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One-dimensional asymmetric simple exclusion processes(ASEPs) that are coupled to external reservoirs via
diffusive transport are studied. These ASEPs consist of active compartments characterized by directed move-
ments of the particles and diffusive compartments in which the particles undergo unbiased diffusion. Phase
diagrams are obtained by a self-consistent mean field approach and by Monte Carlo simulations. The diffusive
compartments act as diffusive bottlenecks if the velocity of the driven compartments or ASEPs is sufficiently
large. A diffusive bottleneck at the boundary of the system leads to the absence of a maximal current phase,
while a diffusive bottleneck in the interior of the system leads to a new phase characterized by different
densities in the two active compartments adjacent to the diffusive one and to a maximal current defined by the
bottleneck.
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I. INTRODUCTION

Asymmetric simple exclusion processes(ASEPs) are
simple one-dimensional driven lattice gases with hard core
exclusion. They were originally introduced in the context of
protein synthesis[1] and have attracted much interest during
recent years as simple models for boundary-induced phase
transitions[2], for which many rigorous results have been
obtained[3–5]. In the open system, different stationary states
are found, which depend on the rates of injection and extrac-
tion of particles at the ends. By varying the injection and
extraction rates, or equivalently the densities at the left and
right boundary, both continuous and discontinuous phase
transitions are observed. The actual stationary state is se-
lected via the dynamics of domain walls and density fluctua-
tions [6].

Promising candidates for the experimental observation of
these phase transitions are systems of cytoskeletal motors
which move unidirectionally along cytoskeletal filaments
[7–9]. However, these motors unbind from their track after a
few seconds, since their binding energy can be overcome by
thermal fluctuations. Observed over sufficiently long times
which exceed a few seconds, they alternate between the
bound and the unbound states and perform peculiar random
walks. If a motor is bound to a filament, it moves in a di-
rected way along the filament, while unbound motors diffuse
freely. As motors are strongly attracted by the filament, the
motor density along the filament can be large even if the
overall motor concentration is rather small, which implies
that hard core exclusion plays an important role in the bound
state. To study these combined movements, we have recently
introduced a class of lattice models where bound and un-
bound motor movements are described as biased and sym-
metric random walks on a lattice, respectively[7–9]. In these
models, the traffic of motors along a filament is an asymmet-
ric simple exclusion process with the additional property that

motors can attach to and detach from the track.
For open tube systems with a single filament and fixed

motor concentrations at the tube ends, the same types of
phases are found as for the usual one-dimensional ASEP[9].
If the filament is shorter than the tube and motors have to
diffuse over a certain distance to reach one end of the fila-
ment from the left boundary and again to reach the right
boundary from the other end of the filament, the phase
boundaries of the system can be shifted by changing geo-
metrical tube parameters or motor parameters. In particular, a
maximal current phase, in which the current attains its maxi-
mally possible value, can only be found if the diffusive cur-
rents from the left end of the tube to the filament and from
the filament to the right end of the tube can be as large as this
maximal current. These diffusive currents, however, are re-
stricted by the diffusion coefficient of the unbound motors
and by geometric parameters[9].

The latter phenomenon is generic and not restricted to the
specific tube geometry. In the following, we study several
one-dimensional systems which consist of compartments
characterized by active or diffusive transport. We will dis-
cuss four simple geometries as shown schematically in Fig.
1. While particles move only to the right in the active com-
partments, forward and backward steps occur with the same
probability in the diffusive compartments. For these models,
we determine the phase diagram analytically using a mean
field approach to calculate effective boundary densities or
effective injection and extraction rates for the active com-
partments. The method is based on the constraint that the
stationary current must be equal in all compartments.

The article is organized as follows. After introducing the
model in Sec. II, we discussdiffusive injection and extrac-
tion of particles into/from an active compartment in Sec. III.
We start with only diffusive injection in Sec. III A which
corresponds to case A in Fig. 1, proceed with only diffusive
extraction in Sec. III B(see case B in Fig. 1), and then study
the case C, for which particles are both injected and ex-
tracted via diffusive compartments(Sec. III C). We compare
the mean field results with Monte Carlo simulation in Sec.
III D. Finally, we discuss the case of adiffusive compartment
between two active compartmentsas shown as case D in Fig.
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1 in Sec. IV. This case corresponds to a defect that must be
overcome by unbiased diffusion.

II. THE MODEL

In the following, we will discuss transport on one-
dimensional lattices. The coordinate along the lattice is de-
noted byx and will be measured in units of the lattice con-
stant,.

We consider systems that can be decomposed into two or
three different compartments in which transport is either dif-
fusive or directed. The four cases that will be discussed in
the following are shown schematically in Fig. 1. The total
length of the system is taken to beL in all cases. The linear
extensions of the compartments are denoted byL1, L2, and
L3, compare Fig. 1. In case A, the system consists of a left
compartment with 1øx,L1, where transport is diffusive,
and a right compartment withL1+1øxøL1+L2=L, where
transport is active or directed. In case B, transport is directed
in the left compartment and diffusive in the right compart-
ment. The cases C and D correspond to situations where the
systems consist of three compartments withL=L1+L2+L3.
In case C, transport is driven in the middle compartment with

L1+1øxøL1+L2 and diffusive in the left and right ones.
Finally, in case D, transport is directed in two compartments,
the left and the right one, but diffusive in the middle com-
partment. In all cases, we will assume that the extensions of
the active compartments are sufficiently large, so that we can
neglect finite-size effects.

In the following, we will take the active transport to be
always directed to the right and to be totally asymmetric, i.e.,
we do not allow backward steps in the compartments with
active transport. At lattice sites that belong to such an active
compartment, particles attempt to hop to the adjacent lattice
site to their right with a certain probability per unit timet.
We denote this probability byv since it is equal to the ve-
locity of a particle in the active compartment(and in the
absence of other particles), measured in units of, /t. The
hopping attempt is rejected if the target site is already occu-
pied by another particle. In summary, motion in the active
compartment is described by a totally asymmetric simple
exclusion process.

In contrast, motion in the diffusive compartments is de-
scribed by a symmetric exclusion process. A particle at a
lattice site which belongs to a diffusive compartment at-
tempts to make a forward and a backward step with equal
probabilityD, which corresponds to the diffusion coefficient
measured in units of,2/t. Note that we could eliminate one
parameter by measuring time in units of the time scale for
diffusive steps of size, by choosingt=, / s2Dd (for this
choice, the diffusion coefficient measured in units of,2/t
would be given byD=1/2). This implies that the results
which we derive in the following will depend only on the
ratio v /D. All hopping attempts in the diffusive compart-
ments are again rejected if the target site is occupied by
another particle. In order to simplify the following calcula-
tions, we do not allow particles to enter the active compart-
ments from the right, i.e., all hopping attempts from the first
site of a diffusive compartment to the last site of the active
compartment to its right—fromL1+1 to L1 in cases B and D
and fromL1+L2+1 to L1+L2 in case C—are rejected.

Finally, the densities at the boundary sitesx=0 andx=L
+1 have the fixed values

rsx = 0d = rin and rsx = L + 1d = rex. s1d

These sites are taken to have the same dynamics as the ad-
jacent compartments of the system. Particles thus attempt to
enter the system from the left with probabilityDrin if the
first compartment is diffusive and with probabilityvrin if it is
an active compartment. Particles at the last lattice site with
x=L leave the system to the right with probabilityvs1
−rexd if the sitex=L belongs to an active compartment and
with probabilityDs1−rexd if it belongs to a diffusive one. In
the latter case, particles also try to enter the system from the
right atx=L with probabilityDrex. Likewise, particles at site
x=1 can leave the system with probabilityDs1−rind if x=1
belongs to a diffusive compartment. As before, particles can
only enter the system atx=1 or x=L if these sites are not
occupied.

FIG. 1. (a)–(d) Four geometries A–D of one-dimensional lattices
which consist of active compartments(gray) where transport is de-
scribed by an asymmetric simple exclusion process and diffusive
compartments(white) where transport is described by a symmetric
exclusion process. The linear extensions of the compartments are
denoted byL1, L2, andL3. The total length of the system is given by
L=L1+L2 in cases A and B and byL=L1+L2+L3 in cases C and D.
In the active compartments, motion is completely biased and par-
ticles hop to the right with probabilityv, while in the diffusive
compartments, particles hop both to the left and to the right with
probability D. In addition, we do not allow particles to enter the
active compartments from the right. The densities at the boundary
sitesx=0 andx=L+1 are fixed torin andrex, respectively.
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III. DIFFUSIVE INJECTION AND EXTRACTION OF
PARTICLES

In this section, we consider the cases A–C, where trans-
port is driven or active in one compartment, but particles are
diffusively injected and/or extracted from the system and
have to diffuse over a certain distance before they reach the
active compartment and/or before they can leave the system
at the right end.

As mentioned before, the active compartment is described
by an asymmetric simple exclusion process. Let us therefore
briefly summarize what is known about the phase diagram of
this process(see, e.g., Ref.[6]). In an open system, where the
densities are fixed torin andrex at the left and right bound-
aries of the ASEP, respectively, the stationary state is deter-
mined by the boundary densities. The stationary states are
characterized by the bulk densityr0 and the stationary cur-
rent J.

For the ASEP with open boundaries, three different
phases can be distinguished as shown in Fig. 2. If the density
at the left boundary is relatively small and satisfiesrin,1/2
andrin,1−rex, the system is in the low density(LD) phase
for which the bulk density is equal to the left boundary den-
sity and the current isJ=vrins1−rind. If the density at the
right boundary is relatively large withrex.1/2 andrex.1
−rin, the system is in the high density(HD) phase, the bulk
density is equal to the right boundary density, and the current
is J=vrexs1−rexd. At the transition from the low density to
the high density phase, the current is continuous, but the bulk
density is discontinuous. Finally, forrin.1/2 andrex,1/2,
the system is in the maximal current(MC) phase, where the
current is maximal,J=v /4, and the bulk density is 1/2. The
transitions to the maximal current phase are continuous.

In contrast to the simple ASEPs just described, our sys-
tems are characterized by the property that at least one of the
boundary densities of the active compartments is not fixed,
but adjusted by the dynamics of the system. In the following,
we will determine the phase diagrams of these systems using
a mean field approach. We proceed in three steps and con-
sider first diffusive injection and extraction of particles sepa-
rately, combining them in the last step.

A. Diffusive injection of particles

First we consider case A, a system with only diffusive
injection of particles. Particles leave the system at the right
boundary with ratevs1−rexd and no particles enter the sys-
tem at the right end. In the stationary state, the currentJ must
be the same in both compartments. In the left compartment
with 1øxøL1 where transport is diffusive, the density is
then given byrsxd=rin−xJ/D. Within the mean field ap-
proximation, the right compartment withL1+1øxøL cor-
responds to the usual ASEP with the effective left boundary
density

rin,eff =
DrsL1d

v
=

Drin

v
−

L1J

v
, s2d

as follows fromvrin,eff;DrsL1d. The quantityvrin,eff corre-
sponds to the rate with which particles attempt to enter the
ASEP at its left boundary. Note that(i) this effective bound-
ary density depends on the currentJ and (ii ) rin,eff can be
larger than 1. The right boundary density is given byrex.

The phase diagram can now be determined in a self-
consistent way. As in the tube system studied in Ref.[9], the
same phases are found as for the one-dimensional ASEP, but
the location of the transition lines depends on the values of
the model parametersv /D andL1, and the maximal current
phase may be shifted out of the physically accessible range
of the parameters.

The system is in the maximal current phase ifrex,1/2
and rin,eff.1/2. In this case the current isJ=v /4, and the
condition

rin,eff =
D

v
rin −

L1

4
ù

1

2
s3d

implies that the system is in the maximal current phase for

rin ù
v

2D
S1 +

L1

2
D . s4d

For largev /D, the latter value of the left boundary density is
larger than 1 and therefore not physically accessible. This
implies that a maximal current phase is present only for
small velocities withv /D,2/s1+L1/2d. If the velocity were
larger, unphysically high densities would be necessary at the
left boundary in order to establish a sufficiently large density
gradient which could generate a diffusive current with the
value v /4, the maximal current defined by the driven com-
partment. In this situation, the diffusive compartments acts as
a diffusive bottleneck: If the maximally possible diffusive
current through the diffusive compartment is smaller than
v /4, a maximal current phase cannot occur, because the dif-
fusive compartment cannot maintain the maximal current.

A simpler estimate comparing the maximal diffusive cur-
rentD /L1, which is restricted by the maximal density differ-
ence of 1, with the maximal driven currentv /4 yields the
condition v /D,4/L1, which agrees with the previous one
for large L1, but is less restrictive for smallL1. The latter
discrepancy reflects the fact that the maximal density differ-
ence in the diffusive compartment is actually smaller than 1
since the density atx=L1 must be larger than zero.

FIG. 2. Phase diagram of the usual asymmetric simple exclusion
process, which describes a single active compartment, as a function
of the left and right boundary densitiesrin andrex.
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In addition, a low density phase is found forrin,eff,1/2
and rin,eff,1−rex and a high density phase forrin,eff.1
−rex and rex.1/2. Along the transition line between the
high density and low density phases we can useJ=vrexs1
−rexd and obtain

rin =
v
D

f1 + sL1 − 1drex − L1rex
2 g s5d

for the transition line between the low density and the high
density phases. This line extends from the right upper corner
of the phase diagram to the right upper corner of the maxi-
mal current phase region. If there is no maximal current
phase, it ends at a point withrin=1 andrex.1/2.

Phase diagrams for two cases are shown in Fig. 3. We
have chosenL1=10 andD=1/2 in both cases. The condition
for the presence of a maximal current phase is thenv,1/6.
In Fig. 3(a), the velocity isv=0.1,1/6 and all three phases
are present, while in Fig. 3(b), v=0.2.1/6 and the maximal
current phase is absent. In the latter case the largest part of
the phase diagram is covered by the low density phase.

In the maximal current phase the current isJ=v /4. In the
high density phase, it is determined by the right boundary
densityrex and has the valueJ=vrexs1−rexd. Finally, in the
low density phase, the current is given by the self-
consistency condition

J = vrin,effsJdf1 − rin,effsJdg, s6d

which leads to a quadratic equation for the current. The so-
lution is uniquely determined by the limitsJ=0 for rin=0
andJ=v /4 for rin=sv /2Dds1+L1/2d and is given by

J =
v

2L1
2F− 1 −L1 + 2

D

v
L1rin

+ÎS1 + L1 − 2
D

v
L1rinD2

+ 4
D

v
L1

2rinS1 −
D

v
rinDG .

s7d

B. Diffusive extraction of particles

Next we consider case B, in which particles that reach the
end of the active compartment have to diffuse over a distance

L2 before they can leave the system at the right end. This
case can be treated in the same way as the one with diffusive
injection. Note, however, that it cannot simply be derived
from the the latter using particle-hole symmetry, because a
particle at the site left of the driven compartment attempts to
enter it with rateD, while a hole at the site right of the driven
compartment does so with ratev.

The density profile in the diffusive compartment is given
by rsxd=rex+sL+1−xdJ/D for L1+1øxøL1+L2=L.
Therefore the effective rate with which particles attempt to
leave the active compartment atx=L1 is vs1−rex−L2J/Dd
;vs1−rex,effd corresponding to an effective right boundary
density of the driven compartment given by

rex,eff= rex + L2J/D. s8d

The maximal current phase is now found forrin.1/2 and

rex ,
1

2
−

L2v
4D

, s9d

which is alwaysø1/2. Again the maximal current phase is
present only if the range of boundary densities defined by
Eq. (9) is physically accessible. Here the corresponding con-
dition is rex.0, which is valid forv /D,2/L2. The latter
condition expresses again the fact that the diffusive compart-
ment must also support this maximal current. The diffusive
current is, however, restricted by the maximally possible
value of the density gradient in the right(diffusive) compart-
ment, 1/s2L2d, which leads to a maximal diffusive current of
D / s2L2d. If the latter current is smaller thanv /4, a stationary
maximal current phase is absent; therefore, the presence of
the maximal current phase requires that the maximal diffu-
sive current is ùv /4 which leads to the condition
v /D,2/L2.

The condition 1−rex,eff=rin with J=vrins1−rind yields the
transition line between the low density and the high density
phases:

rex = 1 −rinS1 +
v
D

L2D +
v
D

L2rin
2 . s10d

For velocities larger than 2D /L2, which is the maximal value
for the occurrence of a maximal current phase, this line ends
at a point in the phase diagram withrin=0 andrex,1/2. In

FIG. 3. Phase diagrams for the
ASEP with diffusive injection of
particles at the left boundary, i.e.,
for case A as shown in Fig. 1, as a
function of the left and right
boundary densitiesrin and rex.
The parameters are(a) v=0.1, D
=1/2, andL1=10; and(b) v=0.2,
D=1/2, andL1=10.
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this case the high density phase covers most of the phase
diagram.

The current isJ=v /4 in the maximal current phase and
J=vrins1−rind in the low density phase. In the high density
phase, it is again given by a self-consistency conditionJ
=vrex,effs1−rex,effd, where rex,eff is a function of J, from
which we obtain

J =
v

2sL2v/Dd2F− 1 +
v
D

L2s1 – 2rexd

+Î1 – 2
v
D

L2 + 4
v
D

L2rex + S v
D

L2D2G . s11d

C. Both diffusive injection and extraction of particles

Now we consider case C, i.e., we combine the two pre-
ceding cases. Transport is now driven in the middle compart-
ment for which we have the effective boundary densities

rin,eff =
Drin

v
−

L1J

v
and rex,eff= rex + L3J/D. s12d

The phase boundary between the low density phase and the
maximal current phase is not affected by adding another
compartment at the right end; thus we can use the result from
case A. Likewise the phase boundary between the high den-
sity phase and the maximal current phase is unaffected by the
left diffusive compartment, so that we can use the result from
case B upon substitutingL2 with L3. The maximal current
phase is therefore found for

rin .
v

2D
S1 +

L1

2
D and rex ,

1

2
−

L3v
4D

. s13d

It is present ifv /D,2/s1+L1/2d andv /D,2/L3. In addi-
tion, the current is given by Eqs.(7) and (11) in the low
density and the high density phases, respectively.

Finally, the transition line between these two phases is
obtained from the conditionrin,eff=1−rex,eff, which leads to

rin =
v
D
F1 − rex +

Jsrexd
v

SL1 −
v
D

L3DG , s14d

whereJsrexd is the current in the high density phase for the
right boundary densityrex as given by Eq.(11). The com-
plete phase diagram is shown in Fig. 4, where we have cho-
sen parameters for which a maximal current phase is present.

D. Comparison with simulations

In addition to the self-consistency calculations presented
above, we performed Monte Carlo simulations. In this sec-
tion, we compare the simulation results with the mean field
predictions for case C.

In the case where the maximal current phase is absent,
i.e., for large velocities, we find quantitative agreement of
the measured current and bulk density with the predictions of
the mean field calculation. The transition from the low den-
sity to the high density phase occurs at the predicted density.
As an example, we show results for the bulk densityr2

0 in the

active compartments in Fig. 5, where we have chosenrex
=0 andrex=0.5. In the first case, the system is in the low
density phase for all values ofrin; in the second case, a
transition to the high density phase is found atrin.0.54. The
mean field results(lines) and the simulation data(symbols)
agree well.

If a maximal current phase is present, i.e., for small ve-
locities, the agreement is less good, although the phase dia-
gram is still in qualitative agreement with the mean field
predictions. Figure 6 shows again results for the caserex
=0. Close to the transition to the maximal current phase the
current is smaller than predicted by the mean field calcula-
tion. Therefore the transition to the maximal current phase is
shifted toward a larger value ofrin and the increase of the
bulk density near the transition is less steep. Far from the
transition, however, agreement is again good. Likewise, the
transition line between the low density and the high density

FIG. 4. Phase diagram for the ASEP with diffusive injection and
extraction of particles, i.e., for the case C shown in Fig. 1. The
parameters arev=0.1, D=1/2, andL1=L3=6.

FIG. 5. Bulk densityr2
0 in the active compartment of a system

with geometry C as a function of the left boundary densityrin.
Lines are the mean field results and symbols are simulation data.
The right boundary density is fixed torex=0 (solid line) and rex

=0.5 (dashed line). Parameters have been chosen so that no maxi-
mal current phase is found:v=1, D=1/2, L1=L3=6, andL2=388.
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phases is also shifted toward largerrin, as this transition line
ends on the phase boundary of the maximal current phase.
Agreement becomes again better far from the maximal cur-
rent phase, since the other end point of the linesrin=0,rex

=1d is exact.

IV. DIFFUSIVE BOTTLENECK IN THE MIDDLE

Finally, let us consider case D, where active transport is
interrupted by a diffusive compartment. In the case of mo-
lecular motors, this can be realized by a gap in the filament
network, along which active transport takes place. Motors
thus have to overcome this gap by diffusion before they can
rebind to a filament and continue their active movements. If
the middle compartment consists of only one lattice site,
L2=1, this system reduces to the case of an ASEP with a
single defect which has been discussed previously(see Refs.
[10,11]).

The effective right boundary density for the left active
compartment is

rex,eff= rsL1 + 1d s15d

and the effective left boundary density for the right active
compartment is

rin,eff =
DrsL1 + L2d

v
=

DrsL1 + 1d − sL2 − 1dJ
v

. s16d

In this case, there are five possible phases. Because the
current is the same in both active compartments, the bulk
densities in the left and right compartments,r1

0 and r3
0, re-

spectively, are either equal or related byr1
0=1−r3

0. If the
bulk densities in both active compartments are equal,r1

0

=r3
0, there are three possibilities. Both compartments can be

in the low density, high density, or maximal current phase.
We denote these three cases by LD-LD, HD-HD, and MC-

MC, respectively. If the densities are not equal, we haver1
0

=1−r3
0, and there are two additional possible phases, where

one compartment is in the high density and the other in the
low density phase. These phases will be denoted by HD-LD
and LD-HD if r1

0 is larger or smaller thanr3
0, respectively.

A. Phases with equal densities in the active
compartments

In the MC-MC phase, the current isJ=v /4 and we have
four conditions for the boundary densities,rin.1/2,
rex,1/2, rin,eff.1/2, andrex,eff,1/2. The first two condi-
tions are the same as for an ASEP without the diffusive com-
partment and the latter two conditions yieldv /D,2/s1
+L2d. The maximal current phase is found only for small
velocities; for larger velocities in the active compartments,
the diffusive section acts again as a diffusive bottleneck.

The LD-LD phase is characterized byJ=vrins1−rind
=vrin,effs1−rin,effd. As both rin and rin,eff must be smaller
than 1/2, this impliesrin=rin,eff. Together with the condition
rex,1−rin,eff for the right active compartment, this implies
that the LD-LD phase is found within the region of the phase
diagram where the low density phase of the usual ASEP is
located. An additional condition is given byrex,eff=rsL1

+1d,1−rin. Thus, with the conditionrin=rin,eff, we obtain
rsL1+1d as a function ofrin,

rsL1 + 1d =
v
D

frin + sL2 − 1drins1 − rindg s17d

which leads to the inequality

v
D

frin + sL2 − 1drins1 − rindg + rin , 1. s18d

Becauserin,1/2, the left hand side of this inequality is
increasing monotonically and the solution is given by
rin,rin,*, whererin,* is the solution of the equation which is
obtained upon substituting “,” with “=” in Eq. (18). This
solution is uniquely determined by the limiting caseL2=1, in
which Eq.(18) yieldsrin,1/s1+v /Dd. As a result we obtain
the condition

rin , rin,*

;
sv/DdL2 + 1 −Îfsv/DdL2 + 1g2 − 4sv/DdsL2 − 1d

2sv/DdsL2 − 1d
.

s19d

If rin,* is larger than 1/2, this condition does not further
restrict the occurrence of the LD-LD phase, since forrin
=1/2 thetransition to the maximal current phase takes place.
Indeed, rin,* .1/2 implies the simpler condition
v /D,2/sL2+1d, which is exactly the condition we derived
above as a condition for the presence of the MC-MC phase.

On the other hand, ifrin,* ,1/2, condition(18) yields a
restriction of the LD-LD phase to the region in the phase
diagram withrin,rin,*. Therefore we conclude that for large
velocities with v /D.2/sL2+1d, the transition to the
MC-MC phase atrin=1/2 is replaced by a transition to an-

FIG. 6. CurrentJ (dashed line) and bulk densityr2
0 (solid line)

in the active compartment of a system with geometry C as a func-
tion of the left boundary densityrin for a case with transition to the
maximal current phase. The lines are the predictions of the mean
field calculation, the symbols simulation data. The parameters are
v=0.1, D=1/2, L1=L3=6, L2=388, andrex=0.
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other phase atrin=rin,*. The only possibility for this phase is
the HD-LD phase which will be discussed below.

Finally, note that forL2=1 our result recovers the condi-
tion for the ASEP with a defect[11], where forv /D,1 the
phase diagram is the same as without the defect, while for
v /D.1 a phase dominated by the defect is found.

The HD-HD phasecan be treated in the same way and
gives corresponding results. A HD-HD phase can be found
for rex.1−rin andrex.1/2 for small velocities which sat-
isfy again the conditionv /D,2/sL2+1d, while for larger
velocities an additional restricting condition is found,
namely,rex.rex,* with rex,*;1−rin,*.

B. Phases with different densities in the active compartments

For a LD-HD phase, the current must beJ=vrins1−rind
=vrexs1−rexd. This implies that the densities arerin=1−rex,
i.e., a stationary state with a low density in the left, but a
high density in the right active compartment can only be
expected along the line where the low density and high den-
sity phases coexist in the ASEP without a diffusive compart-
ment. In this case, however, a domain wall diffuses through
the system in the usual ASEP resulting in a density profile

which increases linearly[6]. The same can be expected for
our case with the exception of the regions close to the diffu-
sive compartment. This behavior has previously been ob-
served in simulations for the case of an ASEP with a defect
[11] which correspond to our case withL2=1 and we find the
same behavior in Monte Carlo simulations for largerL2 (see
Fig. 7).

Finally, let us consider the possibility of aHD-LD phase.
In this case the current isJ=vrin,effs1−rin,effd=vrex,effs1
−rex,effd which, together with the conditionsrin,eff,1/2 and
rex,eff.1/2, implies rin,eff=1−rex,eff. Substituting the ex-
pression for the effective boundary densities, we obtain a
quadratic equation forrsL1+1d with the solution

rsL1 + 1d = rex,* = 1 −rin,* s20d

with rin,* as given by Eq.(19). For L2=1 we recover again
the corresponding result for the ASEP with a defect.

C. Phase diagrams

We can now summarize the results into phase diagrams as
shown in Fig. 8. There are two different cases. If
v /D,2/s1+L2d, the phase diagram corresponds to the one
of the ASEP without the diffusive compartment[see Fig.
8(a)]. The bulk density is equal in both active compartments.
If, on the other hand, the velocity is larger with
v /D.2/s1+L2d, the diffusive compartment acts as a bottle-
neck and the phase diagram is modified[see Fig. 8(b)]. We
find the LD-LD phase forrin,rin,* andrin,1−rex and the
HD-HD phase forrex.rex,* and rex.1−rin. For rin.rin,*
andrex,rex,*, the system exhibits the HD-LD phase. While
in the LD-LD and HD-HD phases the bulk densities in the
active compartments and the current are determined by the
boundary densities, these quantities are independent of the
boundary densities in the HD-LD phase and depend only on
the ratiov /D and the lengthL2 of the diffusive compartment.

The HD-LD phase has some similarities to a maximal
current phase. The current is constant throughout this phase
and attains its maximal value compared to all other phases,
J=vrin,*s1−rin,*d=vrex,*s1−rex,*d. This maximal value,
however, is not determined by the active compartments, but
corresponds to the maximal current that can be supported by
the diffusive compartment. Correspondingly, the density pro-
files in the HD-LD phase(shown in Fig. 9) do not exhibit the

FIG. 7. Density profile for the LD-HD phase or coexistence of
the LD-LD and HD-HD phases for a system with a diffusive defect
[case D]. As discussed in the text, the profile is essentially linear
rather than consisting of two plateaus. The parameters arev=1, D
=1/2, L=205,L1=L3=101,L2=3, rin=0.05, andrex=0.95.

FIG. 8. Phase diagrams for
case D, i.e., for a diffusive com-
partment between two active com-
partments, as a function of the left
and right boundary densitiesrin

and rex. (a) Small velocity, v
=0.1 and(b) large velocity,v=1.
The diffusive section has length
L2=3 and the diffusion coefficient
is D=1/2.
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power-law behavior known from the usual maximal current
phase. The bulk densities in the left and right active compart-
ments are constant in this phase as well and are given by
rex,* andrin,*, respectively. Note, however, the following dif-
ference compared to the usual maximal current phase. The
transitions to the maximal current phase in the usual ASEP
are continuous. The transitions to the HD-LD phase in our
case are somewhat peculiar in the sense that they are con-
tinuous in one compartment, but discontinuous in the other.
For example, at the transition from the LD-LD phase to the
HD-LD phase, the densityr3

0 in the right active compartment
is continuous, but the bulk densityr1

0 in the left active com-
partment exhibits a jump fromrin,* to 1−rin,*.

We performed again Monte Carlo simulations and com-
pared the results with the mean field predictions. As a result,
we find that the phase diagram obtained by the self-
consistent mean field approach is recovered for small veloci-
ties. For large velocities, on the other hand, the qualitative
behavior is correctly predicted by the mean field calculation,
but the transition lines for the transition to the HD-LD phase
are shifted. For example forv=1, D=1/2, andL2=3, we
find the transition from the LD-LD phase to the HD-LD
phase atrin.0.08 in the simulations, while our mean field
calculation predicts a transition atrin=rin,* .0.13. Corre-
spondingly, there are also differences in the values for the
current in the HD-LD phase and the critical value of the
velocity is found to be smaller than predicted by the mean
field calculation. ForL2=3 andD=1/2, weobserve the usual
maximal current phase forv&0.15 in the simulations while
the mean field approach yieldsv,0.25.

Finally, let us add a remark concerning the density pro-
files in the HD-LD phase. From our mean field approach, we
expect the constant bulk densities in the left and right active

compartments to be approached exponentially from the left
and right boundaries, respectively. This is the case in the
simulation data; however, in addition, an excess density
close to the diffusive compartment is observed, which is not
expected from the mean field approach(see Fig. 9). As re-
ported previously for the case of an ASEP with a single
defect site[10], this excess density decays as a power law
,x−1, so that some kind of long-range order is also present in
this phase which plays the role of a maximal current phase
for the system with a diffusive bottleneck.

V. SUMMARY AND CONCLUSIONS

We have discussed transport in one-dimensional lattices
which consist of two or three compartments where transport
is either driven or diffusive, a situation that is inspired by the
motion of molecular motors which diffuse until they reach a
filament and then move along that filament in a directed
manner[9]. Mutual exclusion from lattice sites is important,
as many particles can be injected into the system from res-
ervoirs of fixed density at both ends. This is again realistic
for molecular motors, which are strongly attracted by the
filaments, so that the density of motors along the filaments
can become large, even if the motor concentration in solution
is relatively small. Traffic in the compartments where trans-
port is active or driven is described by an asymmetric simple
exclusion process.

We have studied four different geometries. In the cases
A–C, particles are injected into an active compartment
and/or extracted from it via diffusive compartments. In case
D, active transport is interrupted by a diffusive compartment
in the middle. The latter case is a generalization of the ASEP
with a point defect.

In all cases, the diffusive compartments can act as diffu-
sive bottlenecks. If the velocity of the particles in the driven
compartment is sufficiently small, the phase diagram is es-
sentially the same as for the usual one-dimensional ASEP. In
the cases A–C, the locations of the transition lines depend on
the model parameters. For large velocities, on the other hand,
transport through the lattice is limited by the diffusive com-
partments which cannot support arbitrarily large currents. In
the cases A–C, this situation implies the absence of the maxi-
mal current phase.

In contrast, in case D, this leads to a peculiar new phase,
the HD-LD phase, where the density is high in the left but
low in the right active compartment. As in a maximal current
phase, the current is constant in the HD-LD phase and has
the maximal possible value. In contrast to the usual maximal
current phase, this value of the currrent is determined by the
diffusive compartment, and the transitions to the HD-LD
phase are continuous in one, but discontinuous in the other
active compartment.

FIG. 9. Density profile for the HD-LD phase in case D with
rin=0.5, rex=0, v=0.25, andD=1/2. Thegeometrical parameters
are as in Fig. 7.
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