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Abstract. – The adhesion dynamics of multicomponent membranes containing specific re-
ceptors (stickers) and repulsive macromolecules (repellers) is studied theoretically. We find
different dynamic regimes with clearly distinct patterns of stickers and repellers at intermedi-
ate times. The pattern formation is shown to depend critically on the strength of the repeller
barrier which opposes sticker binding. For strong barriers composed of long repellers, the nucle-
ation time for sticker binding is large compared to typical diffusion times, and the stickers bind
by condensation around a single nucleus. For weaker repeller barriers, many nuclei are formed
initially. Due to the diffusion of stickers into the adhesion area, nuclei at the rim of this area
subsequently grow faster, which results in circular sticker patterns. At sufficiently high sticker
concentrations, the pattern evolution is similar to recent observations during T cell adhesion.

Introduction. – The adhesion of cells plays a key role in important biological processes
such as tissue development and immune response. The highly selective interactions leading
to cell adhesion are mediated by a variety of specific receptors which are embedded in the
cell membranes. The bound receptor-ligand pairs of opposing cells are often arranged into
supramolecular patterns which show a complex evolution during cell adhesion [1–3]. For some
biological processes, the formation of these patterns seems to be the central event leading
to cell activation. For example, the immune response of T lymphocyte and natural killer
cells to target cells is triggered by the formation of characteristic patterns at the cell-cell
junction [1–3]. One possible explanation for the pattern formation during cell adhesion has
been given in terms of active processes involving the cytoskeleton of the cells [4, 5]. More
recently, it has been shown theoretically, using a detailed model for T lymphocyte adhesion,
that such patterns may also result from spontaneous self-assembly processes [6], which possibly
operate in concert with cytoskeletal activity in living cells.

In this letter, we consider a statistical mechanical model for the adhesion of multicompo-
nent membranes with adhesive receptors (stickers) and repulsive macromolecules (repellers).
We find distinct dynamic regimes of pattern formation depending on the characteristic lengths
and the concentrations of stickers and repellers: (A) Long repellers impose a strong barrier to
sticker adhesion. The nucleation time for sticker binding therefore is large compared to typical
diffusion times, and the membrane binds via growth of a single sticker nucleus, as has been
c© EDP Sciences



T. R. Weikl et al.: Pattern formation during adhesion 917

recently observed for biomimetic vesicles with PEG-lipopolymers as repellers and integrins as
stickers [7]. (B) For short repellers, the nucleation time for sticker binding is small, and many
nuclei of bound stickers are formed initially. Due to the diffusion of stickers into the adhesion
area, nuclei at the rim of this area grow faster, and at sufficiently high sticker concentrations,
a ring of bound stickers is formed which encloses a central domain of repellers, see fig. 2 below.
At later times, this pattern inverts, and a central sticker cluster is surrounded by repellers.
The sequence of patterns in this regime has a striking similarity to the pattern evolution
observed during T cell adhesion [2]. (C) In an intermediate regime, the sticker concentration
is not large enough for the formation of a closed sticker ring from the initial nuclei. Instead,
circular arrangements of separate sticker clusters emerge, see fig. 3 below.

General model. – First, we describe our membrane model which was previously used in
order to determine the time-independent behavior of these systems in equilibrium [8–12]. The
conformations of a multicomponent membrane in contact with a substrate are described by the
field l for the local separation between membrane and substrate and by the concentration field
n for the membrane composition [8]. It is convenient to discretize the substrate into a two-
dimensional square lattice with lattice constant a. This discretization divides the membrane,
which is on average parallel to the substrate, into square patches of size a2. The sticker and
repeller positions can then be given by occupation numbers ni at the lattice sites i which adopt
the value ni = 1 for membrane patches with a sticker, ni = 2 for patches with a repeller, and
ni = 0 for “neutral” patches without stickers or repellers. In terms of these variables, the
canonical Hamiltonian can be written in the general form [8,9]

H{l, n} =
∑

i

(κ/2a2)(∆dli)2 +
∑

i

[Vhw(li) + δ1,ni
Vs(li) + δ2,ni

Vr(li)] (1)

with the hard-wall potential Vhw(li) = ∞ for li ≤ 0 and Vhw(li) = 0 for li > 0, and the
Kronecker symbol δi,j = 1 for i = j and δi,j = 0 otherwise. The first term represents
the elastic energy of the membrane. For simplicity, the bending rigidity κ is assumed to
be independent of the membrane composition. The discretized Laplacian ∆d is given by
∆dli = ∆dlx,y = lx+a,y+lx−a,y+lx,y+a+lx,y−a−4lx,y. The second term of the Hamiltonian (1)
represents the interaction energy between the membrane and the substrate. In the following,
stickers and repellers are simply characterized by the interaction potentials

Vs(li) = Usθ(ls − li) and Vr(li) = Urθ(lr − li) , (2)

where the step function θ(x) is equal to 0 for x < 0 and equal to 1 for x ≥ 0. For Us < 0 and
Ur > 0, the sticker potential Vs is a square-well potential with binding energy |Us| and range
ls, and the repeller potential Vr has a barrier of height Ur and range lr. In this letter, we will
focus on the relatively large sticker and repeller energies Us = −10T and Ur = 10T , where T
is the temperature in energy units.

Equilibrium phase behavior. – In this section, we consider the equilibrium behavior in
order to determine the regions of the parameter space where phase separation occurs and,
thus, pattern formation can be expected. It is convenient to start from the grand-canonical
Hamiltonian corresponding to (1) which is obtained by adding the term−∑

i(δ1,ni
µs+δ2,ni

µr).
Here, µs and µr are the relative chemical potentials for sticker and repeller patches with respect
to “neutral” patches. As shown in [8,9], the degrees of freedom of the concentration field n can
be integrated out exactly in the partition function since the Hamiltonian (1) is linear in n. This
leads to an effective membrane potential with a well for 0 < li < ls and a barrier of height Uba

for ls < li < lr, provided the repeller range lr is larger than the sticker range ls. The effective
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Fig. 1 – Phase diagrams for a multicomponent membrane as a function of the sticker concentration
Xs and the rescaled potential ranges zs and zr of stickers and repellers. The chemical potential for the
repellers is µr = 0, which corresponds to a repeller concentration a2Xr = 0.5 in the unbound phase.
At large zs and zr, the repeller barrier with rescaled width zr − zs is strong, which leads to lateral
phase separation and 2-phase coexistence. The data points correspond to the sticker concentrations
in the bound phase. The sticker contration a2Xs � 10−4 in the unbound phase is given by the vertical
lines. The critical points as obtained from extrapolation are represented by stars.

barrier height is simply given by Uba = T ln(1 + eµr/T /(1 + eµs/T )) 	 T ln(1 + eµr/T ) in the
limit of large sticker and repeller energies |Us| and Ur. It follows from scaling arguments [10]
that lateral phase separation occurs for strong barriers with

Uba(lr − ls)2 > ca2T 2/κ , (3)

where c is a dimensionless coefficient. The two coexisting phases are a bound phase with
a higher sticker concentration, and an unbound phase with a larger repeller concentration.
According to eq. (3), the tendency for lateral phase separation is weakened by an increase in
the temperature T , in contrast to the fluctuation-induced mechanisms for phase separation in
the case of rigid stickers [9], stickers with larger lateral size [11], or rigid inclusions [12]. Similar
mechanisms for phase separation due to a potential barrier have been discussed in [13–15].

Here, we consider Monte Carlo (MC) simulations of the full model defined by eq. (1) in
order to estimate the coefficient c in eq. (3). The corresponding phase diagrams are shown
in fig. 1. In the simulations, we determine the sticker concentration Xs ≡ 〈δni,1〉/a2 as a
function of the chemical potential µs of the stickers. Lateral phase separation is reflected in
a discontinuity of Xs(µs) at a transition value µs = µ∗s . The two limiting values of Xs at
µ∗s correspond to the sticker concentrations in the two coexisting phases and depend on the
rescaled potential ranges zs = (ls/a)

√
κ/T and zr = (lr/a)

√
κ/T of the stickers and repellers,

see fig. 1. The ratio of zr and zs is 2 for the left and 1.2 for the right diagram. The fixed
chemical potential of the repellers is µr = 0, which corresponds to a repeller concentration
a2Xr 	 eµr/T /(1+eµr/T ) = 0.5 in the unbound phase where the sticker concentration is small,
see vertical lines. The strength of the repeller barrier with width zr − zs decreases with zs and
zr. The 2-phase coexistence regions become critical points at zc

s = 0.15 ± 0.05 for zr = 2zs
and at zc

s = 0.65 ± 0.05 for zr = 1.2zs. In agreement with eq. (3), the two values differ by a
factor of 5 within the numerical accuracy reflecting the same critical barrier strength. From
the two critical values, we conclude c = 0.013± 0.005 for the coefficient in eq. (3).

Adhesion dynamics. – In order to study the time evolution of the adhesion process, we
start from the canonical Hamiltonian (1) with fixed sticker and repeller concentrations Xs

and Xr. We consider the following adhesion geometry: The contact area of the membrane is
assumed to be a circle with diameter 100a, where a is the lattice spacing. This circular contact
area is surrounded by a membrane ring of width 50a in which the membrane is not in contact
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Fig. 2 – Time sequence of MC configurations of the contact area for the potential ranges zs = 1.0,
zr = 1.6 and concentrations a2Xs = 0.1, a2Xr = 0.5 of stickers and repellers. Stickers are shown in
black, repellers in grey. Due to the diffusion of stickers into the contact area, clusters at the rim grow
faster, forming rings at intermediate time scales. The final configuration represents the equilibrium
state. The snaphots are taken at 103, 4 · 103, 104, 4 · 104, 1.6 · 105, 6.3 · 105, 106, and 4 · 106 MC steps.

with the substrate or opposing membrane. Thus, the whole membrane is a circle of diameter
200a. The stickers and repellers are free to diffuse within the entire membrane, but interact
with the substrate or opposing membrane only in the contact area. This mimics the adhesion
geometry of a spherical vesicle or cell, with a ratio of 1 : 4 between contact area and overall
membrane area. We assume that this geometry is established during an initial adhesion event
which is fast compared to the pattern formation described below. This assumption seems to be
justified both for the biomimetic vesicles studied in ref. [7] and for T cells [2]. In the first case,
the considered geometry arises from initial gravity-induced adhesion of the vesicles on the sub-
strate. In the case of T cells, initial adhesion is mediated by relatively long integrin molecules.
Together with the glycocalyx, the integrin complexes impose a barrier to the subsequent bind-
ing of the shorter TCR-MHC complexes [5] which correspond to the stickers in our model.

Our MC simulations start from a random distribution of stickers and repellers, and a
rescaled membrane separation zi ≡ (li/a)

√
κ/T = zr in the contact area, with all stickers

unbound. A Monte Carlo step consists in attempts i) to move each sticker and repeller to one of
the 8 neighbor sites and ii) to shift the rescaled membrane separation zi at every lattice site i in
the contact area. In this way, we incorporate the lateral diffusion within the membrane and use
a Rouse-type dynamics for its shape fluctuations [16]. Within the contact area, the maximal
wavelength of these fluctuations is small and one may ignore hydrodynamic interactions which
determine the relaxation times in the long-wavelength limit. We assume that the on-rate for
sticker binding is large and that the stickers bind fast compared to membrane relaxation
times. A local membrane move which brings a sticker within the potential range zs then leads
immediately to sticker binding. The off-rate for sticker unbinding is small for the high binding
energies considered here.

Regime (A): At large repeller ranges zr or small sticker concentrations Xs, we find that
adhesion proceeds by growth of a single nucleus of bound stickers (MC configurations not
shown). This adhesion behavior has been experimentally observed for biomimetic vesicles
with integrins as stickers and anchored polymers as repellers [7].

Regime (B): In fig. 2, a typical time sequence of MC configurations is shown for the rescaled
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Fig. 3 – Time sequence of MC configurations of the contact area for the potential ranges zs = 1.0,
zr = 1.8 and concentrations a2Xs = 0.04, a2Xr = 0.5 of stickers and repellers. Stickers are shown in
black, repellers in grey. The sticker concentration is smaller than in fig. 2, which results in circular
patterns of separate clusters at intermediate times, instead of closed sticker rings as in fig. 2. The
snaphots are taken at 103, 4 · 103, 1.6 · 104, 6.3 · 104, 4 · 105, 6.3 · 105, 1.6 · 106, and 4 · 106 MC steps.

potential ranges zs = 1.0, zr = 1.6 and overall sticker and repeller concentrations a2Xs = 0.1,
a2Xr = 0.5. Initially, the stickers bind at many nucleation sites and form small clusters, see
the first configuration of the contact area in fig. 2. Due to the sticker inflow from the non-
adhesive membrane around the contact area, sticker clusters at the rim of this area grow faster,
and after cluster coalescense, a ring of bound stickers is formed, enclosing trapped repellers
and remaining small sticker clusters in the center of the contact area. At later times, this
pattern is inverted, and finally, a single central sticker cluster emerges which is surrounded by
a ring of repellers. This final configuration minimizes the line tension between the bound and
unbound membrane domains and, therefore, represents the equilibrium state. Rather similar
patterns involving an intermediate ring of TCR-MHC complexes and a final central disk of
these complexes have been observed during T cell adhesion [2].

Regime (C): MC configurations of the contact area at the smaller sticker concentration
a2Xs = 0.04 and slightly larger repeller range zr = 1.8 are shown in fig. 3. Initially, many
sticker clusters are again formed in nucleation events, and subsequently, sticker clusters at
the edge of the contact area grow faster due to the diffusion of stickers into the contact
area. But in contrast to the previous situation, the sticker concentration is not large enough
for the formation of a closed ring of bound stickers at intermediate times. Instead, a ring of
several disconnected clusters emerges. The clusters eventually coalesce to form the equilibrium
configuration with one central sticker cluster.

The different regimes (A), (B), and (C) for pattern formation can be systematically char-
acterized in terms of two quantities. The first quantity is the maximal number of bound
sticker clusters Nmax

cl attained during the time course of a simulation. In fig. 4(a), the num-
ber of bound sticker clusters Ncl is displayed as a function of time for the same parameters
as in fig. 3. After initial increase due to nucleation events, the cluster number Ncl attains
the maximal value Ncl = Nmax

cl , and later decreases as a consequence of cluster coalescence.
Another characteristic quantity is the maximal sticker occupation Y max for the ring of the
contact area. To define the latter quantity, we consider the membrane ring with distances
40a < r < 50a from the center of the contact area, divide it into 100 equal segments, each
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Fig. 4 – (a) Number of bound sticker clusters Ncl and (b) sticker occupation Y of the contact area
ring with distances 40a < r < 50a from the center as a function of the time t in MC steps for the same
parameters as in fig. 3. The data are averages from 24 independent simulations. (c), (d) Dependence
of the dynamic regimes (A), (B), and (C) on the sticker and repeller concentrations Xs and Xr and
the repeller range zr for the sticker potential range zs = 1.0. The repeller concentration is given by
a2Xr = 0.5 in (c), and the repeller range is zr = 2.0 in (d). Characteristic patterns are indicated
for all three regimes. In the upper left grey area, the maximal number of sticker clusters Nmax

cl

during adhesion is smaller than 3. In the lower right grey area, the maximal value Y max for the ring
occupation is larger than 0.8.

covering an angle 2π/100, and determine the fraction of segments Y which contain bound
stickers. The ring occupation Y has a similar time evolution as Ncl, with a maximal value
Y max at intermediate times where a ring of sticker clusters is formed, and a final decrease to
zero as the equilibrium conformation is approached, see fig. 4(b). We find that appropriate
values to describe the crossover between the three dynamic regimes are given by Nmax

cl = 3 and
Y max = 0.8: Simulations with Y max > 0.8 show intermediate configurations with a closed ring
of bound stickers as in fig. 2. For Nmax

cl < 3, on the other hand, adhesion proceeds by sticker
condensation mostly around a single, dominant nucleus. For Nmax

cl > 3 and Y max < 0.8,
configurations with a circular arrangement of separate clusters emerge as in fig. 3.

The dynamic behavior just described can be understood in terms of the nucleation time τnuc

for the formation of bound sticker clusters, compared to typical diffusion times of the stickers.
The nucleation time τnuc critically depends on the strength of the repeller barrier which
opposes sticker binding. A membrane segment with linear extension L thermally fluctuates
with a typical out-of-plane deviation L⊥ ∼ L√

T/κ. A segment crossing the barrier region
between lr and ls therefore has a typical area A ∼ (κ/T )(lr − ls)2 and activation energy
∆Eba 	 UbaA/a

2, where Uba 	 T ln(1+ eµr/T ) is the height of the energy barrier, see eq. (3).
The nucleation probability Pnuc therefore scales as Pnuc ∼ exp[−∆Eba/T ]. The nucleation
time τnuc is proportional to 1/Pnuc, and scales as τnuc ∼ exp[c′κUba(lr − ls)2/(a2T 2)], where
c′ is a dimensionless coefficient. Since the unbound stickers perform a random walk on the
lattice, the diffusion time τdif to cover a typical distance such as the diameter D of the contact
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area simply scales as τdif ∼ D2. In contrast, the nucleation time τnuc strongly increases with
increasing repeller range lr or barrier height Uba, which also leads to an increase of the regime
(A) where adhesion proceeds via diffusive growth of a single, dominant nucleus, see fig. 4(c).
The barrier height Uba depends on the chemical potential µr or the concentration Xr of the
repellers, see above. For smaller repeller range lr or concentration Xr, many nuclei are formed,
which leads to the dynamic regimes (B) and (C), depending on the sticker concentration Xs

and on the line tension between the sticker and repeller domains. Within our MC simulations,
the ratio τnuc/τdif also depends on the relative frequency with which we attempt to change the
separation field z and the concentration field n and which was chosen to be one. According
to our scaling arguments, other choices for this relative frequency may lead to a shift of the
boundaries between the three regimes, but not to a qualitatively different adhesion behavior.

Conclusions. – In summary, we have shown that the various domain patterns which have
been observed during the sticker-mediated adhesion of membranes can be understood within
a unified theoretical framework. This framework is based i) on lateral phase separation due
to a repeller barrier opposing sticker binding and ii) on the nucleation of the bound sticker
domains. It is instructive to use our theoretical results in order to estimate the strength of
the repeller barrier in the case of T cells. For small repeller concentrations with a2Xr � 1,
the effective barrier height Uba = T ln(1+ eµr/T ) in eq. (3) can be written as Uba 	 Teµr/T 	
Ta2Xr. According to eq. (3), lateral phase separation then occurs for Xr(lr − ls)2 > cT/κ
with c 	 0.013. For T cells, the length of the TCR-MHC complexes corresponding to the
stickers in our model is 15 nm [5]. Taking the typical values lr 	 40 nm and Xr 	 50/µm2

for the repellers [2, 5, 6] and κ 	 20 T for the bending rigidity of lipid membranes leads to
a repeller barrier clearly above the critical strength. Therefore, the barrier mechanism for
lateral phase separation provides a possible explanation for the observed aggregation of the
TCR-MHC complexes and for the pattern formation found in experiments.
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