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This Supporting Information contains six appendices A – F with some tech-
nical details of our calculations. Appendix A reviews the parametrization
of the scale-free degree distribution P (k) and the behavior of the maximal
vertex degree kN . The configuration model used to generate the random
scale-free networks numerically is briefly described in Appendix B. In Ap-
pendix C, we determine the first derivative of the evolution function Ψ(Q) at
the unstable fixed point with Q = 1/2 and, thus, derive equation (12) of the
main text. Likewise, Appendix D contains the derivation of equation (14) of
the main text. In Appendix E, we determine the storage capacity of Hopfield
models on scale-free networks. Finally, we briefly discuss the extension of our
mean field theory to directed scale-free networks in Appendix F.

The Supporting Figures 5 – 10 are attached at the end of this document.

A. Degree distribution and maximal vertex degree

Consider a scale-free network with N vertices i characterized by vertex de-
grees ki. As explained in the introductory part of the main text, the degrees
ki are taken to satisfy k0 ≤ ki ≤ kN where k0 and kN denote the minimal and
maximal vertex degree, respectively. The degree distribution P (k) is taken
to have the explicit form

P (k) ≡ (1/A)k−γ for k0 ≤ k ≤ kN

≡ 0 otherwise
(A.1)

with the normalization factor A ≡ ∑
P (k). Equation (A.1) is identical with

equation (1) of the main text and is repeated here for convenience.

In the limit of large N , the degree distribution is normalizable for γ > 1.
The normalization factor A is then given by

A ≡
kN∑

k=k0

k−γ ≈ k1−γ
0 − k1−γ

N

γ − 1
. (A.2)
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The mean vertex degree is finite for γ > 2 and behaves as

〈k〉 =
kN∑

k=k0

kP (k) ≈ k0
(γ − 1)(1 − (k0/kN)γ−2)

(γ − 2)(1 − (k0/kN)γ−1)
. (A.3)

This expression has the asymptotic behavior 〈k〉 ≈ k0 for large positive γ
corresponding to a random network with uniform vertex degree k = k0. On
the other hand, the expression (A.3) implies the mean vertex degree

〈k〉 ≈ k0
ln(kN/k0)

1 − (k0/kN)
for γ = 2 (A.4)

which diverges as ∼ ln kN for large maximal vertex degree kN .

It is intuitively obvious that the maximal vertex degree must grow with
the vertex number N . As explained in the main text, we use the explicit
relation

kN = k0N
1/(γ−1) ∼ N1/(γ−1) (A.5)

as in Ref. [1]. In this latter reference, the scaling relation (A.5) was deduced
from the requirement that the average number of vertices with vertex degree
k ≥ kN is of the order of one, i.e., that

N

∑∞
k=kN

k−γ∑∞
k=k0

k−γ
� 1 . (A.6)

Since the scaling relation kN ∼ N1/(γ−1) as given by (A.5) affects the N–
dependence of our main results, we will now describe an alternative derivation
for this scaling relation.

In order to do this, we will start from the scale-free degree distribution
P∞(k) which is obtained from P (k) as in (A.1) but with kN ≡ ∞. The distri-
bution P∞ is used to generate N random numbers xi with i = 1, 2, ...N and
xi ≥ k0 which correspond to the vertex degrees ki of the N vertices i. Since
the normalization factor A as given by (A.2) behaves as A ≈ k1−γ

0 /(γ−1) for
large kN , the random variables xi are generated according to the probability
density

P∞(x) = (γ − 1) kγ−1
0 x−γ . (A.7)

The maximal value xmax of the N random numbers xi is then governed by
the probability density

ρ(xmax) = N (γ − 1) kγ−1
0 x−γ

max

⎛
⎝1 −

(
k0

xmax

)γ−1
⎞
⎠

N−1

. (A.8)

It follows from this latter probability density, which is normalized as well,
that xmax has the average value

〈xmax〉 = Nk0 B

(
γ − 2

γ − 1
, N

)
(A.9)
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where B(y, N) is the standard beta function [2]. In the limit of large network
size N , one has B(y, N) ≈ Γ(y) exp(y)N−y which implies

〈xmax〉 ∼ k0N
1/(γ−1) , (A.10)

i.e., the same k0– and N–dependence as for kN in (A.5). The same dependen-
cies are also obtained for the most probable value of xmax which corresponds
to the maximum of the distribution ρ(xmax) and is given by

x(mp)
max = k0

(
1

γ
+

γ − 1

γ
N

) 1
γ−1

. (A.11)

B. Numerical generation of scale-free networks

The random networks of the main text were generated by the so-called con-
figuration model [3] which consists of the following steps:
(i) First, we allocate a vertex degree ki to each vertex i with 1 ≤ i ≤ N
according to the prescribed degree distribution P (k). We then attach ki

half-edges (or ‘stubs’) to each vertex i. If the sum
∑N

i=1 ki is not an even
integer, the vertex degree ki of a randomly chosen vertex i is increased to
ki + 1.
(ii) Second, we randomly chose pairs of half-edges and connect them into full
edges until the network contains no longer any half-edges (or ‘stubs’).

Some examples of relatively small networks generated by this configura-
tion model are shown in Fig. 10. In these examples, relatively small values
for the minimal vertex degree k0 were used in order to obtain clear views of
the network structure. The networks studied in the main text correspond to
larger values of k0 which leads to rather dense network graphs.

In general, the configuration model may lead to multiple edges between
two vertices and to self-connections or self-loops [4]. These configurations
have, however, a relativley small statistical weight, and the conclusions of
our study remain unchanged if one uses more elaborate schemes that avoid
self-connections and multiple edges.

C. Derivation of equation (12)

First, we show that the evolution function Ψ(Q) as defined by Eq. (6) of the
main text has a first derivative

Ψ′(Q) ≡ dΨ(Q)/dQ (C.1)

that behaves as
Ψ′(1/2) ∼ ∑

k

k
3
2 P (k) (C.2)
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at the unstable fixed point with Q = 1/2.

The explicit form of the evolution function Ψ(Q) is given by

Ψ(Q) ≡ ∑
k

∑
m

′
(1 − 1

2
δm,k/2) k P (k)Bk,m Qm(1 − Q)k−m/〈k〉 (C.3)

as in equation (6) of the main text with the short hand notation

Bk,m ≡ k!

m!(k − m)!
≡

(
k
m

)
(C.4)

for the binomial coefficients. Starting from the explicit form (C.3) for the
evolution function, one finds after some computation that

Ψ′(1/2) =
∞∑

k=1

k∑
m>k/2

kP (k)
〈k〉 Bk,m21−k(2m − k)

=
[ ∞∑
k=1

k2P (k)
〈k〉 +

∞∑
m=0

(2m+1)2P (2m+1)
〈k〉22m B2m,m

]

−
[ ∞∑
k=1

k2P (k)
〈k〉 − ∞∑

m=1

(2m)2P (2m)
〈k〉22m B2m,m

]

=
∞∑

m=0

(2m+1)2P (2m+1)
〈k〉22m B2m,m +

∞∑
m=1

(2m)2P (2m)
〈k〉22m B2m,m

(C.5)

where the identity (j + 1)B2j+1,j = (2j + 1)B2j,j has been used.

The binomial coefficients can be estimated by Stirling’s formula which
leads to

B2m,m =
(2m)!

m!m!
≈ 22m

√
π

m−1/2 . (C.6)

If this relation is inserted into (C.5), we obtain

Ψ′(1/2) ≈
√

2/π

〈k〉
∑
k

k
3
2 P (k) (C.7)

as stated in (C.2).

Finally, we use the explicit form for the degree distribution P (k) as given
by (A.1) together with the expressions (A.2) and (A.3) for the normalization
factor A and the mean vertex degree 〈k〉. When these latter relations are
inserted into (C.7), we obtain

Ψ′(1/2) ≈
(

2k0

π

)1/2
(γ − 2)

(5
2
− γ)

(kN/k0)
(5−2γ)/2 − 1

1 − (k0/kN)γ−2
(C.8)

which implies

Ψ′(1/2) ≈
(

k0

2π

)1/2
ln(kN/k0)

1 − (k0/kN)1/2
for γ = 5/2 (C.9)
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and

Ψ′(1/2) ≈ 2

(
2k0

π

)1/2
(kN/k0)

1/2 − 1

ln(kN/k0)
for γ = 2 . (C.10)

Finally, the relation kN = k0N
1/(γ−1) as given by (A.5) implies the asymp-

totic behavior

Ψ′(1/2) ≈ 2
√

2k0/π N1/2/ ln(N) for γ = 2,

≈
√

2k0/π
γ−2
5
2
−γ

N
5−2γ

2(γ−1) for 2 < γ < 5/2,

≈ 1
3

√
2k0/π ln(N) for γ = 5/2, and

≈
√

2k0/π
γ−2
γ− 5

2

for γ > 5/2

(C.11)

in the limit of large network size N which is identical to equation (12) of the
main text and shows that Ψ′(1/2) diverges in this limit provided γ ≤ 5/2.

D. Derivation of equation (14)

As explained in the main text, the spin patterns on the scale-free networks
can be characterized by probabilities qk that a vertex with degree k is in the
spin-up state. The boundary patterns between the two completely ordered
spin patterns (or ground states) are characterized by the probabilities qk = q̂k

and the ordering probability Q = Q̂ with

Q̂ =
∑
k

k P (k) q̂k/〈k〉 = 1/2 (D.1)

as in equation (7) of the main text.

Now, let us assume that the system is in the all-spin-down state cor-
responding to the probabilities qk = q−k = 0 for all k and to the ordering
probability

Q− =
∑
k

k P (k) q−k /〈k〉 = 0 . (D.2)

We now want to determine the minimal number of spins, Ωmin that we have
to flip in order to reach another pattern which is just ‘beyond’ a boundary
pattern as given by (D.1) and, thus, evolves towards the all-spin-up state
under the majority rule dynamics. Comparison of (D.2) and (D.1) suggests
that it will be most effective to flip the spins located on the vertices with the
highest vertex degrees until one reaches a pattern with Q ≥ 1/2.
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Thus, let us flip the spins on all vertices with a vertex degree k within
the range k∗ ≤ k ≤ kN where the intermediate value k∗ represents the lowest
vertex degree involved in the spin flips. As a result, we obtain spin patterns
that are characterized by probabilities qk = q∗k with

q∗k = 0 for k0 ≤ k < k∗

= 1 for k∗ ≤ k ≤ kN

.

(D.3)

The intermediate value k∗ is now determined from the requirement that the
corresponding ordering probability Q = Q∗ satisfies

Q∗ =
∑
k

k P (k) q∗k/〈k〉 =
kN∑

k=k∗

k P (k)/〈k〉 = 1/2 (D.4)

If we insert the explicit form (A.1) for the degree distribution P (k) into (D.4),
we obtain the relation

k2−γ
∗ (1 − (k∗/kN)γ−2)

k2−γ
0 (1 − (k0/kN)γ−2)

= 1/2 (D.5)

which represents an implicit equation for k∗. The corresponding minimal
fraction Ωmin of flipped spins is given by

Ωmin =
kN∑

k≥k∗

P (k) =
k1−γ
∗ (1 − (k∗/kN)γ−1)

k1−γ
0 (1 − (k0/kN)γ−1)

. (D.6)

Combining the two relations (D.5) and (D.6), we finally obtain the minimal
fraction

Ωmin ≈
(

1 + N−(γ−2)/(γ−1)

2

)(γ−1)/(γ−2)

≈ 2(γ−1)/(γ−2) (D.7)

in the limit of large N which is identical to equation (14) in the main text.
This asymptotic estimate is in very good agreement with and, thus, fully
confirmed by the results of numerical simulations, see Fig. 4 of the main
text.

E. Hopfield models on scale-free networks

In this appendix, we generalize our mean field analysis to Hopfield models
[5, 6] on random scale-free networks. As before, the latter networks are
characterized by degree distributions P (k) as given by (A.1). If we denote
the graph of such a network by G and the edge between the vertices i and j
by 〈ij〉, the network’s adjacency matrix I is given by

Iij ≡ 1 for 〈ij〉 ∈ G
≡ 0 otherwise

(E.1)
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with 〈ji〉 = 〈ij〉 and Iij = Iji for the nondirected networks considered in
this appendix. In the original Hopfield model [5], complete graphs have
been considered which are characterized by Iij = 1 for all possible pairs of
vertices i and j. Diluted Hopfield models on random Poissonian networks
were previously studied in [6].

Each vertex i of the network has again two internal states described by
the Ising spin σi = ±1. The total spin pattern at time t will be denoted
by {σ(t)} ≡ {σ1(t), σ2(t), . . . , σN(t)}. In the Hopfield models, the coupling
constant Jij between two spins is determined from a set of stored random
spin patterns {ξµ} ≡ {ξµ

1 , ξµ
2 , . . . , ξµ

N} with µ = 1, 2, . . .S. The variable ξµ
i

represents the spin value of the random pattern µ on the vertex i and ξµ
i = +1

or −1 with equal probability. The total number of stored patterns is denoted
by S; the main result of this appendix is an estimate for the maximal possible
value of S.

The stored spin patterns {ξµ} determine the coupling constant Jij be-
tween two spins on vertices i and j via

Jij ≡ Iij
1√S

S∑
µ=1

ξµ
i ξµ

j , (E.2)

which leads to the local field

hi(t) =
∑
j

Jijσj(t) =
∑
j

Iij
1√S

S∑
µ=1

ξµ
i ξµ

j σj(t) (E.3)

on spin σi at time t. The factor 1/
√S is convenient since it leads to coupling

constants Jij that stay of the order of one for large S.

This local field determines the time evolution of the spin pattern via the
kinetic rule

σi(t + 1) = +1 with probability W [βhi(t)]

= −1 with probability W [−βhi(t)]
(E.4)

with the weight function

W(x) ≡ exp(x)

exp(x) + exp(−x)
=

1

1 + exp(−2x)
(E.5)

and the inverse effective temperature β = 1/Teff where this temperature
describes the noise intensity in the network.

The overlap Λ({σ(t)}, {ξµ}) between the actual spin pattern {σ(t)} at
time t and the stored pattern {ξµ} is defined as

Λ({σ(t)}, {ξµ}) ≡ 1

N

N∑
i=1

σi(t) ξµ
i . (E.6)
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We will now assume that, at time t = 0, the spin pattern {σ(0)} on the
network has a finite overlap with a certain stored pattern, say {ξν}, but has
zero overlap with all the other stored patterns. In the following, we will study
the time evolution of such a spin pattern.

After we have chosen a certain stored pattern {ξν}, the local field hi as
given by (E.3) can be divided up as

hi(t) = ξν
i

⎛
⎝ k∑

j=1

ξν
j σj(t) +

∑
µ �=ν

k∑
j=1

ξν
i ξµ

i ξµ
j σj(t)

⎞
⎠ /

√
S (E.7)

for a vertex i with vertex degree k (where ξν
i ξν

i = 1 has been inserted in the
second sum). The first and the second sum in (E.7) contains k and (S − 1)k
terms, respectively; each of these terms is equal to ±1.

If m of the k nearest neighbor spins of σi have the values σj(t) = −ξν
j , the

first sum in (E.7) is equal to k− 2m. Furthermore, if s of the (S − 1)k terms
in the second sum in (E.7) have the value ξν

i ξµ
i ξµ

j σj(t) = −1, this second sum
is equal to (S − 1)k − 2s. Thus, for given values of m and s, we obtain the
local field

hi(t) = ξν
i (Sk − 2m − 2s)/

√
S (E.8)

acting on the spin σi(t).

In order to determine the probability distribution for the variable m, we
now introduce the ordering probability Q(t) that, for any vertex i of the
network, a randomly chosen nearest neighbor vertex j is in the spin state
σj(t) = −ξν

j at time t. This ordering probability represents a generalization
of the corresponding probability as defined for the majority rule dynamics in
the main text. Note that we use the same symbol Q both for the majority rule
dynamics and for the kinetic rule (E.4) which governs the Hopfield models
discussed in this appendix.

The variable m varies over the range 0 ≤ m ≤ k. The corresponding
probability distribution P1(m, t) at time t can be expressed in terms of the
ordering probability Q(t) and is equal to

P1(m, t) = Bk,m (Q(t))m (1 − Q(t))k−m (E.9)

where Bk,m denotes the binomial coefficients as in (C.4).

The variable s varies over the range 0 ≤ s ≤ (S − 1)k. Since the S
stored random patterns are taken to be statistically independent, it should
be a good approximation to assume that the product ξν

i ξµ
i ξµ

j σj(t) attains the
two possible values ±1 with equal probability [6, 7]. It then follows that the
probability P2(s) to find a certain value of s is equal to

P2(s) = B(S−1)k,s/2(S−1)k . (E.10)
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In order to obtain an evolution equation for the ordering probability Q(t),
we now introduce the variables qk(t) which represent the probabilities for a
randomly chosen vertex i with degree k to be in the spin state σi(t) = −ξν

i

at time t. For a random network without vertex–vertex degree correlations,
the two quantities Q(t) and qk(t) fulfill the simple relation

Q(t) =
1

〈k〉
∑
k

kP (k)qk(t) . (E.11)

This relation is identical with equation (3) of the main text even though
both the ordering probability Q and the probabilities qk are now defined
with respect to the stored random pattern {ξν}.

We now insert the local field as given by (E.8) into the kinetic rule (E.4)
and sum over all possible values of m and s which have the joint probability
distribution P1(m, t)P2(s). In this way, we can calculate the probabilities
qk(t + 1) that a k–vertex is in the spin state σi(t) = −ξν

i at the next time
step. As a result, we obtain

qk(t + 1) =
k∑

m=0

(S−1)k∑
s=0

P1(m, t) P2(s)W [2β̄(m′ + s′)] (E.12)

with the rescaled inverse noise intensity

β̄ ≡ β/
√
S (E.13)

and the shifted indices

m′ ≡ m − k/2 and s′ ≡ s − (S − 1)k/2 (E.14)

and the weight function W(x) as in (E.5).

Finally, we sum equation (E.12) over all vertex degrees k and use the
relation (E.11) between the probabilities qk and the ordering probability Q
which leads to the evolution equation

Q(t + 1) = Φ(Q(t)) (E.15)

with the evolution function

Φ(Q) ≡ ∑
k

k P (k)

〈k〉 2(S−1)k

k∑
m=0

(S−1)k∑
s=0

C(k, m, s)Qm(1 − Q)k−m W [2β̄(m′ + s′)]

(E.16)
and

C(k, m, s) ≡ Bk,m B(S−1)k,s =
(

k
m

) (
(S − 1)k

s

)
(E.17)

where we have inserted the expressions (E.9) and (E.10) for the probability
distributions P1(m, t) and P2(s). The evolution equation (E.15) and the
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evolution function (E.16) correspond to the basic equations (5) and (6) in
the main text and represent the generalizations of these latter equations to
Hopfield models on scale-free networks.

The evolution equation (E.15) has the fixed point Q = 1/2 for any degree
distribution P (k). This follows from the expression (E.16) for the evolution
function Φ(Q) if one uses the symmetry Bk,m = Bk,k−m of the binomial
coefficients and the identity W(x) + W(−x) = 1 for the weight function.

The fixed point with Q = 1/2 is the only fixed point of the evolution
equation Eq. (E.15) provided the first derivative Φ′(Q) ≡ dΦ(Q)/dQ at this
fixed point satisfies Φ′(1/2) ≤ 1. On the other hand, if

Φ′(1/2) > 1 , (E.18)

the fixed point Q = 1/2 of Eq. (E.15) becomes unstable and two other stable
fixed points appear, one at Q = Q− < 1/2 and the other at Q = Q+ >
1/2. Thus, within mean field theory, the evolution of the binary patterns
as governed by the evolution equation (E.15) undergoes a bifurcation at
Φ′(1/2) = 1. An analogous bifurcation was previously found for the special
case of Hopfield models on random Poissonian networks [6].

The interpretation of this mean field bifurcation is as follows. The fixed
point at Q = 1/2 corresponds to zero order parameter y = Q − 1/2 = 0
and strongly disordered patterns. As long as Φ′(1/2) < 1, the spin pattern
{σ(t)} will evolve towards this disorder fixed point even if it started close
to the stored pattern {ξν} initially. Thus, the overlap between the evolving
spin pattern {σ(t)} and the stored pattern {ξν} goes to zero and the memory
about the stored pattern is lost. For Φ′(1/2) > 1, on the other hand, the
disorder fixed point at Q = 1/2 is unstable and the ordering probability Q(t)
approaches one of the two other fixed points with nonzero order parameter
y. This mean field dynamics represents the time evolution of spin patterns
{σ(t)} which are attracted towards an ensemble of patterns with nonzero
overlap with the stored pattern {ξν}.

Inspection of the expression (E.16) for Φ(Q) shows that the quantity
Φ′(1/2) depends on the number S of the stored spin patterns. In fact, Φ′(1/2)
decreases with increasing S, see below, which implies that the storage cri-
terion Φ′(1/2) > 1 is equivalent to S < Smax, i.e., to the requirement that
the number S of stored patterns does not exceed a certain maximal number
Smax, the storage capacity of the network. In the following, we will estimate
this latter quantity.

The first derivative Φ′(1/2) can be calculated explicitly from the evolution
function Φ(Q) as given by (E.16) . As a result we obtain

Φ′(1/2) =
∑
k

k2P (k)

〈k〉2Sk−1

k−1∑
m=0

(S−1)k∑
s=0

C(k, m, s) tanh[β̄(1 + 2m′′ + 2s′)] (E.19)
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with the shifted variable

m′′ ≡ m − (k − 1)/2 (E.20)

and s′ as in (E.14).

We now want to explore the possibility to store a large number S of
random patterns and, thus, study the behavior of Φ′(1/2) as given by (E.19)
in the limit of large S. Replacing the binomial distributions by normal
distributions and using β̄ = β/

√S as in (E.13), we obtain

Φ′(1/2) ≈ ∑
k

k2P (k)

〈k〉
∞∫

−∞

dz√
π

exp(−z2) tanh[β
√

2kz + β/
√
S)] ≡ f(β,S) .

(E.21)
The integral in this expression depends on two variables, the inverse noise
intensity β and the storage capacity S. In the low noise limit corresponding
to large β, the tanh–function becomes piece-wise constant and one obtains

Φ′(1/2) ≈ f(∞,S) =
∑
k

k2P (k)

〈k〉 erf(1/
√

2kS) (E.22)

with the error function

erf(y) ≡ 2√
π

y∫
0

dz exp(−z2) . (E.23)

For large S or small y ≡ 1/
√

2kS, this leads to

Φ′(1/2) ≈
(

2

πS
)1/2 ∑

k

k3/2P (k)

〈k〉 =
1√S Ψ′(1/2) (E.24)

with Ψ′(1/2) as in (C.7).

Finally, we insert the asymptotic form (E.24) into the storage criterion
Φ′(1/2) > 1 which leads to the inequality S < Smax with the storage capacity

Smax ≈ [Ψ′(1/2)]2 . (E.25)

It then follows from the asymptotic behavior of Ψ′(1/2) as given by (C.8)
that the storage capacity behaves as

Smax ∼ k0 N/ ln2(N) for γ = 2,

∼ k0 N (5−2γ)/(γ−1) for 2 < γ < 5/2, and

∼ k0 ln2(N) for γ = 5/2

(E.26)
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in the limit of large network size N and low noise intensity corresponding to
large β.

The above analysis for γ ≤ 5/2 is selfconsistent since, in this case, Smax

becomes large for large N , and it is then justified to replace the relation
(E.22) by its asymptotic form (E.24) which is valid for large S. This analysis
can be extended to arbitrary values of the inverse noise intensity β. One
then finds that Smax decreases monotonically with decreasing β but that the
asymptotic behavior as given by (E.26) is still valid for β > 0 in the limit of
large N .

For γ > 5/2, on the other hand, the asymptotic form (E.24) of Φ′(1/2)
leads to the maximal storage capacity Smax ∼ k0 which does not grow with
N for large N . The same conclusion is drawn if one uses the full expression
(E.22) in order to determine Smax in the low noise limit corresponding to
large β. Furthermore, Smax decreases again monotonically with decreasing
β. Thus, for γ > 5/2, Hopfield models on scale-free networks can only store
a finite number of patterns even in the limit of large network size N . This
latter conclusion is consistent with previous results on random Poissonian
networks [6].

So far, we have discussed the capability of the network to retrieve sin-
gle stored patterns. We have also studied the capability of the network to
discriminate between two or more stored patterns. At time t = 0, the spin
pattern is taken to have nonzero overlap with two stored random patterns
{ξν1} and {ξν2} and zero overlap with all other stored patterns. The spin pat-
tern will then evolve towards the fixed point or limit cycle which corresponds
to the stored pattern with the larger initial overlap.

F. Extension to directed scale-free networks

In many real-world networks, the interactions between the vertices are asym-
metric and the links or edges are directed which implies that these networks
are characterized, in general, by different in-degree and out-degree distribu-
tions. In a gene regulation network, for example, the product of gene A may
regulate the expression of gene B, but the product of gene B may not regu-
late the expression of gene A. It is not difficult to extend the majority rule
dynamics as defined by equation (2) of the main text to directed networks by
using an asymmetric adjacency matrix. As explained in this Appendix, we
find that γ = 5/2 again provides a sharp boundary for the pattern evolution
provided (i) the in-degree and the out-degree distributions are both scale-free
and (ii) the in-degree and the out-degree of the vertices are correlated.

In order to extend the majority rule dynamics to directed networks, we
introduce the asymmetric adjacency matrix D with matrix elements Dij = 1

12



if the vertices i and j are nearest neighbors and the directed edge between
them points towards vertex i. The majority dynamics is then governed by
the local fields hi ≡ ∑

j Dijσj.

Now, consider the probability Qup(t) that a randomly chosen up–stream
nearest-neighbor is in the spin-up state at time t. For a random network
without correlations between the degrees of different vertices, we obtain the
relation

Qup(t) =
∑
kout

koutPout(kout)

〈k〉out

q(kout, t) , (F.1)

where Pout(kout) is the vertex out-degree distribution, 〈k〉out is the mean
vertex out–degree, and q(kout, t) is the probability that a vertex of out–degree
kout has its spin pointing up at time t.

The probability Qup(t) is again governed by an evolution equation of the
form Qup(t + 1) = Ψup(Qup(t)). The explicit form of the evolution function
Ψup(Qup) can be obtained by the same analytical procedure used to derive
equation (C.3), which is identical with Equation (6) of the main text, for
nondirected networks. If both the minimal in–degree and the minimal out–
degree are taken to be larger than zero, one has Ψup(0) = 0, Ψup(1) = 1,
and Ψup(1/2) = 1/2, and the evolution equation for Qup(t) has again three
fixed points, two stable ones at Qup = 0 and Qup = 1, and one unstable one
at Qup = 1/2. The slope of the evolution function Ψup(Qup) at the unstable
fixed point scales as

Ψ′
up(1/2) ∼ ∑

kout

kout Pout(kout)
∑
kin

k
1/2
in P (kin|kout) , (F.2)

where P (kin|kout) is the conditional probability that the in-degree of a ran-
domly chosen vertex is kin provided its out-degree is kout.

As a first example, consider a network for which (i) the out-degree distri-
bution is Poissonian, i.e.,

Pout(kout) = (〈k〉out)
koute−〈k〉out/kout! , (F.3)

(ii) the in-degree distribution is scale-free, i.e.,

Pin(kin) ∼ k−γ
in , (F.4)

and (iii) there is no correlation between the in-degree and out-degree of a
vertex, i.e.,

P (kin|kout) ≡ Pin(kin) . (F.5)

For such a directed network, the relation (F.2) implies that Ψ′
up(1/2) is of

order unity for γ > 3/2 in the limit of large network size N but diverges with
N if γ < 3/2. This distinction is consistent with the recent study in [8].
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The form as given by Eq. (F.2) implies that the response behavior of the
directed network is fast provided (i) the in-degree and out-degree distribu-
tions are both scale-free, and (ii) the in- and out-degrees of the same vertices
are positively correlated.

As a second example, consider networks for which both the in-degree
and the out-degree distribution are scale-free and the conditional probability
behaves as

P (kin|kout) ∼ (kin + kout)
−γ−1 . (F.6)

For γ ≤ 5/2, this leads again to a divergence of Ψ′
up(1/2) in the limit of

large network size N . On the other hand, if the in- and out-degrees are
uncorrelated, the quantity Ψ′

up(1/2) will remain finite in the large N limit
as long as γ > 2. Therefore, a directed network can respond rapidly if it
exhibits positive correlations between the in-degree and the out-degree in
addition to its scale-free degree distributions.
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Supporting Figures
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Figure 5: Distribution of relaxation times for the same random networks as
in Fig. 1 and Fig. 2: (i) scale-free with γ = 2.25 and k0 = 5 (circles), (ii)
scale-free with γ = 3 and k0 = 10 (squares), and (iii) Poissonian (diamonds).
All three networks have the same mean vertex degree 〈k〉 = 20. For each
network, 2000 individual trajectories have been generated, each starting from
a strongly disordered pattern as defined by equation (9) of the main text.
For each of these trajectories, the relaxation time is equal to the number of
time steps until the trajectory has reached one of the two completely ordered
patterns. The probability to observe a relaxation time that exceeds 100 steps
is smaller than 10−2 in all three cases.
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Vertex Number N

P>

Figure 6: Probability P> of not reaching one of the two completely ordered
patterns within 100 time steps as a function of vertex number (or network
size) N . Each data point corresponds to an average of 100 different networks
with γ = 2.25 and k0 = 5. For each network, 2000 individual pattern tra-
jectories have been generated starting from a strongly disordered patterns as
defined by Eq. (9) of the main text.
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Figure 7: Distribution of decay times for three different random networks
with N = 218 vertices and mean vertex degree 〈k〉 = 10. For each net-
work, 2000 individual pattern trajectories have been generated starting from
a strongly disordered pattern as defined by equation (9) of the main text.
The decay time is equal to the number of time steps until a pattern with
|Q − 1/2| ≥ 1/4 is reached. The three networks are (i) scale-free with
γ = 2.148 and k0 = 2 (circles); (ii) scale-free with γ = 2.828 and k0 = 5
(squares); and (iii) Poissonian (diamonds). The inset shows the same data
but with the horizontal axis extended to 200 decay steps.
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Figure 8: Distribution of relaxation times for the same networks and for the
same ensembles of trajectories as in Figure 7. The relaxation time is equal
to the number of time steps until one of the two ordered patterns has been
reached. In contrast to the distribution of the decay times as shown in Figure
7, the distribution of the relaxation times is similar for all three networks.
This implies that, for this realization of the scale-free network with γ = 2.148
(circles), the approach towards the two completely ordered states is slowed
down for larger times, see Figure 8.
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Figure 9: Absolute value of the order parameter, |y| = |Q − 1
2
| as a func-

tion of time (in units of iteration steps) for the same three networks as in
Figures 7 and 8. Each data set represents an average over 2000 individual
trajectories which all start initially from strongly disordered spin patterns.
For the scale-free network with γ = 2.148 (circles), the absolute value of the
order parameter, |y|, quickly exceeds the value |y| = 1/4 but the subsequent
approach towards |y| = 1 is slower than in the case of the Poissonian network
(diamonds).
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Figure 10: Three networks obtained via the configuration model: (Upper
left) random scale-free network with N = 64 vertices and M = 140 edges
generated from a scale-free vertex distribution with γ = 2.5 and k0 = 2;
(Upper right) random scale-free network with N = 64 vertices and M = 96
edges generated from a scale-free vertex degree distribution with γ = 3 and
k0 = 2; (Bottom) random Poissonian network with N = 64 vertices and
M = 82 edges.
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