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PACS. 87.16.Dg – Membranes, bilayers, and vesicles.
PACS. 68.15.+e – Liquid thin films.
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Abstract. – The osmotically induced passage of fluid vesicles through narrow pores is studied
theoretically using Monte Carlo simulations and a recently introduced sampling scheme. The
free energy barrier for this transport process is calculated explicitly. An essential part of the
free energy barrier is based on thermal fluctuations of the membrane shape. Simulation results
indicate that, in real systems, the passage can be driven by osmotic pressure alone. The
dynamics of the passage process are dominated by the geometry-induced changes of the vesicle
volume and the associated water permeation through the vesicle membrane. The passage time
is estimated to be of the order of minutes.

In the last decades pharmacological research was not only directed towards new drugs but
also towards new ways of drug delivery. Particularly important innovations have been made
for the transdermal application [1] which is preferable to the oral route in many cases [2].
The human skin represents a large barrier for most molecules. Only for very small lipophilic
molecules, a certain skin permeability is predicted [3]. Larger molecules and aggregates may
only pass through hydrophilic pores in the stratum corneum, the outermost layer of the
epidermis [4]. These pores have diameters of about 20–30 nm so that many colloids are still
too large and stiff to be squeezed through [4]. Lipid vesicles, on the other hand, have a
number of properties that make them attractive for transdermal transport [4]. It is claimed
by some researchers that ultraflexible lipid vesicles can be sufficiently pushed to pass through
pores [4,5]. In a numerical study, the penetration of vesicles into large pores was induced by a
constant external force and was found to be strongly enhanced if this force exceeds a certain
threshold value [6]. In a more recent letter, the effect of a strongly attractive pore wall on the
passage process has been investigated [7].
Across the skin there is a steep gradient in humidity, such that there is a lower salt

concentration in the deeper skin layers. Therefore an osmotic pressure pushes the vesicle
through the pore [5]. It is not yet clear how deep intact liposomes actually move into the
skin [5,8]. Nevertheless, if liposomes filled with drugs are able to pass through skin pores, the
drugs spread out under the skin as the vesicle finally ruptures.
In contrast to previous studies [6,7], we consider the osmotic force as the main driving force

for the transport of a lipid vesicle through a narrow skin pore. Using extensive Monte Carlo
simulations and a recently developed sampling scheme [9] we obtained the free energy barrier
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Fig. 1 – Vesicle in a narrow pore of radius Rp. The concentrations of osmotically active particles
on both sides of the pore are c1 and c2, respectively, N is the number of osmotically active particles
inside the vesicle. A1 and A2 are the membrane parts, V1 and V2 are the volume parts on the start
and the target side, respectively.

for the transport process through the pore. A successful vesicle passage is indicated by the
vanishing of the free energy barrier, which occurs for sufficiently large concentration gradients.
As a consequence, it becomes evident for the first time that vesicle transport through skin
pores can be driven by osmotic pressure alone.

The model system. – We consider a vesicle with a fixed membrane area A = 4π R2
0 and a

variable volume V in front of a pore in a skin layer, mimicked by a circular hole with radius Rp

in a thin impenetrable wall (see fig. 1). During the passage, a part V1 of the vesicle volume is
on one side and a part V2 is on the other side of the wall, such that V = V1+V2. Analogously,
we divide the constant surface area A into A = A1 +A2. The pore radius is always chosen to
be Rp = 0.35R0. For simplicity, the pore length is set to zero.
We assume that the passage through the pore is mainly governed by the osmotic condi-

tions, the pore geometry, the bending elasticity of the vesicle membrane, and the membrane’s
permeability to water. In the absence of a spontaneous curvature the bending energy of the
vesicle membrane with bending rigidity κ can be expressed as [10]

Eel = 2κ
∮

M2 dA, (1)

where M is the local mean curvature. An osmotic pressure acts on both parts of the vesicle,
affected by osmotically active molecules which cannot permeate through the vesicle membrane.
Across the pore we assume a concentration gradient of osmotically active molecules with a
concentration c1 on the side where the vesicle starts and a concentration c2 < c1 on the
target side. As for the homogeneous case [11], integration of van’t Hoff’s law [12] provides
an osmotic energy expression. With a reference volume Vref and a number of N osmotically
active molecules inside the vesicle one obtains

Eosm = T

(
−N ln

V

Vref
+ c1V1 + c2V2

)
, (2)

where T is the thermal energy, including the Boltzmann constant. It follows from eq. (2) that
the osmotic energy difference between a vesicle with volume V on the start and the target side
is given by ∆Eosm = −TV (c1 − c2) < 0 which is the basic driving force for the transduction.
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The simulations were performed with κ = 5–20T . The hydrodynamic effects arising from the
surrounding water and adhesion effects between membrane and skin cells were assumed to
be small. In in vitro experiments with vesicles, the concentrations c of osmotically active
particles are typically of the order of c = 10−4molm−3, i. e. cV T � 103κ. Accordingly, we
chose c2 = 2650/R3

0 on the target side and N = 10000, so that N/V � c2 if the vesicle is
almost spherical. The concentration c1 on the start side was varied to study its influence on
the passage process.

Simulation methods. – In our Monte Carlo simulations the fluid vesicle is represented by
a closed dynamically triangulated surface [13] with 596 triangles and edge lengths according
to the original tethered-beads model [14]. The total area is kept fixed, up to a small interval.
For the discretization of the bending energy a scheme proposed in [15] is used. Five types
of Monte Carlo moves are applied in random order: Independent moves of single vertices (I)
make 12%, bond-flips [13] (II) in which an edge between two triangles is relocated to connect
the formerly unconnected vertices of the two triangles make 18%, reflections of a vertex by
the osculating plane defined by the vertex’ nearest neighbors (III) make 10%, moves of single
vertices parallel to the wall for vertices which are close to the pore wall (IV) make 25% and
bond-flips in the same region (V) make the remaining 35% of all moves. As the coordinates
of the nearest neighbors remain invariant during the move of a certain vertex, moves of type
(III) obey detailed balance. For moves of type (IV) and (V), distances of vertices and edges
from the wall remain constant, and detailed balance is again fulfilled.

Free energy barrier. – As the vesicle passes the pore, a free energy barrier arises from an
increase of the elastic energy, an increase of Eosm due to the reduction of the vesicle volume,
and an entropy decrease since the confinement restricts the configuration space. During the
passage the volume inside the vesicle changes significantly, while the intrinsic surface area of
the vesicle is almost constant. The part A2 of the surface area on the target side changes con-
tinuously and is, thus, suitable for the parametrization of the passage process. Consequently,
energetic barriers to the passage will appear as barriers in the restricted free energy of the
vesicle for a given A2

F (A2) ≡ −T ln
∫
dΓ e−

Eel+Eosm
T δ (A′

2 (Γ)− A2) . (3)

The integration in eq. (3) takes place over all vesicle configurations that do not overlap with
the pore wall. While the passage through the pore is a non-equilibrium process, fixing A2

defines an equilibrium state. Thus, the free energy F (A2) can be obtained with Monte Carlo
simulations and a recently proposed integration scheme [9] up to a constant F0.
For relatively small osmolarities c1 = 2700/R3

0 on the start side, we observe a barrier in
the restricted free energy F (A2), which is almost independent of the bending rigidity in the
range of 3.5 ≤ κ/T ≤ 15 (see fig. 2). As shown in fig. 3, F (A2) is more sensitive to the osmotic
conditions. The free energy barrier decreases with increasing c1. The critical osmolarity on
the start side, where the free energy barrier disappears, is approximately c1 ≈ 3000/R3

0.

Limit of spherical caps. – As shown in fig. 2, the influence of the elastic energy on F (A2)
is small in the range 3.5 ≤ κ/T ≤ 15. If the osmotic particle concentrations in- and outside
the vesicle are large and the temperature T is low, the osmotic energy Eosm dominates the
passage process. In the following we compare the behavior of Eosm(A2) with the full free
energy F (A2) and derive an analytic criterion for a vanishing barrier of Eosm(A2) which is a
minimum requirement for a successful vesicle passage at finite T . For N/V > c1 > c2, the
derivatives dEosm/dVi for i = 1, 2 are negative, so that the system favors maximum volumes
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Fig. 2 – Free energy F in units of the thermal energy T as function of the area A2 for c1 = 2700/R3
0

and κ = 3.5 T (◦), κ = 9 T (�), κ = 15 T (�).

Fig. 3 – Same as fig. 2 for κ = 10 T and c1 = 2700/R3
0 (◦), c1 = 2800/R3

0 (�), c1 = 2900/R3
0 (�),

c1 = 3000/R3
0 (∗), c1 = 3100/R3

0 (×), c1 = 3200/R3
0 (+).

V1 and V2, which for given A1 and A2 are realized by spherical caps with

Vi =
1
6
√

π

√
Ai − πR2

p

(
Ai + 2πR2

p

)
(i = 1, 2). (4)

In the limit of spherical caps, eqs. (2) and (4) and A1 = A − A2, can be used to express the
osmotic energy Eosm as a function of A2. Plots of Eosm(A2) are shown in fig. 4 for various
start side concentrations c1. The curves are qualitatively similar to the free energies in fig. 3
but the barrier height of Eosm(A2) is distinctly lower than that of F (A2) and vanishes already
for c1 ≈ 2750/R3

0.
A spherical vesicle with the maximum volume V0 ≡ 4π/3R3

0 can partially enter the pore
without any deformation. The target side area of an undeformed vesicle can be up to A2,0 ≡
A
2 (1−

√
1− (Rp/R0)). In the limit of spherical caps, a successful vesicle passage requires that

for all A2 ≡ (1+q)A2,0 with q ≥ 0 the driving force of the transport process −dEosm(A2)/dA2

must be positive. In principle, the condition

max
q≥0

(
dEosm

dA2

∣∣∣∣
A2=(1+q)A2,0

)
< 0 (5)

can always be fulfilled by a suitably high start side concentration c1. Linearizing the left-hand
side of relation (5) with respect to Rp provides the simple condition

c1 > c2 +
(
1− Rp

R0

)(
N

V0
− c2

)
. (6)

In fig. 5, the minimum concentrations c1 according to relation (5) and relation (6), respectively,
shows the good agreement of the two conditions.
In cases, where thermal fluctuations or the elastic energy are relevant, the volumes V1 and

V2 are always smaller than the maximum values in eq. (4). The sensitivity of Eosm on such
volume reductions is demonstrated by the fourth curve in fig. 4, which shows Eosm(A2) for
c1 = 2700/R3

0 if the sharp kink between the spherical caps is replaced by a membrane cylinder
of diameter 2Rp and length Rp. With this constraint the barrier height of Eosm(A2) increases
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Fig. 4 – Osmotic energy for a vesicle consisting of two spherical caps with a start side concentration
c1 = 2700/R3

0 (—), c1 = 2750/R3
0 (−−), and c1 = 2800/R3

0 (· · ·), as well as for a vesicle geometry
with two spherical caps connected by a cylinder of length l = Rp with c1 = 2700/R3

0 (− · −).

Fig. 5 – Minimum start side concentrations c1 that provide a monotonously decaying osmotic energy
Eosm(A2) for a given target side concentration c2. Both, c1 and c2, are given in units of N/V0, where
N is the number of osmotically active molecules inside the vesicle and V0 ≡ 4π

3
R3

0 is the maximum
vesicle volume. Results are shown for pore radii Rp = 0.1R0 (�), Rp = 0.3R0 (◦), Rp = 0.5R0 (�),
Rp = 0.7R0(∇), where lines represent the right-hand side of relation (6).

by more than a factor of 2, but is still distinctly smaller than the barrier height of F (A2) for
the same c1. This indicates that thermal fluctuations of the membrane shape cause a strong
increase of the free energy barrier under the conditions used in our simulations.

Dynamics of pore passage. – In general, the passage process can be divided into four
different elementary processes with different time scales: Changes of V1−V2 are faster than the
relaxation of A2 which depends on the viscosity ν � 10−7Nsm−1 [16] and the intermonolayer
friction coefficient ηr � 108Nsm−3 [17] of the membrane with a characteristic time scale of
the order of milliseconds for vesicles with radii R0 = 10µm. Fluctuation modes of such
vesicles decay within some seconds [18] whereas osmotically induced changes of the vesicle
volume occur within minutes and define the dominating time scale. The basic aspect of the
osmotically driven transport of the membrane is the decrease of V1 and the increase of V2.
Thus, the whole process is dominated by the permeation-dependent dynamics of V (t). The
change of V (t) is governed by the evolution equation [19]

V̇ = −A
Cpe

T

∂F̃

∂V

∣∣∣∣∣
A2(V )

. (7)

Here, Cpe is the permeation constant of the membrane and

F̃ (A2, V ) ≡ −T ln
∫
dΓ e−

Eel+Eosm
T δ (A′

2 (Γ)− A2) δ (V ′ (Γ)− V ) (8)

is the restricted free energy with respect to the area A2 on the target side and the volume V ,
which has to be calculated in order to determine the right-hand side of eq. (7).
While the total volume V changes slowly, the values of V1 − V2 and A2 fluctuate around

their equilibrium values corresponding to V (t). Hence, the membrane area A2 on the target
side stays always in the same local minimum of the restricted free energy for a given volume
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Fig. 6 – Vesicle volume V as a function of time.

Fig. 7 – Time evolution of the vesicle volume V (t) during the passage process as function of the
surface area A2(t) on the target side (solid line) compared to the average vesicle volume. The dashed
line is a fit to the simulation results (+++). The finite pore size defines a maximum volume (dotted
line). The reference area A0 is given by A0 ≡ 4π R2

0 and the reference volume by V0 ≡ 4π/3 R3
0.

V . The free energy has an absolute minimum for A2 � 4πR2
0, corresponding to a vesicle

which is almost entirely on the target side. For large enough V , there is also a local minimum
of F̃ (A2, V ) for a small value of A2, corresponding to a vesicle which has partially entered
the pore. If the local minimum does not disappear, the vesicle gets stuck inside the pore.
With these considerations, the dynamics of the membrane transport can be analyzed. The
probability distribution of V for a given A2 is obtained from Monte Carlo simulations and
our new sampling scheme and reveals an almost Gaussian shape. Thus, the free energy can
be approximated by

F̃ (A2, V ) = F (A2) +
T

2
(V − 〈V |A2〉)2
Var[V |A2]

, (9)

where 〈V |A2〉 is the mean value and Var[V |A2] is the variance of the vesicle volume for a
given surface area A2 on the target side. Neglecting hydrodynamic effects in the surrounding
water, the change of the volume is given by

V̇ = −A
Cpe

T

∂F̃

∂V

∣∣∣∣∣
A2(V )

= −4πR2
0Cpe

V − 〈V |A2(V )〉
Var[V |A2(V )]

, (10)

where A2(V (t)) is the equilibrium value of the surface area on the target side as described
above. Note that mean value and variance refer to thermal equilibrium while the current
volume is a non-equilibrium quantity.
We have integrated eq. (10) with values for F̃ (A2, V ) from a simulation with κ = 7T ,

c1 = 3000/R3
0 and c2 = 2650/R3

0. The vesicle volume V is plotted in fig. 6 as a function of
time in units of t0 ≡ R4

0/Cpe. Figure 7 shows the volume as a function of A2 and 〈V |A2〉
as calculated from the equilibrium simulations with given A2. Finally, we estimate the time
scale on which the passage process takes place. As the passage through the pore includes a
reduction of the initial vesicle volume V (0) to a value αV (0) < V (0) with an almost constant
efflux V̇ , the passage time tpas can be derived from

V (0) + tpasV̇ (0) = αV (0). (11)
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The dimensionless parameter α is the same for simulations and for real experiments.
Thus, writing eq. (11) for both cases and eliminating α relates the ratio of the pas-
sage times for simulation and experiment to the ratio of according length scales, ini-
tial concentration differences, and permeation constants. If we set t0 = (R4

0/Cpe)sim,
∆csim = 350/R3

0, tpas,sim � 2.7 · 10−4 t0, Cpe,exp = Cpe,fνH2O with Cpe,f � 100µms−1 [19,20]
and νH2O = 18ml/mol, R0,exp = 10µm, and ∆cexp = 1mmol/l, we get

tpas,exp =
(Cpe/R0∆c)sim

(Cpe/R0∆c)exp

tpas,sim ≈ 9min. (12)

As the passage time tpas,exp is of the order of minutes, the osmotically driven vesicle transport
through narrow pores is fast enough for scientific and practical applications.

Discussion. – The influence of osmotic pressures on the passage of fluid vesicles through
narrow pores has been investigated. The free energy barrier for the passage process is strongly
increased by thermal fluctuations of the membrane shape. Using Monte Carlo simulations, we
have shown that a realistic concentration gradient of osmotically active molecules is sufficient
to overcome the free energy barrier.
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