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Abstract
Directed polymers (strings) and semiflexible polymers (filaments) are one-
dimensional objects governed by tension and bending energy, respectively.
They undergo unbinding transitions in the presence of a short-range attractive
potential. Using transfer matrix methods we establish a duality mapping for
filaments and strings between the restricted partition sums in the absence and
the presence of a short-range attraction. This allows us to obtain exact results
for the critical exponents related to the unbinding transition, the transition point
and transition order.

PACS numbers: 05.70.Fh, 64.60.Fr, 82.35.Gh, 87.15.Aa

1. Introduction

Directed polymers (or ‘strings’ in the following) are one-dimensional objects governed by their
tension which tends to minimize the contour length of the polymer. Semiflexible polymers (or
‘filaments’ in the following), on the other hand, are governed by their bending energy which
tends to straighten the polymer. In the presence of a short-range attractive potential, these
objects undergo unbinding or desorption transitions which represent a number of important
critical phenomena [1, 2]. The unbinding of strings describes wetting [1], polymer adsorption
[3], pinning of flux lines in type-II superconductors [4] or roughening of crystal surfaces [5].
The unbinding of filaments describes adsorption and bundling of many biopolymers (DNA,
F-actin, microtubules) and polyelectrolytes with large persistence lengths [6].

In this letter we use transfer matrix (TM) methods to derive a duality mapping for filaments
and strings between the restricted partition sums in the absence and the presence of a short-
range attractive potential. This allows us to obtain the unbinding and desorption transition
point, the order of the transition and a set of scaling relations for the critical exponents of
bound and unbound filaments and strings.
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2. Model

We consider strings or filaments in 1 + d⊥ dimensions which are oriented along the x-axis
such that we can parametrize the contour by a d⊥-dimensional field z(x) of displacements
perpendicular to the x-axis with 0 < x < L, where L is the projected length of the
string or filament. The Hamiltonian for strings is given by the sum of the tension energy∫ L

0 dx(σ/2)(∂xz)2 with a string tension σ and the potential energy
∫ L

0 V (z(x)), where V (z)
contains an attractive potential well of range �a which favours the configuration z = 0.
The Hamiltonian for filaments is given by the sum of the bending energy

∫ L

0 dx(κ/2)
(
∂2
x z

)2

and the potential energy
∫ L

0 V (z(x), ∂xz). κ is the bending rigidity of the filament and
Lp = 2κ/T is the persistence length at temperature T. The expression for the bending energy
in the parametrization by the projected length is appropriate if either the total length L or the
longitudinal correlation length ξ‖ to be defined below is small compared to Lp. In contrast to
the string, the filament has a well-defined tangent vector at each point, and therefore, also the
external potential V (z, v) can depend on the tangent vector v ≡ ∂xz.

Generic potentials are of the form V = Vr + Va + Vp and contain a hard-core potential
Vr , a short-range attractive potential Va and eventually a long-range power-law potential Vp.
The hard-core potential Vr is given by Vr(z) = ∞ for |z| < �r and Vr(z) = 0 otherwise.
The short-range attractive potential Va has finite range �a and a potential strength w < 0,
i.e., Va(z) = W�(v) for |z| < �a (�a > �r) and Va(z) = 0 otherwise. For strings we can
only consider position-dependent potentials and set �(v) = 1. For filaments we include the
dimensionless function �(v) modelling an additional orientation dependence of the attractive
potential. The potential Va attains the asymptotic form Va(z) = G�−d⊥

a �(v)δ(z) in the limit
of small �a where G ≡ Wπd⊥/2/	(1 + d⊥/2) < 0. Finally, we can also include attractive
long-range power-law potentials Vp(z) = w|z|−p for |z| > �a . Our results apply to potentials
Vp that decay sufficiently fast, i.e., potentials Vp with p � 2 for strings and p � 2/3 for
filaments [7].

3. Transfer matrix equations

In order to simplify the notation, we introduce rescaled quantities measuring energies in units
of the temperature T and lengths in units of T/2σ for strings and in units of the persistence
length Lp = 2κ/T for filaments. In rescaled units the restricted partition sum for strings with
fixed initial point z0 ≡ z(0) and end point z ≡ z(L) takes the form

ZL(z|z0) =
∫ (z;L)

(z0;0)

Dz(x) exp

{
−

∫ L

0
dx

[
1

4
(∂xz)2 + V (z(x))

]}
. (1)

In analogy with quantum mechanics, this path-integral fulfils a Schrödinger equation in
imaginary time, the partial differential TM equation given by

∂LZL = ∇2
zZL − V (z)ZL (2)

with the boundary condition Z0(z|z0) = δ(z − z0) at L = 0. The Laplace transform of the
restricted partition sum with respect to L, Z̃s = ∫ ∞

0 dLe−sLZL, fulfils the differential TM
equation

sZ̃s = ∇2
zZ̃s − V (z)Z̃s + δ(z − z0) (3)

where the last term on the right-hand side represents the boundary condition at L = 0.
For a sufficiently attractive potential, there exist bound states for which we make the ansatz
ZL(z|z0) ∼ ψE(z) exp(−EL), where E < 0 is the free energy difference between the bound
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state and the free state (obtained for V = 0). The eigenfunction ψE(z) for the energy level E
then solves the stationary Schrödinger equation (2)

−EψE = ∇2
zψE − V (z)ψE (4)

with E < 0 for a bound state. We impose the normalization
∫

z ψ2
E(z) = 1. Then the solution

satisfying the proper boundary condition is obtained by summing over all energy levels En,
ZL(z|z0) = ∑

n ψEn
(z)ψEn

(z0) e−EnL, where the ground state E0 dominates the sum for
lengths L exceeding the correlation length ξ‖ = 1/|E0| (assuming that binding is weak such
that the continuous scattering spectrum starts at E1 = 0).

For filaments we can proceed similarly starting from the restricted partition sum in rescaled
units, in which we additionally fix initial tangent v0 ≡ ∂xz(0) and end tangent v ≡ ∂xz(L).
This partition function is given by

ZL(z, v|z0, v0) =
∫ (z,v;L)

(z0,v0;0)

Dz(x) exp

{
−

∫ L

0
dx

[
1

4

(
∂2
x z

)2
+ V (z(x), ∂xz)

]}
(5)

and again fulfils a Schrödinger-like differential TM equation [8, 9]

∂LZL = −v · ∇zZL + ∇2
vZL − V (z, v)ZL (6)

with the boundary condition Z0(z, v|z0, v0) = δ(z − z0)δ(v − v0) at L = 0. As for strings we
can consider the Laplace transform which fulfils the differential TM equation

sZ̃s = −v · ∇zZ̃s + ∇2
vZ̃s − V (z, v)Z̃s + δ(z − z0)δ(v − v0) (7)

where the last term on the right-hand side stems from the boundary condition at L = 0. For
sufficiently strong attractive potential, there exist bound states for which we make the ansatz
ZL(z, v|z0, v0) ∼ ψE(z, v) exp(−EL), where E < 0 is the free energy difference between
the bound and the free state. The eigenfunction ψE(z, v) for the energy level E then solves
the stationary version of the Schrödinger-like equation (6),

−EψE = −v · ∇zψE + ∇2
vψE − V (z, v)ψE (8)

with E < 0 for a bound state. As for strings, we impose a normalization
∫

z

∫
v ψ2

E(z, v) = 1,
and the solution satisfying the proper boundary condition is obtained by summing over all
energy levels En. For lengths L exceeding the correlation length ξ‖ = 1/|E0|, the ground state
dominates and ZL(z, v|z0, v0) ≈ ψE0(z, v)ψE0(z0,−v0) e−E0L.

4. Scaling behaviour and exponents

Strings and filaments differ in the scaling of free mean-square displacements, i.e., 〈|z|2〉 ∼ L2ζ

for V = 0 where ζ is the roughness exponent. Strings show diffusive behaviour with ζ = 1/2,
whereas filaments have ζ = 3/2. Tangent vector fluctuations scale as 〈|v|2〉 ∼ L2(ζ−1) and
show diffusive behaviour for filaments, whereas tangent vector fluctuations are finite and thus
irrelevant for the scaling behaviour of strings. In the presence of a potential V = Vr +Va +Vp,
the scaling behaviour of unbound segments of a string or filament is governed by the same
roughness exponents (provided p � 2 for strings and p � 2/3 for filaments [7]).

For unbound strings and filaments, i.e., in the absence of a sufficiently strong attractive
potential Va , this leads to the scaling form

ZL = L−χu |z|θu/2�u(|z|L−ζ , |v|L1−ζ ) (9)

in the limit of small |z0| and |v0|. For strings, the tangent v is an irrelevant scaling variable.
We introduced exponents χu characterizing the return probability and θu characterizing the
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segment distribution at z ≈ 0, and a shape function �u(y, u) (with finite �u(0, 0)) giving the
shape of the polymer segment distribution.

For strings and filaments bound by the attractive potential Va , the longitudinal correlation
length ξ‖ = 1/|E0| gives the characteristic length of unbound segments and enters the scaling
behaviour,

ZL = ξ
−χb

‖ |z|θb/2�b

(
zξ

−ζ

‖ , |v‖z|(1−ζ )/ζ
)

eL/ξ‖ (10)

with analogous exponents χb and θb, which differ from the unbound case in general.
For a given potential, the two exponents χ and θ are not independent as can be seen

by using the above scaling forms in the Chapman–Kolmogorov relations
∫

z

∫
v ZL(z1, v1|z, v)

ZL(z, v|z0, v0) = Z2L(z1, v1|z0, v0) for filaments and
∫

z ZL(z1|z)ZL(z|z0) = Z2L(z1|z0) for
strings. This leads to scaling laws

χ = max (d⊥/2 + θ/2, 0) (strings), χ = max (2d⊥ + 3θ/2, 0) (filaments), (11)

holding for both χu, θu and χb, θb. Exponents χ < 0 are not possible because they correspond
to an unphysical increase of contacts as the length ξ‖ of unbound segments increases. If
d⊥/2 + θ/2 < 0 for strings or 2d⊥ + 3θ/2 < 0 for filaments a finite fraction of all polymer
segments is bound at z = 0 and the main contributions to the z-integrals in the Chapman–
Kolmogorov relations come from small scales |z| ∼ �a leading to χ = 0 in (11).

5. Duality mapping

Inspecting the Laplace transformed TM equation (3) and the stationary TM equation (4) for
strings, we observe a formal similarity if we identify s = −E: a short-range attractive potential
Va(z) ∝ −δ(z − z0) in the stationary TM equation (4) plays the role of the initial condition in
the Laplace transformed TM equation (3) for a potential V −Va , i.e., in the absence of the short-
range attraction Va . A similar observation can be made for the corresponding TM equations (7)
and (8) for filaments where a short-range attractive potential Va(z, v) ∝ −δ(z−z0)δ(v−v0) in
the stationary TM equation (8) plays the role of the initial condition in the Laplace transformed
TM equation (7) for a potential V − Va . This is the main idea of the present letter and will
allow us to establish a duality mapping between the stationary TM equation for bound states
(characterized by the set of exponents θb and χb) in a generic potential V = Vr + Va + Vp

and the Laplace transformed TM equation for unbound states (characterized by the set of
exponents θu and χu) in a potential V − Va = Vr + Vp lacking the short-range attractive part.

A string in a bound state ψV
E (z) fulfils the stationary TM equation (4) for a potential

V containing the short-range attraction Va(z) = Gδ(z − z0) where we consider the limit of
small |z0|. We compare the stationary TM equation (4) with the Laplace transformed TM
equation (3) for Z̃V −Va

s (z|z0) with s = −E and for a potential V − Va without the short-
range attraction. If we rewrite δ(z − z0) = δ(z − z0)Z̃

V −Va
s (z|z0)/Z̃

V −Va
s (z0|z0) we find that

both equations are equivalent and solutions have the same normalization if the following two
conditions are fulfilled:

ψV
E (z) = NEZ̃

V −Va

−E (z|z0) with N−2
E =

∫
z

[
Z̃

V −Va

−E (z|z0)
]2

(12)

−G−1 = Z̃
V −Va

−E (z0|z0) = ψV
E (z0)/NE. (13)

These two conditions define the duality mapping for strings between TM equations for
potentials V and V − Va .

For filaments we proceed analogously for a bound state ψV
E (z, v) which fulfils

the stationary TM equation (8) for a potential V containing the short-range attraction
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Va(z, v) = Gδ(z − z0)δ(v − v0), where we consider the limit of small |z0| and |v0|. We
compare the stationary TM equation (8) with the Laplace transformed TM equation (7) for
Z̃V −Va

s (z, v|z0, v0) with s = −E and for a potential V − Va without short-range attraction.
Following analogous steps as outlined for strings above, we find the following duality mapping
for filaments,

ψV
E (z, v) = NEZ̃

V −Va

−E (z, v|z0,v0) with N−2
E =

∫
z

∫
v

[
Z̃

V −Va

−E (z, v|z0,v0)
]2

(14)

−G−1 = Z̃
V −Va

−E (z0,v0|z0,v0) = ψV
E (z0, v0)/NE, (15)

relating the TM equations for potentials V and V −Va . This exact mapping can be generalized
to the more general class of potentials Va = G�(v)δ(z) if we use the additional assumption
that Z̃

V −Va

−E (z0, v0|z0, 0) ∼ δ(v0) is a strongly localized function of v0 in the limit z0 ≈ 0. This
assumption is justified if the scaling function �a(y, u) is exponentially decaying for u 
 1
such that Z̃

V −Va

−E (z0, v0|z0, 0) ≈ 0 for tangents |v0| 
 |z0|1/3. Then we can integrate both
sides of (7) with a kernel

∫
v0

�(v0)Z̃
V −Va
s (z0, v0|z0, 0) . . ., which finally leads to a generalized

duality mapping

ψV
E (z, v) = NEZ̃

V −Va

−E (z, v|z0, 0) with N−2
E =

∫
z

∫
v

[
Z̃

V −Va

−E (z, v|z0, 0)
]2

(16)

−G−1 =
∫

v0

�(v0)Z̃
V −Va

−E (z0, v0|z0, 0) =
∫

v0

�(v0)ψ
V
E (z0, v0)/NE, (17)

which is valid in the limit z0 ≈ 0.
The validity of the duality mappings can be confirmed for a number of potentials by

direct TM calculations for strings [11] and filaments [6, 12]. The mappings allow us to obtain
results for the full potential V by solving the Laplace transformed problem for the simpler
potential V − Va and give direct information on the partition sums ψV

E and Z̃V −Va
s and thus

the segment distributions. The duality mappings generalize exponent relations that have been
found previously, as we will show in the following section. Furthermore, relations (13), (15)
and (17) allow us to determine the transition point, i.e., the critical potential strength Gc, and
the exponent ν‖ describing the divergence of the correlation length close to the transition,
ξ‖ ∝ |G − Gc|−ν‖ .

6. Exponent relations

Without working out explicit solutions of the TM equations, we can use the duality mapping
to derive various exact exponent relations. To derive the exponent relation for χu and χb

for strings we study the limit of small |E| in (12). The scaling form (9) for the unbound
string determines the s-dependence of the singular part of Z̃V −Va

s for small s according to
Z̃V −Va

s,sing ∼ sχu−1. For χu < 1 the singular part is the leading-order contribution; for χu > 1
the leading-order contribution is finite, Z̃V −Va

s ∼ const. Using the Chapman–Kolmogorov
relation, we find from (12) the singular behaviour NE ∼ |E|1−χu/2 for χu < 2 for small |E|
and NE ∼ const for χu > 2. Furthermore, ψV

E ∼ |E|χb/2 for small |E| according to the
scaling form (10). Equating powers of |E| in (12) we arrive at the exponent relation

χb =
{

max (2 − χu, 0) for χu > 1
χu for χu < 1

(18)

for strings. For filaments, an analogous analysis of relation (14) at small |E| gives the same
exponent relation (18). For strings, relation (18) agrees with direct calculations using the
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TM equations [11] and also applies in the presence of a long-range power-law potential
V2 ∼ w|z|−2 (p = 2), where the exponents χ depend continuously on w, as can be checked
using the results of [10]. Also for filaments, (18) agrees with direct TM calculations for
potentials V = Va and V = Vr + Va [6, 12]. This exponent relation has been formulated in
[13] based on a mapping between the renormalization group equations for strings and filaments
of different dimensionality. An equivalent exponent relation has been confirmed numerically
in [8].

In order to derive the corresponding exponent relation for θu and θb for strings and
filaments, we analyse the scaling behaviour of the Laplace transform Z̃V −Va

s of the unbound
string or filament for small |z| in (12) and (14), respectively. Using the scaling form (9) for the
unbound string or filament we find Z̃V −Va

s ∼ |z|(1−χu)/ζ+θu/2 for χu > 1 and Z̃V −Va
s ∼ |z|θu/2

for χu < 1. According to the scaling form (10) for the bound string or filament we have
ψV

E ∼ |z|θb/2 for small |z|. Equating powers of |z| in (12) or (14) we arrive at the exponent
relation

θb =
{
θu + 2(1 − χu)/ζ for χu > 1
θu for χu < 1,

(19)

which holds for strings with ζ = 1/2 and χu = d⊥/2 + θu/2 and filaments with ζ = 3/2 and
χu = 2d⊥ + 3θu/2, according to the scaling laws (11) (note that χu > 0 for the unbound case).
For χb > 0, the same exponent relation can be obtained from a linear combination of (18) and
the two relations which follow from (11) for the exponent pairs χu, θu and χb, θb, respectively.
Again, it can be checked that relation (19) agrees with direct TM calculations both for strings
[10, 11] and for filaments [6, 8, 12, 13].

Now we address the transition point, transition order and the correlation length exponent
ν‖ by analysing the dependence of the bound state energy E on the potential strength G in
relations (13) and (15). Setting E = 0 on the right-hand side we find the transition point Gc.
As the singular part of Z̃V −Va

s for small s is Z̃V −Va
s,sing ∼ sχu−1, we find Gc = 0 for χu < 1; thus,

there is no unbinding transition for χu < 1 and strings and filaments are always in a bound
state. Expanding around E = 0 for χu > 1 gives

∣∣G−1
c − G−1

∣∣ ∝ |E|1/ν‖ = ξ
−1/ν‖
‖ with

1/ν‖ = max (χu − 1, 1) for χ0 > 1. (20)

We also used that the linear order dominates the singular contribution to Z̃V −Va
s for χu > 2

such that the transition becomes first order with ν‖ = 1. For 1 < χu < 2, we find ν‖ > 1
and a continuous transition. The result (20) agrees with those of the necklace model [14].
For filaments, relation (20) can be generalized for a class of tangent-dependent potentials
Va = G��(v)δ(z), satisfying a homogeneity relation ��(bv) = b−���(v), which has been
considered also in [6]. Performing the analogous expansion in (17) we find

1/ν‖ = min (χ̃u − 1, 1) for χ̃u > 1 where χ̃u ≡ χu − d⊥(1 − �)/2. (21)

For this class of potentials there is no transition for χ̃u < 1, a first-order transition for χ̃u > 2
and a continuous transition for 1 < χ̃u < 2. The result (20) is recovered for � = 1 and
�1(v) = δ(v).

The exponent relations (18) and (20) or (21), together with the scaling law (11), allow
us to calculate all critical exponents of the unbinding problem if only one exponent (χu or
θu) of the unbound string or filament in the absence of the short-range attractive potential is
known. These exponents are often known analytically, or can be easily obtained numerically.
For V = 0, we have θu = θ0 = 0 for strings and filaments. For V = Vr and d⊥ = 1, we can
make use of another exponent relation, χu = χr = 1 + ζ [15], which is also valid for both
strings and filaments.
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7. Conclusions

In conclusion we derived a duality mapping between bound and unbound states of one-
dimensional strings and filaments. This mapping allows us to determine the transition point
and the order of unbinding and desorption transitions of strings and filaments. We derived
exponent relations for the return probability exponents χ , the segment distribution exponents
θ and the correlation length exponent ν‖ from the mapping. These relations allow us to
determine all critical exponents related to the unbinding and desorption transitions of both
filaments and strings from a single exponent characterizing the unbound string or filament.
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