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ABSTRACT We study changes in curvature and elastic properties of lipid membranes induced by anchoring of long hydrophilic
polymers at low polymer surface concentrations (corresponding to the mushroom regime). The effect of anchored polymers on
the membrane spontaneous curvature is characterized by monitoring the changes in the fluctuation spectra and the morphology
of giant unilamellar vesicles. The polymers used in our study are fluorescently labeled and biotinylated l-phage DNA molecules
which bind to biotinylated giant unilamellar vesicles via a biotin-avidin-biotin linkage. By varying the amount of biotinylated lipid
in the membrane, we control the surface concentration of anchors. At low anchor concentrations, the spontaneous curvature of
the membrane increases linearly with the DNA concentration. The linear increase is consistent with theoretical predictions for
polymer surface concentrations in the mushroom regime. At higher anchor concentrations, which should still belong to the
mushroom regime, the vesicles undergo budding transitions. In this latter regime, the bud size is used to estimate the polymer-
induced membrane curvature.

INTRODUCTION

Every membrane can be characterized by an inherent spon-

taneous curvature, which determines the preferred direction

of bending. The concept of spontaneous curvature was first

introduced for monolayers by Bancroft and Tucher (1) and

later elaborated for bilayers by Helfrich (2). Numerous

studies have shown that the membrane spontaneous curva-

ture is an important parameter, which determines the mor-

phology of lipid vesicles (3,4) and polymerosomes (5,6),

influences the functioning of some transmembrane proteins

(7), and plays a role in biological processes, such as mem-

brane fusion (8). Giant unilamellar vesicles (GUVs) are closed

membrane sacks, encompassing fluid media with a linear size

in the range of 5–100 mm. In general, their spontaneous

curvature is close to zero, because the membrane is locally

flat. A nonzero spontaneous curvature can be induced by a

variety of mechanisms (9) such as an unequal number or

mismatch in the headgroup area of the molecules composing

each of the two leaflets of the bilayer (10), asymmetry in

the particle type or solution composition on both sides of

the membrane (11–13), flip-flop, pH or charge asymmetry

(14–16), etc.

The spontaneous curvature induced by asymmetric graft-

ing of polymers on the membrane is a property of special

interest, because the plasma membrane of living cells is as-

sociated with a large number of asymmetrically distributed

or anchored polymers. The intracellular leaflet of the mem-

brane is connected to the polymer network of the cytoskel-

eton, which determines the membrane shape. The extracellular

side is covered with anchored receptors and polysaccharides,

which form the so-called glycocalix. In addition to their var-

ious biological functions, all anchored polymers tend to curve

the membrane and, thus, to induce a spontaneous membrane

curvature.

In this article, we are concerned with the presumably sim-

plest polymer/membrane architecture: we study flexible poly-

mers for which one end provides the membrane anchor whereas

all other polymer segments experience effectively repulsive

interactions with the membrane. The anchored polymers then

form mushrooms at low surface concentrations and brush

states at high surface concentrations (17,18). In this article,

we will be only concerned with the mushroom regime.

A single mushroom anchored to the membrane exerts an

entropic pressure onto the adjacent membrane segment that

bends it away from the polymer (17–22). As a result, the

membrane segment assumes a conical shape close to the

anchor point, which relaxes into a catenoidlike shape further

away from this point. In addition, the polymer mushrooms

also increase the bending rigidity of the membranes (18,22).

The latter effect has been confirmed experimentally in micro-

emulsions (23).

The spontaneous curvature induced by single mushrooms

grows linearly with the surface concentration of the polymers

(18,19). As the surface concentration of the anchored poly-

mers is increased, the lateral diffusion of these polymers

leads to more frequent collisions between them. These polymer/

polymer collisions give rise to another contribution to the

spontaneous curvature of the membrane that is quadratic in

the surface concentration of the polymers (19,24).

Membrane curvature induced by anchored polymers has

also been studied experimentally by several groups (10,25–29).

In an attempt to develop a suitable platform for drug

delivery, Blume and Cevc (25) studied the circulation in the

blood stream of lipid vesicles sterically stabilized with hydro-

philic polymers. Membranes shielded by grafted polyethylene

glycol covalently attached to lipid molecules are long known

as stealth liposomes used in drug delivery (30). Model lipid
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membranes lack the stabilizing polymer network of the cyto-

skeleton in cell membranes. To simulate biological mem-

branes and to improve the mechanical stability of model

membranes, Ringsdorf et al. (26) (see also (31)) mimicked

the cytoskeleton with thermoactive polymers anchored to

lipid membranes. The elastic stretch and bending rigidity of

membranes decorated with water-soluble polymers was char-

acterized using the micropipette aspiration technique (32).

The physicochemical properties of lipid membranes with

grafted polymers were generalized in a recent review (33).

Of particular interest among reports on polymer-grafted

membranes are the studies performed on giant unilamellar

vesicles (GUVs) because these reflect the membrane behav-

ior on the size scale of the cell. In addition, their shape and

fluctuations encode information about the bilayer spontane-

ous curvature (16,34,35). Polymer anchoring was observed

to induce dramatic changes in the vesicle shape (10,27) and

pearling instability (28,29). Despite the obvious relevance of

the polymer-induced spontaneous curvature, the latter has

not yet been systematically studied and quantified experi-

mentally.

Finding an appropriate model system for measuring the

polymer-induced spontaneous curvature of the lipid mem-

brane is a nontrivial task. In particular, the choice for the

polymers is not straightforward since their properties should

meet certain requirements that are difficult to fulfill. First, the

macromolecules should be well characterized in terms of

their functional groups (charge and/or hydrophilicity), total

chain length, flexibility, i.e., persistence length, etc. Second,

it would be advantageous if the polymer backbone allows for

fluorescent labeling and is sufficiently long to be directly

observed with optical microscopy. The fluorescence from

such long polymers anchored to the membrane should be

detectable for characterizing the polymer surface concentra-

tion. However, two of these requirements, fixed total chain

length and long backbone, are difficult to meet for synthetic

macromolecules, which exhibit a certain polydispersity in

molecular weight and polymer length. Another requirement

is that the polymer needs to have an anchor segment by

which it can be attached to the membrane (see, e.g., Fig. 1 A).

This necessitates certain chemical modifications of the poly-

mer usually associated with covalent binding of a hydro-

phobic segment that would insert in the membrane. The

concentration of anchored polymers at the membrane surface

is determined by the partitioning of the polymer between the

bulk solution and the lipid membrane (36), i.e., by the poly-

mer bulk concentration and the equilibrium constant of the

adsorption/anchoring process (see Fig. 1 A). In addition, inser-

tion of such a polymer into the membrane induces a change

in the area of the external leaflet thus altering the spon-

taneous curvature of the bilayer and making it difficult to

decouple this effect from the anchored polymer entropic con-

tribution to the curvature change. A possible solution is to

use anchoring sites in the membrane to which the polymers

would bind (see Fig. 1 B).

In an attempt to meet all of the above requirements, we

have chosen l-phage DNA as a long and well-defined

polymer. The advantages are as follows:

1. DNA can be reproducibly purified and is always mono-

disperse. Thus, all polymers are identical and have the

same fixed length. The relatively large contour length of

the DNA, which is ;14 mm in the stretched state, makes

the molecule an attractive model polymer suitable for

single molecule experiments (see, e.g., (37,38)).

2. DNA can be fluorescently labeled. Useful fluorescent dyes

that easily intercalate into the DNA backbone are the di-

meric cyanine dyes TOTO-1 and YOYO-1 (39). This usu-

ally leads to an increase in the polymer length by up to

;30% but without a noticeable change in the persistence

length of the polymer (40). Due to the large size, single-

labeled l-phage DNA molecules can then be visualized

and manipulated (see, e.g., (41,42)).

3. l-phage DNA can be chemically modified to create an

anchoring segment at one end. This DNA molecule has

two single-stranded overhangs of 12 nucleotides on each

59-end, called ‘‘sticky’’ ends. Using an appropriate set of

enzymes, one can ligate an oligo-nucleotide, which is com-

plementary to one of the ends and is already modified to

contain the anchoring segment.

4. Finally, by using electrolyte solutions of various con-

centrations, the interaction between the negatively charged

phosphate groups along the DNA backbone can be mod-

ulated or completely screened.

Using DNA as a model polymer, we characterize the effect

on the membrane spontaneous curvature, which arises from

grafting of polymers on one side of the membrane of a giant

vesicle. In our systems, each polymer is firmly attached to the

membrane by a lipidlike anchor, which is covalently bound to

one end of the polymer. We gradually increase the surface

concentration of the anchored polymers, keeping precise

control on the number of anchors on the membrane surface.

FIGURE 1 (A) Insertion of a polymer with an anchor segment to the exter-

nal leaflet of a lipid membrane. (B) Anchoring of a polymer (biotinylated

DNA) to a membrane already containing the anchoring sites such as avidin

attached to a biotinylated membrane.
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The polymer-induced spontaneous curvature is measured

using polymer-free membranes as a reference system. The

article is organized as follows. In the next section, we

introduce the experimental approach and describe the

procedures and data analysis. Afterwards we briefly discuss

the theoretical bases of accessing the membrane spontaneous

curvature from the experimental data. Then the results are

presented, followed by some concluding remarks.

MATERIALS, METHODS, AND
EXPERIMENTAL PROCEDURE

The attachment of DNA to the GUV membrane was achieved in the fol-

lowing way. One end of the DNA was biotinylated (described in the section

DNA Biotinylation and Fluorescent Labeling). The vesicles contained

biotinylated lipids. Avidin, being able to bind up to four biotin groups, was

used as a linker between the biotinylated membrane and the DNA. The

concentration of biotinylated lipids, which played the role of anchoring

sites in the membrane, determined the surface concentration of anchored

DNA.

The biotinylated vesicles were grown in avidin solution using the pro-

cedure described in the following section. The binding of avidin to the

biotinylated membrane is characterized by a specific equilibrium constant,

determined in an independent study using isothermal titration calorimetry

(43) (the data will be published elsewhere). The equilibrium constant is

relatively high, indicating that when vesicles are grown in the presence of a

large excess of avidin (relative to the biotin concentration), all biotin sites on

the membrane surface are bound by avidin. The vesicles, with a fixed amount

of avidin on the surface, were then transferred to the observation chamber,

where the biotinylated DNA was consequently introduced. The fluctuation

spectrum of a selected vesicle was detected and analyzed before and after

introducing the DNA solution.

Vesicle preparation

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-n-cap biotinyl (Biotinyl-Cap-PE) were

purchased from Avanti Polar Lipids (Alabaster, AL) and used without

further purification. Giant unilamellar vesicles were prepared by spontane-

ous swelling as described previously (13,44). Briefly, chloroform solutions

of the two lipids at ratios of DOPC/biotinyl-Cap-PE ranging from 106:1 to

107:1 were prepared. Several droplets (30 ml) of the solution were deposited

on a roughened Teflon plate and spread with the tip of a Hamilton syringe.

The solvent was evaporated under vacuum overnight and the plate was

hydrated for 8–10 h in water vapor atmosphere at 37�C. Sucrose solution of

avidin in buffer (10 mM HEPES, 5 mM ascorbic acid, pH 7) with overall

osmolarity between 150 and 200 mOsm/kg was added to the vessel with the

Teflon plate. The bulk avidin concentration was in excess (100 times larger)

relative to the concentration of biotinyl-Cap-PE. A characteristic cloud of

concentrated vesicle suspension in the vessel was observed within 24–30 h.

The vesicles were then carefully taken out and diluted in glucose buffer

(used as a solvent for the DNA solutions, see below) of the same osmolarity

as the vesicle sucrose solution. Because the avidin-biotin bond is very strong

(;35 kBT, where kBT is the thermal energy), no dissociation of the formed

avidin-vesicle complex is expected to occur as the solution is diluted. Due

to the refractive index difference between the internal vesicle sucrose solu-

tion and the external media glucose solution, the GUVs could easily be ob-

served with an optical microscope in phase contrast mode. In addition, the

density difference of these solutions caused the vesicles to settle at the bot-

tom of the experimental chamber, thus further facilitating the observation.

On the average, the GUVs were polydisperse with a typical size between

5 and 20 mm.

DNA biotinylation and fluorescent labeling

Double-stranded l-phage DNA was purchased from Fermentas (St. Leon-

Rot, Germany). The molecule represents the whole genome of the bacterio-

phage Lambda (45). Each DNA molecule has single-stranded overhangs of

12 nucleotides on each 59-end. One of these overhangs was ligated with a

biotinylated complementary nucleotide with sequence 59-GGG-CGG-CGA-

CCT-biotin-39 (MWG-Biotech, Ebersberg, Germany). The ligation protocol

was similar to the protocol developed in the literature (46,47). Before

ligation, the DNA molecules (0.42 nM) were dephosphorylated with alkaline

phosphatase (New England Biolabs, Frankfurt, Germany), which afterwards

was inactivated according to the procedure prescribed by the manufacturer.

The dephosphorylated molecules were incubated together with the oligo-

nucleotides in T4 ligase buffer (New England Biolabs) for 3 h at 21�C. The

biotinylated DNA molecules were then fluorescently labeled with TOTO-1

(513/531) (Molecular Probes, Eugene, OR) at ratio 1:5 TOTO-1:bp. The dye

is essentially not fluorescent except when bound to DNA. The TOTO-1

molecule has very high affinity for nucleic acids (48) and thus dissociation

of the dye-DNA complex is unlikely to occur in the dilute solutions needed

to resolve single molecules.

Setup and experimental steps

The experiments were performed in a homemade flow chamber (see Fig. 2)

constructed in the following way. A Teflon frame with in/out channels was

fixed on one side to the glass window of a hollow metal holder, and on the

other side it was sealed with a microscope cover glass. The metal holder,

with water running through it, connected to a thermostat, allowed for main-

taining the temperature inside the flow chamber at 25�C 6 0.1�C. Temper-

ature stability was important because observation times were long ($5 h)

and fluctuation spectra can be influenced by small temperature drifts. The

enclosed volume of the Teflon frame chamber (;500 ml) was connected

with a pipe to an external vessel containing the studied solution. Another

pipe connected the chamber outlet to a computer-controlled micropump (Lee

Hydrau lische Miniatur Komponeten GmbH, Frankfurt, Germany), which

allowed for smooth exchange of the solution in the chamber by applying a

small suction pressure. During this exchange, the microscope stage was

repositioned correspondingly to follow a vesicle of interest and to keep it in

the field of view.

FIGURE 2 Schematic sketch of the experimental setup with a cross

section of the homemade flow chamber. The latter is connected to a pump,

which allows for exchange of the solutions inside the chamber. The vesicles

are initially introduced in the chamber. After equilibration, the external

media is gradually exchanged with buffer or DNA solution. A water jacket

assures constant temperature in the chamber. The length of the chamber is

;1.5 cm. The dimensions are not in scale.
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To prevent the vesicles from adhesion to the glass walls we coated the

chamber interior in the following way (the vesicles did adhere to non-

pretreated glass). The flow chamber was filled with 1 mg/ml albumin solu-

tion (Sigma-Aldrich, St. Louis, MO). The protein was allowed to adsorb for

15 min. The excess albumin was rinsed out by flushing 4 ml buffer solution.

Afterwards, the vesicle solution was introduced in the flow chamber. To

avoid temperature-induced effects, the whole experimental setup was equili-

brated for 1 h before the experiment was started. During this time, due to the

inside/outside density difference of the vesicle solutions (1.0235 g/cm3 for

sucrose inside and 1.0115 g/cm3 for glucose solutions outside of 200 mM

concentration), the vesicles sunk to the bottom of the flow chamber. As

mentioned before, due to the refractive index difference of sucrose and

glucose (1.3424 and 1.3380, respectively, for 200 mM solutions), the

contrast of the obtained images was enhanced. The vesicles appear as dark

objects with bright halo on a light-shaded background.

The microchamber was scanned for a fluctuating prolate unilamellar and

defect-free vesicle. To assess the curvature effect induced by the polymer

only, we had to compare it to the inherent membrane curvature in the

absence of polymer. To achieve this, we used the following three-step pro-

cedure. First, we examined the stability of the fluctuation spectra of a certain

vesicle membrane over a time period of ;30–60 min. If the fluctuation spec-

tra were not stable, the vesicle was discarded, another one was selected, and

the procedure was repeated. This ensures that the selected vesicle was ther-

modynamically equilibrated within the timescale of the experiments. Second,

we flushed in buffer (200 ml/min) to test the vesicle response toward shear

stress. This was a necessary step to distinguish the shear effect of flushing

DNA solution from the effect of anchoring the molecules onto the vesicle

membrane. The shear test was also helpful to detect whether the vesicle was

in some way attached or partially adhered to the glass surface of the chamber.

When the vesicle did not drift in the direction of the flow of injected buffer,

or showed dramatic change in the fluctuation spectra, it was assumed to be

attached to the glass and was discarded. The fraction of vesicles in the

chamber, which did not exhibit any of those deficiencies, was far below 1%.

Finally, when the fluctuation spectrum remained unaffected by the shear

stress, the DNA solution (;10�13 M) was flushed through the chamber (200

ml/min or slower). The vesicle fluctuations were analyzed and the effect in-

duced by the DNA was extracted from the changes in the fluctuations spectrum.

Fluctuation spectroscopy of prolate vesicles:
spontaneous curvature

At room temperature, all nonspherical vesicles undergo detectable thermal

fluctuations. The area available for fluctuations or shape changes depends on

the dimensionless volume/area ratio,

v [ ð3V=4pÞðA=4pÞ�3=2
; (1)

where V and A are the vesicle volume and area, respectively (a spherical

vesicle is characterized by reduced volume v ¼ 1). The fluctuation spectrum

depends on the bending stiffness k and the spontaneous curvature of the

membrane, Msp. The complete procedure of detection and analysis of the

fluctuations of elongated prolate vesicles is described in detail elsewhere

(34,35). Briefly, a selected vesicle is observed with a CCD camera (model

No. C5985-10, Hamamatsu, Hamamatsu City, Japan) and video-recorded.

The images are simultaneously digitized and processed by an SGI Indy

workstation (Silicon Graphics, Sunnyvale, CA). A closed contour around a

vesicle is detected from the analysis of the shaded values of the image (the

algorithm needs between 0.4 and 0.6 s to trace a contour, depending on the

vesicle image size). The contour, in polar coordinates (R, u), is then ex-

panded in Fourier series around the equivalent sphere radius, R0, of the vesicle:

RðuÞ ¼ R0 1 1 +
n

an cosðnuÞ1 +
n

bn sinðnuÞ
� �

: (2)

The amplitudes fan, bng are numerically calculated (see (35)). Their mean

values describe the geometry of the vesicle, e.g., for a prolate vesicle Æa2æ

reflects the elongation or ellipticity of the vesicle, and Æa3æ describes the

asymmetry across the plane of up/down symmetry of the prolate. A quantity

characterizing the thermal fluctuations is the mean-square average value of

the amplitudes: Æa2
næ ¼ Æðan � ÆanæÞ2æ. It takes ;10 min (;1200 contours) to

acquire a sufficient amount of data for statistical analysis of the membrane

fluctuations (examples of fluctuation spectra are given further below (see,

e.g., Fig. 5 A)). The amplitudes of the modes with odd values of n average

out to zero for an up/down symmetric vesicles, which is the case for the

prolate vesicles studied here. When the thermal fluctuations are small, the

amplitudes have a Gaussian distribution (see, e.g., Fig. 6 A).

The fluctuation analysis was performed for vesicles, which had sedi-

mented to the bottom of the chamber. Gravity is known to cause the vesicles

to deform (49) affecting the first modes of the fluctuation spectra (35). The

effect of gravity depends primarily on the dimensionless gravity parameter

g0 ¼ DrgR4/k (49), where Dr is the density difference (in our experiments

Dr # 0.012 g/cm3) and g is the acceleration of gravity (in the lab). For a

fixed density of the solution, larger vesicles deform more than smaller ones.

Henriksen et al. (50) suggested a gravity criterion, which can be used to esti-

mate the maximal size, Rmax, of the vesicle below, of which the gravity effects

are negligible. This maximal size is given by the implicit relation g0 ¼
DrgR4

max=k # 12 1 sR2
max=k (50), where s is the membrane tension. In our

experiments s $ 2 3 10�5 dyn/cm. For DOPC vesicles, the bending

modulus is ;5 3 10�13 erg (51,52) and may even increase due to the ad-

sorbed avidin (a similar protein, i.e., streptavidin, was shown to stiffen lipid

membranes (53,54)). For vesicles of size below ;16 mm, the above gravity

condition is satisfied. The vesicles selected for our analysis have radii be-

tween 9 and 16 mm, thus gravity should not have significant effect on our

measurements.

The fluctuations of the an-modes contain the information about both the

spontaneous curvature and the rigidity of the membrane (for every axisym-

metrical shape such as the prolate, the amplitudes bn in Eq. 2 are zero). The

membrane spontaneous curvature, Msp, is proportional to the ratio of the

mean-square average values of the second and the third modes (34):

Msp } Æa2

3æ=Æa2

2æ [ �Msp: (3)

This dimensionless curvature ratio, �Msp, is determined directly from the

experimental data. One way to estimate the absolute value of the sponta-

neous curvature, Msp, is to match the experimentally measured fluctuations

with a spectrum generated by Monte Carlo simulations (16,55). An alter-

native method is to use the discretization of the spontaneous curvature re-

ported in the literature (34,35), where analytical expressions for a2 and a4 as

functions of the spontaneous curvature and the reduced volume, v, are given.

Unfortunately, with this latter approach the effective spontaneous curvature

cannot be determined very precisely, due to large experimental and numer-

ical errors, especially for vesicles with a relatively large reduced volume

v close to unity (in our measurements, we typically had v $ 0.9). In this

study we did not attempt to estimate the absolute value of the spontaneous

curvature but the change induced by anchoring the polymers. Thus, we will

analyze the data to determine the change in the curvature ratio �Msp.

We used vesicles whose fluctuation spectrum was stable within at least

;1 h before introducing the DNA and was then not affected during the shear

stress test (see Setup and Experimental Steps). The data collected during

these first two phases were used to determine the error of the measurement.

All vesicles were prolates with an initial curvature ratio �Msp ¼ �Min
sp between

0.238 6 0.047 and 1.141 6 0.029. After DNA was introduced in the ex-

perimental cell, the measurements were continued until no further changes

in the curvature were detected. Osmotic effects were ignored because the

osmolarities of all the solutions were very carefully matched and no change

in the vesicle volume was detected. We denote the curvature ratio after

anchoring of polymers as �Mfi
sp. The net effect from attaching the DNA is then

expressed as the difference D �Msp ¼ �Mfi
sp � �Min

sp. Because the initial state of

every vesicle is different, i.e., different �Min
sp and v, we use D �Msp (instead of

directly comparing �Mfi
sp) to compare the changes in the spontaneous

curvatures measured on different vesicles.
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The bending stiffness, k, on the other hand is inversely proportional to the

membrane fluctuations, k } kBT=Æa2
næ, where kBT is the thermal energy (35).

The actual bending elasticity modulus of the decorated membrane can be

estimated when the measured fluctuation spectra are matched to spectra gen-

erated with Monte Carlo simulations (16,56). The simulations use the full

Hamiltonian of the area-difference elasticity model and take into account the

contribution of the gravitational forces acting on the vesicle. Here and be-

low, we discuss only the qualitative effect of the anchored polymers on the

membrane stiffness. Roughly, the membrane fluctuations can be expressed

as (56,57)

Æa2

næ ¼ ðkBT=kÞfðn 1 2Þðn� 1Þ½nðn 1 1Þ � w9�g�1
; (4)

where w9 is a function of the spontaneous curvature and the dimensionless

Lagrange multiplier.

Vesicle morphology and trajectories in the shape
phase diagram

According to the area-difference elasticity model (35,58), which applies to

lipid bilayers with no flip-flop between the two monolayers, the shape of a

vesicle is uniquely determined by the vesicle reduced volume and the ef-

fective reduced area difference. The latter consists of two components: the

‘‘local’’ spontaneous curvature and the global difference in the area of the

two leaflets. In the experimental conditions of this study, no exchange be-

tween the two leaflets is expected on the timescale of the experiment, sug-

gesting that their areas remain fixed (the adsorbed avidin and the bound

DNA were not expected to flip-flop because of the relatively large size of

these molecules; see Fig. 1 B). Thus the change in the location of the vesicle

in the morphological diagram would be determined mainly by the membrane

spontaneous curvature Msp and the vesicle reduced volume v. The knowl-

edge about the initial state of the vesicle and its trajectory is important for

comparing the DNA-induced effect because different vesicles do not have

identical morphology.

During an experiment, the vesicle can follow different trajectories de-

pending on the initial shape and the changes in the reduced volume v and

spontaneous curvature Msp as induced by the anchored polymer. To illustrate

this point, we consider a fraction of the morphological diagram (which

depends on v and Msp only; see Fig. 3), corresponding to cases experi-

mentally relevant for this work. We consider the range where the reduced

volume v is above 0.9 because, for the vesicles presented here, v varied

between 0.91 and 1. Defect-free vesicles with smaller v were not found in the

solution even though we attempted to deflate the vesicles osmotically. A

possible reason for the absence of such vesicles could be the modified mem-

brane properties due to the adsorbed avidin. All vesicles observed in this

study initially had prolate shapes (the fluctuation spectra of .60 vesicles

were measured, data not shown) and, therefore, were located above the

metastability line for oblate-prolate transition, and below the prolate/pear

transition line (see Fig. 3). As discussed above, the grafted polymers are

expected to increase the membrane spontaneous curvature (DMsp . 0),

equivalent to moving the vesicle shape upwards in the morphological dia-

gram. During the experiments, the enclosed vesicle volume remains constant

because of the osmotic stabilization. On the other hand, the grafting of poly-

mers on the external leaflet of the vesicle membrane is expected to reduce the

projected vesicle area (as optically detected) by locally pulling on the

membrane (17–19). As a result, the value of the reduced volume can only

increase or remain constant within the experimental error of the measure-

ment (Dv $ 0), and the vesicle can slightly shift to the right in the

morphological diagram (see trajectory 1 in Fig. 3). Thus, by monitoring the

changes in the vesicle reduced volume and spontaneous curvature, one can

determine the trajectory in the morphological diagram.

Budding transition

The fluctuation analysis described above is applicable only to prolate vesi-

cles, i.e., vesicles located between the spinodals of oblate/prolate and the

pear/bud transitions (see Fig. 3). As we will see further below, when the

DNA solution is introduced, vesicles with a certain anchor concentration

undergo a budding transition. Budding is a shape transformation where the

vesicle expels a small satellite vesicle or bud connected to the initial vesicle

via a thin neck. During budding, the vesicle exhibits large shape fluctuations

and crosses the pear/prolate phase transition line (see Fig. 3). In these cases,

because the vesicle shape exhibits broken up-down symmetry, the change in

membrane spontaneous curvature induced by the polymer cannot be obtained

by fluctuation spectroscopy. Instead, the size of the ‘‘mother’’ vesicle and

the expelled bud were measured. Both of them have spherical topology and

are connected by a thin neck, which is optically not resolvable. If the com-

positions of the mother vesicle (M) and the bud (B) are identical and ho-

mogeneous, the spontaneous curvature of the system is satisfied by the

relation (3):

M
fi

sp ¼ 1=2ðMM
1 M

BÞ; (5)

where MM and MB are the mean curvatures of the mother vesicle and the

bud, respectively. The radii of the latter were estimated from the analysis of

the video micrographs. The spontaneous curvature as estimated from Eq. 5 is

a combination of the effect of anchored DNA and of the inherent sponta-

neous curvature of the selected vesicle. The initial spontaneous curvature

Min
sp of a giant unilamellar vesicle before budding is usually considered as

being close to zero because the membrane is essentially flat on a microscopic

level (;0.5 mm). Hence, we assume that the initial spontaneous curvature of

the vesicle before budding is negligible compared to the effect arising from

the insertion and anchoring of the DNA: DMsp ¼ Mfi
sp �Min

sp � Mfi
sp. The

quantity DMsp is in units [mm�1] and cannot be directly compared with the

dimensionless curvature ratio D �Msp measured from the fluctuation analysis.

EXPERIMENTAL RESULTS

Surface concentration of anchors

When anchored to one side of a planar membrane, the con-

figurational entropy of a polymer chain increases if the mem-

brane bends away from it. Thus, anchored polymers exert

FIGURE 3 Schematic presentation of the morphological diagram illus-

trating the trends in the vesicle shape transformation as a function of reduced

volume, v, and spontaneous curvature, Msp (reproduced from (35)). The

range of reduced volumes covered on the abscissa is between ;0.9 and 1.

The trajectory indicated with (1) represents a prolate vesicle whose spon-

taneous curvature increases by DMsp and whose reduced volume increases

by Dv (the change in v is exaggerated for clarity). When the induced DMsp is

large, the vesicle can cross the prolate/pear instability line and undergo a

budding transition as happens for trajectory (2).
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entropic force onto the bilayer and the membrane attains a

certain spontaneous curvature (17). The magnitude of this

effect is governed by the polymer surface concentration,

G, defined as the number of polymers per unit area. De-

pending on G, one distinguishes two regimes in the behavior

of the polymer-induced curvature: 1), mushroom; and 2),

brush regime (18,19). For low coverage, i.e., small G, cor-

responding to the mushroom regime, the average distance

between the polymers is much larger than their size. For high

coverage corresponding to the brush regime, the macromol-

ecules are densely packed leading to constraints on the poly-

mer configurational entropy arising from the confinement by

the neighboring chains. The overlap concentration separating

the two regimes is referred to as overlap (ov) concentration

Gov ¼ 1=pR2
p. At this coverage, the distance between the

polymers is comparable to the radius of the polymer coil. In

this work, we studied surface concentrations, which belong

to the mushroom regime.

The characteristic dimension of a polymer in solution is

given by its end-to-end distance, Rp, which is related to the

mean-square distance between the first and the last segment.

For an ideal or Gaussian polymer chain (as appropriate for a

polymer in a u-solvent), one has Rp ¼ ap

ffiffiffiffi
N
p

, where ap is the

persistence length of the polymer, and N is the number of

statistically independent polymer segments. The l-phage

DNA has 48,502 basepairs and the number of independent

segments is N ¼ 170; the polymer persistence length is ap ¼
50 nm, which implies an end-to-end distance Rp ¼ 0.65 mm

(59,60).

By following the protocol outlined in Setup and Exper-

imental Steps, several different concentrations of avidin an-

chors, Gan, on the vesicle surface were studied, where Gan is

the surface concentration of biotinylated lipids in the external

monolayer of the vesicle membrane. To facilitate the presen-

tation of the experimental data the anchor concentrations will

be given as fractions of the overlapping concentration Gov.

For our system, i.e., when the polymer is l-phage DNA,

Gov ffi 0.75 mm�2. The range of surface concentrations Gan

that can be experimentally studied is limited by two factors.

First, the lowest physically achievable concentration corre-

sponds to one anchor per vesicle. Taking 10 mm as a typical

vesicle radius, one obtains ;0.001 Gov for the lowest

possible Gan. The upper limit for Gan is set by Gov: increasing

the surface concentrations of anchored polymers above Gov

would lead to a dense coverage and the membrane of the

vesicle would, presumably, no longer be accessible for the

binding of new polymers. As it will be demonstrated further

below, this exclusion effect is exhibited already at anchor

concentrations of ;0.3 Gov.

As explained in Materials, Methods, and Experimental

Procedure and Fig. 1, the biotinylated DNA is attached to the

biotin-lipid anchors via avidin linkers. Therefore, the con-

centration of anchored DNA, G, may differ from the anchor

concentration Gan. However, the working concentration of

biotin-lipid anchors is extremely low while the avidin in the

solution is in large excess, implying that every biotinylated

lipid binds to one avidin. On the other hand, the DNA is

much larger than the avidin anchor. Thus, it is reasonable to

assume that only one DNA binds to one avidin anchor. The

anchor concentrations we have explored are in the very dilute

regime while the DNA is always in excess; thus, we expect

that all of the sites be occupied.

We attempted to measure the concentration of the an-

chored DNA polymers from the fluorescence signal detected

with confocal microscopy but quantification was not possi-

ble due to fast bleaching of the dye (recently we realized that

the fluorescent dye YOYO-1, from Molecular Probes, is more

suitable for such measurements in terms of stability; how-

ever, this molecule was not available to us during the per-

formed experiments). The observations only confirmed that

the biotinylated DNA attaches to the vesicles since we de-

tected fluorescence signal from the vesicle surface. The

nonbiotinylated DNA, on the other hand, did not attach to the

membrane since no fluorescence was detected from the vesi-

cle surface. Fig. 4 presents two examples of images recorded

from two vesicles at anchor concentrations 0.12 Gov and 0.6

Gov. To facilitate the scanning and to avoid interference of

signal from the displacement of the vesicles, the latter were

immobilized on the wall of the observation chamber. In the

latter case, the chamber interior was not coated by albumin,

an essential procedure for all other cases (see Setup and

Experimental Steps). The fluorescence intensity from the

FIGURE 4 Vesicles immobilized on glass surface in the presence of fluo-

rescently labeled DNA. The anchor concentrations are 0.12 Gov in panels A

and B and 0.6 Gov in panels C and D, with Gov being the overlap concen-

tration. In panels A and B, the vesicles are observed in transmitted light with

a 1003 oil immersion objective. The images in panels C and D show the

fluorescence signal from the same two vesicles. Both micrographs have been

enhanced by duplicating the signal from all color channels.
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vesicle with higher anchor concentration appears to be

higher, but exact quantification of the signal was not possible

as the intensity depends on the vesicle radius, the scanning

and exposure time, dye bleaching, etc. For these two images,

we attempted to apply similar scanning conditions. Further in

the text, we compare the results for different coverage con-

centrations with respect to the surface concentration Gan.

Each experiment for a particular value of Gan, as described

in Setup and Experimental Steps, consists of the following

steps:

1. Selection of a suitable vesicle.

2. Testing the stability of the fluctuation spectrum.

3. Shear stress and adhesion test performed by flushing buffer

in the chamber.

4. Measurements of the fluctuation spectrum after introduc-

ing the DNA solution.

In all the experiments, the amount of DNA flown in the

chamber was always the same and in excess compared to the

total concentration of avidin anchors. Thus, we expect that

the surface concentration of anchored polymers depends

uniquely on the concentration of avidin anchors Gan. Two

types of vesicle response were observed depending on the

value of Gan. At low surface concentration of anchors, a

change in the fluctuation spectrum was detected. The cur-

vature ratio �Msp was extracted from the measured spectra

(see Eq. 3). At high Gan, the vesicles underwent budding

transitions and DMsp was estimated from the size of the bud

and the mother vesicle (see Eq. 5). For vesicles with inter-

mediate concentration of anchors, both types of behavior

were observed and both approaches to estimate the change in

the spontaneous curvature were applied.

Vesicle response at low anchor concentration

We start with an example where the effect on the vesicle

spontaneous curvature was determined from fluctuation anal-

ysis. Fig. 5 presents the time series of the modes a2 and a3 for

a vesicle with anchor concentration Gan ¼ 0.06 Gov. Such

coverage corresponds to 1 anchor per ;20 mm2 vesicle

surface. The vesicle size is R0 ¼ 9 mm (effectively only ;45

polymers could be anchored to this vesicle at this Gan). The

initial reduced volume of the vesicle was v ¼ 0.992. Fig. 5 A
presents data obtained when the vesicle fluctuation spectrum

was examined for stability. Similar time series were recorded

after applying shear stress by flushing buffer in the chamber

whereby the vesicle fluctuation spectra remained the same

with respect to the mean values and mean-square amplitudes

of the modes (data not shown). The data presented in Fig. 5 B
were collected some time after the DNA was introduced in

the chamber. The change due to anchored polymers is en-

coded in the decrease of the vesicle ellipticity, Æa2æ. The

average value of a3 (vesicle asymmetry) remains unaffected

and close to zero. A pronounced decrease in the membrane

fluctuations for both modes was detected and will be discussed

further in the text. Similar trend was observed for the higher

modes. The distribution histograms of a2 and a3 before and

after anchoring the polymers are presented in Fig. 6. When

the thermal fluctuations are small they can be considered as

Gaussian, confirmed by the goodness of the fits on the figure.

The amplitude distribution for the vesicle with anchored poly-

mers is much narrower than the corresponding one for the

same vesicle without anchored polymers.

Before we continue with the results on the change in the

spontaneous curvature as a function of the concentration of

anchored polymers, we discuss the following test experi-

ment. The latter was aimed to account for possible effect due

to an asymmetry of the solutions across the membrane or

entropic pressure exerted by the nonanchored macromole-

cules. For this purpose we flushed nonbiotinylated DNA in

the working chamber. Such DNA is deprived of the pos-

sibility to attach to the membrane because it does not have

the anchoring group (biotin). The effect on the fluctuation

spectra could not be distinguished from the effect of the

simple shear stress test mentioned above. Therefore no mea-

surable influence can be expected from the nonanchored

FIGURE 5 Time series of the mode amplitudes a2 (solid squares, left

axes) and a3 (open squares, right axes), for a vesicle with equivalent sphere

radius R0 ¼ 9 mm. The anchor concentration has the value of 0.06 Gov.

Panels A and B correspond to the time evolution before and after introducing

the DNA solution in the chamber, respectively. Due to the anchored DNA,

the membrane fluctuations decrease (to facilitate the comparison, the vertical

axes of both graphs have the same scale).
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polymers. In addition, it suggests that no effect is detected

if the polymer only adsorbs but does not anchor on the

vesicle surface.

To illustrate the change in the membrane spontaneous

curvature induced by the anchored DNA molecules in Fig. 7

we present the time evolution of the curvature ratio Æa2
3æ=Æa2

2æ.
The two data sets are from the full experiments (here with

‘‘experiment’’ we denote a set of measurements of the fluc-

tuation spectra of one vesicle) with two different vesicles of

anchor concentrations Gan¼ 0.06 Gov and Gan¼ 0.3 Gov, i.e.,

1 anchor per 20 mm2 and 5.5 mm2 of vesicle surface, re-

spectively. Each data point on Fig. 7 represents a 10-min

measurement of the membrane fluctuation spectrum and the

data points indicated as (1) and (2) were obtained from those

presented in the data sets in Figs. 5 and 6. The three phases of

the experimental procedure (Setup and Experimental Steps)

are separated by vertical dashed lines. Obviously, flushing the

buffer solution (‘‘shear stress test’’ or phase B) does not have

a measurable influence on the fluctuation spectrum (compare

phases A and B). The data from these two phases provide an

estimate of the error of the measurement introduced by

shearing the vesicle. In contrast, introducing the DNA solu-

tion leads to a dramatic change in the curvature ratio.

Intermediate anchor concentration

The change in the curvature ratio is more pronounced for

higher anchor concentration. It is important to remember that

the value of �Min
sp for each individual vesicle is different. For

simplicity, in Fig. 7 we have presented data for two vesicles

with similar �Min
sp to demonstrate the larger increase in the

curvature ratio for the higher anchor concentration. In fact,

the curvature ratio for the vesicle with Gan¼ 0.3 Gov does not

reach saturation. The vesicle with Gan¼ 0.3 Gov is actually in

the anchor concentration regime where both budding and

fluctuation analysis were applied. The vesicle spheres and

the thermal fluctuations vanish, making the fluctuation anal-

yses inapplicable. This is due to a decrease in the area

available for fluctuations (the optically resolved area of the

vesicle obtained from contour analysis is observed to de-

crease). On the other hand, as mentioned before, the enclosed

vesicle volume remains constant due to osmotic stabiliza-

tion. Thus, the reduced volume, v, increases and the vesicle

follows trajectory 1 in the phase shape diagram in Fig. 3. In

this particular case v reaches 1, i.e., the vesicle becomes

spherical. A plausible explanation for the decrease in the area

available for fluctuations is that, when anchored, the polymers

FIGURE 6 Normalized histograms for the mode amplitudes a2 and a3,

based on the time series presented in Fig. 5. The surface concentration of the

biotin anchors has the value of Gan ¼ 0.06 Gov. Two sets of data are shown

corresponding to before (solid squares) flushing DNA into the chamber and

after (open squares) introducing DNA. When the membranes are decorated

with DNA, the distributions become narrower, indicating a drop in Æa2
næ. The

solid lines are Gaussian fits to the data.

FIGURE 7 Time evolution of the curvature ratio for two vesicles that

differ in the surface concentration of anchors, Gan. The solid and the open

squares correspond to Gan ¼ 0.06 Gov and 0.3 Gov, respectively. Each point

represents an average over 10 min of data acquisition. The data points

indicated as (1) and (2) correspond to the measurements from Fig. 6. The

dashed lines separate the three phases of the experiment: (A) test of

fluctuation spectrum stability, (B) shear stress test by flushing buffer into the

chamber, and (C) introducing DNA solution (see Budding Transition for

details). The reduced volume, v, of the vesicle with anchor concentration

0.3 Gov reaches v ¼ 1 in phase C, after which no fluctuations are observed.
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locally pull at the membrane, creating tiny cones which are

optically irresolvable (below ;0.5 mm in height) but ef-

fectively reduce the area available for fluctuations. Perturba-

tive calculations and Monte Carlo simulations (19) have

shown that close to the anchor the membrane bends away

from the anchored polymer and attains conical shape. Know-

ing the geometrical shapes of the cones and the number of

anchored polymers would then allow for an estimate of the

area hidden in the cones. However, the theoretical calcula-

tions were performed for flexible polymer while, in our case,

the DNA molecule having a persistence length of 50 nm

should be considered instead as a semiflexible polymer. We

also do not exclude the possibility that the vesicle has un-

dergone budding transition with bud size below optical res-

olution, which would also lead to effective loss of area. This

would be consistent with the longer time the vesicle needed

to respond as compared to the one with lower anchor con-

centration. The budding transition involves overcoming an

energy barrier, and thus can occur later.

Another factor that has to be considered when the vesicle

spheres up is the membrane tension. Typical tensions of

floppy vesicles are in the range of s ; 10�5–10�4 dyn/cm.

The vesicle loses area due to the anchored polymer. Because

the volume stays constant, the membrane tension can in-

crease (particularly for vesicles of reduced volume close to

unity), and in this way, impose constraints on fluctuations of

larger wavelengths (smaller modes). Thus, the interpretation

of data from vesicles, which have reached v � 1, is more

complex because the membrane tension has increased and

the fluctuation spectra of such vesicles would give lower val-

ues for Æa2
næ at small n, and respectively influence the value

for the curvature ratio.

Coming back to Fig. 7, it is interesting to note that the

increase in the curvature ratio was not observed immediately

after DNA was introduced in the microchamber (the com-

plete exchange of the chamber solution with the DNA solu-

tion would typically take ;4–5 min). Considering the low

diffusion coefficient of the DNA molecules (0.47 6 0.03

mm2/s (61)), one can speculate that the delay in the effect on

the membrane curvature is due to the time the biotinylated

end of a DNA molecule needs to locate an avidin anchor on

the membrane. In the different experiments, this time has

varied between 20 min and 80 min slightly, depending on the

anchor concentration on the membrane. The difference in

time for the response of the two vesicles in Fig. 7 is also due

to the different location of the vesicles in the experimental

chamber. While the one with lower anchor concentration was

located close to the injection port for introducing the DNA

solution in the chamber (see Fig. 2), the other one was far. To

avoid losing the vesicle from the chamber a lower flow rate

of the injected DNA solution was used (the injection of the

whole volume of the DNA solution took ;20 min), which

involved a longer time for the vesicle response.

The completion of the anchoring process usually results in

reaching a plateau in the curvature ratio. We assume that

equilibrium has been reached if the curvature ratio remains

constant within a time interval larger than ;2 h after the

increase has been observed (the vesicle with Gan¼ 0.3 Gov in

Fig. 7 falls out of this category because it sphered up).

Further in the text, as a final value for the ratio Æa2
3æ=Æa2

2æ we

have taken the saturation value. In the experiment at Gan ¼
0.06 Gov, for the initial and final curvature ratio we obtained
�Min

sp ¼ 0.866, �Mfi
sp ¼ 1.695.

Expected dependence of the spontaneous
curvature on the anchor concentration

Before we continue with higher surface concentrations at

which vesicles undergo budding transition, we consider

again the observed overall drop in the vesicle fluctuations.

This decrease is expected for two reasons:

1. When anchored to the membrane, the polymers pull at

the membrane (17,19), thus reducing the free area other-

wise available for fluctuations. This effect is expressed in

an increase in the reduced volume, directly accessible

and observed from the fluctuation analysis data.

2. The mean-square averages of the amplitudes of the fluc-

tuation spectrum are inversely proportional to the bend-

ing stiffness, which is expected to increase (17,18).

The change in the membrane curvature and the elastic

properties as induced by anchored polymers in the different

regimes has been determined theoretically using scaling ar-

guments, analytical calculations for ideal chains, and Monte

Carlo simulations (17–19,24). As a result, one finds that the

membrane always bends away from the polymer, and the mem-

brane spontaneous curvature behaves as

Msp �
ffiffiffiffiffiffiffiffiffi
p=6

p
ðkBT=4kÞRp G 1 ðAan=2lmeÞG

1 b2ðkBT=4kÞRp G
2
; (6)

for small surface concentration G, where Aan is the surface

area occupied by the anchor, lme is the membrane thickness

(lme ffi 4 nm), and b2 is the second virial coefficient,

b2 ¼ 4pR2
p. The first term in Eq. 6 arises from the polymer/

membrane interactions while the second accounts for the

contribution of the polymer anchor to the monolayer area

(the term is valid for conditions of no flip-flop between the

two bilayer leaflets). The third term in Eq. 6 reflects possible

polymer/polymer interactions as, because the lipid mem-

brane is fluid, the anchored polymers can diffuse and occa-

sionally collide. The anchor contribution (second term) is

usually small if the anchor is a lipid whose headgroup (Aanffi
0.7 nm2) is covalently bound to the polymer (the effect of the

anchor characteristics was studied in detail in (62)).

Equation 6 predicts that the dependence of the spontane-

ous curvature is linear in G for low mushroom concentra-

tions, but quadratic for higher concentrations. One can define

a crossover surface concentration, G*, above which the

polymer/polymer interactions arising from the excluded volume
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become dominant over the entropically induced polymer/

membrane interactions. Assuming that the anchor contribu-

tion (second term in Eq. 6) is small, G* can be estimated by

equating the spontaneous curvatures from the first and the

third term in Eq. 6. One obtains

G� ¼ 1=4
ffiffiffiffiffiffi
6p
p

R
2

p ’ 0:18 G
ov
; (7)

which is somewhat smaller than Gov.

Dependence of the bending stiffness on the
anchor concentration

The overall bending stiffness of the membrane is expected to

increase due to the anchored polymers yielding an effective

bending stiffness (18),

keff � k 1 ck GR
2

pkBT; (8)

with ck ¼ 1=12ð11p=2Þ. Equation 8 reduces to keff � k1

0:068 kBT at the overlap concentration (G ¼ Gov). The linear

increase of the bending stiffness as a function of the poly-

mer surface concentration was recently confirmed for micro-

emulsion droplets stabilized by a surfactant layer and anchored

diblock copolymers (23). However, the dimensionless co-

efficient ck was found to be a factor of 1.5 larger than the

theoretical results for ideal chains and was ascribed to the

polymer properties and deviation from u-solvent conditions.

As demonstrated in the literature (35,63), the mean-square

average of the fluctuation modes is inversely proportional to

the bending modulus of the membrane (see Eq. 4). There-

fore, the overall reduction in the membrane fluctuations can

imply an increase in the bending stiffness of the membrane.

Indeed, an overall decrease in the mean-square values of the

modes is observed. Fig. 8 presents the mean-square averages

of the first 20 amplitudes of the vesicle spectra before and

after flushing the buffer and also after introducing the DNA

solution. The buffer does not change significantly the values

of Æa2
næ, but the anchoring of the polymers decreases them.

The dashed lines show fits according to Eq. 4 where k and

w9 were used as fitting parameters. In absence of DNA, we

obtain k ¼ 22.2 6 1.7 kBT and w9 ¼ 16.3 6 1.8. Anchoring

of the DNA leads to k ¼ 32.1 6 8.0 kBT and w9 ¼ 288.7 6

78.6. The relatively large scatter of the data does not allow

for precise comparison, but it is clearly seen that the bending

stiffness of the membrane increases.

High anchor concentration (vesicle budding)

As mentioned before, at high coverage (Gan $ 0.12 Gov)

budding transitions were observed. In some cases multiple

budding was observed whereby a necklace of interconnected

vesicle pearls was gradually formed (see Fig. 9). The pearls

do not have identical sizes. The diameter of the bud formed

first is ;4.1 mm, while the rest of the pearls have approxi-

mately equal and smaller diameters (;1.4 mm). A plausible

reason for the different diameters could be that the individual

vesicle pearls have a different number of anchored polymers

(each of the small pearls should have approximately four

anchors if the anchor concentration is homogeneous). The

change in the membrane spontaneous curvature was esti-

mated by analysis of the bud size (see Budding Transition). It

is important to note that Eq. 5 is valid if the mother vesicle

and the buds have the same composition. In attempt to clarify

whether the anchor distribution was homogeneous, we

performed tests about the miscibility of the lipids DOPC

and biotinyl-Cap-PE using differential scanning calorimetry

on extruded unilamellar vesicles. No phase separation was

observed for the lipid molar ratios used in this work, sug-

gesting that the anchors were homogeneously distributed on

the vesicle surface. The attached avidin is also not expected

to induce phase separation, as suggested by previous studies

performed at higher avidin concentrations (54). This, of

course, does not rule out the possibility that when anchored

to the membrane the DNA molecules aggregate in clusters or

domains, thus creating inhomogeneity in the polymer surface

concentration. In this case, to extract the spontaneous cur-

vature one has to take into account the line tension of the

domain edge (3,64,65). Effects of coupling of the local cur-

vature and polymer concentration were observed experi-

mentally on tubular vesicles (29), and theoretically addressed

(66,67). Here, the composition of the vesicles was assumed

to be homogeneous due to the very low surface concentration

of the polymer.

Overall concentration dependence of the
spontaneous curvature (summary)

A summary of all the data on the spontaneous curvature as

a function of anchor concentration is given in Fig. 10, where

the results obtained from both fluctuation and bud size

FIGURE 8 Mean-square amplitudes for three different 10-min measure-

ments: initial fluctuation spectra, shear stress test, and after introducing

DNA. The surface concentration of anchors is 0.03 Gov. The first amplitude

cannot be distinguished from zero and is not shown. The dashed lines are fits

according to Eq. 4 (see text for details).
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analysis are presented. The figure contains data from 20

vesicles altogether and the error bars indicate averaging over

approximately three vesicles. In the low surface concentra-

tion limit one observes a gradual linearlike increase in the

spontaneous curvature ratio. In two of the cases (open sym-
bols), no saturation in the curvature ratio could be observed

because the vesicles attained spherical shape. The linear in-

crease in the spontaneous curvature is consistent with the

theoretical expectations for mushroom regime (see Eq. 6).

Above Gan ¼ 0.12 Gov budding is observed and the analysis

of the bud and mother vesicle size give the spontaneous

curvature of the membrane. The latter is observed to be es-

sentially constant, implying a constant surface concentration

of anchored polymers. One possible explanation for this

effect is the presence of packing constraints, arising from the

nonideality of the polymer. Although the ions from the work-

ing buffer are expected to screen the negative charges along

the DNA backbone and the net positive charge of the avidin,

the presence of small uncompensated charges cannot be ex-

cluded. In the case of such unspecific electrostatic DNA-

avidin attraction one can speculate that when anchored, the

polymer will slightly spread over the membrane, covering a

larger area than expected. Thus, the area between the an-

chored polymers accessible for new DNA would decrease

and, for the free polymers in the solution, it will be entro-

pically unfavorable to enter in the gaps between the anchored

polymers (18). Thus, due to packing constraints above cer-

tain ‘‘critical’’ polymer coverage, the number of anchored

polymers per unit area cannot increase even though the

number of avidin anchors increases.

The data in Fig. 10 imply that the absolute values of the

polymer-induced curvature as obtained from the bud analysis

are of the order of 1 mm�1 (43) whereas the theoretically

expected ones for the mushroom regime are of the order of

10�3–10�2 mm�1 (18,19). A few possible reasons can be

considered to explain the discrepancy. One of them concerns

the possibility of a nonuniform distribution of the anchored

DNA as discussed above. The other one, which we favor

more, relates to the fact that due to optical limitation, buds of

radius below ;1 mm could not be observed and, therefore,

the experimental resolution imposes an upper limit to the

value of the spontaneous curvature as measured from bud

analysis (this is schematically indicated in Fig. 10). If pres-

ent, such buds will suggest even larger spontaneous curva-

ture. Furthermore, one should not forget that the predicted

behavior of the spontaneous curvature was calculated for

flexible polymer chains while the experiments described here

were performed with semiflexible polymers. For flexible

polymer chains, the induced curvature is predicted to depend

only on the end-to-end distance Rp. For semiflexible chains,

with persistence length ap that is much larger than the mem-

brane thickness, this curvature may also depend on these

latter length scales.

CONCLUDING REMARKS

In this work, we characterized the membrane spontaneous

curvature induced by anchoring of the biopolymer l-phage

DNA. A range of polymer surface concentrations in the

mushroom regime was explored. Two approaches were ap-

plied for assessing the membrane spontaneous curvature:

fluctuation spectroscopy for the low concentration region

FIGURE 9 (A) A vesicle with surface coverage

Gan ¼ 0.3 Gov and reduced volume v ¼ 0.975. The

scale bar corresponds to 5 mm. (B) Multiple budding

observed after the DNA solution is introduced. The

bud formed first (diameter � 4.1 mm) is connected to

the ‘‘mother’’ vesicle (diameter � 12.7 mm) with a

necklace of vesicle pearls (diameters � 1.4 mm). The

necklace and the mother vesicle are out of focus but the

pearl locations are shown with arrows.

FIGURE 10 Effect of polymer grafting on the membrane: spontaneous

curvature as a function of surface concentrations in the mushroom regime as

obtained from fluctuation spectroscopy (solid and open squares), left axis,

and bud analyses (diamonds), right axis. The open-square symbols indicate

two cases when the vesicle attained a spherical shape and no saturation in the

curvature ratio could be observed. Error bars indicate scattering over several

vesicles. The optical resolution limit for bud detecting is indicated by the

arrow.
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and bud-size analysis for higher concentrations. We varied

the number of anchors on the membrane surface, assessed

the spontaneous curvature, and discussed the obtained

experimental data in relation to existing theoretical expec-

tations. In the low surface concentration limit, a gradual

linearlike increase in the dimensionless spontaneous curva-

ture ratio �Msp was observed. This linear behavior is consis-

tent with theoretical expectations for flexible polymers

(17–19). For the intermediate and high surface concentra-

tion, the membranes were observed to undergo budding

shape transformations which are reminiscent of some the-

oretical (66,68) and experimental observations (28), and may

be related to nonuniform surface concentration of the an-

chored polymers. Surprisingly, the spontaneous curvature

obtained from the bud analysis is constant over a broad

concentration range of the anchored polymers. We interpret

this effect in terms of packing constraints arising from in-

teractions between the polymers and the membrane, or re-

flecting the optical resolution limits. The induced spontaneous

curvature, estimated from the bud analysis, is larger than the

theoretically predicted one for the mushroom regime.

Although the membrane bending stiffness was not exactly

determined in this work, we have some indications for

membrane stiffening due to anchored polymers. Such effect

was theoretically predicted (18) and experimentally con-

firmed for microemulsions (23).

Finally, using DNA as a model polymer has proved to be a

suitable choice for mimicking biomolecular anchoring in cell

membranes. To our knowledge, this study is the first to es-

timate the spontaneous curvature of membranes induced by

anchored polymers.
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