1

3515, ug530°, ud

5120°); and~D! Bulgelike bridge with contact line depinned from th
domain boundaries~for L' /L150.5, V/L1

3515, ug530°, ud580°).
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B. Disconnected morphologies

As one increases the separationL' for fixed volumeV,
the bridge state becomes more and more unfavorable
must eventually rupture. As explained before, the strip
considered here are rather long so that we can ignore
constraints arising from their ends. In such a situation,
rupture of a bridge leads to an equilibrium state in which
single droplet is located on one of the two lyophilic stripe
This follows from the observation that the interfacial fre
energy has a certain convexity property.

Thus, let us assume, for a moment, that the rupture of
bridge leads to a morphology which consists of two disco
nected droplets with volumesV1 andV2 on the two lyophilic
stripes. However, since both stripes are identical and ha
uniform width, we can place both droplets onto the sa
stripe and displace them along this stripe without chang
their free energy until they touch each other. If we now fu
them, we should always reduce the interfacial free ene
This expectation is confirmed by our numerical work sin
we found, for all liquid morphologies, that the interfacial fre
energy is an increasing function of the volume which is co
vex upwards, i.e., the sum of the interfacial free energies
two droplets with volumesV1 and V2 is larger than the in-
terfacial free energy of a single droplet with volumeV1

1V2 .
Thus, after a bridge has ruptured, the equilibrium m

phology consists of a single droplet located on one of the
stripes. Since both stripes are identical, these single dro
states correspond to a spontaneously broken symmetry. S
the system is finite, it will, in principle, undergo thermal
excited fluctuations, which consist of states with two disco
nected droplets on both stripes and which lead to a supe
sition of the two states of minimal free energy. However,
long as the liquid volume is large compared to molecu
volumes, the corresponding excess free energies are
compared to the thermal energy, and these fluctuations
be very rare.

C. Morphological transitions and bifurcation diagram

As an example, we will now discuss the bifurcation di
gram for one specific choice of the contact angles given
ug530° andud5120°. If these angles are fixed, the bas
control parameters are given by the reduced separa
L' /L1 between the two lyophilic stripes and the reduc
volumeV/L1

3. As shown in Fig. 6, the corresponding bifu
cation diagram contains the bridge states~A! and~B!. A dis-
tinction between channellike bridges~B! and bulgelike
bridges~C! is not possible for the parameter values display
in Fig. 6 since we find a smooth and gradual change from~B!
and ~C! for volumesV/L1

3,15. As the separationL' of the
two lyophilic stripes is increased, the bridges rupture and
find the equilibrium states~II ! and ~IV ! for which the liquid
is located on one of the two lyophilic stripes. For the cont
angles chosen here, stable bulge states~III !, for which the
contact line is pinned to the domain boundaries of the l
philic stripes, have not been found.

The bifurcation diagram shown in Fig. 6 contains~i!
several full lines that correspond to the loci of morphologic
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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transitions at which two states have the same free energy
~ii ! broken lines that correspond to instability lines at whi
a ~meta!stable state becomes unstable. In addition, this bi
cation diagram also exhibits two triple points where thr
transition lines meet and where three different morpholog
can coexist. One triple point is located at (L' ,V)
5(L tr ,Vtr) with L tr /L1.1.85 andVtr /L1

3.8.49, see Fig.
6~a!. At this point, bridges of type~B! can coexist with two
different single-stripe morphologies, a channel state~II ! and
a bulge state~IV ! with a detached contact line. The seco
triple point is located at (L' ,V)5(L tr ,Vtr) with L tr /L1

.0.05 andVtr /L1
3.0.34, see Fig. 6~b!. At this second point,

asymmetric and symmetric bridges of type~A! and ~B! can
coexist with channel states~II ! on one of the two stripes.

For the bulge-state~IV ! on a single stripe, the limit of
~meta!stability is given by two different instability lines. On
the one hand, the state~IV ! can become unstable as on
decreases the separationL' of the two lyophilic stripes, be-
cause the contact line, which is located on the lyophobid
domain, touches the domain boundary of the adjacent
philic stripes. The corresponding instability line depends

FIG. 6. ~a! Bifurcation diagram for liquid morphologies on two lyophili
stripes within a lyophobic substrate as a function of the reduced separ
L' /L1 between the two stripes and of the reduced volumeV/L1

3; and~b! a
more detailed view of the same bifurcation diagram for small values ofL'

and V. In both figures, the contact angles areug530° on the lyophilic
stripes andud5120° on the lyophobic substrate. Dashed lines are instab
lines whereas full lines represent the loci of morphological transitio
Bridge morphologies connecting the two stripes are denoted by~A!, ~B!, and
~C! as in Fig. 5. For sufficiently large separationL' , these bridges rupture
and the liquid forms a channel state~II ! or a bulge state~IV ! on one of the
two lyophilic stripes as in Fig. 1.
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L' and is, thus, curved in the bifurcation diagram shown
Fig. 6~a!. On the other hand, the bulge state~IV ! can become
unstable as one decreases its volumeV because it transforms
into the channel state~II ! which is not affected by the pres
ence of a second lyophilic stripe. The corresponding ins
bility line is independent ofL' and is, thus, horizontal in the
bifurcation diagram of Fig. 6~a!.

As shown in Fig. 6~b!, the region of the bifurcation dia
gram where the symmetric bridge state~B! is ~meta!stable is
also bounded by two different instability lines which meet
the point (L' /L1 ,V/L1

3).(0.10,0.21). As one increases th
stripe separationL' for fixed volumeV, the bulge state~B!
ruptures and, then, decays into the single-stripe state~II !. The
corresponding instability line is characterized by a volum
V, which increases with increasing separationL' . On the
other hand, as one decreases the volumeV for small separa-
tion L', the symmetric bridge decays into an asymmet
bridge state~A!. Along the latter instability line, the volume
V increases with decreasingL' and attains the finite value
V/L1

3.0.43 asL' goes to zero. This limiting shape is give
by a spherical cap with contact angleug and diameterD
52L1 .

In the limit of small volumes, one obtains the trivia
regime ~I! in which the liquid is located within one stripe
This limit is attained as soon as the volume is smaller th
the volumeV5Vo of a spherical cap with contact angleug

and diameterD5L1 , i.e., for Vo /L1
3.0.054. Inspection of

Fig. 6~b! shows that the point (L' /L1 ,V/L1
3)5(0,Vo /L1

3)
represents the end point of both the transition line and
instability line for the asymmetric bridges~A!.

V. STABILITY CRITERIA FOR DIFFERENT
MORPHOLOGIES

In this section, we study the~meta!stability of several
simple morphologies in order to estimate the correspond
instability lines. First, we consider a channel on a sin
stripe and the channel instability lineug5uch(V), compare
Fig. 3. Using a cylindrical segment of variable length, we a
able to obtain the asymptotic estimateuch(V)'uch

`

5arccos(p/4).38° for large volumesV. We also estimate
the asymptotic behavior of the bulge instability line on
single stripe and of the channel instability lines on tw
stripes.

A. Stability of channels on a single stripe

We use the simplified model displayed in Fig. 7 to i
vestigate possible channel configurations for a given con
angleug on the lyophilic stripe. It is instructive to approxi
mate such a channel morphology by a cylindrical segm
for which the contact area is identical with the lyophil
stripe. We attach the liquid-vapor interface at the ends to
‘‘neutral’’ walls perpendicular to the plane of the substra
and the stripe. Since the wall material does not prefer
liquid or the vapor, the contact angle of the liquid is equal
p/2 on these walls. In addition, these auxiliary walls c
freely adjust their position, which corresponds to the situ
tion where the liquid can spread laterally along the stripe

Now, let us consider these cylindrical configurations
the liquid between the two auxiliary walls. The contact lin

on

y
.
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is pinned to thegd domain boundary and the liquid-vapo
interface forms the lateral contact angleu with the plane of
the substrate satisfying the inequalityug<u<ud . It will be
convenient to first assume that the contact angleud of the
lyophobic substrate satisfiesud>p/2.

By construction, the overall force acting on the wa
vanishes, which implies that the forces coming from the
terfacial tensions and the pressure difference between
liquid and vapor phase have to balance one another. The
of the liquid-vapor interface,Aab , as a function of the angle
u and the lengthL of the cylinder, is given by

Aab5
L1Lu

sinu
, ~6!

while the wetted area of the stripe,Abs is simply

Abs5L1L. ~7!

The interfacial free energyFch(ug ,u) of the cylinder be-
comes

Fch5Sab~Aab2cosugAbs! ~8!

5SabL1LS u

sinu
2cosugD . ~9!

If one keeps the volume of the liquid phase constant,
has

V5LA' ~10!

with the cross sectional areaA' of the cylindrical segment

A'5
L1

2~u2sinu cosu!

4 sin2 u
. ~11!

For fixed volumeV and stripe widthL1 , the interfacial
free energyFch becomes a function of the equilibrium con
tact angleug on the stripe and of the lateral contact angleu
of the cylindrical channel. This function is given by

Fch~ug ,u!

Sab
5

4V

L1
sinu

sinu cosug2u

sinu cosu2u
~12!

and its derivative with respect to the lateral contact anglu
has the form

FIG. 7. Cylindrical channel segment bounded by two auxiliary walls at
channel ends. These walls are taken to have the contact anglep/2. For fixed
volume, the channel can be parametrized by its lengthL or, alternatively, by
its lateral contact angleu along the contact line, which is pinned to thegd
domain boundary. The equilibrium value of this contact angle will be
noted byu0 .
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]Fch~ug ,u!

]u

1

Sab
5

4V

L1
g~u!h~ug ,u! ~13!

with the two auxiliary functions

g~u![
sinu~u cosu2sinu!

~sinu cosu2u!2 ~14!

and

h~ug ,u![
u

sinu
1cosu22 cosug . ~15!

In equilibrium, the lateral contact angleu attains the
valueu5u0 for which the interfacial free energy attains i
global minimum. This implies]Fch(ug ,u)/]u50 or

g~u!h~ug ,u!50 for u5u0 . ~16!

Since the functiong(u) is strictly negative and monotoni
cally increasing for 0,u,p, the solutions of Eq.~16! sat-
isfy h(ug ,u0)50 or

u01sinu0~cosu022 cosug!50, ~17!

which is equivalent to

ug5arccosS u0

2 sinu0
1

cosu0

2 D . ~18!

The functionug5ug(u0) as given by Eq.~18! has a single
maximum for 0,u0,p, see Fig. 8. This maximum value i
attained foru05u0,m5p/2 and is given by

ug,m5arccosS p

4 D.0.6675.38.24°. ~19!

Therefore, Eqs.~17! and ~18! have no real solution forug

.ug,m . This implies that the elongated channel morpholo
is not accessible for large volumesV andug.ug,m .

Note that the maximal valueu05u0,m5p/2 of the lateral
contact angle can be attained provided the contact line d
not depin from thegd domain boundaries for smaller value
of u0 . In general, the contact line stays pinned untilu0 has
reached the valueu05ud of the lyophobic substrate. There
fore, our analysis is self-consistent as long asud>p/2, as
assumed. Comparison with Fig. 3, which applies toud5p,
shows thatug,m represents the asymptotic limit of the cha
nel instability lineuch(V), and we conclude that

uch~V!'uch~`!5arccosS p

4 D for large V ~20!

andud>p/2.
In Fig. 8, we have displayed all solutionsu05u0(ug) as

obtained from Eq.~16!. In general, these solutions represe
extrema, i.e., minima or maxima, of the interfacial free e
ergy. In order to distinguish between these two types of
trema, one has to calculate the second derivative

]u
2Fch~ug ,u0!/Sab5~4V/L1!g~u0!]h~ug ,u!/]uuu5u0

,

5
4V

L1
g~u0!

cos2 u02u0 cotu0

sinu0
, ~21!

which is positive for 0,u0,p/2 but negative forp/2,u0

,p. Thus, all solutions with 0,u0,p/2 represent stable

e

-
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minima of the interfacial free energy, whereas all solutio
with p/2,u0,p correspond to unstable maxima. These t
types of solutions form two branches foru05u0(ug) as
shown in Fig. 8; the lower branch corresponds to sta
channels whereas the upper branch represents unstable
For the stable branch, the lateral contact angleu0 vanishes
for small ug . An expansion of the various terms of Eq.~16!
in powers ofu0 then leads to

u0')ug for small ug~stable branch!. ~22!

Note thatu05p/2 also represents the asymptotic limit
stability for long cylindrical channels with respect to pe
odic perturbations of the fluid–fluid interface as has be
shown previously.2 The situation we have discussed here
somewhat different because the walls in Fig. 7 can move
the lengthL of the channel can adjust freely. Fixing the p
sition of the walls will enhance stability beyondu05p/2, but
this deviation will become arbitrarily small as the length
the channel is increased.

As mentioned, the above analysis is self-consistent
ud>p/2. For ud,p/2, on the other hand, the contact lin
will start to move onto the lyophobic domains as soon as
lateral contact angleu0 exceedsud . This depinning of the
contact line from thegd domain boundaries acts to trunca
the stable branch in Fig. 8 and to reduce the maximal va
ug,m for which one can have stable channel states. Inde
this maximal value is now given by

ug,m5arccosS ud

2 sinud
1

cosud

2 D,arccosS p

4 D . ~23!

Thus, we conclude that

uch~V!'uch~`!5arccosS ud

2 sinud
1

cosud

2 D ~24!

for largeV andud,p/2.

FIG. 8. Lateral contact angleu0 of the channel along thegd domain bound-
aries as a function of the contact angleug on the lyophilic stripe according
to Eq. ~18!. The lower branch~full line! represents stable channels where
the upper branch~dashed line! corresponds to unstable channels. The low
branch has the asymptotic behavioru0')ug for small ug as indicated by
the dotted line. The arrow corresponds to the maximal valueug,m5uch(`)
.38.24° for ud>p/2. Points refer to numerical minimizations from th
‘‘surface evolver.’’
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B. Stability of bulges on a single stripe

Next, let us consider the stability of bulges on a sing
stripe and the corresponding instability line, which can
parametrized asug5ubu(V) or asV5Vbu(ug); see Fig. 3. A
simple estimate forV5Vbu(ug) can be obtained as follows
For a given contact angleug on the lyophilic stripe, the vol-
ume of a large bulge will become asymptotically equal to
volume of a spherical cap with mean curvatureMbu. This
mean curvature of the bulge configuration cannot be m
smaller than the mean curvatureM ch(ug) of a channel con-
figuration for the same contact angleug . Indeed, forMbu

@M ch(ug), the bulge would continuously transfer liquid int
the channel and would finally disappear.

If the contact angle on the hydrophobic substrate isud

5p as in Fig. 3, the bulge becomes a complete sphere in
large volume limit. Close to the bulge instability line, th
radius of the sphere is given by 1/Mbu.1/M ch(ug), which
implies the estimate

V5Vbu~ug!.4p/@3M ch~ug!3# ~25!

for the bulge instability line. This is in good agreement wi
the data obtained from numerical minimization of the inte
facial free energy as indicated by the dotted line in Fig. 3

C. Stability of channellike bridges on two stripes

Finally, let us consider the stability of channellik
bridges which cover two stripes; this is the morphology~B!
in Fig. 5. We will again use a cylindrical channel segme
bounded by two auxiliary walls as in Fig. 7 but the chann
now covers both hydrophilic stripes and the intervening h
drophobic one. The channel can again be parametrized b
lateral contact angleu; the equilibrium value of this contac
angle will again be denoted byu5u0 . The calculation de-
scribed in Sec. V A now leads to the channel free energy

Fch~u,ûg!5Sab~2L11L'!LS u

sinu
2cosûgD ~26!

with the effective contact angleûg , which satisfies

cosûg5
2L1 cosug1L' cosud

2L11L'

. ~27!

In the limit of smallug , this implicit relation forûg becomes
independent ofug and leads to

ûg'~12cosud!1/2~L' /L1!1/2 ~28!

for small L' /L1 .
One may now repeat the analysis as given in Sec. V

which implies that, in the large volume limit, two-strip
channels areunstablefor cosûg<cosug,m. Using the rela-
tions~19! and~23! for ug,m , this instability criterion is found
to be equivalent to

ug>arccosS Xd1
1

2
~Xd2cosud!

L'

L1
D ~29!

with

r
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Xd[H p/4 for ud>p/2,

ud

2 sinud
1

cosud

2
for ud,p/2.

~30!

Thus, the region of~meta!stability of the two-stripe
channel is restricted to small contact anglesug<ug,m and to
small values ofL' /L1 . This region is further reduced by
second instability mechanism which leads to a decay of
two-stripe channel into one-stripe channels. A simple e
mate of this latter instability can be obtained as follows.

As explained before, a long channel on a single strip
characterized by the lateral contact angleu0 along the pinned
contact line of the channel, see Fig. 7, which only depe
on the contact angleug of the lyophilic substrate. The corre
sponding functional relationshipu05u0(ug) as given by Eq.
~18! was displayed in Fig. 8 above. Elementary geome
implies that such a channel has the mean curvatureM5M1

[sinu0(ug)/L1 for a lyophilic stripe of widthL1 . The corre-
sponding Laplace pressure of this channel is given
2SabM1 as follows from the Laplace equation~4!.

For a long channel which covers two lyophilic stripe
on the other hand, the contact angleu0 depends only on the
effective contact angleûg as defined by Eq.~27!. The latter
channel has the mean curvatureM5M2[sinu0(ûg)/(2L1

1L'), since it covers a stripe of total width 2L11L' , and
the Laplace pressure 2SabM2 .

Now, assume that we bring the two-stripe channel
contact with a one-stripe channel. The two-stripe chan
will be unstable and will be ‘‘sucked’’ into the one-strip
channel if its Laplace pressure;M2 exceeds the Laplac
pressure;M1 of the one-stripe channel. This implies th
the two-stripe channel becomes unstable ifM2.M1 . If we
express the mean curvatures in terms of the lateral con
anglesu0 , we obtain the instability criterion

sin@u0~ ûg!#.~21L' /L1!sin@u0~ug!# ~31!

for the decay of two-stripe channels into one-stripe chann
For smallug and smallL' /L1 , one has

u0~ ûg!')~12cosud!1/2~L' /L1!1/2 ~32!

as follows from Eqs.~22! and ~28!. Using this asymptotic
expression foru0( ûg), the instability criterion~31! becomes
equivalent to

ug,~12cosud!1/2~L' /L1!1/2 ~33!

for small L' /L1 .
In summary, we have identified two different instabili

mechanisms for two-stripe channels:~i! decay into bulgelike
configurations and~ii ! decay into one-stripe channels. Th
first instability mechanism~i! destroys the two-stripe chann
for sufficiently large values ofug as estimated by the in
equality~29!. The second instability mechanism~ii ! is effec-
tive for sufficiently small values ofug as given by the in-
equality ~31! or its asymptotic form~33!. A combination of
the two inequalities~29! and ~31! leads to the stability dia-
gram shown in Fig. 9.
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VI. SUMMARY AND OUTLOOK

In summary, we have determined the morphology
wetting layers on substrates with striped surface doma
For simplicity, we focussed on two rather simple patter
namely, ~i! single lyophilic stripes and~ii ! two lyophilic
stripes separated by a lyophobic one. For both cases,
determined the different wetting morphologies using nume
cal minimization methods, see Fig. 1 and Fig. 5. In additio
we derived stability criteria for the different morphologie
using simple parametrizations of the channels and bulge
terms of cylindrical and spherical segments, see Sec. V.

For the case of a single lyophilic stripe, the wetting mo
phology is uniquely determined bythree dimensionless pa-
rameters:~i! the contact angleug of the lyophilic stripe,~ii !
the contact angleud of the lyophobic stripe, and~iii ! the
reduced volumeV/L1

3 of the liquid whereL1 is the width of
the lyophilic stripe. In Fig. 3, we display the bifurcation dia
gram as a function ofug andV/L1

3 for ud5p. This diagram
exhibits a morphological wetting transition from channels
bulgelike states.

The instability line for the one-stripe channels is d
scribed byug5uch(V). This instability line has the surpris
ing property thatuch(V) attains thefinite value uch(`) for
large volumesV. This limiting value is calculated in Sec
V A. For ud>p/2, we find that it has the universal valu
uch(`)5arccos(p/4).38°; for ud,p/2, the limiting value
uch(`) depends onud and is given by Eq.~24!.

This property of the channel instability line implies th
the wetting liquid can form arbitrarily long channels in th
limit of large volumes providedug,uch(`). These channels
are characterized by a lateral contact angleu5u0 , which is
constant along those segments of the contact line, which
pinned to thegd domain boundaries. Furthermore, the late
contact angleu0 does not depend on the volume of the cha
nel but only on the contact angleug of the lyophilic sub-
strate; compare Fig. 8. Forug.uch(`), on the other hand
no extended channels can be formed. Thus, we find that

FIG. 9. Stability regions of two-stripe channels as a function of the redu
width L' /L1 of the intervening lyophobic stripe and of the contact angleug

on the lyophilic stripes. Several such regions are shown correspondin
different values of the contact angleud on the lyophobic stripes. Each sta
bility region is bounded by two curves: the upper one follows from Eq.~29!
and describes the decay of the two-stripe channels into bulgelike config
tions; the lower one follows from Eq.~31! and corresponds to the decay int
one-stripe channels.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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impossibleto ‘‘paint’’ a long stripe if its contact angle satis
fies ug.uch(`).

For the case of two lyophilic stripes, the wetting mo
phology is uniquely determined byfour dimensionless pa
rameters; it now depends on the reduced widthL' /L1 of the
intervening lyophobic stripe in addition to the three para
etersug , ud , andV/L1

3, which were already relevant for th
single stripe geometry. For one particular choice of the c
tact angles as given byug530° and ud5120°, we have
determined the bifurcation diagram in some detail; see F
6. This two-dimensional diagram depends on the redu
width L' /L1 and the reduced volumeV/L1

3, and is limited,
for numerical reasons, to relatively small volumesV/L1

3

<15. For this range of volumes, one finds a smooth cro
over from two-stripe channels~B! at small volumes to two-
stripe bulges~C! at large volumes and no transition betwe
these two morphologies.

We have also studied the stability of two-stripe chann
~B! in the limit of large volumes. As discussed in Sec. V
these channels can decay both into bulge states and into
stripe channels. Our estimates for the corresponding insta
ity lines are given by Eqs.~29! and~31! as plotted in Fig. 9.

As mentioned, the morphological transitions and ins
bilities described here can be studied experimentally in v
ous ways. One convenient control parameter is provided
the total volume of the liquid. Another control parameter
the contact angleug , which can be varied both irreversibly
e.g., via the addition of surfactant molecules and reversi
e.g., via the application of electric fields. The latter meth
has been recently used in order to study electrowetting p
nomena at structured surfaces.24

The results obtained here for one or two lyophilic strip
can be extended to larger networks of such stripes. Thus
us consider a network of stripes that all have essentially
same widthL1 , and let us assume that the mesh size of t
network is large compared toL1 . If one deposits a certain
amount of liquid onto this network, one will, in genera
create many separate channels. All of these channels
have the same lateral contact angleu05u0(ug) provided
ug,uch(`). As one adds more liquid, these channels
expected to merge smoothly and to form even longer ch
nels, which are again characterized by the same lateral
tact angle.

Such a continuous filling of the network is expected
proceed until the network of lyophilic stripes is complete
covered by liquid. At this point, the channels ‘‘feel’’ the finit
size of the network. As a consequence, the lateral con
angleu0 starts to grow and eventually exceeds its maxim
valueu0,m . If the hydrophobic substrate is characterized
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the contact angleud,p/2, the maximal value of the latera
contact angle of the channel is given byu0,m5ud . In this
case, the contact lines should depin from thegd domain
boundaries, and the channels should gradually move onto
lyophobic substrate. Forud>p/2, on the other hand, the
maximal value of the lateral contact angle isu0,m5p/2, and
the channel network is expected to become unstable an
decay into a bulgy state. As long as the mesh size is la
compared to the stripe width, it seems reasonable to ex
that the new equilibrium state will always exhibit a sing
bulge irrespective of the topology of the network, but th
remains to be shown.
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