
Free fluid vesicles are not exactly spherical
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At finite temperature, vesicles perform small fluctuations around an average shape. In the limit of low
temperature or high bending rigidity, the fluctuations vanish and the vesicle approaches the energetically
favored configuration. In the absence of a volume constraint the configuration of lowest energy is a perfect
sphere. It is often assumed that the spherical shape is also the most probable shape for finite temperatures.
Consequently, a force would have to be applied to make the average shape of the vesicle anisotropic. In this
article it is shown that these assumptions are incorrect. At finite temperature, the most probable shapes of a
vesicle without volume constraint are prolate or oblate, where the probability for prolate shapes is slightly
larger. For larger deviations from the sphere the vesicle behaves as expected. The behavior at small deforma-
tions that is found for vesicles without volume constraint as well as in the presence of a finite osmotic pressure
is basically an entropic effect. It already occurs in a three-dimensional crossed dumbbells model system. In two
dimensions the same model favors the isotropic state.
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I. INTRODUCTION

Vesicles are closed membranes that can perform shape
fluctuations on roughly all length scales between the mem-
brane thickness and the vesicle diameter. In the simplest case
the bending energy of the vesicle can be written asf1,2g

Eel =
k

2
R s2Md2dA s1d

where k denotes the bending rigidity andM is the mean
curvature. The shapes of free and adhering vesicles that
minimize the free energys1d have been studied systemati-
cally f3,4g. These minimal free energy shapes do not include
the effects of thermally excited fluctuations which are
present for any finite temperatureT.0. The influence of
temperature on adhered vesicles has recently been studied
f5g.

With standard optical microscopy, only structures that are
larger than about 0.5mm can be resolved. The shape analysis
of vesicles is therefore typically applied to the visible, so-
called projected membrane surfacef6,7g, which is an aver-
aged, coarse-grained image of the true, microscopic vesicle
shapes. While the total microscopic surface area is approxi-
mately fixed, one finds a finite area fluctuation for the pro-
jected surface. Further, the bending rigidityk in Eq. s1d de-
pends on the length scale on which the integral is evaluated.
Fluctuations of a planar membrane can be expanded in a
Fourier series. In this case the average area fluctuationf6g
and the renormalized bending rigidityf8,9g can be calculated
exactly.

Several methods have been developed to measure the
bending rigidity of a vesicle. For a vesicle sucked into a
micropipet the bending rigidity can be determined from a
comparison with minimized energy shapesf10–12g or by
considering the fluctuations of the vesicle surface outside the

pipet f13,14g. For free vesiclesk can be measured by pulling
tethers out of the vesicle surfacef15–17g or by doing Fourier
analysis of shape fluctuationsf18–21g. For adhered vesicles
a method for obtainingk by measuring the temperature de-
pendence of the adhesion area has recently been proposed
f5g. In this article we restrict ourselves to vesicles of genus
zero, which have the same topology as a sphere.

For vesicles with a fixed reduced volume, smaller than
that of a sphere, vesicle shapes are preferentially prolate or
oblatef22g. The vesicle can change from prolate to oblate via
intermediate biaxial configurations. In addition, it was also
shown that, in the spherical limit, nontrivial shape transfor-
mations occur at constant elastic energyf23g. On the other
hand, previous studies on vesicles with free volume and large
enough bending rigidity have tacitly assumed that the corre-
sponding vesicle shapes oscillate around the spherical shape,
which has the lowest potential energy. Therefore, the shape
of such vesicles is typically expanded in spherical harmonics
f4,24g. In contrast, we show in this article that such vesicles
are not preferentially spherical. Instead, prolate and oblate
shapes are preferred. This anisotropy is of entropic origin. A
similar effect of entropy-driven spontaneous anisotropy has
also been found for closed random walk polymers without
bending stiffnessf25g.

In Sec. II we define a measure for the deviation of a
vesicle’s shape from a sphere. Some simulation details for
performing Monte Carlo simulations in order to measure
such deformations are given in Sec. III; the results are pre-
sented in Sec. IV. Subsequently, a minimal model for this
system is introduced in Sec. V and compared with a similar
model in two dimensionssSec. VId.

II. MEASURING THE DEVIATIONS FROM A SPHERE

In order to quantify the deviation of the vesicle from a
spherical shape, a suitable order parameter is needed. Aniso-
tropy of nonpolar media is typically measured by a second-
rank tensor. A good choice turns out to be the inertia tensor
of the compartment of the vesicle,*Electronic address: linke@mpikg-golm.mpg.de
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V
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1
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E

V

d3r8sr i − r i8d,

s2d

which is almost constant with respect to small-wavelength
fluctuations of the vesicle surface.

If the vesicle is approximately a sphere, the lowest defor-
mation mode transforms this sphere into an ellipsoid. Letei,
i =1,2,3, be theeigenvalues of the tensor of inertia with
respect to the center of mass, which we order in such a way
that e1 and e2 have the smallest difference, i.e.,ue1−e2u
ø uei −eju si Þ jd. We then introduce the deformation param-
eter

d ; 1 − 2
e3

e1 + e2
s3d

as a measure for the anisotropy of the vesicle shape. In the
case of an ellipsoid of revolution the eigenvector ofe3 is
parallel with the symmetry axis; the parameterd vanishes for
a sphere and converges to +1 for the maximum prolate and
to −1 for the maximum oblate configuration. Note that 0
øe3øe1+e2 and thus −1ødø1 by definition of the inertia
tensor.

III. MONTE CARLO SIMULATIONS

With the help of Monte Carlo simulations, we estimate the
probability distributionpsdd of the anisotropy of a vesicle at
finite temperatureT.1 For a given value ofd we define the
restricted partition sum

Zsdd ; E dG expS−
EsGd

T
Dd„d8sGd − d…, s4d

where the integration takes place over the whole configura-
tion space. With

Ztotal =E
−1

1

dl Zsld, s5d

and the restricted free energyf26g

Fsdd = − T ln Zsdd, s6d

the probability densitypsdd reads

psdd =
expf− Fsdd/Tg

Ztotal
. s7d

Previous algorithms were based on overlapping intervals
f27,28g. This algorithm turns out to be impractical and com-
putationally too demanding for the systems concidered here
since the Markov chain of Monte Carlo steps diffuses only
slowly within the configuration space. Therefore, we devel-
oped a modified algorithm which is based on nonoverlapping
intervals. For each valuedm, the size 2Dd of the interval is
chosen in such a way that one can obtain a reliable estimate

for ]F /]d at dm=d. The free energyFsdd is then obtained by
integration of]F /]d, where it is implicitly assumed thatFsdd
is smooth betweendm anddm+1.

In our Monte Carlo simulations, the fluid vesicle is repre-
sented by a closed, dynamically triangulated surface with
500 vertices and edge lengths according to the tethered-
beads modelf29–32g. Three types of Monte Carlo moves are
applied:sid independent moves of single vertices make 39%
of the attempted moves,sii d bond flipsf32g in which an edge
between two triangles is relocated to connect the formerly
unconnected vertices of the two triangles make 59% of all
moves, andsiii d changes of the deformation parameterd
within the intervaldm−Ddødødm+Dd are the remaining
2%.

The bond flips ensure membrane fluidity. Moves of type
siii d distinctly improve the simulation performance. In moves
of type siii d, the vesicle can be stretched or compressed with
respect to the center of mass and a principal axis of inertia,
which is chosen randomly with equal probability. Under this
procedure the eigenvectors remain unchanged. Thus, only
the detailed balance for stretching and compression parallel
to the chosen principal axis of inertia must be ensured. Let
mi andmi8 denote the maximum distance of the vesicle sur-
face from the center in the direction of the chosen principal
axis of inertia before and after a trial transformation, and let
psmi →mi8d be the conditional probability density for accept-
ing this deformation. With a probabilityqsmi8 umid for choos-
ing a stretching factormi8 /mi sgiven mid, detailed balance
demands

psmi → mi8d
psmi8 → mid

qsmi8umid
qsmiumi8d

=
expf− Esei8d/Tg
expf− Eseid/Tg

. s8d

With the probability density of the standard Metropolis algo-
rithm f33g

psmi → mi8d = minH1,expS−
Esmi8d − Esmid

T
DJ s9d

detailed balance is achieved ifqsmi8 umid=qsmi umi8d. The sim-
plest choice forq is

qsmi8umid = 5 1

2d
if mi − d ø mi8 ø mi + d,

0 else,
6 s10d

with a maximal deviationd.0. Due to the elastic energy of
the vesicle, configurations with negativem8 do not occur. We
usedd=0.03 which gives a sufficiently large acceptance rate
when applied to the tethered-beads model.

In general, the total energyE of a vesicle is given byE
=Eel+Eosm whereEel is the bending energy as given in Eq.
s1d andEosm is the osmotic pressure contribution. The spon-
taneous curvature is taken to be zero.

For the discretized vesicle surface, an adequate discreti-
zation of the local mean curvature is requiredf34,35g. We
have applied a triangle-based calculation scheme as used by
Kumar et al. f36g

1For simplicity, we set the Boltzmann constant to one. All simu-
lations were done atT=1.
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The fluid inside and outside the vesicle may contain large
molecules or particles which cannot diffuse through the
vesicle membrane. In this case the vesicle is affected by an
osmotic pressure that leads to the osmotic free energyf4,37g

Eosm= cexTSV − Vosmln
V

V0
D , s11d

wherecex is the concentration of such molecules outside the
vesicle,V is the vesicle volume,V0 is some reference volume
which depends on the number of degrees of freedom of the
osmotically active particles, andVosm is the osmotically pre-
ferred volume, defined asVosm=N/cex. Here,N is the number
of osmotically active particles inside the vesicle. Typical ex-
perimental osmolarities are so large that the vesicle volume
is almost constant.

IV. SIMULATION RESULTS

The global elastic properties of vesicles depend sensi-
tively on the bending rigidityk and the osmotic pressure that
acts on the vesicle. In the following the influence of the two
parameters on the average vesicle deformationd is studied
separately. All energies are given in units ofT while lengths
are in units ofÎA/4p whereA is the total area of the mem-
brane.

A. Zero osmotic pressure

For zero temperature, the vesicle surface that minimizes
the elastic energy is a sphere. Since this minimal elastic en-
ergy is a smooth function of the deformationd, it can be
expanded aroundd=0 for a spherical shape giving a gener-
alized forcefelsdd=−]Eel/]d,d for small values ofd. Usu-
ally, it is assumed that this relation holds also for finite tem-
perature.

The generalized force has been obtained in a sequence of
Monte Carlo simulations. Results are shown in Fig. 1. One
finds that in the range of 0.2& udu&0.5 the curves offelsdd
are approximately proportional tod, but for udu,0.2 the
forces show a surprising behavior. Atd. ±0.1 the forces

vanish with ]f /]d,0. Further, we havefsd=0d=0 with
]f /]d.0 sFig. 1d. This means, we have local minima in the
associated free energy atd< ±0.1 and a local maximum at
d=0 sFig. 2d. Thus, fluid vesicles tend to be either prolate or
oblate with deformation parameterd< ±0.1 rather than
spherical. Integration of the force shows that the minimum at
d.0.1 is slightly deeper than that atd.−0.1 sFig. 2d, i.e.,
the vesicles are preferentially prolate. This effect does not
depend on the number of vertices used in the triangulation as
shown in Fig. 3.

One should note that a prolate shape can be transformed
continuously into an oblate one via biaxial shapes in such a
way that no intermediate shape corresponds to a sphere. Dur-
ing this process, the asphericity parameterd changes its sign
discontinuously as the order of eigenvaluesei changes. For
example, if we havee1=4, e2=5+e, and e3=6 and varye
continuously around zero, then we observe a jump ind from
−1

3 to 3
11 at e=0. Thus, the maximum ofFsdd at d=0 is not a

barrier that the vesicle must overcome in order to change
from prolate to oblate.

B. Nonzero osmotic pressure

In the presence of osmotically active particles the vesicle
is exposed to an osmotic pressure

FIG. 1. Generalized forcefsdd=−]F /]d in units of the thermal
energyT for k=10T s1d and k=30T s3d. The lines are guides to
the eye.

FIG. 2. Free energyFsdd in units of the thermal energyT for
k=10T s1d andk=30T s3d. The lines are guides to the eye.

FIG. 3. Free energyFsdd swith arbitrary offsetd in units of the
thermal energyT for different numbers of verticesn=300 s1d, 400
s3d, and 500spd, k=15T. The lines are guides to the eye.
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Posm= cexTSVosm

V
− 1D , s12d

which would vanish atV=Vosm=N/cex. For a vesicle with a
surface areaA=4pR0

2 the volume cannot be larger thanV
=Vmax=s4p /3dR0

3, which corresponds to a spherical vesicle.
For Vosm/Vmax,1 the osmotic pressure favors a nonspherical
vesicle shape. ForVosm.Vmax it favors shapes of low aniso-
tropy. If N is increased whileVosm is kept constant, the av-
erage vesicle volume approachesVosm.

In Fig. 4, the restricted free energyFsdd is shown for
Vosm/Vmax=0.8, 1.2, and 2.4. ForVosm/Vmax=0.8 minima are
found atd. ±0.5 ssee Fig. 5 for typical conformationsd and
for Vosm/Vmax=2.4 there is one minimum atd.0, as ex-
pected from the considerations above. AtVosm/Vmax=1.2,
however, minima are found atd. ±0.05. Apparently, in this
case the entropy-induced asphericity is not compensated by
the bending rigidity and the osmotic pressure, which both
favor d.0.

In summary, we have found that if a vesicle is exactly
spherical, it must be stabilized by a sufficiently strong os-
motic pressure. Otherwise the stable shape of a vesicle at
finite temperature is slightly prolate or oblate.

C. Gravity effects

In many vesicle experiments the influence of the gravita-
tional force cannot be neglected. Thus, it is of great interest
to study the influence of gravity on the asphericity of vesicle
shapes.

We have simulated a fluid vesicle on a hard wallsat z
=0d without the influence of osmotic effects but in a homo-
geneous field with an associated energy contributionEgravi
=gbz wherew is the potential strength andbz is thez coor-
dinate of the center of mass of the vesicle shell. The vesicle
shell is assumed to have constant mass and spatial mass den-
sity. For the small valueg=5T the total minimum ofFsdd is
located atd.0.1, corresponding to a prolate vesiclesFig. 6d.
This is in accordance with calculations by Krauset al. for
reduced volumes ofv.0.8 in the stationary casef38g. For a
strong fieldg=500T the free energyFsdd has its minimum at
d.−0.5 so that the vesicles are preferentially oblatesFig. 6d.

V. CROSSED DUMBBELLS MODEL

The spontaneous asphericity of the vesicles appears to be
an entropic effect. This is tested by considering a rather
simple model system where all degrees of freedom of the
vesicle membrane are removed apart from the lowest fluc-
tuation mode in three dimensions. Let us consider six mass
points with equal masses located on the threespairwise per-
pendiculard coordinate axes. The distancesLi of the mass
points from the origin are equal for the two points on each
axis sFig. 7d, and the six mass points form three crossed
dumbbells which have their centers of mass always at the
origin. The values of the distancesLi are independently dis-
tributed according to the same probability density functionq
with qsxd=0 for xø0. This functionq is chosen in such a
way that it is centered aroundx=1 with a half-widthl.

FIG. 4. Free energyFsdd in units of the thermal energyT for
N=10 000 andVosm/Vmax=0.8 s1d, N=15 000 andVosm/Vmax

=1.2 s3d, N=30 000 andVosm/Vmax=2.4 spd, cex=3000, k=15T.
The lines are guides to the eye.

FIG. 5. Typical conformations ford=−0.5sleftd and 0.47srightd
with N=10 000,cex=3000,k=15T.

FIG. 6. Free energyFsdd in units of the thermal energyT for
k=15T and different homogeneous fieldsg=5T s1d, 50T s3d, and
500T spd. The lines are guides to the eye.
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With the definitionai ;Li
2, the inertia tensorI of Eq. s2d

is given by

I = 1a2 + a3 0 0

0 a1 + a3 0

0 0 a1 + a2
2 . s13d

Obviously, we haveuei −eju= uai −aju. For symmetry reasons
we restrict ourselves to the case where 0øa1øa2øa3. The
remaining cases are found by permutations, which gives an
extra factor of 6 in the partition function. As shown in the
Appendix the probability densitypsdd is approximately
given by

psdd < p0
udus3 − 2dd

s3 − dd2s1 − dd2 for d ! l s14d

with a normalization constantp0 which depends onq. Focus-
ing on almost isotropic configurations with very smalld, we
make a linear approximation ofpsdd aroundd=0,

psdd <
p0

4
udu. s15d

Obviously the probability density ford=0 is zero while it
increases with the same slope ford.0 andd,0. From Eq.
s14d it follows that for largerudu the prolate branch ofpsdd
with d.0 grows faster than the oblate one. This is shown in
Fig. 8.

The probability densitypsdd is related to the restricted
free energy byFsdd=−T ln psdd+F0 with a deformation-
independent offsetF0 and to the associated generalized force
by fsdd=Tp8sdd /psdd. Thus, for the minimized model the
amplitude of the generalized forcefsdd<T/d goes to infinity
asd goes to zero.

The crossed dumbbells model has three degrees of free-
dom which are completely independent and do not experi-
ence any crumpling. Nevertheless, the system exhibits some
spontaneous anisotropy which therefore appears to be a
purely entropic effect. In fact, for the crossed dumbbell sys-
tem, the avoidance of the isotropic state is extremely strong.
For vesicles, this effect is weakened by the mutual interac-
tions of the deformation modes. Furthermore, an additional
constraint arising, e.g., from a sufficiently strong osmotic
pressure can destroy the spontaneous anisotropy.

VI. DIFFERENT RESULTS IN TWO AND THREE
DIMENSIONS

In the previous section spontaneous anisotropy is found in
a simple three-dimensional model. The question is whether
the same effect can also be obtained in two dimensions.

Let us consider a two-dimensional analogsFig. 9d to the
minimized model in the previous section.

In two dimensions, the ratio of the square roots of the two
eigenvaluesa2 andb2 of the inertia tensor characterizes the
deformation state. In order to have a deformation measured
which does not depend on the order of the eigenvalues we
define

d2 ; maxHa

b
,
b

a
J ù 1. s16d

Let us assume thatq is the joint probability density func-
tion of a and b. By definition, it is symmetric in its argu-
ments. LetP denote the distribution function ofd2 andp its
density. Doing the same procedure as in the last section, we
find

Psd2d = p0E
b=0

`

dbSE
a=b

bd2

da qsa,bdD , s17d

FIG. 7. crossed dumbbells model in three dimensions. Descrip-
tion in the text.

FIG. 8. Probability density functionp for the deformation pa-
rameterd as in Eq.s14d.

FIG. 9. crossed dumbbells model in two dimensions. Descrip-
tion in the text.
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psd2d = P8sd2d = p0E
b=0

`

db bqsbd2,bd s18d

with the normalization constant

p0 =
2

E
0

`

daE
0

`

db qsa,bd
. s19d

If we assumeq to be a Gaussian centered arounda=b=m
with half-width l in the a=b direction, we get the intuitive
result

psd2d < p0s2 − d2d s20d

with a finite probability for symmetric configurationssd2

*1d in contrast to the counterintuitive result for three dimen-
sions.

Assumingq to be a Gaussian is not the only choice, but it
is easy to see thatpsd2d is positive and continuous atd2

ù1 for any reasonable choice ofq.

VII. DISCUSSION

The conformation of fluid three-dimensional vesicles has
been studied. Using Monte Carlo simulations, we have
shown that for these vesicles anisotropic configurations are
preferred to spherical shapes while oblate and prolate con-
figurations are almost equiprobable for preset reduced vol-
umes close to 1. This effect seems to be an entropic one since
it is found in a minimized model where all but entropic ef-
fects are removed. It depends on the dimension as it does not
exist in two dimensions.

APPENDIX: CALCULATIONS FOR THE CROSSED
DUMBBELLS MODEL IN THREE DIMENSIONS

In Sec. V the three-dimensional crossed dumbbells model
was introduced. We derive the distribution functionPsd0d,
which gives the probability that the anisotropy parameterd
of the minimized model introduced in Sec. V is smaller than
d0. For symmetry reasons we restrict ourselves to the case
0,a1øa2øa3.

Let us first assume thata3−a2ùa2−a1 which means

a3 ù 2a2 − a1 ù a2. sA1d

Furthermore, the integration range is restricted by

d =
2a3 − a1 − a2

2a3 + a1 + a2
ø d0,

which gives

a3 ø
1 + d0

2s1 − d0d
sa1 + a2d. sA2d

Since the inequalitiessA1d and sA2d have to be satisfied
simultaneously, we find

a2 ù a1 ù
3 − 5d0

3 − d0
a2. sA3d

This is only possible ifd0ø0.
Let us now assume the opposite casea3−a2øa2−a1 and

thus

0 , a1 ø 2a2 − a3 ø a2 sA4d

and

a3 ø 2a2. sA5d

In addition we have

d =
2a1 − a2 − a3

2a1 + a2 + a3
ø d0

and equivalently

a1 ø
1 + d0

2s1 − d0d
sa2 + a3d. sA6d

Depending on the value ofd, eithersA4d or sA5d defines the
upper boundary fora1: Sinceuduø1 it follows from sA6d that
a3ø fs3−5d0d / s3−d0dga2 which contradictsa3ùa2 for posi-
tive d0. The integration range for arbitrary positivea2 is thus
given by

a2 ø a3 ø 2a2 and 0ø a1 ø 2a2 − a3 sA7d

for 0ød0ø1. For −1ød0ø0 we get

* a2 ø a3 ø
3 − 5d0

3 − d0
a2 and 0 ø a1 ø

1 + d0

2s1 − d0d
sa2 + a3d

or

3 − 5d0

3 − d0
a2 ø a3 ø 2a2 and 0 ø a1 ø 2a2 − a3

* . sA8d

Having determined the integration ranges for alla1, a2,
and a3 with 0,a1øa2øa3, we are now able to give an
expression for the distribution functionP of d. Let us first

assumedù0. Referring to the above determined integration
rangessA3d and sA7d, we find
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Psdd = p̃0E
a2=0

`

da2qsa2dHE
a1=fs3−5dd/s3−ddga2

a2

da1qsa1d

3E
a3=2a2−a1

fs1+dd/„2s1−dd…gsa1+a2d

da3qsa3d

+E
a3=a2

2a2

da3qsa3dE
a1=0

2a2−a3

da1qsa1dJ sA9d

with the normalization constant

p̃0 = 6SE
0

`

da qsadD−3

. sA10d

If we assume thatd is small compared to the half-widthl of
q, we find for its derivative, i.e., the probability density ofd

psdd = P8sdd < p̃0lq3s1d
8ds3 − 2dd

s3 − dd2s1 − dd2 . sA11d

In the second case, we haved,0 and find according tosA8d

Psdd = p̃0E
a2=0

`

da2qsa2dHE
a3=a2

fs3−5dd/s3−ddga2

da3qsa3d

3E
a1=0

fs1+dd/„2s1−dd…gsa2+a3d

da1qsa1d

+E
a3=fs3−5dd/s3−ddga2

2a2

da3qsa3dE
a1=0

2a2−a3

da1qsa1dJ
sA12d

and with the same approximation as above,

psdd = P8sdd < p̃0lq3s1d
− 8ds3 − 2dd

s3 − dd2s1 − dd2 .

Obviously, the results for both cases can be written in a
unified expression

psdd = P8sdd < 8p̃0lq3s1d
udus3 − 2dd

s3 − dd2s1 − dd2 sA13d

or with p0=8p̃0lq3s1d

psdd < p0
udus3 − 2dd

s3 − dd2s1 − dd2 . sA14d
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