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The influence of thermal fluctuations on the adhesion behavior of fluid vesicles is investigated with the help
of Monte Carlo simulations. The adhesion areaAad of a fluid vesicle adhering to a smooth attractive substrate
is studied systematically for different values of temperature, adhesion strength, and potential range. For low
temperaturesT, the ratioAad/A between the adhesion area and the total areaA of the vesicle is a linear function
of T/k, wherek is the bending rigidity. Linear fits of the simulation data allow an extrapolation toT=0 which
corresponds well with data obtained from a simplified analytic model. A new ansatz forAadsTd which is based
on the eigenmodes of the adhering vesicle explains the linear behavior ofAadsTd for low T and helps to define
a fit function which reproduces the linear behavior of the obtained simulation data. This fit function may be
used in order to determine the bending rigidity and the adhesion strength from the observed adhesion geometry.

DOI: 10.1103/PhysRevE.71.011903 PACS numberssd: 87.16.Dg, 87.16.Ac, 68.15.1e

I. INTRODUCTION

The adhesion of cells to solid materials or to other cells is
essential for the existence of multicellular life forms. The
principles of cell adhesion are not only a fundamental aspect
of cell biophysics, it is also of biotechnological relevance for
the development and improvement of interfaces between liv-
ing cells and artificial materials. Typical applications are the
development of biosensorsf1,2g and the creation of im-
proved implantation materialsf3,4g.

The adhesion behavior of cells depends strongly on the
mechanical and chemical properties of the flexible mem-
brane shell that surrounds the cell interior. The cell mem-
brane consists predominantly of a lipid bilayer. Fluid vesicles
are hollow lipid bilayer shells. In the lab they serve as bio-
mimetic model systems for the study of cell properties which
do not strongly depend on the cell interior. An overview of
the large number of experimental and theoretical studies of
vesicles can be found inf5,6g. The shape of adhering vesicles
has been investigated experimentally using various tech-
niques including reflection interference contrast microscopy
f7,8g, fluorescence microscopyf9,10g, atomic force micros-
copy f11g, and freeze-fracture electron microscopyf12,13g.

Lipid membranes have a thickness of about 4–5 nm,
while giant vesicles can have a diameter of 10mm and
larger. Therefore, on sufficiently large scales, the membrane
behaves as a two-dimensional surface. The shape of the
vesicle depends on the external conditions and the mem-
brane’s material properties that determine the elastic energy
of the vesicle. The most relevant elastic properties are the
bending rigidity k and the spontaneous curvatureMsp. In
general, the spontaneous curvature of a membrane bounding
a closed vesicle will have both local contributions arising
from the bilayer asymmetry or from the asymmetry of the
surrounding aqueous solution and global contributions aris-
ing from the vesicle closure; the latter contribution has been
systematically studied in Ref.f14g. In the following, we will
assume that the total spontaneous curvature, which contains
all of these different contributions, is small and, thus, will
focus on the case of zero spontaneous curvature. Then, the

vesicle shape is governed by the interplay of external con-
straints and the elastic curvature energy proportional tok.
The value ofk typically depends on the membrane material
and the temperature. For unbound vesicles, the bending ri-
gidity can be measured by analyzing its fluctuation spectrum
f15,16g.

If a vesicle adheres to a planar substrate, its morphology
also depends on the properties of the adhesion potential. In
the absence of thermally excited fluctuations, the shape of an
adhering vesicle has been calculated in detail using free-
energy functional minimization techniquesf17–19g. Much
less is known about the morphology of vesicles at finite tem-
perature.

With the help of Monte Carlo simulations, we study sys-
tematically the temperature dependence of the adhesion be-
havior. Simulations are performed at several temperatures
and for various adhesion potentials. It is found that for a
broad parameter range, the adhesion area can be related to
the temperature, the adhesion strength, and the bending ri-
gidity by a simple formula. In cases where the temperature
dependence of the vesicle surface size and ofk are small or
approximately known, the formula can be used in the experi-
ment to determine the adhesion strength and the bending
rigidity of the vesicle from measurements of the adhesion
area.

The outline of this article is as follows. The theoretical
models for vesicle adhesion are specified in Sec. II, and the
simulation method is explained in Sec. III. In Sec. IV, results
of the simulations are presented and extrapolated towardsT
=0. A simplified model is introduced in Sec. V which allows
an analytic study of adhering vesicles atT=0. Results from
the simplified model are analyzed and compared with the
simulation results. In Sec. VI, the temperature dependence of
vesicle adhesion is analyzed, and a new analytic framework
for adhesion at finite temperature is presented. Finally, the
application of the obtained results for adhesion experiments
is discussed in Sec. VII, before some final conclusions are
made in Sec. VIII. In Appendix A, the energy terms of the
simplified model in Sec. V are derived.
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II. THEORETICAL MODEL

The vesicle membrane is modeled as a two-dimensional
homogeneous surfaceSves with areaA. The vesicle is in con-
tact with a smooth planar substratesFig. 1d. The adhesion is
caused by an attractive short-range potential of the substrate
which is represented by a square-well potential with ranged.
The adhesionsfreed energy is then given by

Ead =E
Sves

dAVszd s2.1d

with

Vszd = `, z, 0,

=− W, 0 ø z, d, s2.2d

=0, d ø z,

whereW.0 is the adhesion energy per attached membrane
area andz denotes the distance between the surface element
and the wall plane. The square-well potential determines the
adhesion zone of the membrane unambiguously: The adhe-
sion zoneSad consists of all regions ofSves which are closer
to the substrate than the potential ranged. The sintrinsicd
adhesion area is given by

Aad =E
Sad

dA. s2.3d

In general, a pressure differenceDP may exist between
the fluid regions inside and outside the vesicle membrane so
that small changesdV of the vesicle volume are connected
with the work DPsVddV. Such pressure differences are in-
duced by molecules in and outside the vesicle whose perme-
ation rate through the membrane is low or zero. In this ar-
ticle, we consider the case that the concentration of such
molecules is small so thatDP=0. Furthermore, zero sponta-
neous curvatureMsp=0 of the vesicle’s membrane is consid-
ered. The elastic curvature energy of one configuration can
then be expressed asf20g

Eel =
k

2
E

Sves

dAs2Md2, s2.4d

whereM is the local mean curvature.
A plausible model scenario for vesicle adhesion consists

of a vesicle in a half-space with a substrate atz=0 which has
a suitably strong, attractive short-range potential. However,
from a strict point of view at thermal equilibrium, the vesicle
is never bound in such a system: Ifz0 denotes the smallest
distance between the vesicle and the substrate, the vesicle is
bound for all states with 0øz0,d, while it is unbound for
døz0,`, an infinitely large interval. Thus, at a finite tem-
perature the vesicle is, on average, always unbound, no mat-
ter how deep and broad the adhesion potential is. The situa-
tion in the lab is, however, different: Typically, the vesicle
can only be a distancezmax,10 mm away from the substrate
before it contacts another surface. The partition function of a
vesicle with 0øz0øzmax can be divided into bound and un-
bound states,

Z = Zbound+ Zunbound

; E
0

d

dz0E
shapes

E
Sves

dAe−sEad+Eeld/T

+E
d

zmax

dz0E
shapes

E
Sves

dAe−Eel/T

. fe−kEadl/Td + szmax− ddgE
shapes

E
Sves

e−Eel/T. s2.5d

Here,eshapesincludes all vesicle configurations with wall dis-
tancez0. The temperatureT is expressed in energy units so
that the Boltzmann factor is contained inT. Sincezmax@d,
one gets

Zbound/Zunbound.
exps− kEadl/Td

zmax/d
. s2.6d

The simulations in this article are restricted to bound
states. This is justified if

ukEadl/Tu . lnszmax/dd . 16. s2.7d

FIG. 1. Snapshots of a vesicle adhering to a substrate potential

of ranged̂=0.06 and adhesion strengthw=6.3 at temperaturessad
T̂=0.025 andsbd T̂=0.25. The horizontal lines indicate the range of
the substrate potential.
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In the following, the bending rigidityk is taken to provide

the basic energy scale. The notationÊ;E/k is used for di-
mensionless energy quantities. The total membrane areaA
defines the length scaleR;ÎA/ s4pd which is characteristic
for the vesicle’s linear dimensions. It should be mentioned
that our investigations are not restricted to the case of
temperature-independentk andR. The consequences of such
such temperature dependences are discussed in Sec. VII. The
described model system, which mimics a vesicle in contact
with a smooth, planar attractive substrate, depends on three

parameters: The reduced temperatureT̂, the reduced poten-

tial depthw, and the reduced potential ranged̂, defined as

T̂ ; T/k, s2.8d

w ; WR2/k, s2.9d

d̂ ; d/R. s2.10d

III. SIMULATION METHOD

On length scales which are large compared to the size of
the lipid molecules, the vesicle membrane can be taken to be
a smooth, deformable surface. In the Monte Carlo simula-
tions, the shape of the vesicle is discretized using a flexible
polyhedron ofNt triangles. The triangles are bounded by
edgescIn with n=1, . . . ,Ne which interconnect the vertices of
the triangulated vesicle. A configuration of the triangulated
vesicle is fully determined by the locationsrI i of the Nv
=Nt /2+2 vertices and a table of the pairs of vertices that are
connected by one of the edges. During the simulation, the
tethered bead modelf21g is applied, which corresponds to
the energy expression

Êb = ` irI j − rI ii , , sfor any i Þ j = 1, . . . ,Nvd,

=` irI j − rI ii . , + D, sfor any rI i,rI j connectedd, s3.1d

=0 otherwise

so that the distance between two connected vertices is re-
stricted to ,, irI i −rI ji,,+D,, where D,=0.7,. An addi-
tional constraint restricts the fluctuations of the membrane’s
total areaAsim to uAsim−Au,0.025A.

The elastic curvature energy of the vesicle is discretized
according tof22g

Êel = 2o
J=1

Nt

sMDAdJ
2/DAJ, s3.2d

whereDAJ is the area of triangleJ and sMDAdJ is the con-
tribution of triangle J to the total mean curvature of the
vesicle. It is defined as

sMDAdJ =
1

4o
K

8irI j − rIkiarccosseIJ ·eIKd, s3.3d

where the sum goes over the neighbor trianglesK. The vec-
tors rI j and rIk point to the two vertices that are shared by

triangleJ andK. The unit vectorseIJ andeIK are normals of
triangleJ andK, respectively, and point to the outside of the
vesicle.

The reduced adhesion energy is given by

Êad = − wAad/R
2. s3.4d

In the simulations, the vesicle is represented by a network
of Nt=1280 triangles. Each Monte Carlo sweep consists of
Nv attempts to move a vertex, one attempt to move the whole
vesicle, one attempt to rotate the vesicle, and 3Nv attempts to
flip an edge. The edge flip proceeds as follows: Each edge
lies between two triangles. Together, the two triangles have
four vertices, two of which are connected by the shared edge.
In an edge flip, the shared edge is moved such that it con-
nects the formerly unconnected vertices. Typically 1.53106

Monte Carlo sweeps were performed for each choice of pa-
rameters. Half of the sweeps were used to ensure complete
equilibration of the system.

IV. RESULTS

For sufficiently smallT̂, vesicles are bound so that the
relative adhesion area

a ; Aad/A s4.1d

is larger than zero. In the limit of vanishingT̂, the relaxation
time diverges and inhibits efficient simulations. Above a cer-

tain temperatureT̂ub, the vesicle unbinds anda vanishes.

Between these extrema, the behavior ofasT̂d is analyzed
with the help of Monte Carlo simulations, which are per-
formed for various choices of the wall potential. Potential

rangesd̂=0.03, 0.06, and 0.09 are considered. Values for the
reduced potential depthw are chosen betweenw=2.8 and

w=25. For each set ofw and d̂, the temperature is varied

between 0.025ø T̂ø0.25 corresponding to bending rigidities
from k=40T down to k=4T. Figure 2sad shows results of

asT̂d for the potential depthd̂=0.09. For all chosen values of

w the results ofasT̂d can be fitted very well by a linear

function of T̂. The slope ofasT̂d is weakly dependent onw;

the rate −da /dT̂ at which the adhesion area shrinks de-
creases with increasingw. As shown in Fig. 2sbd, a linear

behavior ofasT̂d is also found ford̂=0.06, as long asT̂ is

small. ForT̂.0.15, the data points ofa decrease faster than

linearly with increasingT̂. Results ford̂=0.03 are shown in

Fig. 2scd. The behavior ofasT̂d is similar to that for d̂
=0.06 but the linear regime is limited to even smaller values

of T̂, especially for smallw.

The linear behavior ofasT̂d at low T̂ allows a simple

extrapolation towardsT̂=0. The values ofasT̂=0d which are
used in the following are obtained from a linear extrapolation

of the data points atT̂=0.025–0.075; a quadratic fit of the

results forT̂=0.025–0.1 produces almost the same results.
The straight lines in Fig. 2 represent the fit functions. The
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corresponding values obtained forasT̂=0;wd are plotted in
Fig. 3 as a function ofw. In order to discuss these results and
check the accuracy, a simplified model of an adhering vesicle
is introduced in the next section which allows an analytic

treatment of such vesicles atT̂=0.

V. CAPLIKE SHAPES AT ZERO TEMPERATURE

We introduce a simplified analytical model for an adher-
ing vesicle. The deformations of this vesicle are restricted to

a set of shapes for which the configurational energy can be
obtained analytically.

For T̂!1, d̂!1, and sufficiently largew, the equilibrium
shape of an adhering vesicle is known to consist of a circular
disklike area on the substrate, a spherical cap on the opposite
side, and a small intermediate region of strong curvature
along the contact linef19g. Configurations for smaller values
of w are approximately of the same shape; only the region
between the flat and the spherical cap gets broader. There-
fore, we take the shape of the adhering vesicle to consist of a
spherical cap with radiusRsc, a circular base area of radius
Rba, and atorus segmentthat connects the other two. The
connecting torus segment has a small curvature radiusRco
and a large curvature radiusRba, as shown in the sketch in
Fig. 4. The small curvature radiusRco is set to

Rco ;
R

Î2w
, s5.1d

which is the equilibrium contact curvature of adhering
vesicles atT=0 f17g.

FIG. 2. The relative adhesion areaAad/A as a function ofT̂ for

potential rangessad d̂=0.09, sbd d̂=0.06, scd d̂=0.03. The data
points are simulation results forw=2.8 s1d, w=4.8 s3d, w=6.3
s,d, w=10.0sLd, w=15.0snd, w=20.0ssd, andw=25.0sPd. The
straight lines are linear fits of the low-temperature regions.

FIG. 3. The relative adhesion areaAad/A at T=0 as a function of
w. The symbols denote extrapolations from the simulation results

for d̂=0.03 s1d, d̂=0.06 s,d, and d̂=0.09 s3d. The curves show
solutions from the simple model described in Sec. V. Solutions are

given for d̂=0, d̂=0.03,d̂=0.06, andd̂=0.09 from the lowest to the
highest curve.

FIG. 4. Geometry of the simplified model.
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In the simplified model, the shape of the vesicle is con-
trolled by the parameter

c ; cossucd, s5.2d

whereuc is the effective contact angle of the adhering vesicle
f17g. The total height of the vesicle is equal toRscs1−cd
+Rcos1+cd.

The energyE of the model vesicle is determined byc, d̂,
andw. In Appendix A, an analytic expression is derived for
E=Ead+Eel, which is composed of the adhesion energyEad
=−WAad and the elastic curvature energyEel.

For a contact potential withd̂=0, the adhesion areaAad

coincides with the base areaAba. For d̂.0, also parts of the

torus region contribute toAad; if d̂. s1+cd /Î2w, the adhe-
sion area includes the full torus segment and a part of the
sphere cap. In terms of the two parameters

m; minhd̂Î2w,1 +cj s5.3d

and

l ; Rba/Rco, s5.4d

the adhesion energy can be expressed as

Ead = − pkF1

2
l2 + l arccoss1 − md + m

+ S l

Î1 − c2
+ 1Dsd̂Î2w − mdG . s5.5d

For lÞ1, the elastic curvature energy has the form

Eel = 2pkF4 +
l2

Îl2 − 1
arctanS s1 + cdÎl2 − 1

s1 + cd + lÎ1 − c2DG .

s5.6d

The behavior ofEel is further discussed in Appendix A, see
Eq. sA16d, where the casel=1 is considered as well, and
complex numbers are avoided forl,1.

For given values ofw andd̂, the equilibrium configuration

of the model system atT̂=0 is determined by the valuec

=cmin for which Esw,d̂;cd is minimum. In Fig. 3, the result-

ing reduced adhesion areasa=Aad/A at T̂=0 are shown for

d̂=0.03, 0.06, and 0.09 together with the extrapolations from
the simulations. The extrapolated simulation results are
slightly lower than the model predictions but the agreement
is quite remarkable, especially since no fit parameter has
been used.

If the adhesion strengthw is smaller than a threshold
valuewthr, the vesicle is perfectly spherical. Forwùwthr, an
energy minimum exists at a valuecminù−1 for which

dE/dcsw,d̂;cmind=0. At the threshold adhesion strengthwthr,

one hascmin=−1 so thatdE/dcswthr ,d̂;c=−1d=0.

We consider a finite potential ranged̂.0, a finitew, and
a value for the contact angle parameterc which is so close to

−1 that it satisfies the inequalityc+1, d̂Î2w. Then, in Eq.
s5.5d one hasm=c+1 and the derivative ofE with respect to
c becomes

dE

dc
= − pks1 −Î2wd2F1 − s1 −Î2wd−1 + 2 lnS1 −

1
Î2w

DG
+ Osc + 1d. s5.7d

For c=−1, the only solution ofdE/dc=0 is

wthr = 1/2 sd̂ . 0d, s5.8d

which turns out to be independent of the choice ofd̂.0. The
slope ofaswd at wthr is

da

dw
swthrd =

3

8
S1 −

d̂

4
D sd̂ . 0d. s5.9d

For 0,w,1/2, the vesicle configuration with the lowest
energy is a perfect sphere with a relative adhesion areaa

= d̂/2 so that the total energy is given byEsph;8pk

−2pkwd̂.

On the other hand, for a contact potential withd̂=0 one
hasm=0 in Eq. s5.5d and

dE

dc
= − pks1 −Î2wd2F1 + 2 lnS1 −

1
Î2w

DG + Osc + 1d

s5.10d

for c.−1. Here, Esw,0 ;c=−1d is maximum atw=1/2,
while it is minimum at

wthr =
e

2s1 −Îed2
. 3.23 sd̂ = 0d. s5.11d

For this adhesion strength, the adhesion area vanishes and
the vesicle unbinds. The slope

da

dw
swthrd =

Îe− 1

8wthr
2 sÎe− 1d2

. 0.063sd̂ = 0d s5.12d

at wthr is finite, but distinctly smaller than for finited̂.

The value ofwthrsd̂=0d.3.23 for the simplified model is

larger than the solutionwthrsd̂=0d=2 found for a fully flex-
ible vesicle. Presumably, the discrepancy stems from the re-
stricted subset of configurations in the simplified model sys-
tem that is tailored for cases of strong adhesion strengthw.

In any case, there are qualitative differences between the

contact potential and the limit of infinitely smalld̂. For all

d̂.0, nonspherical configurations exist whose energy is

lower than Esph so that wthrsd̂.0dø1/2 distinctly below

wthrsd̂=0d. If w,wthr andd̂=0 the vesicle unbinds, while for

a wall potential of finite ranged̂ the vesicle is spherical but
bound. On the other hand, as shown in Fig. 5, the curve of

asw; d̂.0d converges pointwise towardsasw; d̂=0d.
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The simplified model system can be used to derive an
expression fora=Aad/A as a function of the reduced poten-

tial depthw, the reduced potential ranged̂, and the reduced

temperatureT̂. We start with the most simple case, which is

d̂=0 andT̂=0. The model system is exact for largew, where
c.1. A simple expression for

a0swd ; asw;d̂ = 0,T̂ = 0d s5.13d

results from a Taylor expansion of Eqs.sA11d–sA23d up to
the third order ofw−1/2 and s1−cd1/2. Neglecting terms of
higher order, one obtains

a0swd .
1

2
−

p

4Îw
+

p2 − 20

16w
−

psp2 + 152d
128w3/2 . s5.14d

The expression coincides roughly with the relative adhesion
area of an adhering pancakelike vesicle that consists of two
flat disklike areas combined by a torus of radiusR/Î2w. For
w.60, Eq.s5.14d deviates less than 1% from the exact so-
lution, but for w,20 the discrepancy is already larger than
13% and grows strongly with decreasingw. Adding the next
higher term from the Taylor expansion does not improve the
accuracy very much. Instead, one can use the ansatz

a0
sndswd = 1/2 +o

i=1

n

Ciw
−i/2 s5.15d

and obtain the coefficientsCi by fitting the exact solution.
For n=4, a function

a0
s4dswd = 1/2 − 0.73w−1/2 − 1.93w−1 + 4.97w−3/2 − 3.71w−2

s5.16d

is found to deviate less than 0.5% from the exact solution for
all w. In the following, the simple expression

a0swd ;
1

2
−

C
Îw

s5.17d

with C=0.947 is used which already deviates less than 2%
from the exact solution for allwù6.

The next step is to considerd̂.0. For a givenw, the

value ofaswd increases with increasingd̂. For very highw,
however,aswd will only be slightly larger than 1/2 as long

as d̂!1. With the results shown in Fig. 3, one finds that the

relative adhesion areaasw,d̂d at finited̂ and strong enoughw
can be approximated by the adhesion areaa0swdd for a
vesicle adhering to a contact potential with an effective po-

tentialwdsw,d̂d. For small adhesion strengthsw the approach
does not work, becausea0swdd is proportional tow, while

aù d̂/2 independent ofw. A good description ofasw,d̂d
over the whole range ofw is given by

asw,d̂d . a0swdd +
d̂

2
. s5.18d

The effective adhesion strength

wd ; ws1 + cd
Îd̂d s5.19d

with cd=3.0 produces a good fit of the data. Using Eq.
s5.17d, one has

asw,d̂d .
1 + d̂

2
−

0.947

Îws1 + 3.0Îd̂d
, s5.20d

which fits the extrapolated simulation points, shown in Fig. 3
for all wù4.8 with a discrepancy smaller than 3%. The de-
viation from the simplified model results is smaller than 5%

for all 4øw,60 and 0ø d̂ø0.09. In the next section, the
adhesion behavior at finite temperature is discussed.

VI. ADHESION BEHAVIOR AT FINITE TEMPERATURE

From the simulation results, it follows that for lowT̂ the

reduced adhesion areaa is a linear function ofT̂. The good
correspondence of the extrapolated values and the analytic

results forT̂=0 indicates that the slope is indeed constant up

to T̂=0. In this section, we discuss how a constant, finite,

negative slope ofasT̂d may arise from thermal fluctuations.
The outcome is used to derive a function which describes all
simulation results rather well.

We assume that the fluctuations of an adhering vesicle are
composed of a finite number of fluctuation modes deter-
mined by a setjI =sj1, . . . ,jkd of degrees of freedomji. The
potential energy

EsjId ; Eel + Ead − E0 s6.1d

is taken as a function ofjI which has a minimum atjI =0I with
¹jI

Es0I d=0I . The constantE0 is chosen such thatEs0I d=0. The
degrees of freedom are chosen such that the second deriva-
tive of E is diagonal atjI =0I ,

FIG. 5. The relative adhesion areasAad/Adswd of the simplified

model system atT=0 for smallw and d̂.
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Eij ;
1

2
U ]2E

]ji]j j
U

jI=0I

=
1

2
U ]2E

]ji
2U

jI=0I

di j . s6.2d

We assume that the temperature is low and thatEsjId diverges
fast for large fluctuationsji. Then, the adhesion areaAadsjId
can be approximated by

AadsjId . Aads0I d + o
i=1

k
]Aad

]ji
ji + o

i,j=1

k

sAaddi jjij j

with sAaddi j ;
1

2
U ]2Aad

]ji]j j
U

jI=0I
. s6.3d

With the same precision one hasEsjId.oi=1
k Eiiji

2 and the
partition function of the system becomes

Z . p
j=1

k SE
−`

`

dj je
−Ejjj j

2/TD . s6.4d

For the calculation of the average adhesion area

kAadl = Z−1E
−`

`

dj1 ¯ E
−`

`

djkAadsjIde−E/T, s6.5d

all terms linear inji vanish for symmetry reasons so that

kAadl . AadsjI = 0I d

+ Z−1o
i=1

k E
−`

`

djisAaddiiji
2e−Eiiji

2/Tp
jÞi
E

−`

`

dj je
−Ejjj j

2/T

= AadsjI = 0I d +
1

2o
i=1

k U ]2Aad

]ji
2 U

jI=0I
SU ]2E

]ji
2U

jI=0I
D−1

T. s6.6d

With

]2Ead

]ji
2 = −

wk

R2

]2Aad

]ji
2 = − 4pwk

]2a

]ji
2 , s6.7d

one obtains

kal =K Aad

4pR2L . asjI = 0I d +
T̂

8p
o
i=1

k S sEeldii

4pkaii
− wD−1

,

s6.8d

where

aii ;
1

2

]2a

]ji
2 . s6.9d

In this way, we have obtained a linear relation betweena and
T. If the system hask fluctuation modes that roughly contrib-
ute equally to the temperature dependence ofa, one has

dkal

dT̂
.

k

8p
F 1

4pk

d2Eel

dj2 Sd2a

dj2D−1

− wG−1

. s6.10d

From Eq.s6.10d it follows that sdkal /dT̂d−1 is a linear func-

tion in w. In Fig. 6, the simulation results ofsda /dT̂d−1 for

low T̂ are shown as a function ofw. Indeed, the plots are
fairly linear.

Replacing w in Eq. s6.10d by the effective adhesion
strengthwd provides the ansatz

asw,d̂,T̂d . a0swdd +
k

8p

T̂

fsd̂d − wd

s6.11d

with a0swdd from Eq.s5.18d and a suitable functionfsd̂d that
does not depend onw. With Eq. s5.18d for a0swdd and the

ansatzf1sd̂d=c1+c2
Îd̂, a least-squares fit was applied to the

inverse slope ofasT̂d,

Sda

dT̂
D−1

=
8p

k
sc1 + c2

Îd̂ − wdd, s6.12d

which revealed the fit coefficientsc1.27, c2.−200, andk
.423. The results are presented in Fig. 6. Interestingly, the
fit value k=423 for the number of fluctuation modes is
roughly of the same order as the degrees of freedom of the
discretized vesicle.

Altogether, one has

asw,d̂,T̂d .
1 + d̂

2
−

0.947
Îwd

+
423

8p

T̂

27 − 200Îd̂ − wd

s6.13d

with wd=ws1+3.0Îd̂d. In Fig. 7, the simulation results for
asTd are compared with Eq.s6.13d. Most data points with

a.0.1 andT̂,0.2 are reproduced with a deviation less than
5%, which is quite respectable: On the one hand, the range of
temperatures and adhesion strengths, covered by the simula-
tions, is quite large. On the other hand, Eq.s6.13d is simple
enough to be easily transformed, a fact which is used in the
following section to develop a new method to measurek and
W.

FIG. 6. The inverse slope ofasT̂d=sAad/AdsT̂d as a function of

w. The symbols represent simulation results ford̂=0.03 s1d, d̂

=0.06 ssd, and d̂=0.09 s,d. The straight lines are obtained from

Eq. s6.13d for the respective values ofd̂.
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VII. MEASURING ADHESION STRENGTH
AND BENDING RIGIDITY

Equation s6.13d provides the relative adhesion area for
values ofT, R, andd if k andW are known. In practice, one
is frequently confronted with the inverse problem: While the
adhesion areaAad can be measured, the values ofW and k
are often unknown. They can be obtained by using the ob-

served linear behavior ofasT̂d and sda /dT̂d−1swd. From Eq.
s5.18d, it follows that

WR2 .
4k

1 + 3.0Îd̂
S 0.947

1 + d̂ − 2a0
D2

. s7.1d

In order to use Eq.s7.1d, one needs to knowa0. The ob-

served linear behavior ofasT̂d gives

a0 . asT̂d −
dasT̂d

dT̂
T̂ s7.2d

so that, in principle,a0 andW can be obtained by measuring

asT̂d andda /dT̂ for finite T̂. In practice, two difficulties may
occur:sid the values ofd andk may be unknown, andsii d k
andR may vary withT. If k andR depend on the tempera-
ture, Eqs.s6.13d and s7.2d are still valid, butAad is not nec-
essarily a linear function inT. If the potential ranged is
known with a precisionDd, the error rangeDW of W taken

from Eq. s7.1d is approximatelyuDW/Wu. 3
2
Îd̂uDd/du. A

value for R=ÎA/4p can be determined from the unbound
vesicle or a side view of the adhering vesicle. A measure-
ment of the temperature dependence ofR may be more dif-
ficult, even in cases wheresAadd8;dAad/dT can be obtained
with sufficient accuracy. Further, in most cases little is
known aboutk8;dk /dT.

Nevertheless,W andk can both be estimated from a mea-
surement ofAad and sAadd8, if the absolute values ofk8 and
R8;dR/dT can at least be estimated to be small. In this

case, one can expressda /dT̂ in Eq. s7.1d in terms ofAad8 , T,
k, and other terms that directly depend onT, which gives

a0 . asTdS1 + 2T
R8

R
D − T

sAadd8
A

S1 + T
k8

k
D . s7.3d

If upper bounds ofuk8u and uR8u are known, Eq.s7.3d allows
us to estimate the accuracy of the ansatza0.asTd
−TsAadd8 /A.

Finally, replacing all dimensionless units in Eq.s6.12d
gives

WR2S1 + 3.0Îd

R
D . kS27 − 200Îd

R
D −

423

8p

A

sAadd8

3S1 − T
k8

k
+ 2

Aad

sAadd8
R8

R
D . s7.4d

With Eqs. s7.1d–s7.4d, the quantitiesWsTd and ksTd can be
estimated by measuringasTd and asT±DTd. As a consis-
tency check of the assumption thatk8 andR8 are small, one
should prove the linearity ofAadsTd.

VIII. CONCLUSIONS

With the help of Monte Carlo simulations, we have inves-
tigated the temperature dependence of the adhesion of fluid
vesicles in the absence of an osmotic pressure. For tempera-

turesT̂,0.2, the relative adhesion areaasT̂d is found to be a

FIG. 7. Comparison of the fitting function Eq.s6.13d and the

simulation data ofsAad/AdsT̂d for potential rangessad d̂=0.09, sbd
d̂=0.06, scd d̂=0.03. The data points are simulation results forw
=2.8 s1d, w=4.8 s3d, w=6.3 s,d, w=10.0 sLd, w=15.0 snd, w
=20.0 ssd, and w=25.0 sPd. The straight lines stem from Eq.
s6.13d.
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linear function ofT̂. This result is found for a wide range of

adhesion strengthsw and potential widthsd̂. An expression

for asw,d̂,T̂d is derived that describes the adhesion behavior
in the linear regime.

The expression found forasw,d̂,T̂d is simple enough to
be inverted such that the adhesion strengthW and the bend-
ing rigidity k can be found by measuring the adhesion area
Aad at different temperaturesT.

The linear behavior ofasT̂d is described by an analytic

approach, which considers contributions toda /dT̂ by a set of
orthogonal fluctuation modes. The ansatz provides a finite

constant slope ofasT̂d down to T̂=0. A more quantitative
estimate of the mode contributions, which requires a more
complex model system than the one treated here, would be of
great interest. The same is true for an investigation of the
temperature dependence ofa in the case of a finite pressure
difference.

APPENDIX A: ENERGY EXPRESSIONS FOR THE
ANALYTIC MODEL

A simplified model for an adhering vesicle atT̂=0 is in-
troduced in Sec. V. In the following, the energy expressions
in Eqs.s5.5d and s5.6d are derived.

The model vesicle with an efficient contact angleuc and
c=cossucd has a circular base area of the size

Aba = pRba
2 , sA1d

a spherical cap area

Asc=E
0

2p

dwE
0

uc

duRsc
2 sinsud = 2ps1 − cdRsc

2 , sA2d

and a torus segment which can be parametrized as

rIsu,wd = 1fRba + Rco sinsudgcosswd
fRba + Rco sinsudgsinswd

Rcofcossud + 1g
2

with w P f0,2pd andu P fuc,pd. sA3d

With the determinant

g = Rco
2 fRba + Rco sinsudg2 sA4d

of the metric tensorgij =DirI ·DjrI, the area of the torus seg-
ment becomes

Aco =E
0

2p

dwE
uc

p

duÎg

= 2pRcofRba arccoss− cd + Rcos1 + cdg. sA5d

At u=uc, the spherical cap and the torus segment must
match,

Rsc
Î1 − c2 = Rba + Rco

Î1 − c2. sA6d

With

l ; Rba/Rco, sA7d

the total vesicle area becomes

A = Aba + Asc+ Aco

= pRco
2 Fl2 +

2sl + Î1 − c2d2

1 + c

+ 2l arccoss− cd + 2s1 + cdG . sA8d

On the other hand, from Eq.s5.1d it follows that

A = 4pR2 = 8pRco
2 w. sA9d

Equating Eqs.sA8d andsA9d gives a quadratic equation inl,

8ws1 + cd = s3 + cdl2 + 2f2Î1 − c2

+ s1 + cdarccoss− cdgl + 4s1 + cd. sA10d

It follows that

l =Îu2scd +
4s1 + cds2w − 1d

3 + c
− uscd

with uscd ;
2Î1 − c2 + s1 + cdarccoss− cd

3 + c
.

sA11d

The energyE=Ead+Eel of the system is the sum of the
adhesion energyEad and the elastic curvature energyEel.

The elastic curvature energy includes contributions from
the spherical capEel

sc,

Eel
sc=

k

2
E

0

2p

dwE
0

uc

dus2Hd2Îg

= pks1 − cdRsc
2 S 2

Rsc
D2

= 4pks1 − cd sA12d

and the torus segmentEel
co,

Eel
co =

k

2
E

0

2p

dwE
uc

p

dus2Hd2Îg sA13d

=kpE
uc

p

duS2
Rba + 2Rco sinsud

2RbaRco + 2Rco
2 sinsudD

2

3RcofRba + Rco sinsucdg sA14d

=kpE
uc

p

du
fl + 2 sinsudg2

l + sinsud
. sA15d

Depending on the value ofl, one has

Eel = 8pk + 2pk
l2

Îl2 − 1
arctanS s1 + cdÎl2 − 1

s1 + cd + lÎ1 − c2D
for l . 1,

=8pk + pkS1 +
c

1 +Î1 − c2D for l = 1, sA16d
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=8pk + pk
l2

Î1 − l2

3logS s1 + cds1 +Î1 − l2d + lÎ1 − c2

s1 + cds1 −Î1 − l2d + lÎ1 − c2D for l , 1.

The adhesion energyEad=−WAad is proportional to the

size of the adhesion areaAad. For d̂=0, the adhesion areaAad
coincides with the circular base areaAba,

Ead
ba = −

wk

R2 pRba
2 = −

kp

2
l2. sA17d

For d̂.0, also the torus segment contributes toAad. If the
adhesion ranged is smaller than the heightRcofcossucd+1g of
the torus segment, the total adhesion energy is given by
Ead=Ead

ba+Ead
cosucod, where

Ead
cosucod = −

wk

R2E
0

2p

dwE
uco

p

duÎg

= − pkhl arccosf− cossucodg + f1 + cossucodgj
sA18d

and uco is determined by the potential range via cossucod
=sd/Rcod−1=d̂Î2w−1. If d is larger than the height of the

torus segment so thatd̂Î2w.1+c, the total adhesion energy
is given byEad=Ead

ba+Ead
cosucd+Ead

scsuscd, whereEad
scsuscd rep-

resents the adhered part of the spherical cap,

Ead
scsuscd = −

wk

R2E
0

2p

dwE
usc

uc

duRsc
2 sinsud

= −
2pwk

R2 Rsc
2 fcossuscd − cossucdg. sA19d

Here,usc corresponds to the upper edge of the adhesion area,

Rscfcossuscd − cossucdg + Rcofcossucd + 1g = d sA20d

so that

Ead
sc = − pk

Rsc

Rco
S d

Rco
− s1 + cdD . sA21d

Altogether, one has

Ead = − pkF1

2
l2 + l arccoss1 − d̂Î2wd + d̂Î2wG

for d̂Î2w ø 1 + c sA22d

and

Ead = − pkF1

2
l2 + l arccosf1 − s1 + cdg

+ s1 + cd + S l

Î1 − c2
+ 1Dfd̂Î2w − s1 + cdgG

for d̂Î2w . 1 + c. sA23d

Usingm=minhd̂Î2w,1+cj, the adhesion energy can be writ-
ten in the closed expression given in Eq.s5.5d.
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