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Abstract

Life is intimately related to complex patterns of directed movement. It is quite remarkable

that all of this movement is based on filaments and motor molecules which perform

mechanical work on the nanometer scale. This article reviews recent theoretical work on the

motility of molecular motors and motor particles that bind to cytoskeletal filaments and walk

along these filaments in a directed fashion. It is emphasized that these systems exhibit several

motility regimes which are well seperated in time. In their bound state, the motor particles

move with a typical velocity of about 1mm=s: The motor cycles underlying this bound motor

movement can be understood in terms of driven Brownian ratchets and networks. On larger

length and time scales, the motor particles unbind from the filaments and undergo peculiar

motor walks consisting of many diffusional encounters with the filaments. If the mutual

exclusion (or hardcore repulsion) of these motor particles is taken into account, one finds a

variety of cooperative phenomena and self-organized processes: build-up of traffic jams; active

structure formation leading to steady states with spatially nonuniform density and current

patterns; and active phase transitions between different steady states far from equilibrium. A

particularly simple active phase transition with spontaneous symmetry breaking is predicted to

occur in systems with two species of motor particles which walk on the filaments in opposite

directions.
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1. Introduction

More than 2000 years ago, Aristotle and his school noticed that everything in the
natural world can be divided into two main categories, non-living objects and living
organisms. They thought that these two categories can be distinguished by the
different ways in which nonliving and living things move and that only living
organisms can move ‘on themselves’, i.e., without external driving forces. This
insight is summarized by the Aristotelian proverb ‘Life is motion’.
Today, we know that living organisms have a complex internal architecture which

is organized in a hierarchical fashion: all organisms are built up from cells and all
cells contain complex assemblies of molecules. These structures cover a wide range of
length scales. Roughly speaking, multicellular organisms have a linear size in the
range from meters down to millimeters, cells from millimeters to micrometers, and
molecular assemblies from micrometers to nanometers. All levels of this structural
hierarchy are rather dynamic and exhibit movements on many different time scales.
On the scale of organisms, which we can observe with the naked eye, we encounter

the intricate movements of animals and plants. Looking through a light microscope
(or a good magnifying glass as used by van Leeuwenhoek), we can observe single
cells which swim or crawl along surfaces. Finally, on the nanometer scale, we now
have a variety of experimental methods, developed during the last decade, which
reveal the direct movement of single motor molecules and the force generation of
growing filaments. Furthermore, we now understand that all self-propelling and
directed movements of living things ultimately arise from the cooperative action of
such supramolecular assemblies.
There are several classes of molecular motors which fulfill different functions in

the living cell [1]. Prominent examples are: (i) DNA and RNA polymerases, which
move along the strands of DNA in order to replicate it and to transcribe it into
RNA, respectively; (ii) membrane pumps which transport ions and small molecules
across membranes; the resulting concentration gradients may be used in order to
drive (iii) rotary motors such as the bacterial flagellar motor and the F1-ATPase,
which are used for cell locomotion and ATP synthesis, respectively; (iv) myosins in
muscles which work in ensembles and collectively displace actin filaments; and (v)
cytoskeletal motors which bind to the filaments of the cytoskeleton and then walk
along these filaments in a directed fashion [2,3]. The latter class of motors is essential
for intracellular transport, cell division, and cell locomotion.
Many of these motors are powered by the free energy released from the hydrolysis

of adenosine triphosphate (ATP). From the molecular point of view, these motors
have two remarkable properties. First, they represent ATPases, i.e., catalysts or
enzymes for the hydrolysis of ATP. For the concentrations which prevail in living
cells, the ATP hydrolysis is strongly exergonic but it is also quite slow in the absence
of any enzymatic activity. The motors act as enzymes for this chemical reaction and
strongly increase its reaction rate. Second, these molecular motors are also able to
transform the free energy released from the ATP hydrolysis into mechanical work. In
fact, this energy transduction occurs even on the level of single hydrolysis events. In
this way, molecular motors consume the smallest possible amount of fuel.
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One class of motors that are powered by ATP hydrolysis consists of cytoskeleton
motors such as kinesin and myosin V, which move along cytoskeleton filaments such
as microtubuli and F-actin. One example for such a pair of motor and filament is
shown in Fig. 1. These cytoskeletal motors, which represent true nanomachines, are
the main focus of this article. More precisely, the phenomena and processes
discussed in this article apply to various types of ‘motor particles’ which may consist
of (i) single molecular motors or (ii) cargo particles which are attached to a single
molecular motor or (iii) cargo particles which are attached to several molecular
motors.
From the conceptual point of view, the directed walks of cytoskeletal motors are

quite remarkable since these motors are rather small. Each head of kinesin, e.g., has
a linear size of the order of 10 nm, see Fig. 1 and will be easily perturbed by random
thermal collisions with the adjacent water molecules. Therefore, the directed
movement of these motor proteins directly reveals that they are able to escape from
the surrounding ‘molecular chaos’. In general, any nanoparticle in water will
undergo erratic or Brownian motion which reflects the underlying thermal collisions
and has no preferred spatial direction (in the absence of an external force field).
However, one may imagine to rectify this random motion by a ratchet mechanism
which corresponds to a rather simple and purely mechanical version of Maxwell’s
demon.
This article is organized as follows. First, Section 2 describes the basic properties

of the different motility regimes. Next, Section 3 contains a brief review of Brownian
motion and ratchets. In order to make many successive steps along the filament, each
molecular motor must be able to undergo cycles of conformational states as
discussed in Section 4. These motor cycles can be studied in the context of driven
Brownian ratchets and networks and exhibit some universal properties. On time
scales, which are large compared to their walking time, the molecular motors and
motor particles undergo peculiar motor walks which are described for a variety of
Fig. 1. Two kinesin motors (without cargo) bound to a microtubule segment. The microtubule is built up

from tubulin dimers and has a diameter of 24 nm. Each motor molecule has two motor domains or heads

which are connected by a neck region and a long stalk. The total length of the kinesin molecule is about

80 nm. Each motor head can bind to the microtubule and, in the bound state, adsorb and hydrolyze ATP.
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open compartments in Section 5. Interacting motor particles are discussed in Section
6 and are shown to lead to a variety of cooperative phenomena and self-organized
processes: build-up of traffic jams; active formation of density and current patterns;
phase transitions between different steady states. Finally, Section 7 gives a brief
outlook on active biomimetic systems in general.
2. Motility regimes: basic properties

The movements of molecular motors and motor particles cover many length and
time scales. As mentioned, the term ‘motor particle’ as used here stands for (i) a
single molecular motor or (ii) a cargo particle which is attached to a single molecular
motor or (iii) a cargo particle which is attached to several molecular motors. For a
single motor particle, one can distinguish three different regimes: (i) the molecular
dynamics of the motor proteins underlying the chemomechanical energy transduc-
tion which leads to a single step of the motor particle; (ii) the directed walks of this
particle along the filaments; and (iii) the motor walks of the motor particle as it
repeatedly unbinds from and rebinds to the filaments.
The molecular dynamics regime (i) covers all length scales up to the displacement

of a single motor protein arising from the hydrolysis of ATP. Dimeric or two-headed
kinesin walks by discrete steps which lead to center-of-mass displacements of 8 nm
corresponding to the repeat distance of the microtubule [4]. Likewise, myosin V
which also walks with two heads makes steps which lead to a center-of-mass
displacement of 36 nm, close to the helical pitch of the actin filaments [5]. For
kinesin, the corresponding stepping time has been measured to be faster than 70ms
[6]. The time scale for a whole motor cycle is substantially longer and depends on the
ATP concentration. For high ATP concentration, the cycle time becomes essentially
independent of this concentration and is observed to be of the order of 10ms. As one
decreases the ATP concentration, the cycle time starts to increase when it becomes
dominated by the diffusion-limited transport of the ATP molecules to the ATP
adsorption domains of the motor heads.
The second motility regime (ii) corresponds to the directed walks of the motor

particle in its bound state. If this particle is pulled by a single motor protein, these
directed walks involve, on average, about 100 steps for kinesin and about 50 steps for
myosin V and, thus, cover a walking distance of about 1mm: The corresponding
walking times are of the order of seconds for sufficiently large ATP concentrations.
The walking distance can be substantially increased if the cargo is pulled by several
motor proteins. In all cases, the directed walk along the filament will eventually be
terminated by the unbinding of the motor particle from the filament, which reflects
the finite binding energy of the motor particle/filament complex.
For length and time scales which exceed the walking distance and the walking

time, respectively, one enters the third motility regime (iii) corresponding to motor
walks in which the motor particle repeatedly unbinds from and rebinds to the
filaments. In a typical motility assay, the filament is surrounded by an aqueous
solution which contains ions and ATP. It may also contain a finite concentration of
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unbound motor particles but this concentration is typically so small that one can
ignore the interactions between the unbound particles. In such a situation, the
viscosity of the aqueous solution is close to the viscosity of water, and the unbound
motor particle undergoes diffusive motion with a diffusion coefficient which is of the
order of square micrometers per second. On the other hand, if the motor particle
unbinds from a filament in vivo, it can interact with a variety of macromolecules,
filaments, membranes, and organelles which tend to substantially reduce its diffusive
motion. Thus, in vivo, the unbound motor particle will often stay close to its
detachment point, and its directed movement will be interrupted by periods in which
the motor appears to rest. This seems to happen in slow axonal transport of
neurofilaments where rapid movement is interrupted by prolonged pauses [7,8].
So far, we have discussed a single motor particle which one may monitor by

fluorescence labeling and single particle tracking. The different motility regimes just
described should be accessible to such experimental studies as long as the motor
particle concentration is sufficiently low and one may ignore their mutual
interactions. It is important to keep in mind, however, that the motor particles
considered here are processive in the sense that they make many steps when bound to
the filaments. This is only possible if their binding energy is large compared to the
thermal energy T (here and below, we will use the symbol T to denote the
temperature in energy units). This implies that the equilibrium between the bound
and the unbound state of the motor particle is strongly biased towards the bound
state, and the filaments become already overcrowded with bound motor particles
even if the overall number density of these particles is still relatively small. In such a
situation, one must take the mutual exclusion or hard core repulsion between the
bound motor particles into account.
The latter interactions are also present in the living cell. Consider, e.g., a neural

cell and the transport along its axon as schematically shown in Fig. 2. Axons are
tube-like structures enclosed by the plasma membrane of the neuron. The axon
connects the cell body of the neuron with the axon terminal or synaptic cleft. The
neurotransmitters which are released into the synaptic cleft are synthesized in the cell
body and, thus, must be transported along the whole axon. This is quite remarkable
since axons can be rather long.1 Those axons, e.g., which connect our spine with our
fingers and toes, are of the order of half a meter which is about 1000 times as long as
the walking distance of the motor particles.
The cartoon in Fig. 2 indicates that the traffic within an axon can be rather dense

and, thus, may lead to traffic jams. There is indeed some experimental evidence for
jams of motor particles in axons (W. Saxton, private communication). An extreme
case has been induced by mutations of the motor proteins which led to strong
swelling of the axons [9,10]. Jams of kinesin-like motors have also been observed in
fungal hyphae as one varied the motor concentration in vivo by changing the level of
expression of the corresponding gene [11,12].
1The diameter of axons varies between hundreds of nanometers and millimeters. It would be interesting

to know how the cross-sectional density of the filaments in different axons varies with their diameter.
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Fig. 2. Motor traffic in axons. Schematic view through an axon which contains many microtubules,

oriented with their plus ends towards the axon terminal and with their minus ends towards the cell body.

Cytoskeletal motors (indicated by small ‘feet’) are responsible for the transport of various types of cargo

such as vesicles and organelles. Some species of motors walk towards the plus end of the filaments, others

walk towards their minus ends. The traffic is rather crowded and can lead to traffic jams.
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In the following, we will focus on motility assays or biomimetic systems in order to
avoid the complexity of living cells. Thus, we will focus on relatively simple systems
consisting of one or a few filaments which are immobilized within an open or closed
compartment and which interact with populations of motor particles. We will see
that these biomimetic systems exhibit a variety of cooperative phenomena and self-
organized processes: build-up of traffic jams which have a strong effect on transport
properties; active structure formation leading to steady states with spatially
nonuniform density and current patterns; active phase transitions between different
steady states far from equilibrium.
3. Of hot ratchets and cool demons

Molecular motors are rather small and have a size of 10–100 nm. Likewise, the
cargo particles, which are moved by cytoskeletal motors, have a typical size of up to
a few micrometers. This implies that all of these movements are necessarily
overdamped, i.e., dominated by friction which transforms kinetic energy into heat.
Three conceptual aspects of friction-dominated motion are discussed: Brownian
motion, Brownian ratchets, and the relation between driven ratchets and Maxwell
demons.

3.1. Brownian motion

Any nano- or microparticle in water will undergo Brownian motion which is erratic
and nondirected. Such motion was first described by the botanist Brown who observed
pollen particles in water through an optical microscope. As explained by Einstein and
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Smoluchowski [13,14], Brownian motion arises from invisible collisions of the particle
with adjacent water molecules and reflects the thermal motion of these molecules.
Now, assume that the particle is a cytoskeletal motor and that this particle is

attracted towards a filament, compare Fig. 1. The bound particle may then undergo
Brownian motion along the filament which corresponds to a random walk in one
dimension. In the absence of fuel molecules, such random walks have been observed
experimentally both for cytoskeletal motors bound to microtubuli [15] and for RNA
polymerases bound to DNA [16].
The simplest description for Brownian motion in one dimension is provided by the

Langevin equation. The position of the particle is described by the coordinate x ¼

xðtÞ: The particle with mass m is subject to the friction force F fr ¼ �fðd=dtÞx; which
is proportional to the velocity and to the friction coefficient f: In addition, the
particle is also driven by the random force F ra ¼ zðtÞ which is Gaussian distributed
with hzðtÞi ¼ 0 and hzðtÞzðt0Þi ¼ 2fTdðt � t0Þ (as mentioned, temperature T is
measured in energy units). The latter choice of the random force correlations is
required in order to avoid inconsistencies with thermodynamics, see next
subsections.
In the absence of additional external forces acting on the particle, one has the

equation of motion

m
d2

dt2
x ¼ F fr þ F ra ¼ �f

d

dt
x þ zðtÞ , (3.1)

which can be easily solved by explicit integration. For large time t, one finds that the
kinetic energy 1

2
mhððd=dtÞxÞ2i approaches the asymptotic value 1

2
T as required by the

equipartition theorem.

3.2. Brownian ratchets

One confusing aspect of Brownian motion is that the collisions with the water
molecules both damp and drive the motion of the particle. Thus, mechanical
movement is transformed into heat by friction and, at the same time, heat is
transformed into mechanical movement. In the Langevin equation as given by (3.1),
the damping is represented by the friction force and the thermal drive by the random
force. For large time t, the dissipated power is given by hððd=dtÞxÞ 	 F fri ¼ �fhv2i ¼
�fT=m: This dissipated power is exactly cancelled by the work per unit time,
hððd=dtÞxÞ 	 F rai ¼ fT=m; which the random forces do on the particle.
At the beginning of the 20th century, this balance was only poorly understood and

led to speculations that Brownian motion could be used in order to build a
perpetuum mobile in the micrometer regime, see, e.g., Ref. [17]. It seems that this
point was first clarified by Smoluchowski [18]. He considered the device shown in the
left image of Fig. 3. A Brownian particle which consists of a ratchet with a sawtooth
profile is constrained to move in one dimension. The sawtooth profile of the ratchet
interacts with a pawl which consists of a spring and a wedge. One realization of such
a ratchet is provided by a short segment of a cytoskeletal filament which is a polar
and, thus, asymmetric rod-like object.
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spring demon

Fig. 3. (Left) Brownian ratchet with a sawtooth shape which could represent a filament segment. The

ratchet is constrained to move only in one dimension, i.e., either to the right or to the left. The pawl

consists of a spring which pushes a wedge against the sawtooth profile of the ratchet; and (Right) same

device but with the spring replaced by a Maxwell demon.
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The Brownian ratchet is subject to a random force arising from the thermal
collisions with the surrounding liquid. This random force attempts to displace the
ratchet to the right or to the left with equal probability. Inspection of Fig. 3(a) shows
that the ratchet can move easily to the right, since the wedge can then slide over the
sawtooth, but finds it difficult to move to the left since the wedge is then blocked by
the sawtooth. Thus, the pawl seems to prevent displacements to the left, and one
would naively conclude that the Brownian ratchet will, on average, move to the
right. This would imply that the device is able to rectify random thermal fluctuations
and could be used to transform heat directly into work. Such a device would
correspond to a perpetuum mobile which violates the second law of thermo-
dynamics.
The directed motion of the Brownian ratchet is, however, impossible as long as the

pawl has the same temperature as the ratchet. Indeed, the spring also undergoes
thermal fluctuations which occasionally lift the wedge over the barrier of the
sawtooth. In fact, the Brownian ratchet displayed in left image of Fig. 3 is equivalent
to Brownian motion in a sawtooth potential, UoðxÞ; which depends on the one-
dimensional coordinate x and is periodic but asymmetric in x. This leads to the
additional force FoðxÞ ¼ �ðq=qxÞUoðxÞ in the Langevin equation as given by (3.1).
In the presence of this additional x-dependent force, the Langevin equation

becomes difficult to study and it is then more convenient to describe the system in
terms of the time-dependent probability distribution for the position x and velocity
ðd=dtÞx of the Brownian particle. In the strong friction limit, one may essentially
ignore the inertial term mðd2=dt2Þx and it is then sufficient to study the time-
dependent probability distribution Pðx; tÞ for the particle position x alone [19]. This
probability distribution satisfies the conservation law

q
qt

Pðx; tÞ þ
q
qx

Jðx; tÞ ¼ 0 , (3.2)

where the current J has the Smoluchowski or Fokker–Planck form

Jðx; tÞ ¼ �D
q
qx

VoðxÞ þ
q
qx

� �
Pðx; tÞ (3.3)
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with the reduced force potential

VoðxÞ 
 UoðxÞ=T (3.4)

and the diffusion coefficient D 
 T=f:
The analysis of this equation shows that the sawtooth potential acts to modulate

the position probability of the Brownian particle on small length scales, which are
comparable to the period of the sawtooth potential, but does not change its motion
on larger scales which is still purely diffusive without any preferred direction. Thus,
if the whole system is in equilibrium, one cannot extract useful work from such a
device in accordance with the second law of thermodynamics.

3.3. Driven Brownian ratchets

Now, let us imagine that the wedge is not coupled to a spring but that it is
controlled by a small creature which resembles the demon introduced by Maxwell
[20]. Such a demon could watch the Brownian ratchet and keep the wedge down if a
sawtooth approaches from the right but lift the wedge up if a sawtooth approaches
from the left. It is then obvious that the ratchet will move to the right.
We know, of course, that the demon envisaged by Maxwell cannot exist because

any animal, which has eyes for perception, a brain for computation, and arms for
force transduction must consist of a very large number of cells and, thus, requires a
certain minimal size (it is interesting to note that the idea of a Maxwell demon has
been recently reinvented in the form of nanorobots). It turns out, however, that such
a complex creature is not required in order to rectify thermal fluctuations. Indeed,
such rectification can be performed by a demon which is completely ‘blind’ and
‘dumb’, and may simply consist of a pawl as in Fig. 3(a), provided this pawl is not in
equilibrium with the ratchet slat. From the physical point of view, the simplest way
to do this is to cool the pawl compared to the slat [21]. Thus, if the ratchet is hot and
the pawl is cool, the device shown in Fig. 3 will rectify the thermal fluctuations and
the particle will move to the right.
However, temperature differences or gradients are not useful in the context of

biological systems that are essentially isothermal. Simple organisms attain the
temperature of their environment, whereas higher organisms such as mammals
regulate their temperature and keep it fairly constant. Therefore, the protein
‘demons’, which are effective in biological systems, are not driven by temperature
gradients but by nonequilibrium chemical processes [22]. In some cases, these
processes arise from concentration gradients across membranes. In most cases, they
are provided by exergonic chemical reactions such as ATP hydrolysis.
Thus, if we replace the demon and the wedge in Fig. 3 by a cytoskeletal motor and

add ATP to the solution, the ratchet corresponding to a cytoskeletal filament will
indeed move in a directed fashion. This process will continue until the ATP
hydrolysis has produced a sufficient amount of ADP and P, and the forward and
backward reactions balance each other. Therefore, the external field to which the
motor/filament system is coupled does not arise from a spatial gradient but from an
unbalance in the concentrations of ATP, ADP, and P. In addition, it is essential that
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the rate of ATP hydrolysis is rather slow in the absence of any catalyst or enzyme
since this reaction then involves a large energy barrier. The catalytic action which
reduces this energy barrier is provided by the motor molecules themselves. Thus, the
chemical free energy stored in the ATP molecules is released when these molecules
are adsorbed by these molecular motors (or other types of molecular machines). In
this way, the ATP molecules provide a spatially distributed source of energy, which
is only tapped at those locations where it can be directly transformed into
mechanical work (or other types of useful energy).
4. Molecular motor cycles

Molecular motors have the ability to undergo a cyclic sequence of conformations
or states. In contrast to macroscopic engines, these motor cycles are stochastic in
character and can be described by driven Brownian ratchets and networks. As a
result, one obtains a general classification scheme for the chemomechanical coupling
of these motors.
4.1. Possible motor cycles of two-headed motors

One basic property of a motor (or any other machine) is its ability to cycle through
a certain sequence of states. Thus, the motor starts in a certain initial state,
undergoes a sequence of transitions between different states until it finally comes
back to its initial one. In order to be specific, let us consider the motor cycle of two-
headed motor molecules such as kinesin or myosin V.
For these motor proteins, the motor cycle presumably consists of alternating

forward steps by the two heads which corresponds to ‘head-over-head’ or ‘hand-
over-hand’ motion. A possible sequence of molecular conformations corresponding
to one forward step of the motor is displayed in Fig. 4.
Natural kinesin is a dimeric protein built up from two identical amino-acid chains

and, thus, has two identical heads. However, since the linear size of these heads is of
the order of 10 nm, we should be able to break this symmetry by a small chemical
modification of one of the two heads without affecting the motor’s movement.
Therefore, the two heads can be distinguished, at least in principle, and a full motor
cycle corresponds to two successive forward steps as shown in Fig. 4.
In this figure, the two heads of kinesin are drawn as two connected ‘match sticks’

which can bind to the discrete lattice sites on the filament. The half cycle starts in the
top state in which both heads are bound, the leading one (on the right) releasing
ADP whereas the trailing one (on the left) adsorbing ATP. Next, the trailing head
unbinds from the filament and moves forward by two lattice sites, see bottom state in
Fig. 4, and the old trailing head has become the new leading head. Half a motor cycle
is completed by the release of phosphate and the rebinding of the leading head. Now,
we have interchanged the two heads and another sequence as shown in Fig. 4 brings
us back into the original conformation of the motor molecule. During each half
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Fig. 4. Possible sequence of conformational states for ‘hand-over-hand’ motion. The six states shown here

lead to a single forward step. After one such step, the leading and the trailing head have been interchanged.

In order to attain its original conformation, the motor molecule has to make a second forward step and,

thus, a second sweep through the conformational states shown here. Therefore, the full motor cycle

corresponds to two such steps.
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cycle, one head moves forward by 16 nm and the motor’s center-of-mass moves
forward by 8 nm.
There is now some direct experimental evidence that both two-headed myosin V

on actin filaments [23] and two-headed kinesin on microtubules [24–26] step forward
in such a ‘hand-over-hand’ manner. The precise sequence of conformations states
corresponding to one forward step is not known, however, and the sequence shown
in Fig. 4 represents only one possibility. In addition, one might also consider
different kinds of forward steps such as ‘inchworm’ steps, see, e.g., Ref. [27]. It is
important to realize, however, that any motor cycle must involve several stochastic
processes because of the small size of the motor and because of its consumption of
single fuel molecules.

4.2. Stochastic processes involved in motor cycles

Even in the absence of fuel molecules such as ATP, the molecular motor can attain
many conformational states because of thermal collisions with the adjacent water
molecules. Kinesin, e.g., is a rather large molecule, compare Fig. 1, and it will bend
and rotate in various ways as a result of such collisions. In addition, when bound to a
filament, a motor can undergo one-dimensional diffusion or ‘passive sliding’. As
mentioned, this has been observed both for dynein at microtubules [15] and for RNA
polymerase at DNA [16].
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The delivery of the fuel molecules represents another stochastic process since these
molecules diffuse through the surrounding solution and will have several collisions
with the motor molecule before they stick to the catalytic motor domains. For
kinesin, this implies that the adsorption of ATP, which corresponds to the top state
in Fig. 4, is a random process, and that the time for this adsorption step is governed
by some probability distribution which depends on the ATP concentration. In fact,
each step of the half cycle shown in Fig. 4 has such a stochastic character.
Finally, the motor can, in general, exhibit several possible pathways, which lead to

a forward step, additional ‘wrong’ pathways, which lead to a backward step, and
futile pathways, which lead to no step at all. Kinesin, e.g., could make forward steps
using both different kinds of ‘hand-over-hand’ cycles and ‘inchworm’ cycles.
Likewise, this motor could make a backward step if the leading head detaches from
the filament after it has adsorbed and hydrolyzed an ATP molecule.
In order to describe these different stochastic processes, it is necessary to construct

motor models with different internal states and to incorporate the basic property
that the ATP hydrolysis is not in chemical equilibrium. In the following subsections,
two somewhat different classes of models will be described which both have these
basic features. These two classes of models provide examples for an even larger class
of models which will be refered to as active networks.

4.3. Brownian ratchets driven by nonequilibrium processes

The first class of models is provided by Brownian ratchets driven by none-
quilibrium processes. In these models, one starts from Brownian ratchets with
several internal states. Thus, the motor molecule is viewed as a Brownian particle
which can attain several internal states, labeled by m, and which experiences, in each
of these internal states, a certain molecular force potential, Um; arising from the
cytoskeletal filament. This force potential depends on the spatial coordinate x

parallel to the filament. Since this filament is polar, the molecular force potentials
UmðxÞ will again be asymmetric and might resemble the sawtooth potential
considered in (3.2)–(3.4). Furthermore, the periodicity of the filament implies that
the force potentials are taken to be periodic in x.
The Brownian ratchets described so far will exhibit some diffusive motion but will

not exhibit any directed movements. In order to perform some directed movement,
these ratchets must be coupled to and driven by another nonequilibrium process
such as unbalanced chemical reaction. This coupling leads to unbalanced transitions
between internal states m and m0 of the Brownian ratchets. These unbalanced
transitions do not obey detailed balance and drive the ratchet out of equilibrium.
The stochastic dynamics of the driven Brownian ratchet is described by

probability densities Pmðx; tÞ to find the motor particle at position x and in internal
state m with m ¼ 1; . . . ;M : For a given position x, the densities Pm may change (i)
because of lateral diffusion in state m which leads to lateral currents Jm depending
on the molecular force potentials Um or (ii) because of transitions between the
different internal states. Therefore, the probability densities Pm satisfy the continuity
equations
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Fig. 5. Discrete Brownian ratchet with KM discrete motor states represented by vertices ðk;mÞ with

1pkpK and 1pmpM: The different values of k correspond to different spatial locations x ¼ xk at which

the Brownian ratchet can undergo transitions between the different internal states labeled by m. The latter

transitions are indicated by the vertical arrows or directed edges. The horizontal arrows or directed edges

represent diffusive transitions of the motor in state m. (Left) The network satisfies periodic boundary

conditions in the longitudinal direction parallel to the k-axis; and (Right) it has an arbitrary number of

transverse dimensions.
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qPmðx; tÞ=qt þ qJmðx; tÞ=qx ¼ Imðx; tÞ with m ¼ 1; . . . ;M , (4.1)

with the transition current densities Im: As explained in Appendix A, it is then
convenient to consider transition current densities which are localized at K spatial
locations x ¼ xk: In this way, one obtains a discretization of the Brownian ratchet
which corresponds to a network of KM states as shown in Fig. 5. These ðM ;KÞ-
models have been introduced and studied in Refs. [28–32] and represent general-
izations of those considered in Refs. [33–35] with ðM ;KÞ ¼ ð2; 2Þ: Somewhat
different stochastic models for molecular motor cycles have been studied in Ref. [36].
An extended review about Brownian ratchets and related models is given in Ref. [37].
The discrete Brownian ratchets obtained in this way have one distinguished

direction which corresponds to the x coordinate parallel to the filament. Since the
molecular force potentials are periodic in x, the discrete Brownian ratchets satisfy
periodic boundary conditions in this directions as indicated in the left part of Fig. 5.
The transitions parallel to this x-direction are indicated by the horizontal arrows or
directed edges in this figure. All of these horizontal transitions represent diffusive
movements in the force potentials UmðxÞ: In contrast, the vertical arrows or directed
edges in Fig. 5 represent transitions between two different internal states, m and m0:
It is possible to analyze some properties of these discrete ratchet models for

arbitrary values of K and M. For each value of k, one has a network ‘slice’ which
consists of vertical transitions between different internal states m and m0 as shown in
the right part of Fig. 5. Within a certain ‘slice’, one can have up to MðM � 1Þ such
transitions. Nearest neighbor ‘slices’ are connected by the horizontal transitions
parallel to the x coordinate.
In the steady state, the motor is in state ðk;mÞ with probability Pstðk;mÞ:

The transition rates from ðk;mÞ to ðk þ 1;mÞ and vice versa are denoted by
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W ðk;mjk þ 1;mÞ and W ðk þ 1;mjk;mÞ; respectively. Using these rates, one can
calculate the excess current DJstðk;mjk þ 1;mÞ from ðk;mÞ to ðk þ 1;mÞ via

DJstðk;mjk þ 1;mÞ ¼ Pstðk;mÞW ðk;mjk þ 1;mÞ � Pstðk þ 1;mÞ

�W ðk þ 1;mjk;mÞ . ð4:2Þ

The velocity vb of the bound motor is proportional to the total steady-state current
J tot flowing through the discrete Brownian ratchet in the direction parallel to the
filament. The latter current is given by

Jtot ¼
XM

m¼1

DJðk;mjk þ 1;mÞ , (4.3)

which does not depend on the choice for the pair ðk; k þ 1Þ:
One advantage of these ratchet models is that one can incorporate an externally

applied force, F, in a rather direct and natural way. More precisely, one can
incorporate the force component which is parallel to the filament and, thus, to the x

coordinate. If we use the convention that positive values of F push the motor particle
towards larger values of x, one has to study the Brownian ratchets with the
generalized force potentials

VmðxÞ 
 ½UmðxÞ � Fx�=T , (4.4)

which consist of both the molecular force potentials UmðxÞ and the externally applied
force potential, Fx: This property does not apply, in general, to the second class of
models described in the next subsection.
4.4. Cyclic networks for ‘hand-over-hand’ motion

In the second class of models, we consider the ‘hand-over-hand’ motion of two-
headed motor molecules such as kinesin or myosin V. A possible sequence of
conformations for the forward step of a single motor head is shown in Fig. 4. As
mentioned, the full motor cycle consists of two successive steps performed by one
head after another.
This motor cycle can be directly mapped onto the cyclic network shown in the left

part of Fig. 6. In this figure, each edge represents two directed edges corresponding
to two transitions into opposite directions. Thus, the motor makes forward steps if it
follows the edges in the clockwise direction and backwards steps by following these
edges in the counterclockwise direction. Likewise, the motor can make futile steps if
it makes less than six successive transitions in the clockwise direction but then
returns to its starting point before completing a half cycle.
The motor cycle shown in the left part of Fig. 6 is particularly simple since it

consists of 12 states which form a single cycle. In general, the motor molecule may
attain additional states as shown in the right part of Fig. 6. In this case, there are
additional states which lead to other types of forward or backward steps as well as to
additional types of futile steps.
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Fig. 6. Two networks corresponding to two possible motor cycles for ‘hand-over-hand’ motion. The

vertices of the network correspond to the states of the motor, the edges which represent two directed edges

in opposite directions correspond to the transitions between these states. (Left) Motor cycle consisting of a

single cycle of states. Half of this cycle represents one step of one motor head as shown in Fig. 4. One

forward step correspond to one half cycle with a clockwise orientation, one backward step to one half

cycle with a counterclockwise orientation. Futile steps correspond to less than six clockwise transitions

followed by the same number of counterclockwise ones; (Right) Motor cycle consisting of several

pathways. The main pathway (full edges) is the same as on the left. In addition, there are additional states

which lead to different types of backward and forward steps (interior broken edges), and different types of

futile steps (exterior broken edges).
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For the motor cycle networks displayed in Fig. 6, the velocity vb of the motor
molecule is again proportional to some excess currents in the steady state. For the
motor cycle shown in the left part of Fig. 6, the velocity vb is proportional to the
excess current

DJst
ab ¼ Pst

a oab � Pst
b oba (4.5)

from vertex a to vertex b where Pst
a and Pst

b are the steady-state probabilities to find
the motor in state a and b, respectively, and oij is the transition rate from vertex i to
vertex j. Likewise, for the motor cycle in the right part of Fig. 6, this velocity is
proportional to

DJst
ab þ DJst

cb ¼ Pst
a oab � Pst

b oba þ Pst
c ocb � Pst

b obc . (4.6)

4.5. Driven Brownian networks

Both classes of models as described in the two previous subsections lead to
networks of discrete motor states. In both cases, the motor states are represented by
vertices and the transitions between these states correspond to (directed) edges
between the corresponding vertices. Both classes of models provide examples for
driven Brownian networks which are defined by the following rather general
properties.
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We consider an arbitrary graph with Nv vertices i which represent the different
states of the system. The system can undergo transitions from state i to state j with
transition rate oij and from state j to state i with transition rate oji: In the network
graph, this pair of transitions is represented by a (nondirected) edge between the
vertices i and j. The total number of edges within the network is denoted by Ne:
The probability PiðtÞ to find the system in state i now satisfies the master equation

qPiðtÞ=qt ¼
X

j

0
PjðtÞoji � PiðtÞoij

� �
, (4.7)

where the prime indicates that the summation is restricted to jai: In the steady state,
the time-independent probabilities Pi ¼ Pst

i satisfy the relationships

0 ¼
X

j

0
ðPst

i oij � Pst
j ojiÞ . (4.8)

This set of coupled but linear equations can be solved using a graph theoretic
method as explained in Appendix B.

4.6. Transition rate dependence of steady-state currents

Using the general solution of the steady-state master equation (4.8), one may
express all excess currents

DJst
ij ¼ Pst

i oij � Pst
j oji (4.9)

in terms of the transition rates oij : These functional relationships have certain
universal features. This was first shown for driven Brownian ratchets using a transfer
matrix formalism [30–32]. These universal features will now be rederived and
generalized to all driven Brownian networks.
The graph theoretic solution described in Appendix B implies that all excess

currents can be written in the form

DJst
ij ¼

Pol
ð1Þ
ij ðfogÞ

Pol
ð2Þ
ij ðfogÞ

(4.10)

with the two polynomials

Pol
ð1Þ
ij ðfogÞ 
 Oioij � Ojoji (4.11)

and

Pol
ð2Þ
ij ðfogÞ ¼ O ¼

X
i

Oi (4.12)

as follows from (B.7) where the notation ðfogÞ indicates that both polynomials depend
on many transition rates oab corresponding to different edges habi: As explained in
Appendix B, each term Oi consists of NT transition rate products where NT is the
number of different spanning trees for the network graph. Each of these transition rate
products contains Nv � 1 factors oab where each edge habi occurs only once.
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Therefore, the two polynomials Pol
ð1Þ
ij and Pol

ð2Þ
ij are multilinear in all transition

rates. The polynomial Pol
ð1Þ
ij consists of transition rate products where each product

contains Nv different transition rates. Likewise, the polynomial Pol
ð2Þ
ij consists of

NTNv transition rate products where each product contains Nv � 1 different
transition rates.
The polynomial Pol

ð1Þ
ij as given by (4.11) can be re-expressed as a sum over all

cycles of the network graph. More precisely, one has to include all cycles Cij;k which
contain the edge hiji: In general, there are many such cycles which are distinguished
by the index k. Each cycle defines two directed cycles Cþ

ij;k and C�
ij;k which have a

clockwise and counterclockwise orientation, respectively. This leads to the unbalance

DOij;k ¼ OðCþ
ij;kÞ � OðC�

ji;kÞ ¼
Y
habi

oab �
Y
hbai

oba (4.13)

corresponding to cycle Cij;k where the products include all directed edges of the
corresponding directed cycles Cþ

ij;k and C�
ij;k:

In general, the cycle Cij;k does not provide a spanning subgraph for the network
graph. One must now consider all spanning subgraphs Bij;k;l which contain the cycle
Cij;k but do not contain any other cycle. Thus, if we delete the edge hiji from such a
subgraph, we recover a spanning tree of the network graph. The different subgraphs
Bij;k;l which have these properties are distinguished by the index l.
The polynomial Pol

ð1Þ
ij can now be expressed in terms of the cycle unbalances as

given by (4.13). This leads to

Pol
ð1Þ
ij ðfogÞ ¼

X
k

DOij;k

X
l

Y
ha0b0i

oa0b0

0
@

1
A (4.14)

where the last product contains all directed edges ha0b0
i which belong to the spanning

subgraph Bij;k;l but do not belong to the cycle Cij;k: All of these edges ha0b0
i are

oriented towards the cycle Cij;k:

4.7. Detailed balance and unbalanced transitions

If the Brownian network satisfies detailed balance, one has the local conditions

Pst
i oij ¼ Pst

j oji (4.15)

for all edges hiji: As shown in Appendix B.4, these local conditions are equivalent to
the global conditions that all cycle unbalances vanish, i.e.,

DOij;k ¼ 0 for all cycles Cij;k . (4.16)

In fact, these conditions are fulfilled for all cycles if they are fulfilled for a
fundamental set of cycles, see (B.22). In this case, all excess currents are identically
zero.
Now, consider a Brownian network which is coupled to another energy providing

process. This latter process may arise from mechanical stresses induced, e.g., by
specific interactions with other structures, from electromagnetic fields such as light
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which induces photo-isomeric transitions, or from chemical reactions which are out
of equilibrium. In the case of molecular motors, the energy input is usually provided
by the adsorption and hydrolysis of ATP. Therefore, in this latter case, the strength
of the coupling depends on the ATP concentration and vanishes as this concentration

goes to zero. It is therefore convenient to decompose the transition rates oij as [30]

oij ¼ odb
ij þ Dij , (4.17)

where the first terms odb
ij satisfy the local and global detailed balance relations as

given by (4.15) and (4.16), and the second term Dij vanish for zero coupling between
the network and the energy providing process.
In general, the coupling between network and energy providing process is expected

to be localized in the sense that it affects only a certain subset of states and
transitions within the network. In the case of a molecular motor, both the adsorption
and the hydrolysis will depend on the conformation of the motor molecule. Indeed,
adsorption can only occur if the corresponding ATP adsorption site of the motor is
not occupied. Likewise, the hydrolysis will depend on some specific interactions
between motor and filament.
A particularly simple situation occurs if the coupling between the Brownian

network and the energy providing process affects only a single transition rate, say

oIJ 
 o1 ¼ odb
1 þ D1 , (4.18)

where D1 vanishes as the coupling strength goes to zero. It then follows from the
general solution as given by (B.11) that all cycles through hIJi carry a nonzero excess
current. Thus, all di-edges hiji which belong to such a cycle have an excess current
DJst

ij a0: Furthermore, all of these nonvanishing excess currents have the general
form

DJst
ij ¼

1

O

X
k

DOij;k

X
l

Y
ha0b0i

oa0b0

0
@

1
A (4.19)

as follows from (4.10), (4.12) and (4.14). The multilinearity of the polynomial terms
then implies that

DJst
ij ¼

a1D1

b0 þ b1D1
, (4.20)

where the coefficients a1; b0; and b1 do not depend on D1: Likewise, if one defines the
excess current, DJ; by the summation over any subset of edges, one also has

DJ ¼
X

ij

0
DJst

ij ¼
a0
1D1

b0 þ b1D1
, (4.21)

where the prime at the summation sign indicates the chosen subset and a0
1 


P0
a1:

Note that these current–rate relationships resemble the Michaelis–Menten relation
for enzyme kinetics.
It is straightforward to include more transition rates which are affected by the

coupling to the energy providing process. If we have two such transition rates, o1
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and o2; all excess currents in the network have the form

DJ ¼
X

ij

0
DJst

ij ¼
a1D1 þ a2D2 þ a12D1D2

b0 þ b1D1 þ b2D2 þ b12D1D2
. (4.22)

This expression becomes even simpler if the two unbalanced transitions emanate
from the same vertex. In this case, the coefficients a12 and b12 vanish and the
crossproducts D1D2 are absent.
In general, if the network contains QX3 transition rates oij ; which are coupled to

the energy providing process, all excess currents can be expressed as ratios of two
polynomials which are multilinear in the Q transition rates Dij : Furthermore, there
are no crossterms involving several Dij if the corresponding unbalanced transitions
emanate from the same vertex. These current–rate relationships were first derived for
the discrete Brownian ratchets shown in Fig. 5 [30–32].

4.8. ATP concentration dependence of motor velocity

The velocity vb of the bound motor is proportional to a certain excess current DJ

in the steady state both for the driven Brownian ratchets and for the stochastic
networks describing ‘hand-over-hand’ motion. In order to transform the general
current–rate relationships for driven Brownian networks into a relation between the
motor velocity and the ATP concentration GATP; one has to relate the Q unbalanced
transitions with this concentration.
By definition, all unbalanced transitions must vanish in the absence of any ATP

which implies

Dij � GATP for small GATP . (4.23)

Likewise, all cycle unbalances must also vanish in this limit, i.e.,

DOij;k � GATP for small GATP . (4.24)

This implies that the motor velocity vb; which is proportional to a certain excess
current, behaves as

vb �
g1GATP

h0 þ h1GATP
(4.25)

if one keeps the terms up to first order in GATP both in the numerator and in the
denominator. It is interesting to note that this asymptotic expression is again of the
same form as the Michaelis–Menten relation for enzyme kinetics.
A more detailed model is obtained if one resolves the different processes which are

involved in the adsorption and hydrolysis of ATP. The latter reaction scheme is
summarized by

ATP Ð ADPþ Pi , (4.26)

where Pi denotes the phosphate ion. This reaction requires an enzyme in order to
proceed with reasonable rates. In the present context, this enzymatic activity is
provided by the catalytic domain of a motor head.
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The forward reaction at this catalytic domain consists of three transitions: (i)
adsorption of one ATP molecule at the empty catalytic motor domain; (ii) the ATP
molecule is hydrolyzed corresponding to the forward direction in (4.26); and (iii)
ADP and Pi desorb from the catalytic motor domain. On the other hand, the
backward reaction consists of (i) adsorption of ADP and Pi at the empty catalytic
motor domain, (ii) ADP and Pi combine into ATP corresponding to the backward
direction in (4.26); and (iii) ATP desorbs from the catalytic domain.
The transition rate for ATP adsorption depends on the ATP concentration GATP:

The simplest assumption for this dependence is given by

Dij ¼ kijGATP (4.27)

where state i has an empty catalytic domain. Likewise, the transition rate for
ADP adsorption depends on the ADP concentration. In the limit of small ADP
concentration, which corresponds to chemical nonequilibrium, one may simply
ignore the latter transition.
If the motor has a single head, one expects to have only one adsorption

transition in the motor cycle network which implies Q ¼ 1: If the motor has two
identical heads, one will have Q ¼ 2 if both heads must be in a unique
conformational state in order to have an ATP hydrolysis reaction at one of these
heads. In general, one would expect that each head of a two-headed motor
should have a unique state in order to become catalytic, but the second head may
still have some conformational freedom. If one head can be active for two or three
different conformations of the other head, one has Q ¼ 4 or Q ¼ 6; respectively. If
the two heads are not identical as applies, e.g., to certain kinesin constructs, one
could also imagine motor cycles characterized by Q ¼ 3 or Q ¼ 5: Larger values of Q

are obtained if one considers the movement of several motor molecules which are
bound to the same cargo.
If one assumes that the unbalanced transition rates are given by the simple linear

relations (4.27), one obtains the general relationships [30]

vbðGÞ ¼
XQ

n¼1

gnG
n

" #, XQ

n¼0

hnGn

" #
with G 
 GATP (4.28)

for the dependence of the motor velocity vb on the ATP concentration G 
 GATP:
Thus, the velocity vb can be expressed in terms of the ratio of two G-polynomials of
degree Q. The same relationships are obtained if one assumes that the unbalanced
transition rates depend on G according to

Dij ¼ kijG=ð1þ G=G�
ijÞ , (4.29)

which represents a generalization of (4.27).
The velocity–concentration relationships as given by (4.28) were first obtained in

the context of driven Brownian ratchets [30]. In the latter case, one may also include
an externally applied force which enters the polynomial coefficients gn and hn and
leads to a nonzero coefficient g0ðF Þ: In this way, one arrives at a classification scheme
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for the functional dependence of the velocity on the two parameters G and F which
agrees, for Q ¼ 1; with the experimental observations on kinesin [38].2
5. Motor walks of noninteracting motor particles

In the previous section, we focussed on the movements of walking motors which
are bound to filaments. Since the corresponding binding energy is necessarily finite,
the motor can only make a certain number of steps before it unbinds from the
filament. A single kinesin molecule, e.g., which has a step size ‘ of 8 nm, typically
makes of the order of 100 steps before it unbinds. This implies the unbinding
probability �o ’ 1=100 per step. The corresponding walking distance Dxb ’ ‘=� is of
the order of 800 nm. The same walking distance applies to a cargo particle which is
pulled by a single motor molecules. A simple method to increase the walking distance
for a certain type of cargo is to connect it to the filament with several motor
molecules [39]. This is, in fact, the typical situation for vesicles or organelles which
are transported within the living cell.
Thus, assume that n motors connect the cargo to the filament and that each motor

has an unbinding probability �o per step. If the different motor molecules walked in
an uncorrelated fashion, the unbinding probability for the cargo would be
proportional to �n

o and the walking distance would scale as Dxb � ‘=�n
o: In general,

one will expect, however, that motor molecules which pull the same cargo will
interact in various ways; e.g., if one of these motors attempts to make a forward step,
it may be hindered by another motor in front of it which then acts as a steric
obstacle. On the other hand, if a motor completes such a forward step and pulls the
cargo, it may also exert a pulling force on another motor behind it and, thus, may
unbind this other motor. These two latter effects tend to reduce the walking distance
Dxb: This distance represents a basic parameter of our models, and its value will be
taken from experiments.
The models described in the following are applicable both to single motor

molecules and to single cargo particles pulled by one or several motor proteins. As
before, we will use the term ‘motor particle’ in order to describe both situations. On
length scales which are small compared to the walking distance, the motor particles
walk along the filament to which they are bound, and this directed movement is
characterized by the bound state velocity, vb; which we have studied in the
previous section, and the bound state diffusion coefficient, Db; which is discussed in
Appendix C.2.
On length scales which are large compared to the walking distance Dxb; the motor

particle undergoes peculiar ‘motor walks’ which arise from many diffusional
encounters with the filament and, thus, consist of alternating sequences of bound and
unbound motor states, i.e., of directed walks along the filaments and nondirected
diffusion in the aqueous solution. When bound to a filament, the motor walks in a
2Strictly speaking, the force ramp used in Ref. [38] corresponds to a time-dependent external force which

differs from the conservative force F included in (4.4).



ARTICLE IN PRESS

R. Lipowsky, S. Klumpp / Physica A 352 (2005) 53–11274
certain direction until it unbinds; it then undergoes nondirected diffusive motion in
the surrounding aqueous solution until it encounters the same or another filament to
which it can rebind and continue its directed walk.
In this section, we discuss the motor walks performed by noninteracting motor

particles. These walks are accessible in real systems provided the motor particle
density is sufficiently small. As one increases this density, the mutual interactions of
the motor particles become more and more important and affect their movements. In
the next section, we will discuss the corresponding motor traffic.

5.1. Motor walks in different types of compartments

Now, consider a system with noninteracting motor particles which are labeled in
such a way that we can track them. We now monitor the walk of one of these
particles. It is intuitively clear that the relative contributions of directed and diffusive
motion to such a motor walk will depend on the number and arrangement of the
filaments and on the confinement of the overall motion by additional surfaces [40].
Within the cell which contains many filaments and membranes, the diffusive

motion of the unbound motor particle is strongly restricted by the close proximity of
these intracellular structures. Thus, as the motor particle unbinds from a filament in
vivo, it will often stay close to its detachment point, and its directed movement will
be interrupted by periods in which the motor appears to rest. This seems to happen
in slow axonal transport of neurofilaments where rapid movement is interrupted by
prolonged pauses [7,8].
For motility assays, on the other hand, one typically has filaments which are

immobilized on the surfaces of open compartments as indicated in Fig. 7. In this
case, the motor particle will diffuse in the surrounding medium and may then make
large excursions away from the filament. However, for all geometries shown in
Fig. 7, the motor particle will always return to the filament eventually. This is, in
fact, a general property of these motor walks which holds even in the infinite volume
limit provided the length of the filament grows with the linear dimensions of the
system.3

5.2. Lattice models for motor walks

It is convenient to map the random walks of the motor particles onto lattice
random walks [40]. On the one hand, the parameters of these lattice models can be
chosen in such a way that the motor walk has the observed statistical properties of a
single motor particle. On the other hand, these models can also be used to study the
collective behavior of many motor particles which interact in various ways.
In the simplest version of the model, the filament consists of a one-dimensional

line of binding sites. It is straightforward to extend this model to include several
protofilaments corresponding to a microtubule but one then has to introduce
3In the infinite volume limit, the motor particle will eventually return to an infinitely long filament

provided the spatial dimension dp3:
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Fig. 8. Hopping probability for a motor particle located at a filament site. The particle moves forward (to

the right) with probability a; backward (to the left) with probability b; unbinds from the filament with

probability �o; and does not move with probability g ¼ 1� a� b� �o: For the simple cubic lattice

considered here, the unbinding particle can reach one out of four nonfilament sites with probability �o=4:
This model was introduced in Ref. [40].

Fig. 7. Various compartments with one filament attached to the confining walls: (left) half space; (middle)

slab; and (right) open tube. The filament corresponds to the thick rod with its minus end on the left and its

plus end on the right. All three compartments are open in at least one spatial direction.
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additional parameters such as the probability to step from one protofilament to a
neighboring one. Since these parameters are currently unknown, the following
discussion is limited to the simplest filament model which consists of only one
(proto)filament. In its bound state, the motor moves along the filament by making
discrete steps of length, ‘; which defines the lattice constant of the lattice model. For
two-headed kinesin, the stepping length is 8 nm; for myosin V, it is 36 nm.
It is also convenient to discretize time and to assume that all moves of the motor

particles occur at discrete time steps. Fig. 8 shows the different hopping probabilities
for a motor particle which is located at a filament binding site. Within one time step,
this motor particle stays at the same site with probability g and unbinds from the
filament with probability �o: Furthermore, this particle can make a forward step to
the nearest neighbor filament site with probability a and a backward step to the other
nearest neighbor filament site with probability b:
After the motor has unbound from the filament, it will undergo undirected

diffusive motion on a three-dimensional lattice which is taken to be a simple cubic
one. Thus, at each discrete time step, the motor particle can hop to one of its six
nearest neighbor sites with equal probability. When the motor particle hops towards
the filament, it binds or adsorbs to this filament with sticking probability pad:
The different hopping probabilities can be chosen in such a way that the motor

particles have both the correct mean velocity, vb; for the bound state and the correct
diffusion coefficient, Dub; for the unbound state. If one wants to match the bound
diffusion coefficient, Db; as well, one has to use two different time steps tb and t; for
the moves on the filament and away from it [40]. However, since the overall motor
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walk is not very sensitive to the precise value of Db; we also used a simplified
parameter mapping in which the same time step is used for both types of moves
[41,42]. These two parameter mappings are described in some detail in Appendix C.

5.3. Motor walks in two and three dimensions

The simplest systems in which one can study motor walks are provided by single
filaments in unbounded geometries, i.e., without confining walls. In this case, one can
use Fourier–Laplace transforms of the two- and three-dimensional lattice models in
order to obtain analytical solutions for many quantities of interest [41,43]. These
explicit solutions confirm and extend the results as obtained in Refs. [44] and [40] by
scaling arguments.
Thus, let us consider an ensemble of noninteracting motor particles with a

probability distribution which is initially localized at a single filament site. This
initial distribution evolves with time into two distinct distributions, one for the
bound motors, the other for the unbound motors. Both distributions are shifted in
the forward direction parallel to the filament. For the bound motors, this leads to the
average displacement shown in the left part of Fig. 9. In addition, the stochastic
nature of the motor movements leads to a broadening of both the bound and the
unbound motor distributions. This broadening can be characterized by the variance
of the motor displacements as shown in the right part of Fig. 9 for the bound motors.
Inspection of this figure also shows that the analytical results and the Monte Carlo
data are in excellent agreement.
The effective diffusion coefficient Db of the bound motors parallel to the filament

is given by the slope of the variance displayed in the right part of Fig. 9. For large
times, this diffusion coefficient attains anomalously large values in two dimensions
and exhibits large logarithmic correction terms in three dimensions. Very similar
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Fig. 9. Unbounded motor walks in two and three dimensions: (Left) Average displacement of bound

motors parallel to the filament and (Right) Variance of displacements of bound motors as functions of

time. The slope of this latter function defines the effective diffusion coefficient Db which is anomalously

large. In both plots, the curves represent analytical results for d ¼ 2 and d ¼ 3 dimensions whereas the

circles and diamonds are the corresponding Monte Carlo data [41].



ARTICLE IN PRESS

R. Lipowsky, S. Klumpp / Physica A 352 (2005) 53–112 77
behavior is found for the diffusion of the unbound motors parallel to the filament. In
addition, the diffusion is anisotropic since the perpendicular diffusion coefficients are
smaller than the parallel ones. Therefore, the probability distributions for the
unbound and bound motors are elongated parallel to the filament and are
compressed perpendicular to it [41,43].
5.4. Motor walks in confined geometries

Next, consider systems in which the filament is immobilized on the surface or wall
of a compartment as shown in Fig. 7. When the motor particles are placed into such
a compartment, the motor walks will be affected by the compartment walls.
The systems shown in Fig. 7 consist of a single filament which is immobilized on

the interior surface of a half space, slab, and tube. For all of these geometries, the
motor still advances parallel to the filament but its average velocity decreases with
time as shown in Fig. 10 [40]. In the half space, the motor velocity v decays �1=t for
long times t and the advancement of the motor is so slow that it will be difficult to
measure. In the slab, v � 1=t1=2 and the advancement should be measurable if one
tracks the motor for a couple of minutes. For an open tube which resembles an axon,
the velocity is reduced by a constant factor which depends on the radius of the tube.
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Fig. 10. The average motor velocity parallel to the filament as a function of time in the half space (circles),

slab (diamonds), and tube geometry (crosses). Up to time t ¼ Dtb; the motors walk along the filament with
the bound motor velocity vb: The intermediate time regime up to t ¼ Dt? is characterized by diffusive

excursions which are small compared to the thickness of the slab or the diameter of the tube. Finally, for

large t, the average velocity decays as 1=t and 1=t1=2 for the half space and the slab, respectively, but attains

a constant value for the tube [40].
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It is also of interest to study more complex arrangements of filaments. In
particular, one may arrange these filaments in such a way that the motor particles
undergo active diffusion with a diffusion coefficient which is much larger than the
diffusion coefficient of normal Brownian motion [45].
6. Interacting motor particles

In the previous section, we have discussed the motor walks of noninteracting
motor particles. Such walks will be observable if the motor particle density is
sufficiently small and the system is sufficiently dilute. However, the motor particles
considered here are characterized by a binding energy which is large compared to T.
Otherwise, they could not make many steps along the filament. This implies that the
equilibrium between the bound and the unbound state of the motor particle is
strongly biased towards the bound state, and the filaments become already
overcrowded with bound motor particles even if the overall number density of
these particles is still relatively small. In such a situation, one must take the mutual
exclusion or hard core repulsion between the particles into account [40,42].

6.1. Lattice models with mutual exclusion or hard core repulsion

It is straightforward to incorporate the mutual exclusion or hard core repulsion
between the motor particles into the lattice models discussed in the previous section.
In general, the size of these particles can vary and may exceed the lattice constant ‘:
Here, we will again focus on the simplest case for which this size is comparable to ‘:
When bound to a lattice site of the filament, the motor particles have the same

hopping probabilities as for the motor walks, but they can only complete their
hopping attempts if the new lattice sites are not yet occupied. This is illustrated in
Fig. 11 for a small cluster of three motor particles which represents a short traffic
jam.
Our models are new variants of driven lattice gas models or exclusion processes,

where the driving is localized to the filaments. Other variants of driven lattice gas
models have been previously studied for a variety of transport processes, see, e.g.,
Refs. [46–52]; an extensive review of the one-dimensional asymmetric simple
β β
εo εo εo εo

αα

Fig. 11. Filament sites with three motor particles forming a small cluster (left) and one motor particle with

no nearest neighbors (right). Each particle unbinds from the filament with probability �o; on the simple

cubic lattice, it can then reach one out of four nonfilament sites with probability �o=4 provided the

corresponding site is empty. Furthermore, each particle can make a forward step with probability a and a
backward step with probability b if the new locations are not yet occupied. At each time step, each particle

does not move with probability g ¼ 1� a� b� �o [40,42].
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exclusion process (ASEP) is contained in Ref. [53]. After our work on motor traffic
along filaments had been published in Ref. [40], several groups have begun to study
one-dimensional ASEPs in contact with particle reservoirs [54–56], which represent
closely related systems.
6.2. Tube-like compartments

A rather simple system geometry is again provided by a single filament in a tube-
like compartment which resembles an axon. Thus, consider such a geometry and
increase the motor particle density by adding more and more of these particles to the
system. This will also lead to an increase in the number of bound motors until this
number saturates because the filament becomes overcrowded. This overcrowding has
a rather strong effect on the transport along the filament. Indeed, if a motor wants to
make a forward step, it can only do so if the next binding site at the filament is not
yet occupied. Therefore, the overcrowding of the filament leads to traffic jams which
strongly reduce the transport by the bound motor particles. These jams are similar to
jams of locomotive engines on railroads; the main difference is that the engines
considered here can unbind from and rebind to these railroads.
Even though the tube geometry with a single filament and a single motor

species represents a rather simple transport system, it already exhibits a whole
variety of different cooperative phenomena. These phenomena include: traffic jams
leading to a nonmonotonic dependence of the bound motor current on the motor
particle density; active formation of motor density and current patterns; and phase
transitions induced by boundary densities.
In the following subsections, we will first define the basic tube geometry and then

discuss the behavior of the motor particles for different boundary conditions at the
tube ends. We start with open tubes with periodic boundary conditions which are
useful in order to illustrate traffic jams and to obtain an intuitive understanding
about the effect of traffic jams on the motor transport [42]. Simple examples for
active pattern formation are found in tubular compartments with closed orifices
[40]. Finally, tubular compartments, which are coupled to motor particle reservoirs
at their orifices, lead to phase transitions between different steady states of the
system [42].
6.2.1. Tube geometry and motor particle densities

We consider a cylindrical tube which contains a single filament, which may be
located along the symmetry axis of the tube as shown in Fig. 12. The spatial
coordinate parallel to the tube axis will be denoted by x. The tube has length L and
radius R. Unless stated otherwise, the filament has the same length as the tube.
Because of its polarity, the filament has two different ends, denoted by minus and
plus. The motor particles considered in the following subsections move, on average,
from the minus to the plus end. As before, these particles can unbind from the
filament and then diffuse within the tubular compartment until they collide again
with the filament and stick to it.
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Fig. 12. Cylindrical tube of length L and radius R with a single filament located along the tube axis. When

bound to the filament, the motor particles move, on average, from the minus to the plus end until they

unbind from the filament. In the unbound state, these particle undergo nondirected diffusion within the

tubular compartment until they rebind to the filament.
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In the models discussed here, the motor particles move on a simple cubic lattice
with lattice parameter ‘: As for the motor walks, this length scale is taken to be the
repeat distance of the filament. The tubular compartment is discretized in such a way
that it consists of one line of binding sites, which represents the filament, and Nch

unbound ‘channels’, i.e., lines of lattice sites parallel to the filament. Thus the cross-
sectional area Ao of the tube is equal to Ao ¼ ð1þ NchÞ‘

2: For sufficiently large tube
radius R, one has Ao � pR2 which implies

pR2 � ð1þ NchÞ‘
2 . (6.1)

The number of motor particles within the tubular compartment is simply denoted
by N. The corresponding motor particle number per tube length is defined by

N̄ 
 N‘=L . (6.2)

Each motor particle can occupy one of the lattice sites which are labeled by i. Thus, if
we look at a snapshot of the system, we will observe a certain configuration of motor
particles which can be described by occupation numbers ni with ni ¼ 1 if site i is
occupied by a motor particle and ni ¼ 0 if it is not. In the following, we will focus on
steady states of the systems which are characterized by time-independent density
profiles

ri ¼ hnii with 0prip1 . (6.3)

These quantities represent local volume fractions. The particle number densities are
then given by ri=‘

3:
6.2.2. Periodic boundary conditions

In order to obtain a well-defined system, we have to supplement the
tubular compartment with boundary conditions. From the theoretical point
of view, it is most convenient to start with periodic boundary conditions as
illustrated in Fig. 13. This system is translationally invariant parallel to the
filament.
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Fig. 13. Tubular compartment with periodic boundary conditions. Those motor particles which make a

forward step at the plus end re-enter the system from the minus end. This system could be realized

experimentally by a torus-like compartment.
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In the steady state, the translational invariance has several consequences. First, the
bound and unbound density profiles do not depend on the coordinate x parallel to
the filament. Since there is no density variation of the unbound motors in the x-
direction, there cannot be any current of the unbound motors parallel to the
filament. It then follows that there cannot be any current of the unbound motors in
the radial direction either. Therefore, the translational symmetry of the system leads
to detailed balance in the radial direction. As a consequence, one can analytically
calculate the densities and currents of the bound and unbound motors in the steady
state [42].
Because of radial detailed balance, the x-independent densities rub and rb of the

unbound and bound motors satisfy the relation [42]

rb ¼
rub

�=pad þ ð1� �=padÞrub
with � 
 3�o=2 (6.4)

with unbinding probability �o and sticking probability pad: These two parameters
enter the properties of the steady state only in the form �=pad: Furthermore, the
bound motors which have average velocity vb generate the steady-state current Jb

which is given by

Jb ¼ vb rbð1� rbÞ , (6.5)

while the unbound motors with constant density rub do not generate any current.
The unbound density rub can be explicitly calculated by solving a quadratic
equation, see [42], and is found to depend on (i) the motor particle number per tube
length, N̄; as defined in (6.2), (ii) the number Nch of unbound channels parallel to the
filament which is related to the tube radius via Nch � pðR=‘Þ2; and (iii) the
probability ratio �=pad: The bound density and current are then obtained from (6.4)
and (6.5), respectively.
The bound current Jb in the steady state is displayed in Fig. 14 where the

analytical solution is compared with Monte Carlo data. This current increases
linearly with the motor particle number N̄ as

Jb=vb �
N̄

1þ ð�=padÞNch
for small N̄ , (6.6)
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Fig. 14. Bound motor current Jb=vb as a function of the motor particle density per tube length, N̄: The
tube has length L=‘ ¼ 200 and radius R=‘ ¼ 25 corresponding to channel number Nch ¼ 1940: The
current attains its maximum at N̄ ’ 0:69 and vanishes for N̄ ¼ 1þ Nch ¼ 1941; i.e., when the tube is

completely filled with motor particles. The curve represents the analytical solution, the open circles the

Monte Carlo data [42].
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attains its maximum value maxðJb=vbÞ ¼ 1=4 for rb ¼ 1=2; rub ¼ ð�=padÞ=ð1þ
ð�=padÞÞ and [42]

N̄ ¼
1

2
þ

�=pad
1þ �=pad

Nch , (6.7)

and vanishes at N̄ ¼ 1þ Nch; i.e., when the tube is completely filled. The example
shown in Fig. 14 corresponds to the parameter values Nch ¼ 1940 and �=pad ¼ 10�4

which implies that the maximum is located at N̄ ’ 0:69:
For small unbinding probability �o ¼ 2�=3; the ratio �=pad becomes small, and the

bound current Jb exhibits a rather narrow peak which is located at small motor
particle numbers; this location attains its minimum value at N̄ � 1=2 in the limit of
zero �=pad: Thus, for small �=pad; the motor transport is dominated by jams and the
bound current Jb monotonically decreases for 1=2oN̄o1þ Nch; i.e., for almost all
accessible motor particle numbers. For small sticking probability pad; on the other
hand, the ratio �=pad becomes large, and the peak of the bound current is shifted
towards large motor particle numbers. The location of the peak now attains its
maximal value N̄ � 1=2þ Nch in the limit of zero pad; i.e., very close to complete
filling of the tube. In this latter case, the current Jb increases monotonically with the
number density N̄ for 0oN̄o1=2þ Nch:
The largest possible value for the unbinding probability is �o ¼ 1 or � ¼ 3=2: In

this limit, the peak is located at N̄ ¼ 1=2þ 3Nch=5; which is roughly in the middle of
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the accessible range of motor particle densities. Thus, this peak is again rather broad
provided the number of unbound channels, Nch; is large.
6.2.3. Tubular compartment with closed orifices

The tube system considered in the previous subsection was translationally
invariant parallel to filament and tube axis. The simplest way to break this
translationally symmetry is by closing the orifices at the tube ends as indicated in Fig.
15. This leads to nonuniform densities both for the bound and for the unbound
motors which now depend on the coordinate x parallel to the filament.
When bound to the filament, the motor particles walk again in a certain direction,

say from the minus end to the plus end as in Fig. 15. However, when the bound
particles reach the plus end, they can no longer step forward because of the closed
orifice and thus will get stuck. The mutual exclusion or hard core repulsion of the
bound motors now leads to the formation of a traffic jam which spreads from the
plus towards the minus end. The jam is not completely static, however, since
the bound motor particles can detach from the filament with small but finite
unbinding probability �o: Therefore, once in a while, a motor particle will leave the
jam by unbinding from the filament which creates space for some forward steps
within the jammed region. In addition, the jam acts as a source of unbound motor
particles, and the density of these unbound particles becomes nonuniform as well.
Indeed, a density gradient of the unbound motor particles builds up with a higher
density close to the plus end and a lower density close to the minus end. This
density gradient leads to diffusive backflow of the unbound motor particles
and to stationary states in which the bound current is balanced by this backflow
current [40].
Some density profiles rb ¼ rbðxÞ for the bound motor particles are shown in Fig.

16(a). The three densities displayed in this figure correspond to three different motor
particle numbers N. The tubular compartment has again length L ¼ 200‘ and radius
R ¼ 25‘ or channel number Nch ¼ 1940 which leads to a total number of 200� 1940
lattice sites. For N ¼ 40; the bound density profile develops a rather short jam close
to the plus end at x ¼ 200‘: This jam spreads towards the minus end with increasing
+

Fig. 15. Tubular compartment with closed orifices. The motor particles which arrive at the plus end get

stuck until they unbind from the filament. Because of their mutual exclusion or hard core interaction, the

bound motor particles form a jam which spreads from the plus end and builds up a density gradient for

the unbound motor particles. The latter gradient induces a diffusive backflow of the unbound particles to

the minus end [40].
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Fig. 16. (a) Bound density profiles rb ¼ rbðxÞ and (b) bound current profiles Jb ¼ JbðxÞ as a function of

the coordinate x (in units of ‘) in a tubular compartment with closed orifices as shown in Fig. 15. The three
different profiles correspond to three different values of the motor particle number N. The tube has length

L=‘ ¼ 200 and radius R=‘ ¼ 25 corresponding to channel number Nch ¼ 1940 [40].
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N and covers most of the filament for N ¼ 150: As one reaches N ¼ 250; the filament
is completely covered and the density rb is almost equal to its maximal value, rb ¼ 1:
Thus, for intermediate values of the motor particle number N, the filament in the

closed tube consists of a crowded segment close to the plus end and a depleted
segment close to the minus end. The corresponding density profiles rbðxÞ of the
bound motor particles exhibit an interface between the crowded and the depleted
region as in Fig. 16(a) for N ¼ 40 and 150. The density profiles rubðxÞ of the
unbound motors have a similar shape but a much smaller magnitude. This steady
state represents a simple example for active pattern formation, i.e. , for a nonuniform
density pattern which is induced by active processes.
The density profiles lead to current profiles which vary with the filament

coordinate x as well, see Fig. 16(b). The current profile Jb ¼ JbðxÞ of the bound
motors can be obtained from

JbðxÞ ¼ vb rbðxÞð1� rbðxÞÞ � Db
q
qx

rbðxÞ (6.8)

with the bound state diffusion coefficient Db: In the cases discussed here, the
contribution arising from the bound state diffusion is relatively small and one has
JbðxÞ ’ vb rbðxÞð1� rbðxÞÞ to a good approximation. Thus, the current profile JbðxÞ

of the bound motors is small both in the depleted and in the jammed region but
exhibits a maximum in the interfacial region where the density profile rbðxÞ ¼ 1=2 as
shown in Fig. 16(b).
Since the motor particles cannot leave the closed tubular compartment, the

current profile JbðxÞ of the bound motors must be exactly cancelled, in the steady
state, by the current profile JubðxÞ of the unbound motors. Therefore, one has the
simple relation [40]Z

d2z JubðxÞ ¼ �JbðxÞ (6.9)
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between these two current profiles where the integration extends over the whole
cross-section of the tube. The overall transport along the filament can be
characterized by the average bound current

hJbi 


Z
dx JbðxÞ=L , (6.10)

which has again a maximum as a function of the motor particle density. In fact, the
functional dependence of hJbi on N̄ is quite similar to the corresponding dependence
of the uniform bound current Jb in the tubular compartment with periodic boundary
conditions, see Fig. 13.

6.2.4. Tubular compartments with motor particle reservoirs

The two types of tubular compartments discussed in the previous subsections are
characterized by a fixed number N of motor particles. Now, we will consider the
situation in which the tubular compartments are coupled to two reservoirs of motor
particles [42]. This coupling is again incorporated in the form of boundary
conditions at the two orifices of the tube, see Fig. 17.
At the minus orifice, the tube is coupled to a motor particle reservoir which

imposes the bound density rb;in at the minus end of the filament and the unbound
density rub;in at all other locations across this orifice. These two densities are taken to
satisfy radial detailed balance in analogy to (6.4). This condition is convenient from
a theoretical point of view but may not be easy to implement in an experimental
system. In addition, at the plus orifice, the tube is coupled to another motor particle
reservoir which imposes the bound density rb;ex at the plus end of the filament and
the unbound density rub;ex at all other locations across the orifice.
This system can exhibit three different phases—a low-density (LD) phase, a high-

density (HD) phase, and a maximal current phase—in close analogy to the phases
found in the asymmetric simple exclusion process in one spatial dimension. The
corresponding phase diagrams are shown in Fig. 18. As shown in this figure, the
precise form of the phase diagram depends on the relative length of filament and
tube. If the filament has the same length as the tube (as in all previous cases), one
obtains the phase diagram displayed in Fig. 18(a) which contains all three phases and
is, in fact, identical with the phase diagram of the asymmetric simple exclusion
process. On the other hand, if the filament length is somewhat shorter than the tube
length, the filament gaps act as diffusive bottlenecks and the maximal current phase
is lost for certain parameter values as shown in Fig. 18(b). Diffusive bottlenecks also
ρb,in

ρub,in ρub,ex

ρb,ex

+

Fig. 17. Tubular compartment with its two orifices coupled to two motor particle reservoirs. For the

orifice at the minus end, the bound motor density is rb;in and the unbound motor density is rub;in; for the
orifice at the plus end, the bound and bound motor densities are rb;ex and rub;ex; respectively [42].
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Fig. 18. Phase diagrams for two orifices coupled to two motor particle reservoirs. Case (a) corresponds to

the situation in which filament and tube have the same length with boundary conditions as in Fig. 17. The

phase diagram depends on the bound motor densities rb;in and rb;ex at the minus and plus end of the

filament. Case (b) corresponds to the situation in which the filament is somewhat shorter than the tubular

compartment. In this case, the phase diagram depends on the unbound motor densities rub;in and rub;ex at
the minus and plus orifice [42].
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affect the transport behavior of one-dimensional asymmetric simple exclusion
processes as shown in Ref. [57].
Within the LD phase, the density profile rbðxÞ of the bound motors is essentially

independent of x and satisfies rbðxÞ ’ rLDb with rLDb o1=2: Within the HD, the
bound density profile rbðxÞ is given by rbðxÞ ’ rHDb with rHDb 41=2: Finally, the
maximal current phase is characterized by rbðxÞ ’ 1=2 and a power-law decay of
the density density correlation functions.
The phase transitions between the LD and HD phases are discontinuous while the

transitions towards the maximal current phase are continuous. Therefore, a tubular
compartment coupled to motor particle reservoirs exhibits a variety of non-
equilibrium or active phase transitions. Even though the phase diagram depends on
the precise form in which these reservoirs are coupled to the tube, it should be
possible to realize such systems experimentally. One interesting example is provided
by essentially closed compartments which are pierced by a filament: for such a
system, the motor particles could only leave or enter when they are bound to the
filament.

6.3. Two species of motor particles

So far, we have considered a single species of motors which walk on the filaments
in a certain direction. In the cell, one has several species of motors which walk in
opposite directions. For microtubules, kinesin motors walk typically from the minus
to the plus end, whereas ncd motors walk from the plus to the minus end [3].
Likewise, myosin V and myosin VI motors walk towards the plus (barbed) and
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minus (pointed) end of actin filaments.4 The different motor species seem to compete
for the same binding sites on the filaments [60].
In order to mimic this situation, we now consider two species of motor particles,

‘plus’ and ‘minus’, which move into opposite directions. As indicated by the
notation, the plus motor particles move towards the plus end of the filament whereas
the minus motor particles move towards its minus end. As in the case of a single
motor species, we focus on the simplest compartment geometry which is again a tube
with a single filament and periodic boundary conditions, compare Fig. 13. The
following subsection is based on the results obtained in Ref. [61] where these model
systems were introduced and shown to lead to active phase transitions.

6.3.1. Composition variables

In general, the two species of motor particles can have a different size and can
occupy a different amount of space. For simplicity, we will take all motor particles to
have the same volume equal to ‘3 where ‘ is the lattice parameter of our lattice
models as before. This implies that the mole fractions of these motor particles are
equal to the corresponding volume fractions.
For a tubular compartment of length L and radius R which contains Nþ plus

motor particles and N� minus motor particles, the volume fractions of the plus and
minus motors are given by

rþ 

Nþ

pR2L
and r� 


N�

pR2L
, (6.11)

respectively, which implies the total motor volume fraction

r 
 rþ þ r� ¼
Nþ þ N�

pR2L
(6.12)

of all motor particles. The relative mole fraction C of the minus motor particles is
then given by

C 

N�

Nþ þ N�

¼
r�
r

with 0pCp1 . (6.13)

The system contains a majority of plus motors for 0pCo1=2 and a majority of
minus motors for 1=2oCp1:
The relative mole fraction C represents a useful control parameter for the system

considered here. On the one hand, C can be directly decreased or increased for an
motility assay by adding more plus or minus motors to the aqueous solution,
respectively. On the other hand, C is genetically controlled in the living cell which
regulates the gene activity for the corresponding motor molecules.
In general, the steady state of the system can be characterized by four populations

of motor particles: bound plus, unbound plus, bound minus, and unbound minus;
the corresponding numbers of motor particles are denoted by Nb;þ; Nub;þ; Nb;� and
Nub;�; respectively. The relative mole fraction Cub of the unbound motors is then
4The directionality of these molecular motors is sensitive to small changes in their molecular architecture

and can be reversed by genetic engineering, see, e.g., Ref. [58,59].
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given by

Cub 

Nub;�

Nub;þ þ Nub;�
. (6.14)

This quantity is useful in the limit of large tube radius R for which the number of
unbound motor particles becomes asymptotically equal to the number of all motor
particles. Thus, one has

Cub � C for large R . (6.15)

For periodic boundary conditions as considered here, the steady state is
translationally invariant parallel to the axis of the tube as for the case of a single
species of motor particles, see Section 6.2.2. The system can then be characterized by
four densities which are independent of the spatial coordinates: the bound and
unbound densities rb;þ and rub;þ of the plus motor particles as well as the bound and
unbound densities rb;� and rub;� of the minus motor particles. In this case, the
relative mole fraction of the unbound motor particles is also equal to

Cub ¼
rub;�

rub;þ þ rub;�
. (6.16)

6.3.2. Motor– filament and motor– motor interactions

In general, the two different species of motor particles may experience different
motor–filament interactions which would lead to different hopping probabilities for
single motor particles, compare Fig. 8. Indeed, the two types of motor particles may
have different bound state velocities, different walking distances, and different
sticking probabilities. However, all of these differences are expected to lead to
smooth variations of the transport properties of the system. In order to reduce the
number of model parameters, we will take all hopping probabilities for the plus and
minus motor particles to be identical apart from the fact that they move in opposite
directions. In particular, the bound state velocity of a single minus motor particle has
the same magnitude as the bound state velocity of a single plus motor particle, i.e.,

vb;� ¼ �vb;þ 
 �vb . (6.17)

Likewise, both species of motor particles will be characterized by the same
unbinding probability

�o;� ¼ �o;þ 
 �o (6.18)

and by the same sticking probability

pad;� ¼ pad;þ 
 pad . (6.19)

The two species of motor particles may also experience different types of
motor–motor interactions. First of all, all motors will again experience mutual
exclusion or hard core repulsion. In typical cases, the overall volume fraction r is
small, and the mutual exclusion is only effective for motors bound to the filament. In
addition, the motor particles could be subject to attractive pair interactions. If these
pair interactions were effective for the unbound motor particles, these particles
would have a tendency to form clusters or domains in the solution. We do not know
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of any experimental indications of such a behavior (even though it would be quite
interesting from a theoretical point of view to study how clustering or phase
separation of motor particles affects their transport along filaments). On the other
hand, there is some evidence for attractive pair interactions between kinesin
molecules bound to microtubules as will be discussed further below.
In the following, we will first consider the situation in which all motor particles

experience mutual exclusion or hard core repulsion but no additional pair
interactions. This leads to a smooth dependence of the steady-state currents on
the relative mole fractions. On the other hand, the system with two species of motor
particles undergoes a phase transition between two different steady states if two
bound motor particles of the same species effectively attract each other.

6.3.3. Motor particles without attractive interactions

First, let us consider the situation in which the plus and minus motors exclude one
another but do not experience any other type of interaction. In the limiting cases
with mole fraction C ¼ 0; the system contains only plus motors and is thus
equivalent to the systems discussed in subsection 6.2.2. For 0oCo1=2; one has a
majority of plus motors within the tubular compartment. For the parameters chosen
here, this also implies a majority of plus motors bound to the filament. With further
increase of the relative volume fraction C; the system is characterized by a majority
of minus motors until one reaches the limiting case C ¼ 1: The latter case is again
equivalent to the situation discussed in subsection 6.2.2.
As previously mentioned, the bound densities rb;þ and rb;� and the unbound

densities rub;þ and rub;� are independent of the spatial coordinates because of the
periodic boundary conditions. As in the case of a single species of motor particles,
one has radial detailed balance which leads to

�rb;�ð1� rubÞ ¼ padrub;�ð1� rbÞ (6.20)

with � ¼ 3�o=2 and the densities

rb 
 rb;þ þ rb;� and rub 
 rub;þ þ rub;� . (6.21)

The quotient of the two relations contained in (6.20) leads to

rb;þ
rub;þ

¼
rb;�
rub;�

, (6.22)

whereas the sum of these two relations implies that

�rbð1� rubÞ ¼ padrubð1� rbÞ . (6.23)

The latter relation is equivalent to (6.4) which expresses radial detailed balance for
the system with a single species of motor particles.
As in the single species case, the steady-state current is again generated by the

bound motors alone since there are no density gradients of the unbound motors. The
total bound current, Jb; has now two contributions arising from the plus and minus
motors. Mean field theory gives the explicit expression

Jb ¼ Jb;þ þ Jb;� ¼ vbðrb;þ � rb;�Þð1� rbÞ , (6.24)
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where the relation vb;� ¼ � vb;þ ¼ �vb has been used. Therefore, within mean field
theory, the current Jb is proportional to

mb 
 rb;þ � rb;� , (6.25)

which plays the role of an order parameter for the system [61].
If one now varies the relative mole fractions C; one finds a smooth variation of the

bound densities rb;þ and rb;� and, therefore, of mb and Jb: For 0pCo1=2; the
system contains a majority of plus motor particles which implies positive order
parameter mb40 and positive current Jb40: For 1=2oCp1; the system contains a
majority of minus motor particles which implies negative order parameter mbo0 and
negative current Jbo0: As the relative mole fraction is varied from Co1=2 to
C41=2; both mb and Jb change sign in a smooth fashion [61].
Therefore, if the different motor particles experience only hard core interactions,

the system does not exhibit any phase transition. Such transitions arise, however, in
the presence of additional, effectively attractive interactions between the bound
motors as explained in the next subsections.

6.3.4. Attractive interactions mediated by the filament

Some information about the interactions between bound molecular motors has
been obtained from decoration experiments using inactive (or nonmoving) motors.
First, these experiments clearly demonstrate mutual exclusion from binding sites of
the filaments. Second, there is evidence for an effectively attractive motor–motor
interaction mediated via the filament. Such an interaction is implied by the
coexistence of decorated and bare filaments, which has been observed both for the
decoration of actin filaments by myosin [62,63] and for the decoration of
microtubules by kinesin [64]. In the case of actin decoration, the motor–motor
interaction depends on the internal conformation of the actin filaments [63]. This
observation as well as experimental results on active kinesin in the presence of ATP
[65] suggest that a bound motor leads to a localized deformation of the filament
which promotes the binding of further motors on adjacent binding sites.
In order to incorporate these effectively attractive motor–motor interactions, a

bound motor is now taken to increase the sticking probability pad for another motor
of the same species to adsorb onto the adjacent filament site behind the bound motor
(the term ‘behind’ is used here with respect to the direction in which this motor
species walks). Likewise, the unbinding probability is taken to be reduced if another
motor of the same species is located on the nearest neighbor filament site in the
forward direction [61].
Let us assume that the binding rate pad is increased by a factor q and that the

unbinding rate �o is decreased by a factor 1=q if another motor of the same species
already occupies the forward neighbor site on the filament, see Fig. 19. These binding
and unbinding processes obey detailed balance [42]. For steps along the filament, on
the other hand, detailed balance is broken, and the corresponding rate a will, in
general, change to a=q0 with q0aq: We find that the system undergoes a phase
transition for fixed q0 and sufficiently large values of q. In order to eliminate one
parameter, we will focus in the following on the situation with q0 ¼ 1: For an



ARTICLE IN PRESS

εo εo /q εo εo q

πo qπo πo πo /q

+ + + +

++

(a)

(b)

Fig. 19. (a) Unbinding probabilities for plus motor particles which are bound to the filament and move,

on average, to the right as in Figs. 8 and 11. If the particle has no nearest neighbor in the forward

direction, it unbinds with probability �o: If it is behind another plus motor, it unbinds with the reduced

unbinding probability �o=q; where the interaction parameter q41 describes an effectively attractive

interaction between two motors from the same species. If it is behind a minus motor, it unbinds with the

enhanced unbinding probability �oq; and (b) sticking probabilities for plus motor particles (not shown)

which attempt to bind to an empty filament site. If the plus motor attempts to bind to a site behind a

bound plus or minus motor, the sticking probability is enhanced and reduced, and is given by poq and

po=q; respectively. The same unbinding and sticking probabilities apply if all plus motors shown here are

transformed into minus motors and vice versa [61].
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effectively attractive interaction between two motors of the same species, we have
q41: In the presence of a bound motor of the other species at the forward neighbor
site the unbinding rate is enhanced by a factor q, while the adsorption rate is reduced
by a factor 1=q; see Fig. 19.
6.3.5. Phase transitions between different steady states

For q ¼ 1; the system defined in the previous system corresponds to motor
particles which interact only via their mutual exclusion or hard core repulsion. As
one increases the interaction parameter q, one finds new system behavior
corresponding to a phase transition with spontaneous symmetry breaking. Thus,
the system is now characterized by a critical value qc for the interaction parameter q,
and qualitatively different behavior for qoqc and q4qc: An example for this
behavior is shown in Fig. 20. Inspection of this figure shows that both the order
parameter mb and the current Jb exhibit a hysteresis loop for q4qc which
corresponds to a discontinuous phase transition.
In the presence of the effectively attractive interactions, the two relations of radial

detailed balance become q-dependent and have the form [61]

� �rb;�ð1� rubÞ ð1� rbÞ þ qrb;� þ
1

q
rb;�

� �

¼ padrub;�ð1� rbÞ ð1� rbÞ þ
1

q
rb;� þ qrb;�

� �
ð6:26Þ

within mean field theory with � ¼ 3�o=2 and the various densities as defined
before.
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Fig. 20. (a) Order parameter mb ¼ rb;þ � rb;� and (b) total current Jb ¼ Jb;þ þ Jb;� as a function of the

relative mole fraction C of the two species of motor particles. Three sets of Monte Carlo data are shown:

the full circles, open diamonds, and open circles correspond to interaction parameter q ¼ 1 (hard core

interaction only), q ¼ 6; and q ¼ 15; respectively. The critical point of this system is at q ¼ qc ’ 7:9: Both
for q ¼ 1 and q ¼ 6oqc; the order parameter and the total current decrease smoothly with increasingC: In
contrast, for q ¼ 154qc; these two quantities exhibit a large hysteresis loop corresponding to a

discontinuous phase transition. The data for q ¼ 6 are relatively noisy which indicates the onset of critical

fluctuations.
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Now, consider the symmetric case in which the number of plus and minus motor
particles is equal, i.e., N� ¼ Nþ: In the limit of large tube radius R, this implies
rub;þ ¼ rub;� ¼ rub=2 irrespective of the behavior of the bound motors. In this case,
the relation (6.26) leads to two equations which can be solved for the bound motor
densities rb;þ and rb;� as functions of unbound motor density rub; interaction
parameter q, and probability ratio �=pad: This solution undergoes a continuous
bifurcation at the critical value [61]

qc 
 Zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ 3

p
with Z 


�

pad

1� rub
rub

. (6.27)

of the interaction parameter as shown in Fig. 21, which implies that the symmetric
system with an equal number of plus and minus motor particles undergoes a
continuous phase transition within mean field theory. The existence of such a
transition has been confirmed by Monte Carlo simulations [61]. For the parameter
values � ¼ 0:01; pad ¼ 0:1; and rub ¼ 0:1; mean field theory leads to the critical
interaction parameter qc ¼ 2:83 as follows from (6.27). The Monte Carlo simulations
lead to the estimate qc ’ 7:9 for the same set of parameters which shows that the
mean field value of qc is strongly increased by fluctuations.
The order parameter mb ¼ rb;þ � rb;� vanishes for qoqc; but attains a finite value

for q4qc which scales as mb � �ðq � qcÞ
1=2 close to the transition point. The Monte

Carlo simulations in Ref. [61] lead to

mb � �ðq � qcÞ
b with b ’ 0:35 . (6.28)

Likewise, the total current Jb behaves as

Jb � �ðq � qcÞ
w . (6.29)
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Fig. 21. (a) Order parameter mb ¼ rb;þ � rb;� and (b) total current Jb ¼ Jb;þ þ Jb;� as a function of the

interaction parameter q for the symmetric case with an equal number of plus and minus motor particles as

obtained within mean field theory. The system exhibits the critical interaction parameter q ¼ qc at which

both order parameter and total current vanish in a continuous fashion. As one moves further into the

steady state with broken symmetry, the order parameter increases continuously whereas the total current

exhibits again a maximum arising from the formation of traffic jams [61].
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Since the current is related to the order parameter via Jb ¼ vbmbð1� rubÞ
within mean field theory, this theory predicts the scaling relation w ¼ b and the
mean field value w ¼ 1=2: As one increases the interaction parameter q above q ¼ qc;
the system moves further into the steady state with broken symmetry, and the
order parameter increases continuously. In contrast, the total current exhibits
again a maximum arising from the formation of traffic jams for large values of q, see
Fig. 21(b).
In systems with several parallel filaments, the symmetry breaking leads to the

coexistence of traffic lanes with opposite directionality. This behavior is already
observable for a tubular compartment which contains two parallel filaments with the
same orientation as shown in Fig. 22. The system contains again the same number of
plus and minus motor particles. If one motor species starts to occupy one filament,
the other motor species attains a larger bulk concentration and is, thus, more likely
to bind to the other filament. Indeed, for q4qc; the two filaments are covered by
different motor species which then form two traffic lanes with opposite
directionality. Thus, the symmetry breaking provides a simple mechanism for
efficient transport between two reservoirs of cargo particles.
In Fig. 22, the minus motor particles occupy filament (1) whereas the plus motor

particles occupy filament (2). If the system has a finite volume, the state shown in
Fig. 22 corresponds to a quasi-steady state. Indeed, for a finite system, the
fluctuations in the motor particle densities will lead, once in a while, to another
quasi-steady state in which the plus motor particles occupy filament (1) and the
minus motor particles occupy filament (2). The time scale which governs the
transitions between these two quasi-steady states diverges in the limit of large system
volume.
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Fig. 22. (a) Tubular compartment with two parallel filaments (1) and (2), which have the same orientation,

and with an equal number of plus and minus motor particles. For q4qc; the symmetry of the system is

spontaneously broken and one obtains a quasi-steady state in which one filament is occupied by plus

motor particles, the other by minus ones. (b) Different bound currents for the steady state shown in (a) as

a function of the interaction parameter q. The plus motor particles generate the bound currents J
ð1Þ
þ and

J
ð2Þ
þ on filament (1) and (2), respectively; likewise, the minus motor particles generate the currents J ð1Þ

� and

Jð2Þ
� : Close to the critical value q ¼ qc of the interaction parameter, both types of motors walk on both

filaments.
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7. Self-organization in biomimetic nanosystems

This article has discussed various aspects of the movements of molecular motors
and motor particles which involve many length and time scales. In systems with
many interacting motor particles, our theory predicts a variety of cooperative
phenomena and self-organized processes which should be accessible to experiments:
build-up of traffic jams which strongly affect the transport properties of these
systems; active structure formation leading to steady states with nonuniform density
and current patterns; phase transitions between two different steady states in systems
with a single motor species in contact with motor particle reservoirs; phase
transitions between two different steady states in systems with two species of
molecular motors.
All of these phenomena and processes have been illustrated here for a particularly

simple geometry: a tubular compartment with a single filament. It is quite obvious
that these cooperative phenomena and self-organized processes are also present for
more complex arrangements of the filaments. One example is provided by centered
arrangement of filaments as discussed in Ref. [66]. Likewise, one may study more
complex transport phenomena such as (i) motor transport along filaments with
frozen defects or obstacles, see, e.g., Ref. [67], (ii) mutual transport of molecular
motors which may be effective in axons, or (iii) motor transport of regulatory
molecules which can locally change the motor activity.
The systems discussed here were characterized by the basic property that the

motors were mobile but the filaments were immobilized. It is also possible to
construct motor/filament systems for which the motors are immobilized and the
filaments are mobile. The cooperative behavior of these latter systems remains to be
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explored. On the other hand, more complex systems consisting of motor and
filaments which are both mobile have already been studied to some extent both for
kinesin/microtubule systems [68] and for myosin/F-actin systems [69].
The cytoskeletal motors discussed in this article are stepping motors which

generate pulling forces. Indeed, these motors can pull various types of cargo such as
vesicles. Filaments, on the other hand, can grow and then generate pushing forces.
Various motility assays have been constructed by which these filaments push against
a surface or colloidal particle. The growth of actin filaments can be site-directed by
surface-anchored molecules. One assay contains surface-anchored WASP proteins
which recruit Arp2/3 protein complexes and G-actin monomers to the surface in
order to initiate the growth of branched bundles of actin filaments [70]. More
recently, surface-anchored formin proteins has been shown to initiate the growth of
unbranched actin bundles [71]. Microtubules have been grown in vesicles [72], and
growing microtubules have been shown to buckle when they grow against a solid
obstacle [73].
From the experimental point of view, active biomimetic systems provide many

challenges such as (i) the construction of active transport systems for the sorting of
biomolecules, (ii) transport systems which can be switched by externally applied
Fig. 23. Schematic view of the information processing network within the living cell which is based on

DNA, various types of RNA, and proteins. The replication of DNA, the transcription of DNA into RNA,

and the translation of RNA into proteins require the activity of different molecular motors or assemblers

marked by an asterisk. All of these assemblers are themselves produced by these networks which implies

that the network cannot be taken further apart and, thus, has a certain minimal complexity. The formation

of the assembler complexes from proteins or proteins and RNA seems to occur spontaneously. For

simplicity, additional feedback loops of regulation from proteins and RNA to transcription and

translation have been omitted.
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forces, (iii) site-directed growth of actin filaments in vesicles, or (iv) the construction
of contractile myosin/actin bundles which would represent genuine ‘nanomuscles’.
All of these problems will be pursued in a forthcoming European network on ‘Active
Biomimetic Systems’.
Even though much has been achieved in the area of biomimetic nanosystems

during the last decade, there is still a large gap in complexity between the most
advanced biomimetic systems and simple unicellular organisms. Even the most
primitive organisms contain rather complex networks of different types of
biomolecules. One particularly intriguing example is provided by the information
processing networks which consist of DNA, RNA, and proteins, as shown in Fig. 23.
The flow of information from DNA to RNA to proteins, which is primarily
based on transcription of DNA into RNA and on translation of RNA into
proteins, requires the activity of several molecular motors or machines; in Fig. 23,
these motors are indicated by an asterisk. It is rather remarkable that the assembly of
these motors is also based on the same information processing networks. In this
sense, these networks are circular and entangled and it is difficult to see how
they may have evolved in nature or how one might build them up from simpler
building blocks.
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Appendix A. Driven Brownian ratchets

The general Brownian ratchets described in this appendix were introduced and
studied in Refs. [28–32] and represent extensions of the Smoluchowski or
Fokker–Planck equation as given by (3.2)–(3.4). The movement of the motor along
the filament is again described by a spatial coordinate, x. For cytoskeletal and other
linear motors, one useful choice for x is the displacement of the center-of-mass of the
motor parallel to the filament. For rotary motors, the variable x may represent an
appropriate angular coordinate. In addition, for a given value of x, the motor can
attain several internal states which are labeled by the discrete index m with m ¼

1; 2; . . . ;M :

A.1. Time evolution of probability distribution

The stochastic dynamics of the molecular motor is now described by the
probability densities Pmðx; tÞ to find the motor at position x and in internal state m.
For a given position x, the densities Pm may change (i) because of lateral diffusion in
state m which leads to lateral currents Jm or (ii) because of transitions between the
different internal states. Therefore, the probability densities Pm satisfy the continuity
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equations

qPmðx; tÞ=qt þ qJmðx; tÞ=qx ¼ Imðx; tÞ (A.1)

with the transition current densities Im: In order to discuss these equations, it will be
convenient to visualize the M internal states as M levels. In the following, the terms
‘internal state’ and ‘level’ are synonymous.
The lateral current Jm depends on the molecular interaction potential UmðxÞ

between the motor in internal state m and the filament. The corresponding reduced
potentials are defined by

VmðxÞ 
 UmðxÞ=T for m ¼ 1; 2; . . . ;M . (A.2)

We will assume that the x-dependence of the molecular interaction potentials
UmðxÞ exhibits a characteristic length scale corresponding to the size of a single step ‘
along the filament. It will also be convenient to consider periodic potential with
Umðx þ ‘Þ ¼ UmðxÞ:
Using the effective force potentials defined by (A.2), the lateral currents Jm have

the Smoluchowski– or Fokker–Planck form [19,74]

Jmðx; tÞ 
 �Dm
q
qx

V mðxÞ þ
q
qx

� �
Pmðx; tÞ , (A.3)

where the parameter Dm represents the small-scale diffusion coefficient for level m.
The corresponding friction coefficients are given by T=Dm as follows from the
Einstein relation.
The transition current densities Im depend on the transition rate functions Omn ¼

OmnðxÞX0 from state m to state n and have the generic form

Imðx; tÞ 

X

n

0
½�Pmðx; tÞOmnðxÞ þ Pnðx; tÞOnmðxÞ� , (A.4)

where the prime at the summation sign indicates that n is restricted to nam:

A.2. From ratchets to networks

The generalized ratchet models defined so far are rather general. It is now
convenient to further specify the transition rate functions and to take these functions
to be localized in space at the discrete set of positions x ¼ xk with k ¼ 1; . . . ;K and
0px1o 	 	 	oxKo‘: A convenient parametrization of such localized transition rate
functions is given by [28,30]

OmnðxÞ 

X

k

omnðxkÞ‘Odðx � xkÞ , (A.5)

where omnðxkÞX0 define the transition rates from level m to level n, ‘O5‘ represents
a molecular ‘localization’ length, and dðzÞ is Dirac’s delta function.
Using the parametrization (A.5) for the transition rate functions, these generalized

ratchet models can be mapped onto stochastic networks consisting of MK discrete
states or vertices ðk;mÞ; compare Fig. 5 [30,31]. In the steady state, the time-
independent probabilities Pstðk;mÞ to find the motor in state ðk;mÞ which are related
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to the original probabilities Pst
mðxkÞ via

Pstðk;mÞ 
 Pst
mðxkÞ‘O (A.6)

satisfy the steady-state master equation

0 ¼
X

n

0
½�Pstðk;mÞW ðk;mjk; nÞ þ Pstðk; nÞW ðk; njk;mÞ�

� Pstðk;mÞW ðk;mjk þ 1;mÞ þ Pstðk þ 1;mÞW ðk þ 1;mjk;mÞ

� Pstðk;mÞW ðk;mjk � 1;mÞ þ Pstðk � 1;mÞW ðk � 1;mjk;mÞ . ðA:7Þ

with the ‘vertical’ transition rates

W ðk;mjk; nÞ 
 omnðxkÞ , (A.8)

where the prime at the summation sign indicates nam:
The corresponding network is shown in Fig. 5. As indicated in this figure, the

network satisfies periodic boundary conditions along the x-direction, which
corresponds to the spatial displacement of the motor molecule, and has an arbitrary
number of transverse dimensions. As far as the corresponding stochastic dynamics is
concerned, the probability currents are conserved at each vertex.
Appendix B. Driven Brownian networks

In this subsection, we consider a network of possible motor states which are
represented by the vertices i of the corresponding graph. The motor can undergo
transitions from state i to state j with transition rates oij; the corresponding directed
edge or di-edge of the graph will be denoted by hiji: The probability PiðtÞ to find the
motor in conformation i now satisfies the master equation

qPiðtÞ=qt ¼
X

j

0
ðPjðtÞoji � PiðtÞoijÞ , (B.1)

where the prime indicates that the summation is restricted to jai:
In the steady state, the time-independent probabilities Pi ¼ Pst

i satisfy the
relationships

0 ¼
X

j

0
ðPst

i oij � Pst
j ojiÞ . (B.2)

This equation can be solved using a graph theoretic method which was introduced by
Kirchhoff in the context of electric circuits [75] and has been rederived in a variety of
contexts [76–79]. The Kirchhoff method is also discussed in textbooks on graph
theory, see, e.g., Refs. [80,81].

B.1. Graph theoretic solution for steady states

The network graph, G; is taken to have Nv vertices and Ne (nondirected) edges.
Each edge represents two directed edges or di-edges. Thus, if i and j are two vertices
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which are connected by an edge, the di-edge hiji points from i to j, whereas the di-
edge hjii points from j to i. By definition, the di-edge points towards its head
vertex and away from its tail vertex. In general, a cycle C of any graph is a subgraph
which consists of a closed walk, i.e., of an alternating sequence of vertices and
(nondirected) edges between those vertices where each vertex and each edge
occurs only once. For the networks considered here, it will be convenient to define
directed cycles or di-cycles. Such a di-cycle consists of an alternating sequence of
vertices and di-edges where every vertex is the head of precisely one di-edge and
the tail of one other di-edge. If we replace the di-edges of a di-cycle by the
corresponding (nondirected) edges, the di-cycle becomes a cycle. Therefore, each
cycle C corresponds to two directed cycles or di-cycles Cþ and C� with opposite
orientations.
A spanning tree, Tn; of the network graph G contains all vertices but no cycles

which implies that it has Nv � 1 (nondirected) edges. In general, there are many
different spanning trees which will be distinguished by the index n with n ¼

1; 2; . . . ;NT; where NT denoted the total number of spanning trees. From each
spanning tree Tn; one can construct an aborescence, An;i; [80] which converges on
the vertex i and which is obtained from the spanning tree by the following
assignment of directions: (i) all edges are directed in such a way that all vertices are
connected to either one or no outgoing di-edge; and (ii) the only vertex which is not
connected to any outgoing di-edge is the vertex i. This procedure can be applied for
each vertex i of each spanning tree Tn which implies that one has NTNv different
aborescences.
For each aborescence An;i; one can define the transition rate product

OðAn;iÞ 

Y
habi

oab , (B.3)

where the product includes all di-edges habi contained in the aborescence An;i: Since
each aborescence has Nv � 1 di-edges, the product contains the same number of
transition rates. Summation over all spanning trees for fixed vertex i defines the sum

Oi 

X

n

OðAn;iÞ , (B.4)

and a final summation over all vertices leads to the normalization factor

O 

X

i

Oi ¼
X

i

X
n

OðAn;iÞ. (B.5)

The steady-state distribution which satisfies the time-independent master equation
(B.2) is now simply given by

Pst
i ¼ Oi=O . (B.6)

Note that both Oi and O are multilinear in all transition rates oij which implies that
the steady-state distributions Pst

i correspond to ratios of two multilinear
polynomials.
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In order to characterize the steady state, one needs to determine the currents in
addition to the probabilities. The excess currents, DJst

ij ; through the di-edges hiji are
given by

DJst
ij 
 Pst

i oij � Pst
j oji ¼

1
O ½Oioij � Ojoji� . (B.7)

In this way, the excess currents are also expressed as ratios of two polynomials which
are multilinear in all transition rates.
Apart from the normalization factor 1=O; the excess currents DJst

ij are given by the
differences ½Oioij � Ojoji� which can be expressed in terms of subgraphs. In fact, many
terms cancel in the difference, and those terms, which survive after the cancellation,
can be identified with all spanning subgraphs of G which contain exactly one cycle and

for which this cycle goes through the edge between i and j. As previously mentioned,
each cycle C corresponds to two di-cycles Cþ and C� with opposite orientation.
Now, let us define di-cycles Cþ

ij;k and C�
ij;k which contain the di-edge hiji and hjii;

respectively. The index k indicates that there can be several such di-cycles. By
definition, one has C�

ij;k ¼ Cþ
ji;k; i.e., if one changes the orientation of Cþ

ij;k; one
obtains the di-cycle Cþ

ji;k through the di-edge hjii: The corresponding transition rate
products will be denoted by

OðCþ
ij;kÞ 


Y
habi

oab and OðC�
ij;kÞ ¼ OðCþ

ji;kÞ 

Y
hbai

oba , (B.8)

where the products include all di-edges of the corresponding di-cycles.
The (nondirected) cycle Cij;k is obtained from either Cþ

ij;k or C�
ij;k by replacing all di-

edges by the corresponding (nondirected) edges. In general, the cycles Cij;k do not
contain all Nv vertices of the network graph but only a subset of them. In order to
convert these cycles into spanning subgraphs without creating more cycles, one has to
‘attach’ a sufficient number of tree-like side branches to them; the resulting subgraphs
will be denoted by Bij;k;l : The index l indicates that each cycle Cij;k will, in general, lead
to several spanning subgraphs Bij;k;l which differ in their side branches. Each spanning
subgraph Bij;k;l defines two directed subgraphs Bþ

ij;k;l and B�
ij;k;l ; which are obtained by

the following assignment of directions: (i)Bþ
ij;k;l contains the di-cycle C

þ
ij;k whereasB

�
ij;k;l

contains the di-cycle C�
ij;k; and (ii) all side branches are oriented towards the cycle Cij;k:

Each ‘decorated’ di-cycle Bþ
ij;k;l has Nv vertices and Ne edges and leads to the

transition rate product

OðBþ
ij;k;lÞ 


Y
habi

oab ¼ OðCþ
ij;kÞ

Y
ha0b0i

oa0b0 , (B.9)

where the first product consists of Nv transition rates corresponding to all di-edges
habi contained in Bþ

ij;k;l and the second product corresponds to all di-edges ha0b0
i

contained in the side branches.
When expressed in terms of these transition rate products, the excess currents

defined in (B.7) have the general form

DJst
ij ¼

1

O

X
k;l

½OðBþ
ij;k;lÞ � OðB�

ij;k;lÞ� , (B.10)
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where the k-summation runs over all di-cycles, which contain the di-edge hiji; and the
l-summation runs over all possible ways to ‘decorate’ a given di-cycle with tree-like
side branches and, thus, to convert it into a spanning subgraph. Using the
factorization property (B.9), one finally obtains the expression

DJst
ij ¼

1

O

X
k

½OðCþ
ij;kÞ � OðC�

ij;kÞ�
X

l

Y
ha0b0i

oa0b0

0
@

1
A . (B.11)

Each term which contributes to the excess current DJst
ij in (B.11) is proportional to

DOij;k 
 OðCþ
ij;kÞ � OðC�

ji;kÞ ¼
Y
habi

oab �
Y
hbai

oba , (B.12)

i.e., to the difference in the transition rate products for the two di-cycles Cþ
ij;n and C�

ij;n

which differ only in their orientation. In this sense, the expression (B.11) for the
excess current DJst

ij represents a decomposition into all cycles which contain the
(nondirected) edge between i and j.

B.2. Some simple examples

A rather simple example is obtained if one studies a network consisting of a single
cycle as the one displayed in the left part of Fig. 6. This single cycle is now denoted
by Cij;1 and is taken to have Nv ¼ K vertices and Ne ¼ K edges. The vertices are
labeled by i ¼ 1; 2; . . . ;K : Using the general expression (B.11), the excess current
through the di-edge h12i is found to be

DJst
12 ¼

DO12;1

O
¼

1

O
o12o23 . . .oK1 � o1K . . .o32o21ð Þ , (B.13)

where O is defined by (B.5) and consists of terms with K � 1 transition rate factors.
All other edges of the cycle have the same excess current, i.e., DJst

12 ¼ DJst
23 ¼ 	 	 	 ¼

DJst
K1:
A rather similar expression for the excess current is obtained for a network which

consists of a single cycle with tree-like side branches. The cycle has again K vertices
and edges, whereas the total number of the vertices Nv and the total number of edges
Ne satisfy Nv ¼ Ne4K : The vertices of the cycle are again labeled by i ¼ 1; 2; . . . ;K :
In this case, the excess current for the di-edge h12i is given by

DJst
12 ¼

DO12;1

O

Y
ha0b0i

oa0b0 ¼
1

O
ðo12o23 . . .oK1 � o1K . . .o32o21Þ

Y
ha0b0i

oa0b0 ,

(B.14)

where the latter product runs over all di-edges ha0b0
i contained in the tree-like side

branches. Again, all other edges of the cycle have the same excess current as h12i
whereas all edges within the tree-like side branches have zero excess current.
The excess currents through the cycle edges as given by (B.13) and (B.14) vanish if

o12o23 . . .oK1 ¼ o1K . . .o32o21: This latter equality can be fulfilled for various
choices of the transition rates: (i) all rates of the cycle are equal, i.e., oij ¼ oji ¼ o;
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(ii) backward and forward rates of the cycle are pairwise equal, i.e., oij ¼ oji; or (iii)
2K � 1 rates of the cycle are arbitrary (and nonzero) and the 2Kth rate, say o12; is
given by o12 ¼ o1K . . .o32o21=o23 . . .oK1:
A nonzero current for the 1-cycle network is obtained, e.g., if all rates are equal to

o apart from the forward and backward rates o12 ¼ oþ d and o21 ¼ oþ d0

between the vertices 1 and 2 of the cycle. This leads to the current

DJst
12 ¼

oðd� d0Þ
NvKoþ NvðK � 1Þðdþ d0Þ=2

(B.15)

with DJst
12 ¼ DJst

23 ¼ 	 	 	 ¼ DJst
K1 and DJst

ab ¼ 0 for all di-edges habi of the tree-like
side branches.
Another relatively simple network contains a disjoint set of M cycles which are

connected either by a single vertex, a single edge, or a tree-like subgraph.
Furthermore, if we contract all edges which belong to a cycle, we obtain a tree.
Such a network represents ‘a tree of cycles’. For such a network, each cycle can carry
a different current, and the excess currents DJst

ij a0 if the di-edge hiji belongs to one
of those cycles, Cij;k: Each of these latter currents is proportional to the excess
quantity DOij;k as defined in (B.12).
The situation becomes more complex as soon as one has pairs of cycles which have

joint edges, pairs of cycles which are connected by several edges, or more than two
cycles which form cyclic chains. However, it is still possible, at least in principle, to
determine all possible cycles of a given network by the systematic procedure
explained in the next subsection.

B.3. Finite vector space of cycles

All (nondirected) cycles C of an arbitrary graph form a finite vector space over the
finite field f0; 1g; see, e.g., Ref. [82]. The vector addition, C1 þ C2; of two cycles C1

and C2 corresponds to the operation of symmetric difference applied to the edge sets
of these cycles. In general, the symmetric difference of two sets X and Y is defined by
X þ Y 
 ðX [ Y ÞnðX \ Y Þ:
A fundamental set of (nondirected) cycles, which provides a basis for the finite

vector space of cycles, can be constructed starting from an arbitrary spanning tree
Tn of the network graph G: Such a tree has Nv � 1 edges and Nch 
 Ne � Nv þ 1
chords which are those edges of G which do not belong toTn: If one adds one chord
to the spanning tree Tn; one obtains a subgraph with exactly one cycle. In fact, each
chord leads to a different cycle, and the set of Nch cycles, which are generated in this
way, provides a fundamental set. All other cycles and all disjoint unions of cycles can
be generated by vector addition of these fundamental cycles. Thus, the number of
cycles and disjoint unions of cycles is given by 2Nch which includes the empty set as
the union of no cycles. Without this empty set, one has 2Nch � 1 different cycles and
disjoint unions of cycles.
We now disregard all disjoint unions of cycles since they do not contribute

to the cycle decomposition of the excess currents DJst
ij as given by (B.11). If the

number of disjoint unions of cycles is denoted by Nduc; the number of cycles,



ARTICLE IN PRESS

R. Lipowsky, S. Klumpp / Physica A 352 (2005) 53–112 103
Ncy; is given by

Ncy ¼ 2Nch � 1� Nduc . (B.16)

This is also the maximal number of k-values which can contribute in the expression
(B.11) for the excess currents DJst

ij :

B.4. Equilibrium and detailed balance

In equilibrium with Pst
i ¼ P

eq
i ; all excess currents DJst

ij ¼ DJ
eq
ij vanish for all edges

of the network. The relation DJ
eq
ij ¼ P

eq
i oij � P

eq
j oji then implies that the probability

currents in the network are in detailed balance, i.e., the forward and the backward
probability currents are equal and, thus, satisfy the Ne relations

P
eq
i oij ¼ P

eq
j oji (B.17)

for all edges of the network graph.
If the equilibrium probabilities P

eq
i a0 for all vertices i, the detailed balance

relation (B.17) can be formulated in a slightly different manner by introducing the
‘energy landscape’

Ei 
 � lnðPeq
i Þ þ Eo , (B.18)

where Eo follows from the normalization of P
eq
i : The detailed balance relation (B.17)

is then equivalent to

expðEi � EjÞ ¼
oij

oji

(B.19)

for all edges. Note that the energy landscape Ei remains unchanged if we replace the
forward and backward transition rate constants oij and oji by tðijÞoij and tðijÞoji;
respectively, where tðijÞ represents an arbitrary function on the set of edges. In this
way, one can define many different stochastic processes which all lead to the same
equilibrium distribution.
Now consider any di-cycle C with K edges and perform K iterations of the detailed

balance relation P
eq
j ¼ ðoij=ojiÞP

eq
i until the full di-cycle has been completed. The

final probability must then be equal to the starting one, which implies thatY
hiji

oij

oji

¼ 1 or
Y
hiji

oij ¼
Y
hjii

oji for any cycle C (B.20)

which is equivalent toX
hiji

ðEi � EjÞ ¼ 0 for any C . (B.21)

Since these latter relations follow from the detailed balance equations (B.17) and
(B.19), they represent necessary conditions for these equations to hold. In fact, they
are also sufficient as follows from the explicit solution (B.11) for the excess currents
DJst

ij : Indeed, if the relation (B.20) is fulfilled for all cycles C; we conclude from (B.11)
that all excess currents vanish.



ARTICLE IN PRESS

R. Lipowsky, S. Klumpp / Physica A 352 (2005) 53–112104
For a given stochastic network, the global relations as given by (B.20) can be
checked without explicitly solving the master equation. In fact, it is not necessary to
check these relations for all cycles but only for a fundamental set of cycles. Indeed, if
(B.20) is valid for two cycles C1 and C2; it is also valid for C1 þ C2 where the plus
sign corresponds to the symmetric difference of the edge sets of the two cycles as
explained above.
Thus, the Ne detailed balance relations P

eq
i oij ¼ P

eq
j oji as given by (B.17) are

equivalent to the Nch ¼ Ne � Nv þ 1 relationsY
hiji

oij ¼
Y
hjii

oji for all cycles Cf (B.22)

which belong to a fundamental set of cycles. In this form, the detailed balance
relations are no longer local but have the advantage that they are expressed only in
terms of the transition rates which are considered to be the basic parameters of the
network.
Appendix C. Parameter mapping for motor walks

In this appendix, we describe the parameter mapping for the motor walks of
noninteracting motor particles. The first mapping introduced in Ref. [40] uses two
different time scales for the bound and unbound state of the motor particles and is
explained in the first subsections C.1–C.4. We also used a simplified mapping [41,42]
which is based on a single time scale and described in the last subsection C.5 below.
C.1. Time scales for bound motors

The bound movement of a single motor particle exhibits several time scales. The
basic time scale, tb; is taken to be the stepping time of a single molecular motor
which is the average time for a forward step of this motor molecule. For two-headed
kinesin, recent experiments indicate that this stepping time is 70 ms or smaller [6].
The dwell time, tdw; of the bound motor particle is the average time during which

it remains bound to a certain filament position without stepping forward (or
backward). This dwell time increases with decreasing ATP concentration since the
ATP molecules have to diffuse to the ATP adsorption domains of the motor heads.
For two-headed kinesins, this time scale becomes of the order of seconds for ATP
concentrations in the mM regime. As one increases the ATP concentration, the dwell
time decreases and reaches a constant saturation value which reflects the intrinsic
time scale of the motor cycle. For two-headed kinesin, this saturation concentration
is of the order of 1mM ATP.
The cycle time, tcy; of a single stepping motor consists of the sum of its dwell and

its stepping time, i.e.,

tcy ¼ tdw þ tb . (C.1)
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The three time scales tb; tdw; and tcy are determined by the molecular dynamics of a
single step.
In contrast, the walking time Dtb of a motor particle follows from the statistics of

many motor steps. This latter time scale represents the average time over which this
particle remains bound to the filament. Two-headed kinesin, e.g., makes of the order
of 100 steps before it unbinds from the filament. If Nst is the mean number of steps in
the bound state, one has Dtb ¼ Nsttcy:
C.2. Parameter mapping for bound motor particles

In the lattice models, the bound motor particle undergoes a discrete random walk
at discrete time steps tn 
 ntb: At each time step, the motor particle can make a
forward or backward step to a neighboring binding site of the filament with hopping
probability a and b; respectively. In addition, it can simply stay at the same binding
site with probability g or unbind from the filament with probability �o: These
probabilities are normalized via

aþ bþ gþ �o ¼ 1 . (C.2)

In terms of these probabilities and the basic scales ‘ and tb; one obtains the bound
state velocity

vb ¼ ðā� b̄Þ
‘

tb
(C.3)

with the reduced hopping probabilities

ā 
 a=ðaþ bþ gÞ and b̄ 
 b=ðaþ bþ gÞ , (C.4)

and the bound state diffusion coefficient

Db ¼ ½āþ b̄� ðā� b̄Þ2�
‘2

2tb
. (C.5)

The bound state velocity and the bound state diffusion coefficient determine the
randomness parameter, pr; as considered, e.g., in Ref. [83]. When expressed in terms
of the model parameters, the randomness parameter is given by

pr 

2Db

‘vb
¼

aþ b
a� b

�
a� b

aþ bþ g
. (C.6)

The dwell probability g determines the dwell time tdw of the motor particle via the
relation

tdw ¼ tbg=ð1� gÞ (C.7)

and the cycle time

tcy 
 tdw þ tb ¼ tb=ð1� gÞ . (C.8)
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Likewise, the walking time, Dtb; of the bound motor particle is related to the
probability �o via

Dtb ¼ tb
1� �o

�o

, (C.9)

which implies the corresponding walking distance

Dxb 
 vbDtb ¼ ‘
a� b
�o

(C.10)

where the relation aþ bþ g ¼ 1� �o has been used.
It is straightforward to invert these relations, i.e., to express the model parameters

in terms of measurable motor properties. As mentioned, the stepping time tb is, in
principle, accessible to experimental observation. Furthermore, this time scale can be
expressed as

tb ¼
1þ z
1� z

� pr

� �
‘

vb
with z 


b
a
¼

b̄
ā

(C.11)

and the randomness parameter pr as given by (C.6). The parameter z represents the
ratio of the backward and forward hopping probabilities; if backward steps are rare
compared to forward steps, one has z ’ 0: The relation (C.11) expresses the stepping
time tb in terms of ‘; vb; z; and pr:
The relation (C.7) between the dwell probability g and the dwell time tdw implies

g ¼
1

1þ tb=tdw
. (C.12)

The relation (C.9) between the unbinding probability �o and the walking time Dtb
implies

�o ¼
1

1þ Dtb=tb
. (C.13)

It then follows from the relation (C.3) for the bound state velocity vb that the
forward and backward hopping probabilities, a and b; can be expressed as

a ¼
1

2
ð1� �oÞ 1þ

tbvb

‘

� �
� g

h i
(C.14)

and

b ¼
1

2
ð1� �oÞ 1�

tbvb

‘

� �
� g

h i
. (C.15)

Alternatively, one may also use the relation (C.10) for the walking distance Dxb in
order to obtain

a ¼
1

2
1þ

Dxb

‘
�o � �o � g

� �
(C.16)
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and

b ¼
1

2
1�

Dxb

‘
�o � �o � g

� �
. (C.17)

C.3. Diffusion of unbound motor particles

So far, we have focussed on the parameters which determine the movement of the
bound motor particle. After unbinding from the filament, the motor particle
undergoes nondirected diffusive motion which can be characterized by the unbound
diffusion coefficient Dub: This diffusion coefficient is related to the unbound friction
coefficient fub via the Einstein relation

Dub ¼ T=fub (C.18)

with temperature T (measured in energy units) where it has been implicitly assumed
that the unbound diffusion does not involve any active processes.
In vitro, the motor diffuses in an aqueous solution which contains ions and ATP

but behaves as a Newtonian fluid. In this case, the unbound friction coefficient fub is
given by the Stokes friction coefficient

fst ¼ 6pZRhyd (C.19)

which depends on the dynamic viscosity Z of the solution and on the effective
hydrodynamic radius Rhyd of the motor particle. At room temperature, this leads to
Dub ¼ ðZw=ZÞ � ð100 nm=RhydÞ � 2:4mm2=s with Zw ’ 0:9mPa s (
 cP) as appro-
priate for water. Thus, one has Dub ¼ 24mm2=s for a motor molecule with a
hydrodynamic radius of 10 nm, and Dub ¼ 2:4mm2=s for a motor with an attached
bead of radius 100 nm.
It is more difficult to estimate the diffusive motion of an unbound motor particle in

vivo. The cytosol is densely packed and contains many macromolecules, supramolecular
structures, and organelles, and the unbound motor particle may experience both
repulsive and attractive interactions with these ‘particles’. For repulsive interactions,
these other particles represent additional steric barriers for the diffusive motion of the
motor particle which will then exhibit a reduced diffusion coefficient. This reduction may
be estimated by comparison with the diffusion of inert, electrically uncharged particles in
fibroblasts for which the values Dub ’ 1:6 mm2=s and ’ 3� 10�3 mm2=s have been
measured for particle radii of 10 and 80nm, respectively [84]. Compared to water, this
corresponds to a size-dependent reduction factor of 10�1 and 10�3; respectively. The
Einstein relation (C.18) then implies that the unbound friction coefficient has increased
by a factor of 10 and 103 for 10 and 80nm particles, respectively. If the diffusing particle
experiences attractive interactions, it will undergo diffusion in the presence of trapping
sites and the overall motion will then be determined by the distribution of the
corresponding trapping times. In addition, the precise value of the diffusion coefficient in
living cells will depend on the type of these cell and on their cell cycle.
In general, one should expect that the diffusion coefficient Db of the bound motor

does not exceed the diffusion coefficient Dub of the unbound one since the bound motor
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experiences additional friction forces. The friction force for sliding the motor along the
filament should be governed by the friction coefficient fsl ¼ fub þ fco; where fco arises
from the contacts between motor particle and filament (if the surrounding medium is a
Newtonian liquid, this sliding friction arising from Stokes flow in the presence of the
filament). In addition, the walking motor has to undergo conformational changes which
involve some internal molecular ‘hinges’. The corresponding friction coefficient fin

might be defined in such a way that the bound diffusion coefficient Db satisfies

Db 
 T=ðfsl þ finÞ ¼ T=ðfub þ fco þ finÞ . (C.20)

The intrinsic friction coefficient should depend on the activity of the motor and, thus, on
the ATP concentration.
Comparison of (C.18) and (C.20) then implies that

DboDub . (C.21)

This relation should hold in general, i.e., even if the friction forces are nonadditive.
The inequality (C.21) is confirmed by in vitro measurements for single kinesin

motors. In this case, the bound diffusion coefficient was observed to be of the order of
10�3 mm2=s [83,85] and 5� 10�2 mm2=s [85] for two-headed and one-headed kinesin,
respectively. Thus, for a normal aqueous solution, the unbound diffusion coefficient
Dub is much larger than the bound state diffusion coefficients Db: In principle, one
could reduce Dub by a factor up to 10�2 if one changes the viscosity of the aqueous
solution by adding some solutes such as glycerol or sucrose (provided these additional
solutes do not suppress the catalytic activity of the molecular motors).
In vivo, the situation is different since the unbound diffusion coefficient is strongly

reduced by the various particles in the cytosol as discussed above. A single kinesin
motor attached to a 80nm vesicle, e.g., should be characterized by an unbound
diffusion coefficient Dub ¼ T=fub which is reduced by a factor � 10�3 compared to
the in vitro case. On the other hand, the internal friction coefficient fin should be
similar for in vivo and in vitro systems. In such a case, the friction of the bound motor
particle may be dominated by the unbound friction coefficient fub which implies that
the two diffusion coefficients Dub and Db will then be of the same order of magnitude.

C.4. Parameter mapping for unbound motor particles

In the lattice models used here, the one-dimensional lattice of the filament with
repeat distance ‘ is extended to a three-dimensional simple cubic lattice with lattice
parameter ‘: The unbound motor particles perform unbiased random walks on this
lattice, i.e., each motor particle hops to one of the neighboring lattice sites with equal
probability 1/6. This leads to the unbound diffusion coefficient

Dub ¼
1

6

‘2

t
, (C.22)

where t represents the basic time scale for the unbound motion.
In general, the time scale t will be different from the basic time step tb for the

bound motion. This difference has been explicitly taken into account in the Monte
Carlo simulations in Ref. [40]. In this latter simulations, the motor particles were
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taken to be single kinesin motors with two motor domains. The mapping of the
different motor properties onto the lattice model as described in the previous
subsections then leads to tb ¼ 5:9ms and t ¼ tb=1341 ¼ 4:4ms: It is not difficult to
incorporate these two different time scales into the Monte Carlo simulations: the
basic time scale is taken to be t and one performs 1341 moves of unbound motor
particles before one performs one move of a bound motor particle. Even though this
procedure is straightforward, it is rather time consuming and we have also used the
following simplified mapping.

C.5. Simplified parameter mapping

In the simplified mapping, we start from the relation (C.22) between the unbound
diffusion coefficient Dub and the basic time scale t for the unbound motion. This
time scale is now used for the bound movements as well. The unbinding probability
�o is then chosen via

�o 

1

1þ Dtb=t
(C.23)

and the bound state velocity vb determines the hopping probabilities a and b ¼ za via

a� b ¼ að1� zÞ ¼ ð1� �oÞ
tvb

‘
, (C.24)

where the normalization condition aþ bþ gþ �o ¼ 1 has been used.
Compared to the more elaborate parameter mapping with two time scales t and

tb; the simplified mapping leads to a larger value of g which is typically close to 1. In
addition, the simplified mapping does not incorporate the precise value for the
bound diffusion coefficient Db and the randomness parameter pr ¼ 2Db=‘vb as
defined by (C.6).
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[53] G.M. Schütz, Exactly solvable models for many-body systems far from equilibrium, in: C. Domb,

J.L. Lebowitz (Eds.), Phase transitions and Critical Phenomena, vol. 19, Academic Press, London,

2001, pp. 3–251.

[54] A. Parmeggiani, T. Franosch, E.Frey, Phase coexistence in driven one-dimensional transport, Phys.

Rev. Lett. 90 (2001) 086601/1-86601/4.

[55] V. Popkov, A. Rakos, R.D. Willmann, A.B. Kolomeisky, G.M. Schütz, Localization of shocks in
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