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Temperature dependence of vesicle adhesion
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The influence of thermal fluctuations on the adhesion behavior of fluid vesicles is investigated with the help
of Monte Carlo simulations. The adhesion afgg of a fluid vesicle adhering to a smooth attractive substrate
is studied systematically for different values of temperature, adhesion strength, and potential range. For low
temperatured, the ratioA,4/ A between the adhesion area and the total Areithe vesicle is a linear function
of T/ k, wherex is the bending rigidity. Linear fits of the simulation data allow an extrapolatioh=0 which
corresponds well with data obtained from a simplified analytic model. A new ansatg fdh which is based
on the eigenmodes of the adhering vesicle explains the linear behagg(®) for low T and helps to define
a fit function which reproduces the linear behavior of the obtained simulation data. This fit function may be
used in order to determine the bending rigidity and the adhesion strength from the observed adhesion geometry.
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[. INTRODUCTION vesicle shape is governed by the interplay of external con-
The adhesion of cells to solid materials or to other cells iS?_tramts and the glastlc curvature energy propornonak.tq
he value ofx typically depends on the membrane material

essential for the existence of multicellular life forms. The d th E bound il he bendi .
principles of cell adhesion are not only a fundamental aspecffn the temperature. For unbound vesicles, the bending ri-

of cell biophysics, it is also of biotechnological relevance for9idity can be measured by analyzing its fluctuation spectrum
the development and improvement of interfaces between 15,16, _ )
ing cells and artificial materials. Typical applications are the !f & vesicle adheres to a planar substrate, its morphology
development of biosensofd,2] and the creation of im- also depends on the properties of the adhesion potential. In
proved implantation materia[$8,4]. the absence of thermally excited fluctuations, the shape of an
The adhesion behavior of cells depends strongly on th@dhering vesicle has been calculated in detail using free-
mechanical and chemical properties of the flexible memenergy functional minimization techniqug¢$7-19. Much
brane shell that surrounds the cell interior. The cell memiess is known about the morphology of vesicles at finite tem-
brane consists predominantly of a lipid bilayer. Fluid vesiclesperature.
are hollow lipid bilayer shells. In the lab they serve as bio- With the help of Monte Carlo simulations, we study sys-
mimetic model systems for the study of cell properties whichtematically the temperature dependence of the adhesion be-
do not strongly depend on the cell interior. An overview of havior. Simulations are performed at several temperatures
the large number of experimental and theoretical studies odind for various adhesion potentials. It is found that for a
vesicles can be found {5,6]. The shape of adhering vesicles broad parameter range, the adhesion area can be related to
has been investigated experimentally using various techthe temperature, the adhesion strength, and the bending ri-
nigues including reflection interference contrast microscopyidity by a simple formula. In cases where the temperature
[7,8], fluorescence microscody,10], atomic force micros- dependence of the vesicle surface size and afe small or
copy[11], and freeze-fracture electron microscdpp,13. approximately known, the formula can be used in the experi-
Lipid membranes have a thickness of about 4—-5 nmment to determine the adhesion strength and the bending
while giant vesicles can have a diameter of 4@ and rigidity of the vesicle from measurements of the adhesion
larger. Therefore, on sufficiently large scales, the membranarea.
behaves as a two-dimensional surface. The shape of the The outline of this article is as follows. The theoretical
vesicle depends on the external conditions and the menmodels for vesicle adhesion are specified in Sec. Il, and the
brane’s material properties that determine the elastic energgimulation method is explained in Sec. lll. In Sec. IV, results
of the vesicle. The most relevant elastic properties are thef the simulations are presented and extrapolated towards
bending rigidity « and the spontaneous curvatuv, In =0. A simplified model is introduced in Sec. V which allows
general, the spontaneous curvature of a membrane boundiag analytic study of adhering vesiclesTat0. Results from
a closed vesicle will have both local contributions arisingthe simplified model are analyzed and compared with the
from the bilayer asymmetry or from the asymmetry of thesimulation results. In Sec. VI, the temperature dependence of
surrounding aqueous solution and global contributions arisvesicle adhesion is analyzed, and a new analytic framework
ing from the vesicle closure; the latter contribution has beerior adhesion at finite temperature is presented. Finally, the
systematically studied in Reff14]. In the following, we will  application of the obtained results for adhesion experiments
assume that the total spontaneous curvature, which contaiis discussed in Sec. VII, before some final conclusions are
all of these different contributions, is small and, thus, will made in Sec. VIII. In Appendix A, the energy terms of the
focus on the case of zero spontaneous curvature. Then, tisémplified model in Sec. V are derived.
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(a) A= f dA. (23
Sy

d

In general, a pressure differendd® may exist between
the fluid regions inside and outside the vesicle membrane so
that small changedV of the vesicle volume are connected
with the work AP(V)dV. Such pressure differences are in-
duced by molecules in and outside the vesicle whose perme-
ation rate through the membrane is low or zero. In this ar-
ticle, we consider the case that the concentration of such
molecules is small so thatP=0. Furthermore, zero sponta-
neous curvaturl,=0 of the vesicle’s membrane is consid-
ered. The elastic curvature energy of one configuration can
then be expressed §20]

E, = g f dA2M)?, (2.4)

es

whereM is the local mean curvature.

A plausible model scenario for vesicle adhesion consists
of a vesicle in a half-space with a substrate=a@ which has
a suitably strong, attractive short-range potential. However,
from a strict point of view at thermal equilibrium, the vesicle
is never bound in such a system:zf denotes the smallest
distance between the vesicle and the substrate, the vesicle is
bound for all states with & zy<<d, while it is unbound for

FIG. 1. Snapshots of a vesicle adhering to a substrate potentiél<Zzy<<o°, an infinitely large interval. Thus, at a finite tem-
of ranged=0.06 and adhesion strengi=6.3 at temperature@)  Perature the vesicle is, on average, always Uf‘bqund, no mat-
T=0.025 andb) T=0.25. The horizontal lines indicate the range of tgr h,OW deep apd broad the a}dhesmn pot_entlal is. The ;ltua-
tion in the lab is, however, different: Typically, the vesicle
can only be a distang,,,< 10 mm away from the substrate
before it contacts another surface. The partition function of a
vesicle with 0<zy<z,,, can be divided into bound and un-

The vesicle membrane is modeled as a two-dimensiondiound states,
homogeneous surfa&swith areaA. The vesicle is in con-

the substrate potential.

Il. THEORETICAL MODEL

tact with a smooth planar substrdteg. 1). The adhesion is Z = Zyoundt Zunbound
caused by an attractive short-range potential of the substrate d
which is represented by a square-well potential with rashge = J dz, f J dAe EadtEe)/T
The adhesiortfree) energy is then given by 0 shapes’ S,es
Zmax T
E.q= J dAV(2) (2.2) + f dz f J dAe e/
d shape es
es
with = [€E0Td + (Zg )] J el (25
shape es
V(z)=», z<0,
Here, [ shapesncludes all vesicle configurations with wall dis-
==W, 0=z<d, (2.2 tancez,. The temperaturd is expressed in energy units so
that the Boltzmann factor is contained Th Sincez,,,,2d,
=0 d=gz one gets
whereW>0 is the adhesion energy per attached membrane _exp(=(Ea/T)
area andz denotes the distance between the surface element ZboundZunbound™ Zoald (2.6

and the wall plane. The square-well potential determines the

adhesion zone of the membrane unambiguous]y: The adhe- The simulations in this article are restricted to bound
sion zoneS,, consists of all regions o, Which are closer ~states. This is justified if

to the substrate than the potential rargjeThe (intrinsic)

adhesion area is given by [(Ea/T| > In(Zpa/d) = 16. (2.7
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In the following, the bending rigidity is taken to provide triangleJ andK. The unit vectorse; andex are normals of

the basic energy scale. The notatiée E/ « is used for di- triangleJ andK, respectively, and point to the outside of the
mensionless energy quantities. The total membrane Area Vesicle. . o

defines the length scaR= \/A/(4w) which is characteristic The reduced adhesion energy is given by

for the vesicle’s linear dimensions. It should be mentioned A

that our investigations are not restricted to the case of Eaa= ~ WAL/RE. (3.4
temperature-independertandR. The consequences of such  |n the simulations, the vesicle is represented by a network
such temperature dependences are discussed in Sec. VII. TBEN,=1280 triangles. Each Monte Carlo sweep consists of
described model system, which mimics a vesicle in contach, attempts to move a vertex, one attempt to move the whole
with a smooth, planar attractive sukgstrate, depends on thregsicle, one attempt to rotate the vesicle, aNg &ttempts to
parameters: The reduced temperatliye¢he reduced poten- flip an edge. The edge flip proceeds as follows: Each edge

tial depthw, and the reduced potential ranaedefined as lies between two triang_les. Together, the two triangles have
four vertices, two of which are connected by the shared edge.
T= T/k, (2.8 In an edge flip, the shared edge is moved such that it con-
nects the formerly unconnected vertices. Typically> BF
w=WR/x, (2.9 Monte Carlo sweeps were performed for each choice of pa-

rameters. Half of the sweeps were used to ensure complete

- equilibration of the system.
d=d/R. (2.10

Ill. SIMULATION METHOD IV. RESULTS

On length scales which are large compared to the size of For sufficiently smallT, vesicles are bound so that the
the lipid molecules, the vesicle membrane can be taken to bg|ative adhesion area
a smooth, deformable surface. In the Monte Carlo simula-
tions, the shape of the vesicle is discretized using a flexible a=AdA (4.7)
polyhedron ofN; triangles. The triangles are bounded by . A )
edgesc, with n=1, ... N, which interconnect the vertices of 'S larger than zero. In the limit of vanishing the relaxation
the triangulated vesicle. A configuration of the triangulatedimMe diverges and inhibits efficient simulations. Above a cer-
vesicle is fully determined by the locations of the N,  tain temperaturel,;, the vesicle unbinds and vanishes.
=N;/2+2 vertices and a table of the pairs of vertices that areBetween these extrema, the behaviorcdﬁ') is analyzed
connected by one of the edges. During the simulation, th@ith the help of Monte Carlo simulations, which are per-
tethered bead mod¢R1] is applied, which corresponds to formed for various choices of the wall potential. Potential
the energy expression rangesf:i:0.03, 0.06, and 0.09 are considered. Values for the
reduced potential deptiv are chosen betweew=2.8 and

w=25. For each set ofv and a, the temperature is varied

= || —r|>€+A€ (for anyr;r; connectey, (3.1) between 0.025 T<0.25 corresponding to bending rigidities
from «=40T down to x=4T. Figure Za) shows results of

=0 otherwise o(T) for the potential dept=0.09. For all chosen values of

so that the distance between two connected vertices is re'\-/ the results ofa(T) can be fitted very well by a linear

stricted to € <|r;—rj[|<€+A¢, where A¢=0.7¢. An addi- function of T. T[le slope ofw(T) is weakly dependent ow;
tional constraint restricts the fluctuations of the membrane’she rate €la/dT at which the adhesion area shrinks de-
total areaAq, to |Agm—A| <0.025A. creases with increasing. As shown in Fig. ), a linear

The elastic curvature energy of the vesicle is discretizeg)enavior ofa('AI') is also found ford=0.06, as long ad is
according tg22]

Ep=c |r-rf<¢ (foranyi#j=1,...N,),

small. ForT> 0.15, the data points af decrease faster than
N; . L . A ~ .

A linearl th increasingl. Results ford=0.03 are shown in
=23 (MAAZIAA,, (3.2 nealy winl g p wn |

=1 Fig. 2(c). The behavior ofa(:r) is similar to that ford
=0.06 but the linear regime is limited to even smaller values

whereAA; is the area of triangld and (MAA); is the con- of T, especially for smaltw.

tribution of triangleJ to the total mean curvature of the

vesicle. It is defined as The linear behavior ofa(:l') at low T allows a simple
extrapolation toward¥=0. The values o&(T=0) which are
1w, ) . ; ) .
(MAA), = 4_12 Ir; = rdlarccose; - ex), (3.3  used in the following are obtained from a linear extrapolation
" A

of the data points at=0.025-0.075; a quadratic fit of the

where the sum goes over the neighbor triangde3he vec-  results forT=0.025-0.1 produces almost the same results.
tors r; andr, point to the two vertices that are shared by The straight lines in Fig. 2 represent the fit functions. The

011903-3



T. GRUHN AND R. LIPOWSKY

(2)

oaE . . . . .
03 N
025 f

o2}
0.15

0.1}
0.05

Aad/A

=
=3
=}
o
=
o
o
o
o
=}
[
=}
[
o

025

Aad/ A

PHYSICAL REVIEW E71, 011903(2005

04}

0)

03¢t

02F

(Aad / A) (T

01 F

FIG. 3. The relative adhesion ar8gy/A atT=0 as a function of
w. The symbols denote extrapolations from the simulation results

0.35 \.\'\.ﬂ\‘\o\* for a=0.03(+), d=0.06 (V), anda=0.09(><). The curves show

highest curve.
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- % fo) solutions from the simple model described in Sec. V. Solutions are
\NN\ A given ford=0,d=0.03,d=0.06, andd=0.09 from the lowest to the
\ <

a set of shapes for which the configurational energy can be
obtained analytically.

ForT<1,d<1, and sufficiently largev, the equilibrium
shape of an adhering vesicle is known to consist of a circular
disklike area on the substrate, a spherical cap on the opposite
side, and a small intermediate region of strong curvature
along the contact linEl9]. Configurations for smaller values
of w are approximately of the same shape; only the region
between the flat and the spherical cap gets broader. There-
fore, we take the shape of the adhering vesicle to consist of a
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FIG. 2. The relative adhesion arégy/ A as a function ofT for
potential rangega) a=0.09, (b) a=0.06, (c) d=0.03. The data
points are simulation results faw=2.8 (+), w=4.8 (X), w=6.3
(V),w=10.0(¢), w=15.0(A), w=20.0(O), andw=25.0(®). The
straight lines are linear fits of the low-temperature regions.

corresponding values obtained fafT=0;w) are plotted in
Fig. 3 as a function ofv. In order to discuss these results and
check the accuracy, a simplified model of an adhering vesicle
is introduced in the next section which allows an analytic

treatment of such vesicles AE0.
V. CAPLIKE SHAPES AT ZERO TEMPERATURE

We introduce a simplified analytical model for an adher-
ing vesicle. The deformations of this vesicle are restricted to

011903-4

0.3 %\:\'\'\s\ spherical cap with radiuR,, a circular base area of radius
0.25 \S\ 5 ® Rye and atorus segmenthat connects the other two. The
connecting torus segment has a small curvature raldiys
0.2 A and a large curvature radilg,,, as shown in the sketch in
0.15 o A Fig. 4. The small curvature radil&,, is set to
0.1 \\\:
\ <

Reo= (5.0

B \fZW’

which is the equilibrium contact curvature of adhering
vesicles aff=0[17].

N\ ba

FIG. 4. Geometry of the simplified model.
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In the simplified model, the shape of the vesicle is con-

trolled by the parameter

c=cog6,), (5.2

PHYSICAL REVIEW H, 011903(2005

We consider a finite potential ran@l@ 0, a finitew, and
a value for the contact angle parametavhich is so close to

-1 that it satisfies the inequality+1<av’5v. Then, in Eq.
(5.5 one hasn=c+1 and the derivative dE with respect to
¢ becomes

whereg, is the effective contact angle of the adhering vesicle

[17]. The total height of the vesicle is equal Ry(1-c)
+R.(1+c).

The energ)E of the model vesicle is determined bya,

andw. In Appendix A, an analytic expression is derived for

E=E,q*Eg, Which is composed of the adhesion enekyy
=-WA,4 and the elastic curvature energy.

For a contact potential witﬁl:O,Athe adhesion arefyy
coincides with the base arég, Ford>0, also parts of the
torus region contribute tdyg; if d>(1+c)/\2w, the adhe-

dE 2 1
— =—mk(l-\2w)?| 1 - (1—\2w) 1+2Inf1-—
dc \ZW
+0(c+1). (5.7
For c=-1, the only solution oHlE/dc=0 is
Wi, = 1/2 (d>0), (5.8

which turns out to be independent of the choicelof0. The
slope ofa(w) at wy, is

sion area includes the full torus segment and a part of the

sphere cap. In terms of the two parameters

m= min{&v@v, 1+c} (5.3
and
N = Ry/Reo (5.9
the adhesion energy can be expressed as
1 2
E.q=— 7k E)\ +\ arccosl —-m)+m
A ~
+< ; 2+1>(d\’2W—m)]. (5.5
v1-cC

For A #1, the elastic curvature energy has the form

A2 (L+c)\\?-1
Eo=27k| 4 +— >——arcta , 5| |-
VA -1 (1+c)+N\1-c

(5.6

The behavior ofg is further discussed in Appendix A, see
Eqg. (A16), where the casa=1 is considered as well, and

complex numbers are avoided for 1.

For given values ofv anda, the equilibrium configuration
of the model system af=0 is determined by the value
=Cpin fOr which E(w,d;c) is minimum. In Fig. 3, the result-
ing reduced adhesion areas A,/ A at T=0 are shown for

da

3 d
Ev(er)‘ 8<1——> (d>0). (5.9

For O<w<1/2, the vesicle configuration with the lowest
energy is a perfect sphere with a relative adhesion area

=d/2 so that the total energy is given blg,,=8mk
—2mrwd.

On the other hand, for a contact potential Witk 0 one
hasm=0 in Eqg. (5.5 and

dE — 1
—=—ak(1l-v2w) {1+2 In(l——)} +0(c+1)
dc V2w

(5.10
for c=-1. Here, E(w,0;c=-1) is maximum atw=1/2,
while it is minimum at

e ~
Wihr = m =3.23(d=0).

For this adhesion strength, the adhesion area vanishes and
the vesicle unbinds. The slope

(5.11

da
dw

Vve-1

m =0.063(d=0)

(Wthr) = (5.12)

at wy,, is finite, but distinctly smaller than for finite.

The value onth,(a:O) = 3.23 for the simplified model is

larger than the solutiowthr(a:O):Z found for a fully flex-
ible vesicle. Presumably, the discrepancy stems from the re-
stricted subset of configurations in the simplified model sys-

d=0.03, 0.06, and 0.09 together with the extrapolations frontem that is tailored for cases of strong adhesion strength

the simulations. The extrapolated simulation results are

In any case, there are qualitative differences between the

slightly lower than the model predictions but the agreementontact potential and the limit of infinitely small For all

is quite remarkable, especially since no fit parameter ha

been used.

a>0 nonspherical conflguratlons exist whose energy is

If the adhesion strengtiw is smaller than a threshold 'ower thanEgp, so thatWthr(d>O)<1/2 distinctly below

valuewy,, the vesicle is perfectly spherical. Far=w;,,, an
energy minimum exists at a value,,=-1 for which

dE/dc(w,a; Cmin) =0. At the threshold adhesion strength,,
one hasy,i,=-1 so thatdE/dc(Wthr,a;c:—l):O.

wth,(d 0). If W<y, andd=0 the vesicle unbinds, while for

a wall potential of finite rangel the vesicle is spherical but
bound. On the other hand, as shown in Fig. 5, the curve of

a(w; d> 0) converges pointwise towardgw; d= 0).

011903-5



T. GRUHN AND R. LIPOWSKY PHYSICAL REVIEW E71, 011903(2005

0.08 The next step is to considet>0. For a givenw, the
0.07 p value of a(w) increases with increasingj For very highw,
__ 008} however,a(w) will only be slightly larger than 1/2 as long
c”’ 0.05 } asd<1. With the results shown in Fig. 3, one finds that the
; 0.04 } relative adhesion areaw,d) at finited and strong enoug
< can be approximated by the adhesion argfw,) for a
g 003y vesicle adhering to a contact potential with an effective po-
T 002} tentialwd(w,a). For small adhesion strengttsthe approach
0.01 } does not work, becausey(wy) is proportional tow, while
0 . - i - - _ ) a=d/2 independent ofn. A good description ofa(w,a)
0 05 1 15 2 25 3 35 over the whole range o is given by
w ~
FIG. 5. The relative adhesion aréa,y/A)(w) of the simplified a(w, a) = ap(Wy) + g (5.18

model system al=0 for smallw andd.

The simplified model system can be used to derive ar-1r he effective adhesion strength

expression forw=A,4/ A as a function of the reduced poten- \/:

tial depthw, the reduced potential rangk and the reduced Wy =W(1+cyVd) (5.19
temperaturel. We start with the most simple case, which is . , ,

omp P with ¢4=3.0 produces a good fit of the data. Using Eq.

d=0 andT=0. The model system is exact for largie where (5.17), one has
c=1. A simple expression for o

ag(W) = a(w;d=0,T=0) (5.13 1+d 0.947

a(w,d) = ——— - —, (5.20
results from a Taylor expansion of Eq#11)—(A23) up to 2 \/w(l + 3.0\/&)
the third order ofw %2 and (1-c)'2. Neglecting terms of
higher order, one obtains which fits the extrapolated simulation points, shown in Fig. 3
for all w=4.8 with a discrepancy smaller than 3%. The de-
- +
ag(w) = i T+ s 20_ m(m 122) (5.14  viation from the simplified model results is smaller than 5%
2 4w lew 1285°

for all 4<w<60 and 6<d<0.09. In the next section, the

The expression coincides roughly with the relative adhesio@dhesion behavior at finite temperature is discussed.
area of an adhering pancakelike vesicle that consists of two
flat disklike areas combined by a torus of radRfs,2w. For
w>60, Eq.(5.14 deviates less than 1% from the exact so-
lution, but forw< 20 the discrepancy is already larger than
13% and grows strongly with decreasingAdding the next ) ) ) } -
higher term from the Taylor expansion does not improve thé@duced adhesion areais a linear function off. The good

VI. ADHESION BEHAVIOR AT FINITE TEMPERATURE

From the simulation results, it follows that for loWthe

accuracy very much. Instead, one can use the ansatz correspondence of the extrapolated values and the analytic
N results forT=0 indicates that the slope is indeed constant up
(W) = 1/2 +>, Cw 2 (5.15 to T=0. In this section, we discuss how a constant, finite,
i=1 negative slope o&(T) may arise from thermal fluctuations.

The outcome is used to derive a function which describes all
simulation results rather well.
We assume that the fluctuations of an adhering vesicle are
ay)(w)=1/2 - 0.73v Y2 - 1,93 1 + 49732 - 3. 7w 2 composed of a finite number of fluctuation modes deter-
(5.16 mlned.by a set=(&,, ...,&) of degrees of freedorg. The
: potential energy
is found to deviate less than 0.5% from the exact solution for

and obtain the coefficient§; by fitting the exact solution.
For n=4, a function

all w. In the following, the simple expression E(¢) = Eg+Eyq— Eg (6.1)
1 C . . . - .
ap(w) = 5T (5.17 s taken as a function af which has a minimum a§=0 with
YW

V.E(0)=0. The constanE, is chosen such tha&(0)=0. The

with C=0.947 is used which already deviates less than 2%legrees of freedom are chosen such that the second deriva-
from the exact solution for allv=6. tive of E is diagonal at=0,

011903-6
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R
£=0 2 98

FE
23123
We assume that the temperature is low and Eigf diverges

fast for large fluctuationg:.. Then, the adhesion arégq(¢)
can be approximated by

1
EijEE B -

§=0

(6.2

k k
A,
Aad = Pad @)+ 2 726+ 2 (Aadiéif
i=1 0§ ij=1
1 PA,
with (Aag)j =5 agiag? o (6.3

With the same precision one hﬁg) 2 lE”g and the
partition function of the system becomes

k ®
z=T1 U dgje-Enff’T>. (6.4)
j:l -0
For the calculation of the average adhesion area
(Aae = Z_lf dé; - f d&AHe T, (6.5

all terms linear ing vanish for symmetry reasons so that

(Aa = A d(§= 0)

+212 dg.(Aad)..ge'E"fz’TH dge BT
j#I J -0
k
1w Ay ( #E )-1
=Aad§=0)+ 7 — T. (6.6
dE=0+52 2 o ) T e9
With
(9§i2 =R (9§i2 7TVVK0§i, (6.7
one obtains
~ ok
(Eel)u _ >_l
(@)= <4 R2> a(f 0)+87T,21<477Ka” W)
(6.8
where
1(92a
ozii 2&& . (69)

In this way, we have obtained a linear relation betwaemnd
T. If the system hak fluctuation modes that roughly contrib-
ute equally to the temperature dependence,abne has

da) k| 1 d?Eyfd?a\?t 1

— =5 | a2\ a2 -W . (6.10)
dT 8wl 4mk d& \ dé
From Eq.(6.10 it follows that (d(e)/dT)"
tion in w. In Fig. 6, the simulation results (Qﬂa/d:r)‘l for

lis a linear func-

PHYSICAL REVIEW H, 011903(2005

(da/dT)?

15 20 25
w
FIG. 6. The inverse slope of(f):(Aad/A)(?) as a function of
w. The symbols represent simulation results &%0.03 (+), d
=0.06 (O), andd=0.09 (V). The straight lines are obtained from

Eq. (6.13 for the respective values of

low T are shown as a function of. Indeed, the plots are
fairly linear.

Replacingw in Eq. (6.10 by the effective adhesion
strengthwy provides the ansatz

(6.11

o, d,T) = agwg) + - ——
87 f(d) - wy

with ag(wy) from Eq.(5.18 and a suitable function(a) that
does not depend ow. With Eq. (5.18 for ag(wy) and the

ansatzfl(a):cl+cz\/é, a least-squares fit was applied to the
inverse slope ofy(T),

_1 -
(d_i¥> = 8?77(01"' Cz\/a‘Wd),

dT

(6.12

which revealed the fit coefficients =27, ¢c,=-200, andk
=423. The results are presented in Fig. 6. Interestingly, the
fit value k=423 for the number of fluctuation modes is
roughly of the same order as the degrees of freedom of the
discretized vesicle.

Altogether, one has

1+d 0.947 423 T

87 27 200d - Wy
(6.13

CY(W, al :I\-) 2 - ’r'W
VWqg

/7

with wy=w(1+3.0vVd). In Fig. 7, the simulation results for
a(T) are compared with E¢6.13. Most data points with

a>0.1 andT < 0.2 are reproduced with a deviation less than
5%, which is quite respectable: On the one hand, the range of
temperatures and adhesion strengths, covered by the simula-
tions, is quite large. On the other hand, £6.13 is simple
enough to be easily transformed, a fact which is used in the
following section to develop a new method to measuend

W.
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04 F . ) j " y served linear behavior af(T) and (da/dT)~%w). From Eq.
' ) (5.18, it follows that
039 \A\A‘A\ 2
4 0.947
03¢} WR = K F( - ) . 7.0
0.25 \ 1+3.0Vd\1+d-2a

<
~
3 v
< 02} v In order to use Eq(7.1), one needs to know, The ob-
015} + 3 z served linear behavior af(T) gives
o1}
+
! da(T)
0.05 \ ap= o(T) - (7.2)
0 dT
0 0.05 0.1 015 02 025
T/ so that, in prmmpleao andW can be obtained by measuring
«(T) andda/dT for finite T. In practice, two difficulties may
(b) 04— occur: (i) the values ofl and k may be unknown, andi) «

0.35 \.\N\-ﬁ\‘\.\. andR may vary withT. If « andR depend on the tempera-
ture, Eqs.(6.13 and(7.2) are still valid, butA,4 is not nec-
03 essarily a linear function ifm. If the potential ranged is
0.25 | known with a precision\d, the error range&W of W taken
o from Eq. (7.1) is apprOX|mater|AW/W|~-Nd|Ad/d|
I value for R=VA/4mx can be determined from the unbound
+ v

vesicle or a side view of the adhering vesicle. A measure-
ment of the temperature dependenceRahay be more dif-

Aad/A

005t + X ficult, even in cases wheld,y)' =dA,4/dT can be obtained
0 + X with sufficient accuracy. Further, in most cases little is
0 005 01 015 02 025 known aboutx’ =d«/dT.
T/k NeverthelessW and k can both be estimated from a mea-
surement ofA,4 and (A,y)’, if the absolute values ot’ and
(¢) =dR/dT can at least be estimated to be small. In this
035 case, one can expred&/dT in Eq.(7.2) in terms ofAJ,, T
0.3 k, and other terms that directly depend Bnwhich g|ves
< 020 aoza(T)<1+2TR ) Aad’ (1 +T— ) (7.3
3 02 R A
< o015 If upper bounds of«’| and|R’| are known, Eq(7.3) allows
04 us to estimate the accuracy of the ansatg= «a(T)
) -T(A' 1A
0.05 Finally, replacing all dimensionless units in E@.12)
0 gives

0 0.05 0.1 0.156 0.2 0.26 r r 4293 A

T/x WR2(1+3.0\/:> ~ K<27—200\/i> B A

R R/ 87 (A

FIG. 7. Comparison of the fitting function E¢6.13 and the , ,
simulation data o(Aad/A)(i') for potential rangesa) 8:0.09,(b) X(l _TK_ + 2&&)_ (7.4

d=0.06, (c) d=0.03. The data points are simulation results vior K (Aag)’ R

=2.8 (+), w=4.8 (x), w=6.3 (V), w=10.0(0), w=15.0(A), W \wjth Egs. (7.1)—(7.4), the quantitiesM(T) and «(T) can be

=20.0 (O), and w=25.0 (®). The straight lines stem from Eq. estimated by measuring(T) and «(T+AT). As a consis-

(6.13. tency check of the assumption thetandR’ are small, one
should prove the linearity of,4(T).

VIl. MEASURING ADHESION STRENGTH
AND BENDING RIGIDITY
VIIl. CONCLUSIONS
Equation (6.13 provides the relative adhesion area for _ _ _ )

Values Oﬂ' R andd |f K andW are known In pract|ce one With the help of Monte Carlo S|mu|at|0ns we have inves-
is frequently confronted with the inverse problem: While thetigated the temperature dependence of the adhesion of fluid

adhesion ared,4 can be measured, the valuesWfand vesicles in the absence of an osmotic pressure. For tempera-
are often unknown. They can be obtained by using the obturesT<O0. 2, the relative adhesion araaT) is found to be a
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linear function ofT. This result is found for a wide range of A=Apat Asct Ago
adhesion strengths and potential widthgl. An expression 20\ + \;rcz)z
for a(w,a,:l') is derived that describes the adhesion behavior = ”Rgo{ +  1+4c
in the linear regime.
The expression found far(w,d,T) is simple enough to + 2\ arcco$-c) + 2(1 +c)] (A8)
be inverted such that the adhesion strefgtland the bend-

ing rigidity « can be found by measuring the adhesion are
A,q at different temperatures.

The linear behavior oh('i’) is described by an analytic A=47R? = 8mREw. (A9)

approach, which considers contributionsiie/dT by a set of
orthogonal fluctuation modes. The ansatz provides a finite

constant slope ofm(T) down to T=0. A more guantitative 8w(1 +c) = (3+c)\2+ 2[2V1 1-¢2

estimate of the mode contributions, which requires a more

complex model system than the one treated here, would be of +(1+cjarccog-c) ]\ + 4(1+c). (A10)
great interest. The same is true for an investigation of thg; fojows that
temperature dependence @fin the case of a finite pressure

difference. - \/uz(c) , A +c)(2w-1)

APPENDIX A: ENERGY EXPRESSIONS FOR THE 3+c
ANALYTIC MODEL

"bn the other hand, from E@5.1) it follows that

Equating Eqs(A8) and(A9) gives a quadratic equation ly

-u(c)

2V1 -c?+ (1 +c)arcco$- c)

i . . oa . with u(c) =
A simplified model for an adhering vesicle @0 is in- 3+c
troduced in Sec. V. In the following, the energy expressions (A11)
in Egs. (5.5 and(5.6) are derived. _
The model vesicle with an efficient contact angleand The energyE=E,q+E, of the system is the sum of the
c=cog#,) has a circular base area of the size adhesion energi,4 and the elastic curvature energy.
o The elastic curvature energy includes contributions from
Apa= TRy, (A1) the spherical cafEy,
a spherical cap area o e
2m 0, , , B = f d(pf dt9(2H)2\r
ASC:J dqof doRs sin(0) =2m(1 )R, (A2)
0 0
and a torus segment which can be parametrized as =mr(l - C)R§c< ) =4mk(l-0) (A12)
(Rea* Reo Sl'n(ﬁ)]C('JS((p) and the torus segmeft;,
1(6,¢) =| [Roa+ Rsosin(6)]sin(¢) ,
R.Jcog6) + 1] co= J de f do(2H)2\g (A13)
with ¢ € [0,27) and @ € [ 6, 7). (A3)
With the determinant fwde(z Rya-+ 2Rog SIN(6) )2
— H 2 =K
9= ReJRoa* ReoSiN(0)] (A4) i\ “2RpgRoo + 2RE, Sin(6)
of the metric tensog;=Djr -Djr, the area of the torus seg- YRR+ R..SiN(6 Al4
ment becomes Rco[ ba Rco ( c)] ( )
2@ T
~ T N+ 2si 2
Aco:f d<pf dovg =K7'rf dﬂﬂ. (A15)
0 0c e N\ +sin(6)
= 2mRe{ Rpa@rccos=c) +R(1+0)].  (AS)  pepending on the value of, one has
At 6=6,, the spherical cap and the torus segment must ) =
match N (L+c)y\"-1
' Eei= 87k + 2mk———arcta ———— ———
ReV1=C?=Ryp+ R 1-C. (16) W1 (1+e)+al-c
With forn>1,
A= Rba/RCm (A7) c ‘
= + + =
the total vesicle area becomes Bmic+ mi| 1 1+v1-c2 ora=1, (A16)
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A2 wk (2™ 0c 5
— SC —_ i
=8mk + ﬂ'K—Vl Y Exd(6s0 = 2 Jo dqofgscdﬁRSCSIn(ﬁ)
(1+0)(1+V1-A?) +AV1-¢? 2mWk
( Aroa-igrani-@ o =" TR Redcodfo —codf)l. (ALY

The adhesion energi,,=-WA,4 is proportional to the Here,fs.corresponds to the upper edge of the adhesion area,

size of the adhesion arég. Ford=0, the adhesion are®yy RyJcoq6s) — cog6,)] + Refcog6,) + 1]=d (A20)

coincides with the circular base arég,, <o that

E23=-V§7TR§a=-%TV- (A17) E;g:—m%(% - +c)>. (A21)

0 (0]

For d>0, also the torus segment contributesAg,. If the Altogether, one has

adhesion rangd is smaller than the heigiR.[coq6,)+ 1] of
the torus segment, the total adhesion energy is given by

1 f o —
Eg=- m{i)\z +\ arccos$l —dv2w) + dVZW}
Eaq=ER3+ES(6,,), Where

5 for dy2w=1+c (A22)
E%(6,0) = - % f de f dovg and
0 0,
co B 1 )
= — 7\ arcco§- cog6,0)] +[1 + cog o) ]} ST 7”‘[ oM+ harccogl — (1 +0)]
(A18)

A ~
+(1+0)+|—=+1|[dv2w—-(1+cC
and 6., is determined by the potential range via @g ( ) (V1—c2 )[ ! ( )]}
:(d/RCO)—lzd\s“Ev—l. If d is larger than the height of the
torus segment so that 2w > 1+c, the total adhesion energy

is given by E,q=E23+ES(6,) +ESS(6s), WhereESY(6s) rep-  Usingms= min{dy2w, 1+c}, the adhesion energy can be writ-

for a\e’Ev >1+c. (A23)

resents the adhered part of the spherical cap, ten in the closed expression given in E§.5).
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