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Abstract. We study the lateral and transverse diffusion of amphiphiles in two-component bilayer mem-
branes, using a coarse-grained model for amphiphilic molecules and combined Monte Carlo-Molecular
Dynamics simulations. Membrane structural properties, such as the mean thickness, are also measured.
The dependence of such properties on membrane composition, inter-molecular interactions, and amphiphile
stiffness is determined. In particular, we show that addition of shorter amphiphiles drives the model mem-
brane towards a more fluid state, with increased amphiphile lateral diffusion rates. These results can be
understood in the framework of a simple free-volume model. Furthermore, we observe an increase in the
trans-membrane diffusion when the interaction energy of amphiphiles with their neighboring molecules is
decreased.

PACS. 82.70.-y Disperse systems; complex fluids – 61.20.Ja Computer simulation of liquid structure

1 Introduction

Supramolecular aggregates of amphiphilic molecules are
essentially characterized by two length scales: on the one
hand, the molecules can be viewed as semi-flexible rods,
with a length of the order of 1-2 nm; on the other hand,
they often form a bilayer membrane which has a lateral
extension that can reach several micrometers. This is re-
flected in two different approaches used to model such sys-
tems: in the first approach, the membranes are treated as
smooth elastic surfaces in such a way that only the prop-
erties depending on the largest length scale are taken into
account [1]; alternatively, on the molecular length scale,
one is forced to use a small number of molecules in Molec-
ular Dynamics simulations, because of the large amount
of computation time required [2–6]. In this case, coarse-
grained models for the amphiphile-water solution, have
been proposed in order to reduce the computation time.
These models keep some of the molecular features of the
water and amphiphile and have been shown to reproduce
many general and local properties of the water-bilayer sys-
tem, such as self-assembly of bilayers in water with typical
lateral density profiles [7,8], or the fluctuation spectrum
of a membrane [9].

These models were characterized by a single type
of amphiphile, in contrast to natural membranes which
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are multi-component systems and contain many different
types of lipids and proteins. In the present article, we ex-
tend the coarse-grained model introduced in [7] and con-
sider two types of model amphiphiles, which differ mainly
in their chain lengths, and study how the bilayer compo-
sition and the inter-molecular interactions influence dy-
namic properties such as lateral and transverse diffusion
of the lipids within the bilayer. The study of such proper-
ties can provide useful information on transport phenom-
ena in biological and biomimetic membranes such as Black
Lipid Membranes (BLM) [10]. In particular, we observe an
increase of the amphiphile’s lateral diffusion as the frac-
tion of shorter amphiphiles is increased and we propose a
simple free-volume model to explain this result.

Our article is organized as follows. In Section 2, we de-
scribe the details of our membrane models and of our sim-
ulation method. We then present the results of our numer-
ical simulations, first for the lateral diffusion in Section 3.1
and then for the transverse diffusion in Section 3.2.

2 Modelling on the supramolecular scale

2.1 Particles and interaction potentials

We use the same coarse-grained model for both the solvent
and the amphiphilic molecules that was used in [7]: the
water particle (W), the amphiphile head-group (H) and
several CH2 groups of an amphiphile hydrocarbon chain
(C) are represented by single particles. We extend that
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Fig. 1. Example of the two amphiphiles A and B.

Table 1. Interaction potentials between the 4 different parti-
cles of the model.

Uαβ W HA HB C

W ULJ ULJ ULJ USC

HA ULJ ULJ ULJ USC

HB ULJ ULJ ULJ USC

C USC USC USC ULJ

model by introducing two kinds of amphiphiles, a longer
one (A) and a shorter one (B), as shown in Figure 1. In
our model, the two amphiphiles differ in their length, i.e.
the number of C particles, and in the interaction of their
heads with the other particles; hence, in the following, we
distinguish between the two head particles HA and HB,
while the C particles have the same properties for both
types of amphiphilic molecules. The hydrophobic inter-
action of C with H and W particles is modelled by the
repulsive soft-core (SC) potential

USC(rij) = 4εαβ

(
σ′

αβ

rij

)9

, (1)

while all the other attractive interactions, W-W, W-H, H-
H, C-C, are modelled by the Lennard-Jones (LJ) potential

ULJ(rij) = 4εαβ

[(
σαβ

rij

)12

−
(
σαβ

rij

)6
]
, (2)

where α, β ε {W,HA,HB,C}. The interactions between the
four kinds of particle are summarized, using a matrix no-
tation, in Table 1. We use a cutoff radius σc = 2.5σαβ , for
the LJ interaction, and a cutoff radius σ′

c = 2.5σ′
αβ for the

SC interaction, i.e., these interactions vanish for r > σc

and r > σ′
c, respectively.

Our model contains two other types of force poten-
tial. Adjacent particles in one amphiphilic molecule are
connected via the harmonic potential

U2(ri,i+1) = k2 (ri,i+1 − σ)2 , (3)

where i and i+1 indicate two successive particles along the
chain. To model the effects of hydrocarbon chain stiffness,
all particles within a single amphiphile molecule interact
also via the three-body bending potential

U3(ri−1,i, ri,i+1) = k3

(
1− ri−1,i · ri,i+1

ri−1,i ri,i+1

)
= k3(1−cosφi) ,

(4)
where ri,i+1 = ri+1 − ri, see Figure 1.

2.2 Simulation method

Our system contains N = NW+NHA +NHB +NC particles,
where NW, NHA , NHB and NC are the number of W, HA,
HB and of C particles, respectively. We use a cuboidal
simulation box, with periodic boundary conditions in all
three directions. The volume of the box is given by L2

‖, L⊥,
where L‖ and L⊥ are the lengths of the box sides parallel
and perpendicular to the bilayer membrane, respectively.
The overall particle density is

ρ = N/(L2
‖L⊥) , (5)

and the amphiphile concentration is defined by

c =
NHA +NHB +NC

N
. (6)

In order to simulate this system, we use a com-
bined Monte Carlo (MC)-Molecular Dynamics (MD) code.
Through the MC algorithm, we let the system evolve
towards configurations of minimal potential energy at
a given temperature. The configurations obtained after
about 500×N MC steps are used as starting configurations
for the MD part of the simulation: the equations of motion
for the model system described above are integrated using
a velocity Verlet algorithm which is very efficient from a
computational point of view [11]. We rescaled the particle
velocities, at every time step in order to keep the tem-
perature constant, as used before in reference [7]. While
such rescaling is not essential, and is used only to reduce
the temperature fluctuations, we have checked that results
obtained without the rescaling are statistically equivalent
(data not shown).

In order to save computation time, we always use pre-
assembled planar bilayers, as starting configurations, since
the capability of the model to evolve towards a bilayer
configuration, starting from a random configuration of the
particles, has already been demonstrated in [7].

2.3 Model parameters

As far as the MC simulations are concerned, our model
is uniquely defined in terms of the interaction parame-
ters introduced in Section 2.1 above. In order to reduce
the number of model parameters, all interaction ranges,
σαβ , of the LJ potential, are taken to be equal to σ, and
all interaction ranges, σ′

αβ , of the repulsive SC potential,
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are taken to be σαβ = 1.05σ as in [7]: with this choice,
the hard-core repulsion of the SC potential is approxi-
mately as strong as the repulsive part of the LJ potential.
Likewise, all energy parameters, εαβ , are taken to have
the same value ε unless one of the interacting particles is
a head-group particle HB of a short-chain B-amphiphile,
as discussed below. The reason for this choice is that we
wanted to study the behavior of a second type of am-
phiphile that is smaller than the major amphiphile and
has distinct head-group properties; examples of such sys-
tem are provided by cholesterol or fatty acids in a lipid
bilayer.

For the strength of the harmonic bond potential (3)
and of the three-body bending potentials (4), we use the
constant parameter values k2 = 5000ε/σ2 and k3 = 2ε, as
in previous work [7], in all the simulations here described,
except for the simulations described in Section 3.2 where
the values k3 = 2ε and k3 = 20ε are used for the shorter
B-amphiphile.

For the MD simulations, our model involves the fol-
lowing additional parameters: i) the masses mi of the dif-
ferent particles which enter the equations of motions, and
ii) the time step ∆t used to discretize these equations.
For simplicity, we choose all particles to have the same
mass mi = m. Using this mass parameter, we obtain
the basic time scale tsc =

√
mσ2/ε. For the LJ interac-

tion length σ and particle mass m, we take the values
already used in [7]: σ = 1/3 nm which is of the same or-
der as the LJ lengths of interactions for pairs of particles,
in which each particle can represent a CH2 group or a
CH3 group or a water molecule, as discussed in [12], and
m = (0.036/NAv) kg, which is the mean value between the
mass of a water molecule and the mass of four CH2 groups
(NAv is the Avogadro number). As mentioned, the energy
εαβ that appears in (1) and (2) is varied only for the in-
teraction of pairs in which one of the particles is a HB, for
all the other interactions the energy is fixed: εαβ = ε, if
α, β �= B. We used ε = (2/NAv) kJ which is the same value
as in [7]. This value is bigger than the LJ energies for pairs
of CH2 groups and/or water molecules reported in [12],
but it takes into account that in our model one C parti-
cle corresponds to three or four CH2 groups. Using this
value of ε one obtains the time scale tsc =

√
mσ2/ε = 1.4

ps. In our MD simulations, the integration time step ∆t
was set to ∆t = tsc/2000 = 0.7 fs. All the simulations
were performed at the temperature kBT = 1.35ε, which
corresponds to a temperature of 325 K or 50 ◦C.

In the following, we will use the parameters σ, ε, and
m as the basic length, energy, and mass scales. Using these
scales, we will define reduced and dimensionless quantities
which are indicated by a bar. Thus, the reduced particle
density and diffusion coefficient are given by ρ̄ = ρσ3 and
D̄ = D

√
m/σ2ε, respectively. There is one exception to

this rule: the reduced time is taken to be t̄ = t/∆t (rather
than t/tsc).

We varied the ratio of A to B keeping constant the
dimensionless particle density (solvent + amphiphiles) ρ̄ =
1/3, the amphiphile concentration c � 0.44 (see Eq. (6)),
and the simulation box sizes L̄‖ = 12.24, L̄⊥ = 14.415.

Fig. 2. Two snapshots, taken at different instants of an MD
simulation, of a bilayer with NA = 113 longer-tailed am-
phiphiles, NB = 25 shorter-tailed amphiphiles, NW = 800 sol-
vent particles. The blue, yellow, red, green beads represent the
HA, HB, C of A-amphiphile, C of B-amphiphile particles, re-
spectively. We use different colors for the C particles of the
two amphiphiles only to distinguish them in the pictures. The
solvent particles are not shown.

These values were shown in [7] to be the most suitable in
order to obtain a well-behaved bilayer. In a typical pure
A-amphiphile bilayer, we use NA = 128, NW = 800. In
Figure 2 two snapshots of a bilayer with NA = 113, NB =
25, at different instants of an MD simulation, are shown.

3 Diffusion of amphiphiles

In a bilayer membrane, the motion of amphiphiles is
largely restricted to one of the two monolayers, with rare
trans-membrane diffusion or flip-flops. One has therefore
to distinguish between two motions of the amphiphiles: a
lateral and a transverse diffusive motion, characterized by
two different diffusion coefficients D‖ and D⊥. At the be-
ginning of each numerical experiment, we zero the center-
of-mass velocity of all the particles in the system, in order
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to avoid overall drift of the membrane along the direction
perpendicular to its plane. We have measured the diffusion
coefficients of the W particles and of the A-amphiphiles
by fitting their mean-square displacement (MSD) at large
times, according to the asymptotic relation

Dα = lim
t→∞Dα(t) = lim

t→∞

∑
k [rk(t) − rk(0)]2

6Nαt
, (7)

where α = W, A. Although the diffusion coefficient may,
in general, show a non-linear time dependence, we have
used the linear relation (7) to measure it at large times,
where we verified, using a log-log fit, that the MSD grows
linearly with time. In (7), if α = W, rk is the position
vector of the k-th water particle and NW is the number of
W particles in the system, while if α = A, rk is the center-
of-mass position vector of the k-th A-amphiphile and NA

is the number of A-amphiphile considered. The diffusion
coefficient D‖, for lateral diffusion parallel to the bilayer,
is then defined via

Dα‖ = lim
t→∞

∑
k

[
rk‖(t) − rk‖(0)

]2
6Nαt

, (8)

where rk‖ is the projection of the position vector of the
k-th water particle/amphiphile into the plane of the mem-
brane. The diffusion coefficient D⊥ for the transverse dif-
fusion is given by

Dα⊥ = Dα −Dα‖ . (9)

The parallel and perpendicular directions are taken along
the box axes; because the bilayer shape fluctuations are
small, its overall normal direction is always very close to
the z-axis, see Figure 2. For the amphiphiles, the occur-
rence of flip-flops was observed in the following way. Start-
ing from a given bilayer configuration, the amphiphiles be-
longing to the upper and to the lower monolayer were la-
belled with two different labels. Every time an amphiphile
enters the opposite monolayer, its label is changed and
one flip-flop is counted. Figure 3 shows that the motion
of the A-amphiphiles is confined to the bilayer surfaces,
indeed DA ‖ � DA, and no flip-flops were observed dur-
ing each simulation which lasted 2 · 106 MD time steps.
In the same figure, the diffusion coefficient for the wa-
ter particles is also shown. Note that DW � DW ‖, for
large t̄, which shows that the bilayer is impermeable to
the W particles, since these particles are rather large in
our model and have the same size as the H and C particles
of the amphiphiles. In order to study the permeability of
the bilayer membrane to water, one should use W parti-
cles, which are small compared to the H and C particles.
Note that the reduced diffusion coefficient D̄A is of the or-
der of 10−2, which implies that the dimensionful coefficient
DA = D̄A

√
σ2ε/m is of the order of 10−5 cm2/s, since our

parameter choice leads to
√
σ2ε/m � 0.8 × 10−3 cm2/s.
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Fig. 3. Reduced diffusion coefficient D̄α(t), as a function of the
number of MD steps t̄, for W particles and A-amphiphiles, in
a one-component A bilayer. The two dotted lines correspond
to the lateral diffusion coefficient defined in (8), for both W
particles and A-amphiphiles.
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Fig. 4. Reduced diffusion coefficient D̄‖ for the A-amphiphiles,
as function of the B-amphiphile fraction xB.

3.1 Lateral diffusion of A-amphiphiles

We measured the diffusion coefficient of A-amphiphiles as
a function of the mole fraction

xB ≡ NB

NA +NB
(10)

of B-amphiphiles, where NA and NB are the number of A-
and B-amphiphiles, respectively. These experiments were
performed taking εα,B = ε/4 for α = W, HA, HB, C. For
each value of xB, the system was equilibrated with 106 MC
and 2·106 MD steps, and then five successive runs of 2·106

MD steps were performed, where each run started with the
final configuration of the previous one. This corresponds
to a total simulation length 5× 2 · 106 × 0.7 fs = 7 ns. The
diffusion coefficient was determined for each of the five
runs and then averaged.

As shown in Figure 4, increasing the fraction xB of
short B-chain amphiphiles, increases the diffusion of A-
amphiphiles in the monolayers. For constant overall den-
sity ρ and amphiphile concentration c, an increase of xB

leads to an increase of the total number of amphiphiles
and to a decrease of the total number of tail particles,
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Table 2. Number of amphiphile (Namph = NA + NB) and C
particles for the different B-amphiphile concentration used in
the numerical experiments for the determination of the diffu-
sion coefficient of the A-amphiphile.

xB Namph NC

0 128 512
0.0384 130 510
0.07576 132 508
0.112 134 506
0.14706 136 504
0.181 138 502

as shown in Table 2. In addition, the bilayer thickness,
which we define to be the average distance between the
two monolayers, is found to be d � 5.6σ and to change
by less than 2% for the range of xB shown in Figure 4.
Thus, the increase of lateral diffusion should arise from
the decrease of the density in the hydrophobic part of the
bilayer which is composed of C particles, i.e., from the fact
that the tails of the A-amphiphiles have a greater mean
free-volume, as xB is increased1.

We find that the bilayer is unstable to large shape
fluctuations and amphiphile protrusions, if a fraction of
B-amphiphiles greater than the maximum value here con-
sidered (xB � 0.2) is added, this is the reason why we
do not consider bilayers with a greater amount of shorter
amphiphiles in the present work.

According to the free-volume theory of Cohen and
Turnbull [13,14], the diffusion of a particle through a liq-
uid of the same molecular size occurs via density fluc-
tuations in the liquid, which lead to the formation of a
free volume next to the particle, provided this free vol-
ume exceeds a certain critical value. Ferry [15] extended
these arguments to diffusion in polymer solutions at any
temperature. Within these theories, one derives an expo-
nential dependence for the diffusion coefficient D on the
mean free volume vf of a diffusing particle. This free vol-
ume is decomposed as vf = v − v∗f , where v is the mean
particle volume in the fluid and v∗f is a critical free volume.
The diffusion coefficient is given by

D(v) = D0 exp
[
−γv

∗
f

vf

]
= D0 exp

[
− γv∗f
v − v∗f

]
, (11)

where γ is a geometric factor and D0 is the limiting diffu-
sion rate for free volumes much greater than the critical

1 The surface tension of the pure long-chain amphiphilic bi-
layer, measured with the method described in [7], is small but
positive. We view our system as a model of a black lipid mem-
brane stretched across a hole in a teflon plate, and such sys-
tems typically have a small positive surface tension. We veri-
fied that even if the total number of amphiphiles increases as
xB increases (see Tab. 2), the surface tension does not change
much more than the statistical errors, in the range of xB here
considered. This can be explained by noting that the B-head
particles have a smaller interaction energy εB than the A-head
particles, and so their contribution to the surface tension is
smaller than the contribution of the A-head particles.
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Fig. 5. Plot of the rescaled lateral diffusion coefficient DA ‖
as a function of the dimensionless mean volume v̄ of the C
particles. The line is our least-squares fit to the data.

one. We fit our data for DA ‖ to the exponential form as
in (11), where γ and v∗f are two fit parameters. For v,
we use the value v = V/NC, where V is the volume of
the hydrophobic region of the membrane and NC is the
total number of chain particles, see Table 2. We estimate
D0 independently by taking the saturation values for DA ‖
as obtained by extrapolation of the data in Figure 4 for
large xB. The data for the lateral diffusion as a function
of the dimensionless mean volume v̄ = v/σ3 are shown in
Figure 5.

From the fit, we obtain v∗f = (1.31 ± 0.07)σ3, which is
about twice the value of the close-packing specific volume
of hard spheres as given by vHS =

√
2

2 σ
3 � 0.707σ3 [16]:

this is the typical size of a void which has to be formed in
the bilayer in order for a diffusive process to take place.
This result supports our assumption that the lateral diffu-
sion in our model bilayer is driven by free-volume fluctua-
tions. Indeed, considering the C particles as hard spheres,
the substitution of A- by B-amphiphiles, leads to the for-
mation of voids of size v∗f in the membrane hydropho-
bic region, since the B-amphiphiles have two C particles
less than the A-amphiphiles. This also indicates that the
increase of the number of amphiphiles and, thus, of the
head-groups, has a relatively small effect on the diffusion
coefficient (see Tab. 2). From the fit we also obtain the
value for the prefactor γ, which is γ = (1.40±0.03) ·10−3.
This indicates a sharp increase in the diffusion process of
the amphiphiles in the membrane, as soon as the mean
volume v is greater than the critical value v∗f .

It is worth noting that in other theoretical and experi-
mental works [17–19] on lipid diffusion in fluid phases, the
functional dependence of the lateral diffusion coefficient
on the specific area per lipid was found to follow an ex-
ponential relationship as in (11). These relationships are,
in fact, equivalent to (11) since the specific area per lipid
was obtained by dividing the bilayer specific volume by
its thickness.

3.2 Flip-flop

The trans-membrane diffusion or flip-flop of amphiphiles,
is governed by a different diffusion mechanism. The longer
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∆E

Fig. 6. Schematic flip-flop of a B-amphiphile.

Table 3. Reduced energy parameter ε̄αβ = εαβ/ε for the
pair potentials in the simulations on the flip-flop rate of B-
amphiphiles.

ε̄αβ W HA HB C

W 1 1 ε̄B 1
HA 1 1 ε̄B 1
HB ε̄B ε̄B ε̄B ε̄B
C 1 1 ε̄B 1

A-amphiphiles exhibit very rare flip-flop events; in fact,
we could not observe any flip-flops of these amphiphiles in
2 · 106 MD steps. Switching our attention to the flip-flops
of the shorter B-amphiphiles, we expect their shorter tails
to facilitate this process. Figure 6 shows a cartoon of the
flip-flop of a B-amphiphile.

In the following, the interaction energy between the
B-amphiphile’s head particle with all the other particle
species is taken to be εB, which will, in general, differ
from the basic interaction parameter ε. The complete set
of energy parameters εαβ for the different types of pair
potentials is displayed in Table 3. We will now describe
how the flip-flop rate of the B-amphiphiles depends on
the reduced interaction parameter ε̄B = εB/ε. All data
discussed in this subsection have been obtained for fixed
mole fraction of the B-amphiphiles: xB � 0.08.

We measure the flip-flop rate as a function of ε̄B for two
different values of the chain stiffness of the B-amphiphiles,
k3,B = 2ε and k3,B = 20ε, whereas the chain stiffness of
the A-amphiphiles is kept constant and given by k3,A = 2ε.
For each value of ε̄B and k3,B, the system was equilibrated
with 106 MC and 2 · 106 MD steps, and then five succes-
sive runs of 106 MD steps were performed. The flip-flop
rate was determined for each of the five runs and then
averaged.

The results of these simulations are shown in Figure 7.
For ε̄B = 1, no flip-flops of the B-amphiphiles are ob-
served, in simulation times of 2 ·106 steps, similarly to the
A-amphiphiles. Inspection of Figure 7 shows that the flip-
flop rate depends exponentially on the interaction energy
ε̄B, with two different prefactors for the two different val-
ues of k3,B. It is evident that stiffer B-amphiphiles cross
the bilayer more slowly, and this is probably due to the
greater time they need to rotate their tails which behave
like rigid rods in the hydrophobic membrane region. It is
natural to assume that the flip-flop process represents an
activated process with an activation barrier which is pri-
marily determined by the translocation of the hydrophilic
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Fig. 7. Flip-flop rate of the B-amphiphiles as a function of the
reduced energy ε̄B, for two values of the chain stiffness k3,B.
The lines are the least-squares fits to the data.

HB particle through the hydrophobic membrane region.
Therefore the characteristic time tFF for a flip-flop to oc-
cur should follow an Arrhenius-like law as given by

tFF ∼ exp
[
∆E

kBT

]
, (12)

where ∆E is the energy barrier that a amphiphile has to
overcome in order to cross the hydrophobic region of the
bilayer (see Fig. 6), and kB is the Boltzmann constant.

From the data shown in Figure 7, it is clear that the
energy barrier which appears on the right side of (12),
is proportional to the interaction parameter εB, i.e. the
flip-flop rate is strongly affected by the interaction of the
B-amphiphile’s head with its neighbors. A least-squares
fit to the data in Figure 7 leads to ∆E � bεB, with b = 11
and b = 12 for k3,B = 2ε and 20ε, respectively.

In order to obtain an independent estimate for ∆E,
we use a simple mean-field calculation to obtain the ener-
gies of the HB particles in the two configurations shown
in Figure 6: on the surface of one of the two monolayers
and in the middle of the bilayer. We assume that the bi-
layer plane is essentially flat. Although the actual energy
of an amphiphile performing a flip-flop contains several
contributions, we assume that an HB particle at the inter-
face between the hydrophobic and hydrophilic bulk has
just two contributions to its potential energy: one comes
from the LJ interaction with the other hydrophilic parti-
cles, the other comes from the SC interaction with the C
particles. We also assume that 〈U2〉 = 0, since we verified
that 〈li〉 = σ, where li = |ri − ri+1| is the length of the
i-th bond in a chain, and

√〈∆l2i 〉/ 〈li〉 � 10−3 for each i
(data not shown).

With these assumptions, the energy of a HB particle
at the interface is given by

E1 ≡ ρWILJ + ρCISC , (13)

with

ILJ ≡
∫ 2π

0

dϕ
∫ π/2

0

sin(θ) dθ
∫ σc

σ

r2dr ULJ(r) , (14)
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ISC ≡
∫ 2π

0

dϕ
∫ π

π/2

sin(θ) dθ
∫ σc

σ

r2dr USC(r) , (15)

where the densities ρW and ρC are the mean water density
and the mean chain particle density, respectively, which we
assume to be independent of the inter-particle distance.

In the middle plane of the bilayer, on the other hand,
the HB particle is completely surrounded by C particles
and the energy in this configuration is

E2 = 2ρCISC . (16)

In this way we find the estimate

∆EMF = E2 − E1 � 7.8εB . (17)

This should be compared with the previously mentioned
fits to the data of Figure 7 which lead to ∆E = 11εB and
∆E = 12εB for k3,B = 2ε and k3,B = 20ε, respectively,
in reasonable agreement with the rough estimate (17).
Hence, the assumption that a flip-flop is an activated
process, is supported by our results, and the main con-
tribution to the energy barrier is the interaction energy
of the amphiphile head with its neighbor particles. Fur-
thermore, our results indicate that the characteristic time
tFF depends only weakly on the chain stiffness of the am-
phiphiles.

4 Conclusion

We have studied a simple model for a two-component bi-
layer immersed in water which, in spite of its simplicity,
exhibits several non-trivial features of amphiphile diffu-
sion in lipid bilayers.

The lateral diffusion of the long-chain A-amphiphiles
was found to increase with increasing mole fraction of
the short-chain B-amphiphiles. This can be understood
in terms of a free-volume model for the diffusive process
since this volume increases by adding shorter amphiphiles
in the system. While phospholipid-cholesterol mixtures
may have complex head-solvent and head-head interac-
tions, which we have ignored, our results on lateral diffu-
sion are consistent with experiments of Almeida et al. [18],
who studied lateral diffusion of phospholipids in phospho-
lipid/cholesterol binary multibilayers, and found that the
diffusion rate increases with the specific volume per phos-
pholipid. They also found that in the temperature range
from the melting temperature of the phospholipids, up
to 30 ◦C, the specific volume per phospholipid, and hence
the diffusion coefficient, increase with increasing choles-
terol mole fraction. Our results on lateral diffusion are also
consistent with those of Polson et al. [20], who studied lat-
eral diffusion in lipid-sterol bilayers using MC simulations
of a two-dimensional model. The authors found that, in
the low-temperature range, the diffusion coefficient of the
lipid chains increases as the mole fraction of the sterol
(cholesterol or lanesterol) is increased.

We also showed that flip-flops of the short-chain
B-amphiphile are accessible to our simulations, provided
we reduce the interaction strength ε̄B of the head-group

particles HB. We determined the functional dependence
of the flip-flop rate on the interaction parameter ε̄B
which was found to be well fitted by an exponential.
This shows that flip-flops are activated processes. The
corresponding activation barrier was estimated from a
simple mean-field calculation. The amphiphile’s internal
structure (as represented by the chain stiffness) does not
appear to have a strong influence on this process. This
agrees with some experimental results obtained for the
flip-flop of fatty acids across phospholipid vesicles [21]
and across human red cells [22]. In those experiments,
it was found that the fatty acids diffuse spontaneously
across bilayers, and protein-based mechanisms are not
required for flip-flops to take place.

Our model succeeds in describing, at least qualita-
tively, several characteristics of two-component bilayers.
It can be further extended to simulate multi-component
bilayers, such as lipid-protein mixtures, and to study the
dynamic processes in such systems.

Glossary: List of symbols used in the text

σαβ Range of Lennard-Jones potential between
particles of type α and β;

σ′
αβ Range of soft-core potential;
εαβ Lennard-Jones and soft-core interaction energy;
rij Distance vector between the i-th and the j-th

particle;
m Particle mass;
tsc Basic time unit;
∆t Molecular Dynamics integration time step;
ρ Overall particle density;
c Amphiphile concentration;
Dα Diffusion coefficient of α-amphiphile;
Dα‖ Diffusion coefficient of α-amphiphile in the plane

parallel to the bilayer;
v Mean volume per particle of the hydrophobic

region of the bilayer;
vf Mean free volume per particle;
v∗f Critical free volume.
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