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Abstract

Movements of molecular motors on cytoskeletal filaments are described by directed walks

on a line. Detachment from this line is allowed to occur with a small probability. Motion in

the surrounding fluid is described by symmetric random walks. Effects of detachment and

reattachment are calculated by an analytical solution of the master equation. Results are

obtained for the fraction of bound motors, their average velocity and displacement. Enclosing

the system in a finite geometry (tube, slab) leads to an experimentally realizable problem, that

is studied in a continuum description and also numerically in a lattice simulation.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The interior of cells is both highly structured and dynamical. Active transport
therefore plays a crucial role to target molecules to the various compartments of the
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cell as well as to maintain and reorganize the cell’s structure. These tasks are
accomplished by the cytoskeleton, a network of protein fibers, and the cytoskeletal
motors, proteins which use the filaments of the cytoskeleton as highways or rails for
directed transport.
Cytoskeletal motors are enzymes which catalyze the hydrolysis of adenosine-

triphosphate (ATP) and, at the same time, use the free energy released from this
reaction to perform mechanical work and convert it into directed movements. These
motor molecules have been studied extensively during the last decade, both
experimentally and theoretically. The main emphasis has been on the properties of
single motor molecules, their motor mechanisms, and their directed walks along
filaments [1,2].
The nanometer size and piconewton forces of the molecular motors imply that the

typical binding energies are of the order of the thermal energy kBT and that the
motor–filament binding can be overcome by thermal fluctuations. On large time and
length scales (b1 s and b1mm), motors perform peculiar random walks, where
periods of directed active movements along filaments alternate with periods of non-
directed Brownian motion in the surrounding fluid after unbinding from a filament
[3–6]. (A related problem is the effective diffusion of an adsorbed particle along a
surface via bulk excursions [7].) In order to study these random walks, we have
recently introduced a class of lattice models, which are, on the one hand, generic in
the sense that they are independent of the specific motor mechanisms, but which we
can, on the other hand, also apply to describe specific motor molecules by adapting
the model parameters to the observed transport properties [4]. In addition, we can
easily incorporate motor–motor interactions such as the mutual exclusion from
binding sites of the filaments, which leads to ’traffic jam’-like density patterns and
various kinds of phase transitions [4,8,9].
In the following, we will review our results for the motors’ random walks obtained

from these lattice models and present some new results from the corresponding
continuum equations. The article is organized as follows: We introduce the lattice
models in Section 2. In Section 3, we summarize our analytical results for the
random walks on a lattice without confining walls. Compartments with confining
walls which are experimentally accessible are studied in Section 4, where we
summarize our numerical results and present new analytical results from a
continuum description of the random walks.
2. Lattice models

We have studied the random walks arising from many encounters with filaments
by mapping them to random walks on a lattice [4,5]. A line of lattice sites represents
a filament. Motors at these sites perform a biased random walk and move
predominantly in one direction. Per unit time, they make a forward step, a backward
step and no step with probability 1� g� d=2� �ðd � 1Þ=d; d=2; and g; respectively,
where d ¼ 2; 3 is the spatial dimension. With a small probability �=2d; they move to
each of the adjacent non-filament sites and thus unbind from the filament. At the
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non-filament sites the motors perform simple symmetric random walks and move to
each neighboring site with probability 1=2d (d denotes the spatial dimension) and
rebind to the filament with probability pad when they reach again a filament site.
Confining walls are implemented as repulsive boundaries, at which all movements
into the walls are rejected.
3. The motors’ random walks on a lattice

Consider a discrete time random walk on a two-dimensional square lattice with
lattice sites labeled by integer coordinates ðn;mÞ with the above transition
probabilities. The master equation for this dynamics reads [5,6]

Pn;mðt þ 1Þ ¼ 1
4

Pnþ1;m þ 1
4

Pn�1;m þ 1
4

Pn;mþ1 þ
1
4

Pn;m�1 ðma0;�1Þ ;

Pn;0ðt þ 1Þ ¼
1

4
Pn;1 þ

1

4
Pn;�1 þ 1� g�

�þ d
2

� �
Pn�1;0 þ

d
2

Pnþ1;0 þ gPn;0 ;

Pn;�1ðt þ 1Þ ¼ 1
4

Pnþ1;�1 þ
1
4

Pn�1;�1 þ
1
4

Pn;�2 þ
�
4

Pn;0 : ð1Þ

As initial condition we take an ensemble of particles at n ¼ m ¼ 0: Note that, for
simplicity, we have chosen the sticking probability pad ¼ 1:
The Fourier–Laplace transforms of the probability distribution along the filament

Pbðn; tÞ � Pn;0ðtÞ and of the full distribution Pn;mðtÞ are defined as

Pbðr; sÞ �
X1
t¼0

X1
n¼�1

eirnPn;0ðtÞ

ð1þ sÞtþ1
; Pðq; r; sÞ �

X1
t¼0

X1
m;n¼�1

eiqmþirnPn;m

ð1þ sÞtþ1
: (2)

The master equations is reduced to an algebraic equation

Pðq; r; sÞ ¼
1þ ½gð1� cos rÞ þ 1��

2
ðcos r � cos qÞ þ ivb sin r
Pbðr; sÞ

s þ 1� 1
2
cos q � 1

2
cos r

; (3)

where vb ¼ 1� g� d� 1
2
� is the average speed on the line. By integrating this result

over q we also obtain Pbðr; sÞ on the left-hand side. It thus satisfies a linear equation,
that is easily solved. We end up with the distribution

Pbðr; sÞ ¼ ½s þ ð1� gÞð1� cos rÞ þ 1
2
�ðcos r � e�mÞ � ivb sin r
�1 (4)

for the motors bound to the filament, where cosh m � 2þ 2s � cos r: The
distribution for the unbound motors follows from Eq. (3).

3.1. Properties of the motors bound to the filament line

Survival fraction: We extract the transport properties of the motors’ random walk
from (4). The value at r ¼ 0 gives the Laplace transform N0ðsÞ of the probability
N0ðtÞ �

P
n Pn;0ðtÞ that the motor is bound to the filament:

N0ðsÞ ¼
X1
t¼0

N0ðtÞ

ð1þ sÞtþ1
¼ ½ð1� �Þs þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1þ sÞ

p

�1 : (5)
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For small times this implies N0ðtÞ � 1� 2 �
ffiffi
t

p
=
ffiffiffi
p

p
þ �2t; which is a power series in

�
ffiffi
t

p
: For t51=�2; this is somewhat surprising: although the motors detach at times

 1=�; the recurrent behavior of the random walk brings them mostly back to the
filament, with half-integer powers in t due to diffusion. For times tb1=�2 we find
N0ðtÞ � ½1� 1=ð2�2tÞ
=

ffiffiffiffiffiffiffiffiffi
p�2 t

p
: The t�1=2 decay expresses that finally all motors

unbind, and agrees with scaling arguments [3,4].
Average position and speed on the filament line: Expression (4) for Pbðr; sÞ contains

much more information. At linear order in r we may derive the average position of
motor particles along the filament line, N1ðtÞ �

P
n nPn;0ðtÞ: We obtain for short

times N1ðtÞ ¼ vbt ½1� 8�
ffiffi
t

p
=ð3

ffiffiffi
p

p
Þ
: The average position of the motors bound to the

filament is given by n̄bðtÞ � N1ðtÞ=N0ðtÞ � vbtð1� 2 �
ffiffi
t

p
=3

ffiffiffi
p

p
Þ and their average

speed is v̄b � dn̄b=dt � vbð1� �
ffiffi
t

p
=
ffiffiffi
p

p
Þ; where vb is the average speed if the particles

did not leave the line. For large times one gets n̄bðtÞ � vb
ffiffiffiffiffi
pt

p
½1� 2=ð�

ffiffiffiffiffi
pt

p
Þ
=� and

v̄bðtÞ � vb
ffiffiffi
p

p
=2�

ffiffi
t

p
¼ ðp=2ÞN0ðtÞvb; confirming the scaling v̄bðtÞ  vbN0ðtÞ [3,4].The

effective motor velocity is reduced by a factor  N0ðtÞ; i.e., by the probability that a
motor is in the bound state. The relation v̄b  N0vb also applies to a simple two-state
random walk, where motion is directed in one of the states only. In contrast to the
simple two-state random walk, however, the probability N0 is time-dependent.

Dispersion and diffusion coefficient on the filament line: From the second
moment N2ðtÞ ¼

P
n n2Pn;0ðtÞ we may define the normalized second moment

n2b � N2ðtÞ=N0ðtÞ; the dispersion Dn2b � n2b � n2b and the diffusion coefficient,
DbðtÞ � ð1=2ÞdDn2b=dt: The results for the latter read at short t

DbðtÞ �
1

2
ð1� gÞ þ

1

6
ffiffiffi
p

p
v2b
�2

�3t3=2 þ
2g� 1

4

�
ffiffi
t

pffiffiffi
p

p (6)

and for large t

DbðtÞ �
v2b
2�2

4� p�

ffiffiffi
p

p

�
ffiffi
t

p

� �
þ

ð1� gÞ
ffiffiffi
p

p

4�
ffiffi
t

p þ
1

4
: (7)

The limiting value of the diffusion coefficient, Dbð1Þ  ðvb=�Þ
2 is large compared to

the diffusion coefficient of the one-dimensional random walk along the filament,
Dbð0Þ ¼ ð1� gÞ=2: This broadening of the distribution occurs since the unbound
motors lag behind the bound ones, which implies that also the rebinding motors lag
behind those that have been bound for some time.

The density profile on the filament can be evaluated analytically for large n and t,

Pn;0ðtÞ �
�n

2
ffiffiffiffiffiffiffi
pvb

p
ðvbt � nÞ3=2

exp �
�2n2

4vbðvbt � nÞ

� �
: (8)

The exponential decay for n " vbt expresses the large probability of unbinding for
tb1=�: Comparison with the results of Monte Carlo simulations shows very good
agreement for times larger than about 8000 time steps [6].
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3.2. Properties of the unbound motors

Eventually every motor will unbind and diffuse in the surrounding fluid.
We now discuss the effects of the filament on the behavior of the unbound
motors.

Position and longitudinal diffusion: One finds for the average velocity of unbound
motors at small times v̄ub �

2
3

vbð1�
3
8
�
ffiffiffiffiffi
pt

p
Þ and at large times v̄ubðtÞ � vb=½

ffiffiffi
p

p
�
ffiffi
t

p

:

Whereas each individual motor has zero average velocity in the fluid, the statistical
velocity v̄ub is non-zero, since it is driven by unbinding from the cloud of motors
moving on the filament. The longitudinal diffusion coefficient behaves at large times
as Dk ¼ ðp� 2Þv2b=½p�

2
 þ 1=4: The order of magnitude Dk  v2b=�
2 tells us that, like

on the line, longitudinal diffusion is strongly enhanced by the unbinding from and
binding back to the line. The perpendicular diffusion coefficient is modified much
less, D?ðtÞ � �

ffiffi
t

p
=ð2

ffiffiffi
p

p
Þ at short times, while at large times D?ðtÞ � 1=4�

1=ð4�
ffiffiffiffiffi
pt

p
Þ: So the transverse diffusion starts out very small, and finally reaches its

free space value.
The spatio-temporal density profile of the unbound motors can also be derived,

Pn;mðtÞ �
�ð�n þ 2jmjvbÞ

2
ffiffiffiffiffiffiffi
pvb

p
ðvbt � nÞ3=2

exp �
ð�n þ 2jmjvbÞ

2

4vbðvbt � nÞ

� �
: (9)

The presence of multiple tracks on microtubules can be modeled by internal states,
which keeps the problem solvable [5,6].
The same setup can be studied in d ¼ 3 [5,6]. The Fourier–Laplace transformed

density on the filament now reads

Pbðr; sÞ ¼
3 Iðr; sÞ

�þ ½3ð1� �Þs þ a ðe�ir � 1Þ � bðeir � 1Þ
 Iðr; sÞ
(10)

with a ¼ 1
2
ð�� 3dÞ and b ¼ 1

2
ð6� 6g� 3d� 5�Þ and involving the complete elliptic

integral Iðr; sÞ ¼ ð1=2pÞ2
R 2p
0 dq1 dq2 ½3þ 3s � cos r � cos q1 � cos q2


�1:
The main difference is now that the density of motors on the filament decays

faster, as  1=t; because of a reduced return probability. Lack of space prevents us to
discuss this any further, but we will present some results from continuum equations
for the three-dimensional case below.
4. Motor movements in confined geometries

4.1. Scaling arguments and numerical results

We have also studied these random walks in compartments with simple geometries
which are accessible to in vitro experiments [4]. In these geometries, a filament is
immobilized to a surface, and the diffusion of unbound motors is restricted by
confining walls. In the simplest case, the unbound motors can diffuse freely in the
half space above the surface to which the filament is immobilized. By placing the
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filament in a quasi-two-dimensional slab or in a rectangular or cylindrical tube,
diffusion can be restricted along one or two dimensions perpendicular to the
filament. We denote the linear extensions of the compartments by L?: Scaling
arguments and simulations show that, at large times with tbt��  L2

?=Dub;
when the motors experience the presence of the confining walls, these systems
exhibit the same scaling behavior as systems with the same dimensionality, but
without confining walls. For compartments with unconfined diffusion in d?

dimensions perpendicular to the filament, the effective velocity is given by vbN0

with N0ðtÞ  t�d?=2:
4.2. Continuum equations

The continuum equations for the random walks of the motors can be solved in a
similar way to the master equations of the lattice models. Since boundary conditions
are easily implemented in the continuum model, we use them to derive analytical
solutions for the half space, slab and tube geometry, see also Ref. [10]. We denote the
coordinate parallel to the filament by x and the coordinates perpendicular to it by
y ¼ ðy1; y2Þ: The continuum equations are given by

qp

qt
¼ DubDp þ dðyÞ½~�P � ~padp0
 ; (11)

qP

qt
¼ �vb

qP

qx
þ Db

q2P
qx2

� ~�P þ ~padp0 (12)

with the bound-state velocity and diffusion coefficient vb and Db; the unbound
diffusion coefficient Dub; ~� ¼ 2�=3; ~pad ¼ 2pad=3; and p0ðxÞ ¼ ‘2pðx; y ¼ 0Þ:

Full three-dimensional space: Let us start with the full three-dimensional space. We
use the Fourier–Laplace transformed form of Eqs. (11) and (12),

spðr; q; sÞ ¼ �Dubðr
2 þ q21 þ q22Þpðr; q; sÞ þ ~�Pðr; sÞ � ~padp0ðr; sÞ ; (13)

sPðr; sÞ ¼ 1þ ivbrPðr; sÞ � Dbr2Pðr; sÞ � ~�Pðr; sÞ þ ~padp0ðr; sÞ (14)

with the momentum q ¼ ðq1; q2Þ and with the same initial conditions as before. This
leads to

p0ðr; sÞ ¼

Z 1

�1

dq1
2p

dq2
2p

pðr; q; sÞ ¼
~�P � ~padp0
2pDub

Z 1

0

d ~q
~q

1þ ~q2
: (15)

To obtain a convergent integral, we introduce a cutoff ~qc as the upper integration
limit. This cutoff corresponds to a certain range of attraction or thickness of the
filament or a size of the motor and assures that the motor indeed returns to the
filament. Defining

I �

Z ~qc

0

d ~q
~q

1þ ~q2
¼
1

2
lnð1þ ~q2cÞ with ~qc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dub

s þ Dubr2

r
qc ; (16)
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we obtain p0 ¼ ~�P=ð2pI�1 þ ~padÞ and

Pðr; sÞ ¼ s � ivbr þ Dbr2 þ ~��
~� ~pad

2pI�1 þ ~pad

� ��1

� s � ivbr þ
~�

~pad

4pDub

lnðDubq2cs�1Þ

� ��1

; ð17Þ

where the second expression is valid for small s and r. As before, the binding
probability is obtained for r ¼ 0: For sufficiently small s, the cutoff term can be
neglected, and inverting the Laplace transform leads to N0ðtÞ ¼ Pðr ¼ 0; tÞ �
~pad=ð4p~�DubtÞ in agreement with the result from the lattice model.

Half-space: The case of the half-space can be treated by the method of reflection
and superposition, see e.g. Ref. [11]. The part of the three-dimensional solution for
y2o0 can be reflected at the surface, so that the superposition pðy2Þ þ pð�y2Þ is
obtained, which fulfills the boundary condition qp=qy2 ¼ 0 at y2 ¼ 0: The density
profile is symmetric under reflection at the plane y2 ¼ 0; so we obtain just twice the
solution for the full three-dimensional space and thus, also the double for the
velocity and the displacement.

Slab: Let us now consider a slab of height 2L?; where the filament is located at
y1 ¼ y2 ¼ 0 in the middle of the slab. The case where the filament is immobilized at
the lower surface of the slab follows then by reflection and superposition. The
boundary conditions are qp=qy2 ¼ 0 at y2 ¼ �L? or, equivalently, periodic
boundary conditions at y2 ¼ �L?: We can therefore expand the unbound density
into a Fourier series, pð:::; y2Þ ¼

P1

j¼�1 pð:::;ojÞe
iojy2=ð2L?Þ with oj ¼ 2pj=2L?:

Here and in the following we use the symbol o for discrete and q for continuous
momentum variables. For the other variables, we take the Fourier and Laplace
transforms in the same way as above. Eq. (15) becomes now

p0ðs; rÞ ¼

Z 1

�1

dq1
2p

1

2L?

X1
j¼�1

pðr; q1;oj ; sÞ : (18)

We integrate out q1 as before. In addition, we approximate the summation over j by
the term for j ¼ 0 and twice the integral

Sðr; sÞ �
X1
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s þ Dubr2 þ Dubo2

j

q ’
L?

p

Z oc

p=L?

doffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s þ Dubr2 þ Dubo2

p ; (19)

where we introduced again a cutoff oc: We obtain

Pðr; sÞ � s � ivbr þ ~�� ~� 1þ
4L?Dub= ~padffiffiffiffiffiffiffiffiffiffiffiffiffi

Dub

sþDubr2

q
þ 2L?

p

ffiffiffiffiffiffiffiffi
Dub

p
Sðr; sÞ

0
B@

1
CA

�12
64

3
75
�1

(20)

for small r. For motors which have not yet reached the boundaries of the slab,
i.e., for sbDubðp=L?Þ

2; we recover the result for the full three-dimensional space.
For larger times or s5Dubðp=L?Þ

2; the square root term is dominating in Eq. (20)
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and we obtain the two-dimensional result [10] with an effective reattachment rate
~pad=ð2L?Þ: In summary, at large times the probability to be bound to the filament
and, thus, the effective velocity vbN0 behave as

N0ðtÞ �
~pad=ð4p~�DubtÞ for t5t�� ;

~pad=ð4L?~�
ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffi
Dubt

p
Þ for tbt��

(
(21)

with the crossover time t�� ¼ L2
?=ðpDubÞ:

Tube: Finally, a tube with quadratic cross-section can be studied in the same way.
In this case we have two discrete momenta o1;i and o2;j corresponding to the
transverse coordinates y1 and y2; and Eq. (15) is now replaced by

p0ðs; rÞ ¼
1

ð2L?Þ
2

X1
i;j¼�1

pðr;o1;i;o2;j ; sÞ : (22)

As in the case of the slab, we approximate the double sum by the term for i ¼ j ¼ 0
plus an integral with a cutoff oc;

p0ðs; rÞ ¼
~�P � ~padp0

ð2L?Þ
2

1

Dubr2 þ s
þ

L2
?

Dubp2

Z oc

p=L?

2podo
Dubðr2 þ o2Þ þ s

 !
; (23)

which leads to

Pðr; sÞ � s � ivbr þ
4L2

?
~�

~pad

1

s
þ

L2
?

pDub
ln

1þ Dubo2
c=s

1þ Dubp2=L2
?s

� ��1
( )�1

(24)

for small s and r. For sbDubðp=L?Þ
2; i.e., for motors which have not yet reached the

boundaries, this expression yields again the solution for the three-dimensional case
without confining walls, and for larger times, it leads to

Pðr; sÞ � s 1þ 4L2
?

~�

~pad

� �
� ivbr

� ��1
(25)

and, therefore, to a constant probability to be bound to the filament, N0ðtÞ �

1=ð1þ 4L2
?
~�= ~padÞ; and a constant effective velocity v ¼ vb=ð1þ 4L2

?
~�= ~padÞ: The

crossover to the long-time regime is governed by the crossover time t�� ¼ vb=v �

~pad=ð~�4pDubÞ � L2
?=ðpDubÞ where the last expression holds for large L? and agrees

with the crossover time obtained for the slab.
5. Summary

Molecular motors exhibit peculiar random walks which arise from the repeated
binding to and unbinding from filaments. We have obtained analytical results for
these random walks in systems without and with confining walls by solving the
master equations of lattice models and the corresponding continuum equations.
Such random walks are relevant both for intracellular phenomena such as, for
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example, the ‘slow transport’ in axons [12] and for artificial systems in
nanotechnology in which molecular motors are used as transporters [13].
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