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PACS. 87.16.Dg – Membranes, bilayers, and vesicles.
PACS. 82.70.-y – Disperse systems; complex fluids.
PACS. 61.20.Ja – Computer simulation of liquid structure.

Abstract. – The elastic properties of two-component bilayer membranes are studied using a
coarse-grain model for amphiphilic molecules. The two species of amphiphiles considered here
differ only in their length. Molecular-dynamics simulations are performed in order to analyze
the shape fluctuations of the two-component bilayer membranes and to determine their bending
rigidity. Both the bending rigidity and its inverse are found to be nonmonotonic functions of
the mole fraction xB of the shorter B-amphiphiles and, thus, do not satisfy a simple lever
rule. The intrinsic area of the bilayer also exhibits a nonmonotonic dependence on xB and a
maximum close to xB � 1/2.

Biological membranes are multicomponent systems consisting of mixtures of many different
lipids and proteins. Because the composition of lipid bilayers affects their physical properties
and biological functions, this composition varies from one organism to the other and between
organelles in the same cell [1]. Biological membranes contain a fluid bilayer which is highly
flexible and, thus, can easily change its shape. Typical examples are provided by the plasma
membranes of red and white blood cells which are so flexible that they can move through
rather small capillaries. This flexibility is also responsible for the thermally excited shape
fluctuations of biomembranes in physiological conditions, the amplitude of which depends on
temperature, membrane composition and mechanical constraints. One important example is
provided by mixed membranes containing phospholipids and cholesterol which exhibit a strong
increase in rigidity with increasing amount of cholesterol [2–4]. In erythrocytes, on the other
hand, the amplitude of the shape fluctuations is influenced by the spectrin-ankyrin network
which is coupled to the interior of the plasma membrane [5,6]. The study of these fluctuations
can thus provide information on the elastic properties of the bilayer membrane and on how
these properties depend on membrane composition. One important elastic parameter is the
bending rigidity [7], which describes the resistance of the membrane to bending, and which
can be obtained from the spectrum of the shape fluctuations [8].
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Fig. 1 – Cartoon of a two-component bilayer.

In spite of their complex chemical composition, all biomembranes have the same basic
structure: a bilayer of lipid and protein molecules. Therefore the simplest model for a bio-
logical membrane is a bilayer of amphiphilic molecules as studied in the present work. The
bending rigidity of such bilayers has already been determined via computer simulations both
for coarse-grain models of amphiphile-water systems [9, 10] and for models with atomic reso-
lution [11]. In all of these previous studies, the bilayers contained only a single component in
contrast to natural membranes which contain many different types of lipids and proteins.

In the present article, we study bilayer membranes with two components and determine the
dependence of their elastic properties on membrane composition. We use a coarse-grain model
for the amphiphiles and for the water particles which we investigate by molecular-dynamics
simulations. The two species of amphiphiles considered here differ only in their length. This
choice allows us to focus on the contribution from the mismatch of the amphiphile tails.

Two types of theories have previously addressed the bending elasticity of two-component
bilayers. First, a self-consistent (or molecular field) theory was used to estimate the contri-
bution to the bending rigidity arising from the conformations of the amphiphilic tails [12].
Secondly, the so-called hat model for local curvature fluctuations was used in order to de-
rive an expression for the bending rigidity of two-component bilayers [13]. The predictions
of these two theories are different as far as the functional dependence of bending rigidity on
composition is concerned. On the one hand, the results of the self-consistent theory for the
chain conformations depend on the types of packing constraint acting on the conformations
of a single tail. The hat model, on the other hand, predicts that the inverse bending rigidity
(or flexibility) satisfies a simple “lever rule” corresponding to a linear interpolation between
the two limiting values for the one-component bilayers.

In contrast to the analytical but approximate theories in [12] and [13], our simulations
take all types of fluctuations into account: different tail conformations; curvature (or bending)
fluctuations; molecular protrusions; and composition fluctuations arising from lateral diffusion.
We find that both the bending rigidity and its inverse exhibit a nonmonotonous behavior as
a function of the mole fraction xB. Our results are qualitatively similar to the self-consistent
theory, provided one uses the packing constraint of “constant area” per molecule, but show
that a simple lever rule for the inverse bending rigidity does not apply in general.

The coarse-grain model used here consists of several types of particles: water particles,
which correspond to several water molecules, as well as head group and tail particles, which
represent the head groups and the hydrocarbon tails of the amphiphilic molecules, respectively.
The two species of amphiphiles will be denoted by A and B. Both types of amphiphiles are
composed of one head group particle, which is hydrophilic, and of several tail particles, which
are hydrophobic. The different length of the two molecular species arises from the different
number of tail particles which is four and two for A and B, respectively, see fig. 1. The
particles experience attractive and repulsive pair-interactions which are modelled by Lennard-
Jones (LJ) and Soft-Core (SC) potential, respectively. The parametrization of these potentials
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has been previously described in [14], where the same model was used in order to study the
lateral and transverse diffusion within the two-component bilayer membranes. Within this
model, all quantities can be expressed in terms of three basic scales: the particles mass m,
the LJ interaction energy ε and the LJ radius ρ. As in [14] and [15], we chose the numerical
values mNAv = 3.6 · 10−2 kg, εNAv = 2kJ, and ρ = 1/3 nm, where NAv is the Avogadro
number. Our MD simulations are carried out for a cuboidal box of constant volume and
periodic boundary conditions using a constant temperature algorithm with kBT = 1.35ε. The
starting configurations for the two-component bilayer simulations are such that each monolayer
contains the same number of A and B molecules. We checked that, in each monolayer, the
average number of B molecules did not change during the simulations. While multicomponent
bilayer membranes may exhibit deviations from ideal mixing behavior [16] and may, in general,
undergo phase separation, the two-component bilayers studied here stayed in the one-phase
region over the whole range 0 ≤ xB ≤ 1 of mole fractions for the B molecules. Thus, our
bilayers correspond to a lipid mixture above the liquidus-solidus line.

The elastic properties of a fluid membrane which has vanishing spontaneous curvature
are governed by its bending rigidity κ and by its surface tension σ. These quantities can
be determined from the spectrum of the shape fluctuations. In order to do so, we choose
the (x, y)-plane to be parallel to the bilayer membrane. The shape of the membrane is then
described by the height function h(x, y) which measures the distance of its midsurface from the
(x, y)-plane. We define the Fourier coefficients h̃q ≡ A−1

p

∫
Ap

dxdy exp[−i(xqx + yqy)]h(x, y),
with q ≡ (qx, qy), where Ap is the projected area of the membrane. Its fluctuation spectrum,
S(q) ≡ 〈|h̃q|2〉, depends only on q = |q| and exhibits the functional form

S(q) = kBT/
[
Ap

(
σq2 + κq4

)]
(1)

for long-wavelength bending modes [8], and the somewhat different form

S(q) = kBT/
(
Apσprq

2
)

(2)

for short-wavelength molecular protrusions [17]. Apart from the temperature T and the
projected area Ap, the two spectra as given by (1) and (2) contain three parameters: the
surface tension σ, the bending rigidity κ, and the protrusion tension σpr. As discussed in [15],
the lateral size of the simulation box can be adjusted in order to obtain a bilayer with vanishing
thermodynamic tension. This latter procedure consists in determining, for fixed particle
number, fixed volume, and fixed temperature, the stress (or pressure) tensor which has a
tangential component, ΣT, and a normal component, ΣN [15]. Both components depend on the
coordinate z perpendicular to the membrane. The thermodynamic tension Σ is then obtained
from Σ =

∫
dz[ΣT(z) − ΣN(z)]. It is intuitively appealing to identify the thermodynamic

tension Σ with the surface tension σ which governs the fluctuation spectrum. Indeed, this
assumption was implicit in our previous work in [9] and was found to be satisfied within the
accuracy of the simulation data obtained there. However, more extensive simulations have
shown that this identity does not hold in general [18]. This difference is related to the fact that
Σ is conjugate to the projected area, whereas σ is conjugate to the intrinsic area, a distinction
which has been previously discussed, e.g., in [19]. Therefore, in the present work, we used an
improved procedure in order to determine the state with σ = 0: for fixed particle number and
fixed temperature, we adjusted the lateral box size in order to obtain a fluctuation spectrum
S(q) which can be well fitted, for small q, by the form (1) with σ = 0 [18].

First, let us discuss this fitting procedure for one-component bilayers corresponding to
vanishing mole fraction xB = 0. An example of the measured fluctuation spectrum S(q) for
NA = 1152 is shown in fig. 2. The lines, which represent the functional forms as given by (1)
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Fig. 2 – Fluctuation spectrum S for one and two-component bilayers with NA = 1152 (xB = 0)
and N = 512 (xB = 0.4), respectively, in tension-free state. The lines are obtained by fitting the
fluctuation spectra of the tensionless systems, using eq. (1) (full lines) and eq. (2) (dashed lines) at
small and large q, respectively. The units are given in brackets.

with σ = 0 and by (2), respectively, are plotted in the same figure. From these fits, we obtain
the values κ = 3.0±0.2 kBT and σpr = 2.50±0.03 ε/ρ2. Essentially the same values are found
for NA = 512: κ = 3.20± 0.06 kBT and σpr = 2.65± 0.05 ε/ρ2 [18]. For surface tension σ = 0,
the intrinsic area per molecule, ain, is expected to attain a certain value which is determined
by the optimal packing of the molecules within the bilayer and, thus, should not depend
on the overall size of the membrane. Indeed, if we adjust the box size to obtain vanishing
surface tension σ � 0, our MD simulations lead to ain = 2.26 ± 0.01 ρ2 for NA = 512 and to
ain = 2.277± 0.005 ρ2 for NA = 1152 which are identical within the numerical accuracy.

Next, we consider two-component bilayers with mole fraction 0 < xB < 1. To save
computation time, we varied the mole fraction xB for fixed total number N = NA+NB of the
amphiphiles with N = 512. In order to attain tensionless states of the two-component bilayers,
the projected area Ap has to be gradually decreased as xB is increased, since the projected
area per molecule, ap ≡ 2Ap/N , is smaller for the B-amphiphile than for the A-amphiphile.
The measured fluctuation spectrum S(q) for xB = 0.4 is also shown in fig. 2.

In fig. 3(a), the bending rigidity κ is plotted as a function of xB. For the pure A-bilayer
and the pure B-bilayer, we find κA = 3.20 ± 0.06 kBT and κB = 1.3 ± 0.1 kBT , respectively.
As shown in fig. 3(a), the bending rigidity is nonmonotonic for intermediate values of xB and
exhibits a minimum for xB � 0.6 with κ = 1.0 ± 0.1 kBT . Figure 3(b) displays the inverse
bending rigidity 1/κ as a function of the mole fraction xB. For this latter quantity, a simple
lever rule as given by 1/κ = xB/κB + (1 − xB)/κA has been proposed in [13]. Inspection of
fig. 3(b) shows that such a lever rule does not apply here. However, our data are consistent
with the more general proposal that the bending rigidity behaves smoothly both at xB = 0
and at xB = 1. Indeed, we conclude from the data in fig. 3(b) that

1/κ ≈ (1/κA)(1 + φABxB) with φAB = 3.5± 0.1 (3)

for small xB and that

1/κ ≈ (1/κB)(1 + φBAxA) with φBA = 1.0± 0.2 (4)

for small xA = 1− xB.
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Fig. 3 – (a) Bending rigidity κ and (b) inverse bending rigidity of two-component A-, B-bilayers vs.
the shorter-amphiphile mole concentration xB. The error bars represent statistical errors obtained by
the fit of the fluctuation spectrum data to eq. (1). In (a) the line is obtained by fitting the data with
a smoothing spline. In (b) the full and dotted lines correspond to linear fit to the data for xB ≤ 0.4
and xB ≥ 0.8, respectively. The units are given in brackets.

We also measured the intrinsic bilayer area A, defined by A =
∫

Ap
dxdy

√
1 + (∇h)2. In

fig. 4, the intrinsic area per amphiphile, ain = 2A/N , is plotted as a function of xB for ten-
sionless bilayer states. As shown in this figure, the intrinsic molecular area ain is again found
to be a nonmonotonic function of xB: for xB = 0, it has the value ain � 2.26ρ2, but exhibits
a maximum at xB = 0.4 with ain � 2.39ρ2. The change in the intrinsic area is obviously con-
nected to the change in the bending rigidity. The decrease of the latter quantity corresponds
to a more flexible bilayer with larger shape fluctuations and a corresponding increase in the
intrinsic area. Inspection of fig. 4 shows that the pure A-bilayer has essentially the same
intrinsic molecular area as the pure B-bilayer, i.e., ain(xB = 0) � ain(xB = 1) � 2.26ρ2. In
contrast, the corresponding projected molecular areas ap are found to be ap(xB = 0) = 2.10ρ2

and ap(xB = 1) = 1.96ρ2, which reflects the increased shape fluctuations for xB = 1.
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Fig. 4 – Area per amphiphile ain = 2A/N vs. the shorter-amphiphile mole concentration xB. The
error bars represent standard errors obtained from the area fluctuations. The line is a guide to the
eye. The units are given in brackets.
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Fig. 5 – Protrusion tension σpr vs. the shorter-amphiphile mole concentration xB. The error bars
represent statistical errors obtained by the fit of the fluctuation spectrum data to eq. (2). The line is
a guide to the eye. The units are given in brackets.

Finally, the protrusion tension σpr as introduced in (2) also exhibits a nonmonotonic
behavior as shown in fig. 5. A decrease in the protrusion tension implies an increase in the
amplitude of the local protrusions which become energetically more favorable. As shown in
fig. 5, σpr decreases with increasing xB up to xB = 0.2, then stays essentially constant up to
xB = 0.8, and finally increases again up to xB = 1. This indicates that a small amount of
shorter B-amphiphiles is sufficient to roughen the bilayer surface, and further addition of these
amphiphiles has essentially no effect on the local protrusions until one reaches another regime
characterized by a bilayer of B-amphiphiles with a few longer A-amphiphiles. Comparing
the results for bending rigidity, intrinsic area and protrusion tension, one concludes that
the changes in the intrinsic area depend both on the shape fluctuations and on the bilayer
roughness arising from the local mismatch between the two types of amphiphiles.

The bending rigidity of amphiphilic bilayers has been measured in many experiments: while
phospholipid membranes [4,8,20–22] are characterized by a bending rigidity of the order of tens
of kBT , lamellar and fluid microemulsion phases composed of single-chain surfactants, short-
chain alcohols, oil and water [23–26] exhibit a bending rigidity of the order of kBT . The bilayer
studied in our molecular-dynamics simulations are composed of single-chain amphiphiles and
have bending rigidities which are of the same order of magnitude as those studied in the second
group of experiments. In refs. [23–25], the response of lamellar systems to the insertion of
shorter cosurfactants was studied experimentally. In these systems, the main surfactant was
sodium dodecyl sulfate (SDS), which is a single-chain surfactant, while the cosurfactants were
alcohol molecules: it was found that the bending rigidity decreases as the fraction of shorter-
chain cosurfactant increases. In ref. [25], short surfactant (pentanol) molecules were added to
bilayers composed of two-chain amphiphiles (DMPC) and a decrease of the bending rigidity
was observed. Two-component bilayer membranes were also studied theoretically by Szleifer
et al. [12] using a simple mean-field theory to treat chain packing. In the framework of these
theories, which are based on smooth bending configurations and, thus, neglect protrusions, the
longer amphiphiles obtain more configurational freedom as the shorter amphiphiles are added,
which leads to an increased flexibility of the bilayers. The behavior of the bending rigidity
as found in our simulations for small xB is consistent with such a mechanism. However, we
also find that both the bending rigidity and the protrusion tension decrease as one adds long
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A-amphiphiles to a bilayer of short B-amphiphiles for large values of xB, see figs. 3 and 5. In
this latter regime, the addition of the A-amphiphiles induces more protrusions which act to
reduce the bending rigidity [17].

In conclusion, we have presented the results of molecular-dynamics simulations for a coarse-
grain model of two-component bilayers. We show that the functional dependence of the inverse
bending rigidity on the membrane composition does not follow a simple lever rule. In contrast,
we find that both the addition of short amphiphiles to a bilayer of long ones and the addition of
long amphiphiles to a bilayer of short ones leads to an increase in molecular protrusions and to
a decrease in the bending rigidity. We also observe a nonmonotonic functional dependence of
the intrinsic area on the membrane composition which is strongly correlated with the behavior
of both local protrusions and long-wavelength shape fluctuations. The simulation approach
described here can be extended to bilayer membranes with three components which have
recently been shown to lead to coexisting membrane domains or “rafts” and to more realistic
models of biological membranes which contain membrane proteins.
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