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The transport of cargo particles that are pulled by several molec-
ular motors in a cooperative manner is studied theoretically in this
article. The transport properties depend primarily on the maximal
number N of motor molecules that may pull simultaneously on the
cargo particle. Because each motor must unbind from the filament
after a finite number of steps but can also rebind to it again, the
actual number of pulling motors is not constant but varies with
time between zero and N. An increase in the maximal number N
leads to a strong increase of the average walking distance (or run
length) of the cargo particle. If the cargo is pulled by up to N kinesin
motors, for example, the walking distance is estimated to be
5N�1�N micrometers, which implies that seven or eight kinesin
molecules are sufficient to attain an average walking distance in
the centimeter range. If the cargo particle is pulled against an
external load force, this force is shared between the motors, which
provides a nontrivial motor–motor coupling and a generic mech-
anism for nonlinear force–velocity relationships. With increasing
load force, the probability distribution of the instantaneous ve-
locity is shifted toward smaller values, becomes broader, and
develops several peaks. Our theory is consistent with available
experimental data and makes quantitative predictions that are
accessible to systematic in vitro experiments.

active transport � bionanosystems � load force � run length �
walking distance

Cytoskeletal motors that perform active movements along
cytoskeletal filaments drive the long-range transport of

vesicles, organelles, and other types of cargo in biological cells.
In this article, we will consider processive motors, which can
complete many chemo-mechanical cycles while remaining bound
to the filaments. During the last decade, the properties of single
processive motors, such as kinesin on microtubules and myosin
V on actin filaments, have been characterized in some detail by
using in vitro motility assays and novel experimental techniques
for the visualization and manipulation of single molecules (1, 2).
However, in vivo, force generation and transport is typically
performed by several motor molecules in a cooperative fashion
as revealed by electron microscopy (3, 4) and by tracking of the
cargo particles with optical methods (5–7). It also has been found
that some cargo particles bind different types of motors simul-
taneously so that these particles can reverse their direction of
motion along microtubules (5, 7) or switch from microtubules to
actin filaments (8).

The force generated by a single cytoskeletal motor is rather
small and of the order of a few piconewtons. Larger forces can
be generated if several motors pull on the same cargo. This larger
force is necessary, e.g., for the fast transport of large organelles
through the cytoplasm, which is a highly viscous medium (9).
Likewise, large forces arising from many motors also are re-
quired for specific motor functions such as the extraction of
membrane tubes from vesicles (10, 11).

Another important consequence of the cooperative action of
several motors is that it increases the walking distance (or run
length) of the cargo particles. Because the binding energy of such
a cargo particle is necessarily finite, it can be overcome by
thermal fluctuations, which are ubiquitous in cells. If the cargo

particle is pulled by a single processive motor, its walking
distance is typically of the order of one micrometer (12). If the
cargo particle is pulled by several motors, the walking distance
is strongly increased because the cargo continues to move along
the filament unless all motors unbind simultaneously. In addi-
tion, as long as the cargo particle is still connected to the filament
by at least one motor, all unbound motors can rebind rather fast,
because they are prevented from diffusing away from the
filament. It also has been shown by using in vitro motility assays
that cargo particles pulled by many motors can switch tracks and
move along several filaments at the same time, so that huge
walking distances can be achieved that exceed the length of a
single filament (13).

In this article, we study these cooperative transport phenom-
ena from the theoretical point of view. First, we introduce a
generic transition rate model for the transport of cargo particles,
which are pulled by up to N motors, and obtain general expres-
sions for the average number of pulling motors, for the average
velocity of the bound cargo particle, for its effective unbinding
rate, and for the distribution of its walking distances. Next, we
focus on the case of cargo particles with a dilute motor coverage,
which should be directly applicable to typical bead assays. In the
absence of an external load force, we obtain an explicit expres-
sion for the average walking distance of the cargo particles.
Using this expression for particles that are pulled by up to N
kinesin motors, we estimate the walking distance to grow as
5N�1�N. We also calculate the distribution of the walking
distances, which is found to exhibit a tail with an extended
plateau region for N � 3.

An external load force leads to a nontrivial coupling between
the different motors because the unbinding rates of the motors
increase with increasing force. As a consequence, the average
number of bound motors decreases as the load force is increased,
which provides a generic mechanism for nonlinear force–
velocity relationships. We argue that the motor transport be-
comes ineffective at a critical force for which the average walking
distance becomes comparable with the step size of a single
motor. For N � 2, this critical force is found to be small
compared to the maximal stall force that can be sustained by N
motors. Finally, we calculate the probability distribution of the
instantaneous velocity of the bound cargo particle. As the load
force is increased, this velocity distribution is shifted toward
smaller values, becomes broader, and develops several peaks.

We will focus on the transport by kinesin motors, which pull
cargo particles along microtubules, because, in this case, all input
parameters for our theory have been determined experimen-
tally, but our analysis is rather general and can be applied to
other types of cytoskeletal motors as well. All experimental data
that are available for cargo transport by several kinesin motors
are consistent with our theoretical results.
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Model and General Solution
Transition Rate Model. We consider cargo particles that are trans-
ported by N motors, see Fig. 1. These motors are irreversibly
attached to the cargo particle but can bind to and unbind from the
filament along which they move. Thus, the number n of motor
molecules that are bound to the filament can vary between n � 0
and n � N. We will distinguish N � 1 different states of the cargo
particle corresponding to the unbound state with n � 0 and to N
bound states with n � 1, 2, . . . N. Each of these bound states
contains N!�(N � n)!n! substates corresponding to the different
combinations of connecting n motor molecules to the filament. If
the cargo particle is linked to the filament through n motors, it
moves with velocity vn. Unbinding of a motor from the filament and
binding of an additional motor to the filament occur with rates �n
and �n, respectively.

We first derive general expressions for the transport properties
of cargo particles pulled by up to N motors without specifying how
the rates �n and �n and the velocities vn depend on the number n
of bound motors. We derive the distributions of the number of
bound motors, of the binding times, and of the walking distances
from which we then obtain the effective unbinding rate, the average
walking distance, and the average velocity. All these quantities can
be directly measured by particle tracking both in vivo and in vitro.

Distribution of the Number of Bound Motors. We first calculate the
distribution of the number of bound motors. We denote by Pn
the probability that the cargo particle is in state �n�, i.e., bound
to the filament by n motors. These probabilities satisfy the master
equation

�

�t
Pn � �n�1Pn�1 � �n�1Pn�1 � ��n � �n�Pn. [1]

We are interested in the transport properties of bound cargo
particles. Because all movements of bound cargo particles begin
and end with n � 0, every step from state �n� to �n � 1� implies
a backward step at some later time. To determine the transport
properties of the bound cargo particles, we can therefore focus
on the stationary solution of the master equation, which is
characterized by

�n�1Pn�1 � �nPn [2]

for 0 � n � N � 1.
Subsequently expressing all Pn in terms of P0 and using the

normalization ¥n�0
N Pn � 1, we obtain

P0 � �1 � �
n�0

N�1 �
i�0

n
�i

�i�1
��1

and Pn � P0 �
i�0

n�1
� i

� i�1
. [3]

To determine the transport properties of cargo particles bound
to the filament, we normalize these probabilities with respect to

the bound states, i.e., we consider the probabilities Pn�(1 � P0)
that a bound cargo particle is bound to the filament by n motors.
For example, the average number of bound motors is given by

Nb � �
n�1

N

nPn��1 � P0� . [4]

Average Velocity. The distribution of the number of bound motors
as given by Eq. 3 implies the distribution of velocities

P�v� � �
n�1

N

	�v � vn�
Pn

1 � P0
[5]

of the cargo particle moving along the filament. The latter
quantity can be determined experimentally as the histogram of
velocities averaged over short time intervals. The average ve-
locity of the cargo particle moving along the filament is then
given by

veff � �
n�1

N

vn

Pn

1 � P0
. [6]

If the velocity of the cargo particle is independent of the number
of bound motors, vn � v, the effective velocity is equal to the
single-motor velocity v.

Effective Unbinding Rate. Finally, the distribution of the number of
bound motors also implies an explicit expression for the effective
detachment or unbinding rate. In the stationary state, the
effective binding and unbinding rates, �eff and �eff, fulfill the
simple relation

�eff �1 � P0� � �eff P0, [7]

where (1 � P0) is again the probability that the cargo particle is
bound to the filament through at least one motor. The effective
binding rate is given by �eff � �0 because the cargo–filament link
is established as soon as one motor binds to the filament, so that
�eff � �0P0�(1 � P0).†

With the distribution of the number of bound motors as given
by Eq. 3, we obtain

�eff � �1� 1 � �
n�1

N�1 �
i�1

n
� i

� i�1
� �1

, [8]

†This definition is equivalent to defining the effective unbinding rate as �eff � �1P1�(1 � P0),
i.e., as the unbinding rate of the last bound motor times the probability that a cargo particle
bound to the filament is linked to this filament by a single motor.

Fig. 1. A cargo particle is transported coopera-
tively by N molecular motors along a filament. The
motors are firmly attached to the cargo but unbind
from and rebind to the filament. Each state of the
system, denoted by �n�, is characterized by the num-
ber n of bound motors that pull on the cargo parti-
cle. The latter number can vary between n � N (on
the left) and n � 0 (on the right). In state �n�, the
cargo particle has velocity vn, a motor unbinds from
the filament with rate �n, and an additional motor
binds to the filament with rate �n.

Klumpp and Lipowsky PNAS � November 29, 2005 � vol. 102 � no. 48 � 17285

PH
YS

IC
S



where the summation now starts with n � 1. For N � 2 motors,
this result reduces to �eff � �1�(1 � �1��2). An alternative
derivation of Eq. 8 based on first passage times is presented in
A.1. Mean First Passage Times in Supporting Text, which is
published as supporting information on the PNAS web site.

Distributions of Binding Times and Walking Distances. The effective
unbinding rate as given by Eq. 8 determines only the average time
that the cargo particle is bound to the filament. The actual binding
time �tb of the cargo particles is, however, a stochastic quantity that
is governed by a certain probability distribution 
̃N(�tb).

This probability distribution governs the passage from the
state with one motor connecting the cargo to the filament at time
t (immediately after binding) to the unbound state at time t �
�tb. This distribution can be obtained by solving a recursion
relation as shown in A.2. Distribution of Unbinding Times in
Supporting Text. The general solution is a sum of exponentials,


̃N��tb� � �
i�1

N

e�zi�tb Res��zi� , [9]

where the scales �zi of the exponentials and the prefactors
Res(�zi) are the poles and the corresponding residues, respec-
tively, of a continued fraction that is given in the supporting
information. The time scales and prefactors are functions of the
binding and unbinding rates and should not be considered as
independent fit parameters when analyzing experimental data.

The distribution of the walking distances, 
N(�xb), is obtained
from the distribution of binding times by substituting �tb by �xb,
�n by �n�vn, and �n by �n�vn, i.e., by expressing the rates in units
of inverse distance traveled rather than in units of inverse time.
The distribution 
N(�xb) is therefore also given by a sum of N
exponentials as in Eq. 9 and has the general form


N��xb� � �
i�1

N

e�z�i�xb Res��z�i� . [10]

The same substitution leads to an explicit expression for the
average walking distance 	�xb� as given by

	�xb� �
v1

�1
� 1 � �

n�1

N�1 �
i�1

n vi�1� i

v i� i�1
� , [11]

which again applies to a cargo particle pulled by N motors.

Results
Cargo Particles with Dilute Motor Coverage. Let us now consider
specific examples and specify the dependence of the rates �n and
�n and of the velocity vn on the number n of bound motors. First,
we consider the case where the cargo particle is transported by
N motor molecules, which have well separated anchor points on
the particle surface and, thus, do not experience mutual inter-
actions. In the absence of an external load force, the parameters
�n, �n, and vn are then given by

�n � n�, �n � �N � n��ad, and vn � v , [12]

where �, �ad, and v are the unbinding rate, the binding rate, and
the velocity of a single motor, respectively.‡

In the following, we use parameter values for kinesin motors
as summarized in Table 1 to determine numerical results, but the
general expressions also can be applied to other types of motors.
Our model with rates as specified by Eq. 12 has three parameters
that can be determined from the studies of single motor mole-
cules: the velocity v, the unbinding rate �, and the binding rate
�ad. The first two quantities have been measured for many types
of motors. For kinesin, the velocity is 
1�m�s, and the unbind-
ing rate is 
1�s (14, 15). The binding rate is more difficult to
measure. If �ad is regarded as an unknown quantity, our results
for the effective unbinding rate or the distribution of walking
distances can be used to determine �ad experimentally. Here, we
use �ad 	 5�s as measured for kinesins linking a membrane tube
(which acts as the cargo particle) to a microtubule (11).

For the parameters as specified by Eq. 12, the general
expression Eq. 4 for the average number of bound motors implies
the explicit relation

Nb �
��ad����1 � ��ad����N�1

�1 � ��ad����N � 1
N , [13]

which implies the simple asymptotic behavior

Nb 

��ad���

1 � ��ad���
N for large N .

Likewise, the general expression Eq. 11 for the average
walking distance 	�xb� can be evaluated analytically, which leads
to

	�xb� �
v

�eff
�

v
N�ad

� � 1 �
�ad

�
� N

� 1� . [14]

For strongly binding motors with �ad��  1, the walking
distance behaves as 	�xb� 
 (v�N�)(�ad��)N�1 and essentially
increases exponentially with increasing number of motors. For
weakly binding motors with �ad�� �� 1, one has

	�xb� 
 �v���� 1 �
N � 1

2
�ad

�
� ,

where the leading term v�� corresponds to the walking distance
of a single motor.

Kinesin binds rather strongly with �ad�� 	 5, so that the
average walking distance, which is 1 �m for a single motor,
increases quickly with N and is 3.5 �m, 14 �m, 65 �m, and 311
�m for cargoes pulled by 2, 3, 4, or 5 motors, respectively. These
large walking distances exceed the length of a single microtubule
but can still be realized if several microtubules are aligned in a
parallel and isopolar fashion so that, via unbinding and rebind-
ing, the motors can step from one microtubule to another. Such
an organization of microtubules is typical for axons (16) and has
also been engineered in vitro (13).

Our results for the walking distance distributions of kinesin-
pulled cargoes are shown in Fig. 2. With increasing motor
number N, the slope of the distribution becomes increasingly

‡In the present context, the binding rate �ad corresponds to a motor that remains close to
the filament because of the presence of the other motors connecting the cargo to the
filament. In general, one should use �n � (N � n)�ad only for n � 1 and specify �0 separately
to account for the diffusion of the completely unbound cargo. The transport properties of
the bound cargo particle are, however, independent of the choice for �0.

Table 1. Model parameters for single motors and values for
conventional kinesin

Parameter Symbol
Value for
kinesin Ref(s).

Velocity v 1 �m�s 14, 15
Unbinding rate � 1�s 14, 15
Binding rate �ad 5�s 11
Stall force Fs 6 pN 22, 24
Detachment force Fd 3 pN 24
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steep for small walking distances, but the distribution becomes
flatter and flatter for large walking distances. For more than
three kinesins, the distribution is nearly constant for walking
distances between 5 and 20 �m, see Fig. 2.

If the motors are densely packed onto the cargo particle,
exclusion effects (12, 17) modify the rates (Eq. 12) as shown in
B. Mutual Exclusion of Motors in Supporting Text and Fig. 6,
which is published as supporting information on the PNAS web
site. For typical motor numbers N � 10, the effect of exclusion
on the velocity and the average walking distance is rather small.
For very dense packing, however, a reduction of the velocity to
	35% of the value without exclusion is obtained, in agreement
with experimental results (18).

Movement Against External Load Force. Let us now consider cargo
transport against a constant external force that could be applied,
e.g., by optical tweezers or other single-molecule manipulation
techniques. This force is shared equally between the n bound
motors and induces an effective interaction of the motors,
because, via the force-dependence, the transport parameters of
the motors now depend on the presence of the other motors.

The velocity of a single motor decreases essentially linearly
with the force imposed against the motor movement (19–22). We
therefore use the linear force–velocity relation

vn�F� � v�1 �
F

nFs
� [15]

for 0 � F � nFs and take the velocity to be constant with vn(F) �
v for F � 0 and vn(F) � 0 for F  Fs (compare ref. 23). The force
scale Fs is given by the stall force at which a single motor stalls
and stops moving. For kinesin, stall forces of Fs 	 5–7 pN have
been reported (19–22). In the following, we use the typical value
Fs 	 6 pN.

The force dependence of the unbinding rates �n is given by

�n�F� � n� exp� F
nFd

� , [16]

as obtained from the measurements of the walking distance of
a single motor as a function of load (24) in agreement with
Kramers’ rate theory (25). The detachment force Fd, which sets
the force scale here, is, in general, not equal to the stall force,
although both can be expected to have the same order of
magnitude. The force scale Fd may be expressed as Fd' kBT�d,
which depends on the thermal energy kBT and on the extension
d of the potential barrier between the bound and unbound state.
For kinesins, the length scale d has been reported to be d 	 1.3
nm, so that the detachment force is Fd 	 3 pN (24).

It is more difficult to estimate the force dependence of the
binding rates �n because there are no experimental data about

this dependence. An external load force should lead to a
decrease of the binding rate �0 from the unbound state, but this
binding rate does not affect the properties of the bound motor.
The binding rates �n with n � 1, on the other hand, are expected
to depend only weakly on F because a pulling motor that is
subject to a certain strain arising from F will relax this strain as
soon as it becomes unbound and will then rebind from such a
relaxed state. In other words, unbinding and rebinding occur
along different reaction coordinates, i.e., along different paths in
configuration space. Therefore, we take the binding rates �n with
n � 1 to be force-independent, so that �n � (N � n)�ad for n �
1 as before. In Eqs. 15 and 16, v and � are the velocity and
unbinding rate of a single motor in the absence of load, in
agreement with Eq. 12. A similar type of binding�unbinding
dynamics but without the active movement in the bound state
arises for the forced rupture of adhesion molecule clusters
(26–28).§

The force–velocity relationships for cargo particles pulled by
N motors are shown in Fig. 3a. Even though the force–velocity
curve is linear for a single motor, it is nonlinear for N  1, an
effect that arises from the force-dependence of the unbinding
rate, which implies that the average number of bound motors
decreases with increasing force, see Fig. 3b. At high forces, a
cargo particle is most likely bound to the filament by a single
motor, and this single motor then has a high unbinding rate,
because it is pulled off from the filament by the total force.¶ For
N  2, the velocity decreases quickly for small and intermediate
forces but approaches zero rather slowly for forces close to the
stall force. Indeed, the actual stall force for a cargo particle
pulled by N motors is equal to N times the stall force Fs of a single
motor, but the cargo movement will become undetectable
already at much smaller forces.

The force-dependent increase of the unbinding rate also is
reflected in the corresponding decrease of the average walking
distance, which is approximately exponential with increasing
force F for N � 2 as shown in Fig. 3c.� For very strong forces that
exceed a critical force Fc, the average walking distance becomes
comparable to the motor step size �, and the motors become
unprocessive. This critical force can be estimated from the
implicit equation 	�xb(Fc)� � �. For kinesin, which has a step size
� � 8 nm, we obtain Fc � 5.7, 8.8, 10.6, and 13.8 pN for particles
pulled by n � 1, 2, 3, and 5 motors, respectively. For N � 2, these
values are considerably smaller than the corresponding stall
forces. Force-dependent distributions of the walking distances
are shown in Fig. 4.

§In the latter situation, the initial state typically is given by n � N rather than by n � 1.

¶For high forces with F  25 pN, the effective unbinding rate is given by �eff 
 �1(F) �

� exp(F�Fd), independent of the number of motors.

�For N � 1, the walking distance is given by 	�xb(F)� � (v��)(1 � F�Fs) exp(�F�Fd).

Fig. 2. Probability distribution 
N of walking distance �xb for cargo particles pulled by N � 1, 2, 3, 4, and 5 kinesin motors with parameters as given in Table 1.
The same distributions are plotted on a linear scale (a) and on a semilogarithmic scale (b).
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In the presence of an external load force, the velocity depends
on the number of motors that pull the cargo, which implies that
the velocity of such a cargo particle is switched stochastically
when a motor binds to or unbinds from the filament. The
trajectory of such a cargo therefore consists of segments with
constant velocity as has been observed recently for vesicles
dragged through the cytoplasm (6, 7). The distribution of these
velocities is shown in Fig. 5. With increasing load force, the
observed velocities decrease, but in addition, the velocity distri-
bution P(v) becomes broader and develops several peaks. The
latter feature is again consistent with the in vivo experiments in
refs. 6 and 7.

Discussion and Applications
We have presented a theoretical study of the transport properties
of cargo particles that are pulled by several molecular motors in
a cooperative fashion. Let us now discuss some applications of
our results to cellular systems.

The most prominent example for long-range transport over
distances that by far exceed the walking distances of single
motors is the transport in axons (16). The cargo particles that
belong to the slow transport component, such as neurofilaments,
exhibit alternating periods of directed movement with velocities
of the order of 1 �m�s and pausing periods where essentially no
movement can be detected, so that their effective velocity is of
the order of 10�3–10�2 �m�s or 0.1–1 mm per day. The walking
distances of the active movements are typically a few microns
(see refs. 29 and 30). These observations are consistent with the
assumption that these slow cargoes are transported by one or two
motors. On the other hand, cargo particles of fast axonal
transport, such as vesicles, move with velocities of 
1 �m�s over
distances of at least centimeters. Using Eq. 14, we can estimate
that the cooperation of seven to eight kinesin motors is sufficient
for a walking distance in the centimeter range. A walking
distance of approximately 1 m, as necessary in the longest axons,
is obtained if 10 motors drive the movement.

Our theory also gives a quantitative explanation for the effect
of microtubule-associated proteins (MAPs) such as the tau
protein on the processivity of cargo particles. On the one hand,
the presence of tau reduces the binding rate of kinesin to
microtubules in single-molecule experiments but has no effect on

the velocity and walking distance of the bound kinesins (31). On
the other hand, the movements of vesicles in cells transfected
with tau exhibit reduced walking distances (32). It has been
proposed (31) that these apparently contradictory experimental
findings can be reconciled if the vesicles with reduced walking
distance were transported by several motors. Our theory sup-
ports this idea, because Eq. 11 implies that the walking distance
of a cargo particle pulled by more than one motor is affected by
changes in the binding rate. At a ratio of two tau molecules per
tubulin dimer, the binding rate of a single kinesin molecule is
reduced to approximately 50% of its value in the absence of tau
(31). For cargoes pulled by two, three, and four kinesin motors,
this reduction of the binding rate implies a reduction of the

Fig. 3. Transport properties of cargo particles pulled by up to N motors
against a constant external load force F. (a) Average velocity veff. (b) Average
number Nb of bound motors. (c) Average walking distance 	�xb�. The chosen
parameter values are for kinesin as in Table 1. The horizontal line in c indicates
the step size of 8 nm. For forces for which 	�xb� becomes comparable to or
smaller than the step size, the motors become unprocessive.

Fig. 4. Probability distribution 
N of walking distance �xb for cargo particles
pulled by up to N � 1 (solid lines), 2 (dashed lines), 3 (dotted lines), and 5
(dashed-dotted lines) motors against an external load force F. For F � 10 pN,
cargoes pulled by a single motor do not move, and the distribution 
N contains
a delta function at �xb � 0. The distributions are plotted on a semilogarithmic
scale as in Fig. 2b.

Fig. 5. Probability distribution P of the instantaneous velocity v for cargo
particles that are pulled by N � 5 motors in the presence of an external load force
F. The chosen parameter values are given in Table 1 and apply to kinesin. The
white bar in the graph for F � 1 pN indicates the distribution for vanishing
external force. For F � 10 pN and F � 12 pN, the particles are stalled with a
nonzero probability P(v � 0), because no movement occurs if the cargo particle
is pulled by a single motor for F � 10 pN or by one or two motors for F � 12 pN.
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walking distance to 64%, 40%, and 16% of the corresponding
value in the absence of tau, respectively.

Finally, we have calculated the transport properties of cargo
particles pulled by several motors against an external load force.
This situation is accessible to in vitro experiments, using, for
example, bead assays and optical traps that exert constant forces.
For such experiments, our theory makes quantitative predictions
about the force–velocity relationships, the walking distances,
and the distribution of the instantaneous cargo velocities.

In addition, our theory can be applied to the movement of
large organelles in cells that experience viscous forces of a few
piconewtons comparable to the stall force of a single motor (9).
If the cargo particle moves with velocity vn, it experiences the
Stokes force Fn � �vn, where � is the corresponding friction
coefficient. In the presence of such a force, our relation (Eq. 15)
leads to

vn �
v

1 � �v��nFs�

 n

Fs

�
, [17]

where the asymptotic equality applies to large friction coeffi-
cients �. For such a situation, two groups (6, 7) recently have
measured the distribution of the instantaneous velocities as given
by Eq. 5. They found that the vesicles switch between different
values of the velocity that are peaked at integer multiples of the
smallest observed velocity. If the friction coefficient is large
compared to nFs�v, such a linear behavior is indeed predicted by
Eq. 17.

In summary, we have presented a theoretical study of the
cooperative transport of cargo particles that are pulled by up to
N molecular motors. We have determined the transport prop-
erties of these cargo particles such as their effective velocity and
average walking distance (or run length). The latter quantity is
strongly affected by the maximal number N of pulling motors,
and the cooperation of several motors enables efficient transport
over large distances. Our approach provides a quantitative
theoretical basis for the interpretation of a number of recent
experiments and makes quantitative predictions that can be
tested experimentally. The theoretical framework introduced
here can be extended to more complex situations such as the
transport of cargo particles that are attached to several species
of motors. These different species may have different velocities
or may even move in opposite directions. Likewise, our theory
can be extended to load forces that depend on the displacement
of the cargo particle or change with time. A relatively simple
example for such a variable load force is provided by laser traps,
which are used in motility assays to exert harmonic force
potentials for small particle displacements. More complex ex-
amples are found for the cytoskeletal transport in biological
cells, where the cargo particle is pulled through a meshwork of
membranes and filaments that can act as steric barriers or
adhesive surfaces and, thus, can exert various types of position-
dependent forces on this particle.
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