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Line Tension Effects for Liquid Droplets on Circular Surface Domains
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We study the morphologies of single liquid droplets wetting a substrate in the presence of the line tension of the
three-phase contact line. On a homogeneous substrate, the line tension leads to a discontinuous unbinding of the droplet
if its volume is decreased below a critical value. For a droplet wetting a structured surface with a circular domain,
aline tension contraggives rise to discontinuous depinning transitions of the contact line from the domain boundary
as the droplet volume is varied. We calculate the corresponding free energy bifurcation diagram analytically for
axisymmetric droplet shapes. Numerical minimization of the droplet free energy shows that line tension contrasts can
stabilize nonaxisymmetric droplet shapes, thus modifying the bifurcation diagram. These latter shapes should be
accessible to experiments and can be used to reveal the presence of a line tension contrast.

1. Introduction up to the micrometer regimé.For droplets wetting a homo-
geneous substrate, line tension effects have been theoretically

The morphology of liquid droplets on chemically or topo- g gied in ref 17. It has been found that, in the presence of line
graphically structured substrates is determined by the interplay g ngjon, the droplet discontinuously unbinds from the substrate

of the interfacial free energies of the droplet and the wettability upon decreasing its volume below a critical value. In this paper,
pattern on the substrate for droplets in the millimeter and \ye \yant to focus on the line tension effects for patterned
micrometer regime. This interplay can give rise to morphological g hstrates. In general, chemical patterning of substrates will lead
transitions upon changing the volurivg of the droplet or the  ,4th {6 4 wettability contrast and to a contrast of the line tension.
wettability contrast and thus the contact angle of the substfate.  gch line tension contrasts can strongly modify the morphological
Experimentally, techniques such as microcontact prifitly  ransitions of small droplets. In this article, we study the effect
monolayer lithograpttyallow the fabrication of imprinted or 3 jine tension contrast for a single droplet on a lyophilic circular
structured planar surfaces with tailored patterns of lyophilic and gomain embedded in a lyophobic substfatéven for this
lyophobic surface domains. Morphological transitions of single relatively simple system, the line tension contrast leads to a
droplets have been theoretically and experimentally studied for qualitative change in the depinning behavior of the droplet's
a variety of wettability patterns such as lyophilic circles on a ¢ontact line at the boundary of the circular domain. Whereas the
lyophobic substrate lyophilic and lyophobic stripe$,® and depinning of the contact line at the circular domain boundary is
lyophilic rings on a lyophobic backgrourifi.Morphological continuous if line tension effects can be ignoPetlbecomes
transitions take place if the droplet volumé; becomes  gjiscontinuouin the presence ofaline tension contrast (see Figure
comparable or bigger than a reference volume defined by theg). For axisymmetric droplet shapes, we can characterize the
surface domain. Within this regime of droplet volumes, the giscontinuous depinning of the contact line analytically by
morphology can change by exploiting the variability of the contact analyzing the interfacial and line free energies as a function of
angle at the boundary of a surface dontain. the droplet volumé/;. Line tension contrasts can also give rise
With decreasing droplet size, the line tension free energy to stable nonaxisymmetric shapes, as shown in Figure 10 below,
contribution (i.e., the excess free energy arising from the three and thus to a spontaneous breaking of the axial symmetry of the
phase contact lifé) becomes increasingly important. Line tension  system. Using numerical free energy minimization, we study
effects can no longer be neglected for droplets with a linear size how the analytical results for axisymmetric shapes are modified
below 100 nanometefst2 3 xperimentally, line tension effects  if nonaxisymmetric shapes are taken into account in the analysis.

have been observed for droplet sizes in the nanometer ré&itne The paper is organized as follows. In section 2, we present
our geometric interface model for fluids wetting a structured
* Corresponding author. substrate. In section 3, we briefly review the discontinuous
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surface domain geometries in refs 19 and 20. More recently,
Auﬁ Swain and Lipowsk}? derived a rather general contact line

o equation, which is valid for rigid substrates, both topographically
and chemically structured, and stability criteria based on the

5 second variation with respect to the contact line position were
0 B obtained in refs 13, 21, and 22. Local equilibrium with respect
filie i i to displacements of the three phase contact/ijgleads to the
afo [ g Y,S oo generalized Young or contact line equafigi2!
a) A, b)

Figure 1. (a) Spherical droplet on a homogeneous substrate)
Circular lyophilic domainy embedded in a lyophobic substrate

T4 €080 =X W — ACy — M-V*A (3)

where@ is the local contact angle and where we introduce the

In subsection 5.3, we investigate a continuous line tension contrast "V ettability

and, in subsection 5.4, we study the effects from thermal

fluctuations. In subsection 5.5, we analyze nonaxisymmetric . Zo(X) = Zg,(X) 4
droplet shapes numerically and discuss how they modify the w(X) = S )
depinning transitions. Finally, we discuss the experimental

implications of our theory in section 6. which is the cosine of the contact angle of a macroscopic

droplet, for which line tension effects can be ignored= cos
2. Model 0.). Furthermorec’ is the desi [
o). Cq geodesic curvature of;z; with

2.1. Free Energy.We consider a single droplet of a liqyd respect to the substrat@? is the two-dimensional gradient on
that is deposited onto a solid substratand surrounded by a  the substrate, anth is a conormal perpendicular to both the
vapor phase or another immiscible liquid phas®e will study surface. (g, and the tangent to the three-phase contact line. In
two simple generic substrate geometries: (f@mogeneous  the following, we will focus on planar substrates, whérequals
substrate and (i) a structured substrate containgiggde circular the normal of the contact ling;s., andc; equals the curvature
lyophilic domainy, which is embedded in a lyophobic substrate of /g,

o0 (see Figure 1). In the following sections, we will study the effects of line
Our analysis is based on the minimization of the interfacial tension on the equilibrium morphologies of a single droplet of

and contact line free energies associated withothénterface, fixed volumeVg. The equations of Laplace and Young describe

which is represented by the mathematical surfagg with area locally stable configurations of the droplet. The Laplace equation

Ags = | Aypl. The droplefd wets a surface{s, on the substrate,  (eq 2) is satisfied by shapes of constant mean curvature, which
which is bounded by the three phase contactfifg (see Figure arespherical cap®n a homogeneous substrate, with the contact
1). Onachemically heterogeneous substrate, both surface tensionkne equation (eq 3) determining the contact angle and thus the
Zu0(X) andZg,(x) as well as the line tensiafi(x) are functions radius of the spherical cap. Apart from homogeneous substrates,
of the positionx on the substrate. The total free energy of the we also consider structured surfaces vditttular domains, for
droplet on a chemically heterogeneous substrate assumes thevhich the contact line equation (eq 3) is also compatible with

form®12 the spherical cap shape. For spherical caps, the wetted substrate
surface,.{s,, is a circular domain of radius and the contact
- line equation (eq 3) becomes
T= S [ OAZ 00 — T (] + [, dLAG) + g (eq 3)
APV, (1) AN
/ cosO=W—ZA—Zr— (5)
wfl  Zap

whereV; is the volume of the droplet andlP is the Laplace

pressure, defined asP = P, — Pp. For a fixed volume/y, the We will first constrain our local stability analysis to the subset

last t.erm ogn the right-hand side ofeq 1 plays the role ofa Lagrange ¢ droplet shapes consisting of spherical caps. For this subset,
multiplier. we can obtain an analytical theory of the discontinuous unbinding

Forlocally stable equilibrium morphologies, the firstvariation  ansition on the homogeneous substrate, as in ref 17. Using the
of the free energy (eq 1) with respect to small displacements of g5 me supset of axisymmetric spherical cap shapes, we will also

theos int_erfgge and associated displacements of the three phasey 5 ytically treat the discontinuous depinning transitions arising
contact line/us, vanishes. Local equilibrium with respect 10 41y jine tension effects for a circular lyophilic domain. In a
displacements of the/; interface leads to the Laplace equation  gecong step, we will discuss how these results are modified if

nonaxisymmetric shapes are included into the analysis. This will
M2, = —AP ) be done systematically using numerical minimization methods.
Tofind theglobally stable state, we have to analyze all locally

whereM is the mean curvature of theg interface. According stable configurations and, furthermore, possible boundary minima.
to the Laplace equation (eq 2) the droplet attains a shape ofFor a homogeneous substrate, the only relevant boundary

constant mean cuature minimum is a spherical droplet, which becomes unbound from
For uniform substrate surfaces, the Young equation representghe substrate, as shown in Figure 2. For a structured surface with

the condition of mechanical equilibrium of the three-phase contact a circular domain, additional minima arise for droplets whose
line. This equation has to be generalized for nonvanishing line

i i i i H (19) Boruvka, L.; Neumann, A. WJ. Chem. Physl1977, 66, 5464.
tension, as was first realized in ref 18 and extended to certain (20) Rusanov, A. IColloid J. USSR (Engl. Transl977 39, 618,
(21) Rosso, R.; Virga, E. GPhys. Re. E 2003 68, 12601.

(18) Gretz, R. DJ. Chem. Phys1966 45, 3160. (22) Rosso, R.; Virga, E. Gl. Phys. A2004 37, 3989.
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bound unbound

Figure 2. Bound and unbound droplets.

circular contact line ipinnedat the boundary of the circular
lyophilic substrate domai.

2.2. Separation of Length ScalesApart from the linear size
L O Vg2 of the droplet, which is determined by its volurivig
the free energy of the droplet contains a number of different
length scales associated with (i) gravity, (ii) molecular distances
and interface widths, (iii) critical correlations of the wetting
transition, and (iv) line tension.

Inthe expression (eq 1) for the droplet free energy, we neglected

contributions arising from gravity. This is justified for droplet
sizesLg, which are much smaller than the capillary length
which is typically in the millimeter range.

On the other hand, the interfacial and contact line free energy
model (1) is only applicable for droplet sizesmuch larger than
typical molecular distanceg., and much larger than the interface
width 4, and the contact line widtfz,. All of these microscopic
length scales should be on the order of 1 hvile also assume
that we have coexistence of theand phases, but that we are
far away from a critical point, such that the correlation length
&g in the liquid phase is comparable to the molecular lemgth
and much smaller than the droplet length s¢aldt is assumed
as well that the temperatuffeof the system is below the wetting
temperaturel, that is,T < T,.

Finally, we want to estimate the range of length scales where
we expect line tension effects to become relevant. The line free
energy contribution in eq 1 becomes comparable with the
interfacial contribution for droplet sizég below a characteristic
length scalé

NI

=5, ©)
of af

where we used the estimate’s| ~ (T//no’)ps> and=qs ~ (T/
ol (T is measured in energy units). For droplet sizgs<
L};, the line tension contribution to the free energy (eq 1) is
dominating, and we expect pronounced line tension effects. Also,
computer simulations on polymer melts demonstrate that the
length scalé; is comparable to a microscopic molecular length
scale of the liquid32*ForLg; > Ly, the line free energy is small
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interface potentialJ(l), which has a minimum dat = I, for
partial wetting. Within the effective interface model, the potential
depthUmin = U(Imin) is related to the (local) interfacial tensions

by

[Upinl = 2 + Zp, — Zpp = Zgp(1 — c0s6) (7
and the line tension can be calculated®ds
| in
A= (22, )" [ dlUQ) + U2 +
u(l)
®)

S (U0 + Ui

wherelpinis the inflection point of the effective interface potential
u(l).
Using the expression (eq 8) for short-range interface potentials
with a rangélmin ~ lpin, We obtain an estimate
1/2 1/2
A~ Imin(zaﬂluminD ~ 2otﬂlmin(l — cosb) %)
If the wetting layer thicknedsn is comparable to the molecular
Size/mol, the Iength_;; ~ /o1 1S also comparable to the molecular
length scalefo such that, indeed, the reginig < LZ is not
experimentally accessible.
In the presence of long-range van der Waals forces, on the
other hand, the effective interface potential has a i) ~

An/12712 for largel, whereAy is the Hamaker constait Then
we find3

1/2 AH
1271,

Zzaﬂ
AVdWN (IUmin|) (10)

where we used the small gradient expanslofin| ~ Zqs6%/2.

For small contact anglésor small wetting layer thicknessks,

the line tensiomgw and thus the corresponding Ienglp~
AulZoglpin® becomes large. In this limit, the regimg < L
becomes experimentally accessible. On curved substrates, the
line tension can also be controlled by varying the substrate
curvature?®29

Experimental values for_; = |Al/Zy range from tens of
nanometers to tens of micrometers, reflecting the fact that line
tension values in the range 78J/m=< |A| < 10-%J/m have been
reportedt4-16.30

3. Homogeneous Substrates

We first review the analysis of equilibrium droplet shapes on

compared to the interfacial contributions. In this regime, line homogeneousubstrates with a spatially uniform wettability

tension effects are small but still observable. Line tension = c0o¥. and a spatially uniform line tensiofi. This case has

measurements based on the generalized Young equation (eq 3yeen studied previously by WidoMAs already pointed out, we

are typically performed in this reginé. can limit our analysis to the subset of droplet shapes consisting
The estimatd.* ~ /4,244 in (eq 6) suggests that the regime of spherical caps, which represent surfaces of constant mean

5~ lapyllop q 99 g - . :
Ls < L} is hardly accessible in experiments if the width of the Ccurvature satisfying the Laplace equation (eq 2). We consider
contact linesy, is small. The estimate for the line tension and @ fixed droplet volume/s, and we define the droplet size by

thus LZ = |A|lZss can be substantially improved in the
framework of an effective interface modeivith an attractive

(26) Indekeu, J. OPhysica A1992 183 439.

(27) lIsraelachvili, JIntermolecular and Surface Forcefcademic Press:
London, 1992.

(28) Marmur, A.; Krasovitski, BLangmuir2002 18, 8919.

(29) Jakubczyk, P.; Napikowski, M. Phys. Re. E 2005 72, 11603.

(30) Gaydos, J.; Neumann, A. W. IApplied Surface Thermodynamics
Neumann, A. W., Spelt, J. K., Eds.; Marcel Dekker: New York, 1996.

(23) Milchev, A. I.; Milchev, A. A. Europhys. Lett2001, 56, 695.

(24) Milchev, A.; Milchev, A.; Binder, K.Comput. Phys. Commu2002
146, 38.

(25) Lipowsky, R.Phys. Re. Lett. 1984 52, 1429.
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3V, \1/3
L= |-~
5~ \4n
thatis, as the radius of a sphere of voluvizeFor spherical caps,
the wetted substrate surfacés, is a circle with radiug. For
a fixed droplet volume, the radiusuniquely determines the
shape of the spherical droplet. local equilibrium, the radius
r will be determined by the local minimum of the free energy

(eq 1) as a function of under the constraint of fixed volume
Vj. The equilibrium value of should fulfill the corresponding

11)
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for the free energy = f (p) as a function of the dimensionless
wetted radiugp alone such that no Lagrange multiplier for the
volume constraint is needed in the following. We now analyze
fasafunction op in order to find the global free energy minimum,
which can be either a local minimum fulfilling,f (opo) = O at
a certainp = ppo > 0 corresponding to &ounddroplet or a
possible boundary minimum at= py, = O corresponding to an
unbounddroplet (see Figure 2).

To calculate the derivatives @(jp) at constant volum¥j, we
take derivatives with respect poon both sides of eq 14, which

contact line equation (eq 5). Local equilibrium shapes representgives

bounddroplets that partially wet the substrate (see Figure 2).
The global equilibrium shape is given by the global minimum

of the free energy, which can also be a boundary minimum. On

ahomogeneous substrate at a fixed voliupehe only possible
boundary minimum is at = 0, corresponding to a dewetting
from the substrate, with the liquigforming anunboundspherical
droplet of radiud_ (see Figure 2). If the boundary minimum
becomes the global minimum, the droplet unbinds from the
substraté’

For a spherical cap placed on the substrate such that the wetted

surface_ 4, is a circle with radiug and areafs, = nr?, the
length of the three phase contact linelig, = 2ar. The area
of the surface 1, of the cap isAqs = 27r%/(1 + cosf) = n(r?
+ h?), whereh is the maximal height anfl is the contact angle

of the spherical cap (see Figure 2). The geometry of a spherical
cap is completely determined by specifying the two parameters

h and r. For the following, it is convenient to introduce
dimensionless quantities

_ 2
f=Fas L,
H=hir
INEIN (12)

with the droplet sizé&4 defined in eq 11. The total dimensionless

free energyf of the droplet assumes the form
_1- n_ 1 2

f—2p 1+ H9 2W,o + Ayp (13)

where the wettabilityw and the dimensionless line tensidn

are the remaining material parameters. The dimensionless lin
tension|dy| = Ly/Ly ~ Ly/Vs'3is our control parameter for the

droplet volume, which decreases with increasing volume. Because,

the wettability w is volume-independent, it follows from
comparing free energy contributions in eq 13 that line tension
effects become increasingly relevant at small volumes.

We want to consider the free energy (eq 13) for a fixed volume
Vg = ar3(H3 + 3H)/6 of the spherical cap. The volume constraint
thus gives a relation

p=2(H>+3H) " (14)

betweerp andH, which can be inverted to obtalhas a function
of p,

H=H(p) =g(4p™) with
g(x) = [x + (1 +3)" — [x + (1 +)" T (15)

We use the relatiotd = H(p) in the free energy (eq 13) to
explicitly include the volume constraint and obtain an expression

€

9,H = —(H®+ 3H)*2(1+ H?) (16)
This can be used to calculate
1—-H?
o f= —wp+ 4 17
pf=r e Wt A 17)
2 4 146
8if=l+13H +32H3 H> (18)
(1+H9
whereH = H(p) according to eq 15. Because
1—H?
cosf = (29)
+ H?

for a spherical cap, we verify from eq 17 that the condition
9,f(ope) = O for a local minimum corresponding to a bound
droplet is equivalent to the generalized Young equation (eq 5):

Ay . (1-cos0)"%2+ cosf)™®

cosf=w——=w-—41
Poo Vo 2231 4 cosh) 2

(20)

The last line of eq 20 is an implicit equation for the contact angle
6 of a bound droplet in terms of the wettability and the
dimensionless line tensialy (cf. ref 17), which we obtained by
eliminating py, from eq 20 using the geometrical relation

2731 + cosH)*?
p =
(1 — cosH)42 + cosh)?

(21)

which follows from eqs 14 and 19. Because~ A/ZqsVs R is
volume dependent according to eqs 12 and 11, the contact angle
is also volume dependent in the presence of line tension.
Becausé),f(0) = Av, there is indeed a boundary minimum at
o = pup = O for positive line tension, and the unbound droplet
is locally stable. For negative or zero line tension, the unbound
state becomes unstable, and the droplet is always in the bound
state partially wetting the substrate.
For small positive line tension, the local minimumpat ppo
> 0 corresponding to a bound droplet is the global minimum.
Upon increasing the line tension to values> Ay u, above an
unbinding thresholdy 5, the unbound state of the droplet with
o = puw = 0 becomes the global minimum, and the droplet
undergoes aiscontinuous unbinding transitioThe locus of
the transition or unbinding line in parameter space is given by
the generalized Young equatidpf(on) = O, or eq 20, and the
conditionf(ppg) — f(0) = O (wheref(0) = 2). Using egs 13 and
17 inthese conditions, we can calculate an explicit parametrization
of the unbinding line in thely—w plane in terms of the
dimensionless height variablé:
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2H(H® + 3H)*° 3 3
AvwH=—————+2H"+3H
V,Ub( ) 1 + H2 ( )
W) =124 ez )
v 1+ H
The parameteld = h/r runs fromH = 0 (corresponding to cos unbound

6 = 1 or complete wetting) té1 = o (corresponding to co8
= —1 or dewetting) for spherical caps. The resulting unbinding
line is displayed in the morphological diagram of Figure 3.
Upon further increasing the line tension, the bound state
becomes unstable far, > Ay in beyond annstability threshold
Av,in. Within the regimely,u, < Av < Av,n Of line tension, the
bound state of the droplet remains metastable. The locus of the
instability lineis determined by the generalized Young equation
9,f (poo) = 0, or eq 20, and the additional conditi@?f(on) =
0. Using the results of eqs 17 and 18, we also obtain an explicit
parametrization of the instability line in the,—w plane:

8H

Ay in(H) =
v (1 + HY3(H® + 3H)?°
2 4_ 116
W, (H) = 1+13H"+ 3H H (23) Figure 3. Morphological diagrams for a single droplet on a
a+ H2)3 homogeneous substrate as a function of wettabilitiesand

dimensionless line tensiors, (top) and as a function of contact
which is also shown in the morphological diagram of Figure 3. angles and dimensionless line tensiobg (bottom).Ay i, denotes

In the Ay—w plane, only the regior-1 < w < 1 is physically ~the instability line andiyus is the unbinding line, as given by egs
accessible for bound droplets. Atthe boundary 1, the droplet 22 @nd 23, respectively. Fay < Zv,uv, the bound droplet s globally

completely wets the substrate, whereas it always unbinds fromjtablif’bf(g’é’})mg;u’lr]‘/st;tﬁéﬂ” gnﬁ’ffﬁgqﬁﬁsrﬂgéaeﬂ‘irgle' agdwmii
— H . V,in . gfdJ 1= =
the substrate av = —1, corresponding to dewetting. in thew—21y plane is physically accessible for bound dropletsyat

Using the geometrical relation (eq 19) for daswe canalso =1, we find complete wetting, and, at= —1, droplets always
readily obtain an explicit parametrization of the unbinding and unbind. In thed—/y plane, the condition-1 < w < 1 defines,
instability line in thely—6 plane in terms of (see Figure 3), together with the generalized Young equation (eq 20), a corresponding
which has been obtained previously in a slightly different manner region of physically accessible states for bound droplets.
by Widom?” The condition—1 < w < 1 defines, together with o
the generalized Young equatidgf (one) = O, or eq 20, a region
in the Ay—0 plane that is physically accessible for droplets and
is also shown in the morphological diagram in Figure 3.

o p
4. Circular Lyophilic Domains and Spatially m m

Homogeneous Line Tension T T i T T

In the remainder of the article, we focus on the effects of line 8 v 8 6 v a 8 8 v 8
tension ondepinning transition®f the contact line of dound Figure 4. The three regimes of a single dropletin a circular lyophilic
dropletin the presence of wettability contrasts. We start with the domain in a lyophobic matrix. From left to right, with increasing
analysis of the effect of a spatially uniform line tensianon volume: regime | withg = 6,, regime Il with®, < 6 < 6,, and
droplet morphologies on a chemically patterned surface containingreglme Il with 6 = 6.
asingle circular lyophilic domairy with wettability w, = cos ) o P )
0, and radiusa embedded in a lyophobic substratewith the droplet, thatis, by changing its size~ V' at fixed radius

(04

wettability ws = cos6s. < W, (see Figures 1 and 4). a of the surface domain.
For a circular lyophilic domain with spatially homogeneous The two other material parameters are the wettabilities and
line tension, the droplet shapes of minimal energysateerical the dimensionless line tensions. By definition (eq 12), the

caps which are axisymmetrically placed on the circular domain. dimensionless line tension is volume-dependent and, thus,
These shapes can be studied analytically. As in the previousacquires a dependence pn (Ay = pyA/Zqpa) if the radiusa
section, we work at fixed droplet volumé, which is the basic is fixed. To display the full volume dependence of the free energy,
control parameter in an experiment. Then the droplet shape isit is advantageous to use the dimensionless and volume-
uniquely determined by the radiuf the contact area, or the independent line tension

dimensionless radius = r/Ls (see eq 12). The radius of the

circular domaire (see Figure 4) introduces another length scale A= AEa=Alp, (25)
into the problem, and we define a dimensionless radius oF
a _ [4nad’ s in the following.
Pv= L_/, N 3V (24) Then, the dimensionless free enefgfa spherical cap-shaped

droplet, which is axisymmetrically placed on the circular domain,
In the experimentpy is controlled by varying the volumé; of assumes the compact and simple form
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1 1
f=1f, =501+ H(p)] — Sw,p" +Apyp forp <py

1.6 \»\pw
Pl o
1, 2 1 5 1.2 : Py
f=1s =501 +HY(p)] — SwWsp” + Apyp —
2 21 ! T4 p, R/ R/a
zpvz(Wy - Wd) for p > pV (26) . -0.1 0 0.1 0.2 1‘?1 1.2 ¥ 1.3 1.4 1.5
A R/a

whereH(p) is given by eq 15. For fixed wettabilities, andw, Figure 5. (left) The two dimensionless boundary domain siges
and fixed line tensioi, the basic control parameter is the volume andpv,z (compare eq 24) as a function of the dimensionless line

V;, which enters into the equation through the dimensionless fension4 according to eqgs 51 and 54. (right) The dimensionless
do,ma'n i as explained above. By minimizing this free boundary domain size as a function of the dimensionless curvature
In Siz€pv, Xplai ve. By minimizing thi radius R/a of the droplet, which is given by a purely geometric

energy with respect tp, for a given volume or givepy, we relation. For each value df, we can read off the corresponding

obtain the equilibrium value ofr, which, as mentioned,  boundary domain sizeg{1 andpy ) on the left and use them on

parametrizes the droplet’'s shape. the rightto determine the corresponding range of observable curvature
We present a detailed analysis of the free enérgyf(p) as radii Ry < R < R, for a pinned droplet.

given by eq 26 in Appendix A. The main results of this analysis
are presented in the following. For increasing volume, there are = arccosw;, due to the line tension corrections in the contact line
three regimes (1, I1, I11) of wetting behavior, which areillustrated ~ equation (eq 20).
in Figure 4. The wetting behavior is qualitatively similartowhat ~ For comparison with experiments, it is instructive to see how
was found in ref 5 for zero line tension. relevant quantities describing the droplet’s shape change in the
In regime 1, for small volume¥; or largepy, the droplet is presence of the (dimensionless) line tendiddecause the volume
entirely within the domairy, and the contact angle is given by Vg of adroplet or the corresponding paramese(cf. eq 24) are
the generalized Young equation (eq 20) with the corresponding the basic experimental control parameters, the boundary volumes
wettability w = w,,, which describes the line tension effects on pv,1 and pyo are two quantities that can be determined
the contact angle. The generalized Young equation can be solve@xperimentally. The dependence @f: and py,» on the line
by using the additional geometrical relation (eq 21). This gives tensionlis given by egs 51 and 54, derived in Appendix A. The
a weakly volume-dependent contact an@le= 6, (pv). left side of Figure 5 shows hopy, 1 andpy 2 change as a function
Analogously, in regime lll, for large volumes; or smallpy, of the dimensionless line tensidn Both py,1 and py,> change
the droplet wets the surrounding substrateand completely ~ approximately linearly for small positive and negatiyefor 4
covers they-domain. Then the contact angle is given by the > 0, both quantities are reduced compared te 0, and, for
generalized Young equation (eq 20) with the corresponding < O, they are increased comparedite= 0.
wettability w = w;. Again, the generalized Young equation can  Another quantity that is measurable is the droplet’s radius of
be solved by using the additional geometrical relation (eq 21), curvatureR (see Figure 2). For a pinned droplet, its radius of
which gives a weakly volume-dependent contact artle= curvatureR is related to its contact angle and its volume
05(pv)- Vs by purely geometric relations. We insert cds =
For intermediate volumes in regime I1, the droplet gets pinned £(1 — (R/@)?)*2into the geometric relation (eq 21) with= py
to the domain boundary. This creates a freedom of the contact(for a pinned droplet withi = a) to obtainpy as a function of
angle, which will become strongly volume-dependent. Regime the dimensionless radius of curvat&e. This purely geometric
[l occurs between twboundaryvolumesVi < Vg < Vo, 0r py 1 relation is shown on the right side of Figure 5. For a given
> py = pv.2. These boundary valugs ; andpy » are calculated dimensionless line tensidn we can now read off the rangg 1
explicitly in the appendix (see eqs 51 and 54). The corresponding = pv = pv,2 of pinned droplet volumes on the left-hand side of

boundary contact angleg » fulfill Figure 5 and determine the corresponding range of dimensionless
curvature radiiRy/a and Rx/a using the right side of Figure 5.
cost; , =W, ; — 4 (27) Because of the nonmonotonic behaviorRs& as a function of

) ) ~ py with a minimum atoy = 23 =~ 1.26 corresponding to a half
(see egs 50 and 53 in Appendix A). The contact angle varies with sphere withR/a = 1, the lower boundary radiR; is decreased,

the volume in the rangé, =< 6 = 6 according to eq 19: while the upper boundary radi&sis increased if the line tension
1 H2( ) increases from zero to positive values. For negative line tension,
— M \py the opposite happens.
cosb(py) = ———forpy; 2 py 2 py, (28) PP PP
1+ H%py)

5. Circular Lyophilic Domains and Line Tension

At the transition from regimes | or Ill into regime II, the Contrast

contact line becomes pinned, whereas it depins when it leaves In the preceding sections, we studied effects frolmano-
regime Il. We find that, for a lyophilic domain, both the pinning geneousline tension on a single droplet wetting either a
and depinning transition amntinuousor ahomogeneoukne homogeneous substrate or a lyophilic circular domambedded
tension. This means that the equilibrium radis= puo(pv) Of in a lyophobic substraté. By analyzing the interfacial and line
the bound droplet as a function of the volume changes free energies of the droplet, we found up to three distinct types
continuouslythrough the pinning and depinning transitions of of (meta)stable droplet morphologies. These shapes correspond
the contact line apy = pyv.1 andpy = pv.2, respectively. to (i) unbound droplets for small volumes, as discussed in section
This wetting behavior is qualitatively similar to what was 3, (ii) bound droplets inside the circular domain (regime [) or
found in ref 5 for zero line tension, where analogous regimes completely covering theg-domain (regime Ill), and (iii) bound
exist. However, in the presence of line tension, the contact anglesdroplets with the contact line pinned at the domain boundary
0, and 6, in regimes | and Ill, respectively, are shifted with (regime Il), as discussed in section 4. The two competing minima
respect to the “macroscopic” anglés., = arccosw, andfs (i) and (iii) give rise to the three morphological regimeslil
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for bound droplets, which are separateddoytinuouspinning
and depinning transitions for a homogeneous line tension.

In the present section, we want to discuss, in detail, how these

transitions are affected by the presence lafi@tension contrast
and, in particular, how the line tension contrast can give rise to
discontinuous and hysteretic depinning transitions.

In general, chemical patterning not only leads to a wettability
contrast withw, > w; for a lyophilic domain, but will also give
rise to aline tension contrastThis can be easily understood in
the framework of the effective interface model introduced in
section 2.2: because of chemical patterning,dapth Uy, of
the interface potential and, according to eq 7, the wettability will
vary across the domains. Also thigapeof the interface potential
and, therefore, according to eq 8, the line tenstowill vary.
Therefore, we study effects from a line tension contrast with
different values\, = A, for the line tensions inside and outside
the domain, respectively. In general, we can distinguish two
cases: (i) ForA, < Ay, the three-phase contact line prefers to
run through thes-domain because it offers a lower value of the
line tension. Therefore, we will call the-domain “linophilic”
in this case. (ii) For\, > Ay, the contact line prefers to avoid
they-domain. Therefore, we will call the-domain “linophobic”
in this latter case.

The change in line tension between the domaiand the
substrated changes over a characteristic width, which is
comparable to the width of the contact lidg,. Regarding the
spatial variation of the line tension, we can study two different
cases: (i) In the limit of vanishingg,, we can consider awo-
valuedline tension contrast, which exhibits a steplike behavior,
as described by

A=A, +0O( —a)(A; —A,) (29)
where®(X) is the Heaviside step function. (ii) In a more realistic
model, we can also considecantinuoudine tension contrast,
as given by

As— A _
A() == 5 ytanl'(r/ a)+
ugo

Ay+ A,
2

(30)

where the line tension changes continuously over the finite width
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Figure 6. Morphological diagram as a function of the dimensionless
line tension contrasAl and the rescaled domain radipig where

AL = As — A, with fixed 4, = 0.1, and for wettabilitiesv, = 0.5
andws; = —0.5 in the absence (a) and presence (b) of thermal
fluctuations. Pinning or depinning transitions are indicated by solid
lines; dashed lines indicate instability lines, where metastable states
becomenechanically unstabl&@he free energy landscape along the
trajectories () and (tg) are shown in Figures 7 and 8, respectively.
Blue dashed lines in the morphological diagram for nonzero
temperature in panel b indicate instability lines, where the corre-
sponding metastable states becamstable with respect to thermal
activation for a domain radius = 104,,. Effects from thermal

-0.002

/upo across theyd boundary on the substrate. The qualitative fluctuations are small; therefore, we chose a smaller range of values
results regarding the droplet depinning for a circular lyophilic AA in panel b. In the region between the blue dashed vertical lines
domain will be the same for both steplike and continuous line close toA1 = 0, the system finds its minimum spontaneously, and
tension contrasts. the depinning transitions can be regarded as quasi-continuous.
5.1. Main Results.In this section, we will present our main i - i ) i o i
results, which are summarized in the morphological diagrams in adhere to the I|r)0ph|||c domain agamst the increasing interfacial
Figure 6 in the plane spanned by the two parametérs= 1, energy of thex interface ofthegrowmg dropllet, andthe d.roplet
— A, wherel, andi, are the dimensionless volume-independent SPreads onto thé-substrate in a discontinuous depinning
line tensions inside and outside of the domain, respectively, which transition. For the linophobic case,.the discontinuity occurs upon
are defined as in eq 25, ang ~ V513 is the dimensionless q§gr9a5|nghe volume between regimes Il and I.Thenthedroplet
domain radius (eq 24) measuring the droplet volumé.> 0 initially wets theé-substrate and covers the entuqﬂoma!n.
andAJ < 0 correspond to the cases of a linophilic and linophobic  The shrinking contactline tends to avoid the linophghbtomain,
domain, respectively. We postpone detailed derivations and although this stretches thwef interface, and the droplet pulls
discussions to the subsequent sections. In the previous sectiondack onto thg-substrate in a discontinuous depinning transition.
we foundcontinuouspinning and depinning transitions of the 5.1.1. Axisymmetric Shapér axisymmetric shapes, thatis,
contact line for a lyophilic domain and a spatially homogeneous spherical droplets placed axisymmetrically on the circular domain,
line tensionAA = 0 both between the regimes | and Il and we can perform analytical calculations of the droplet morphologies
between the regimes Il and IIl. If we also include a line tension based on the minimization its free enefgy f(p) in order to find
contrast (eq 29 or 30), we find for both the linophilic domain the equilibrium dimensionless contact radpgs of the droplet,
(A4 > 0) and the linophobic domaim@ < 0) discontinuous analogously to the case of a homogeneous line tension in the
depinning transitionswhere the contact area of the droplet previous section. The discontinuous depinning transitions show
exhibits a discontinuity. For the linophilic case, the discontinuity up as discontinuitie& py,in the equilibrium radius of the droplet.
occurs uponncreasingthe volume between regimes Il and Ill.  This analysis finally leads to the morphological diagram Figure
Then the contact line of a droplet on tiredomain tends to 6a in the absence of thermal fluctuations. The effects of thermal
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fluctuations can be included into the analysis by taking into (a) pv-: pv2 pvl
account that energy barriers with heights up to the ord&rmain 2 : ; :
be overcome by thermal activation and, thus, are effectively _‘\; (--w

absent. This leads to modifications in the morphological diagram -

(see Figure 6b). 1.8

Our findings for zero temperature are summarized in the
morphological diagram in Figure 6a. This morphological diagram f
is generic for the depinning behavior lbbunddroplets. If one

I | IIb ITa [

of the line tensions becomes larger than the instability threshold 16

Avin (i-€.,4,0v > Avin(W,) Or Aspv > Av,in(Ws); See section 3), 15 ]
the depinning transitions start to interfere with the unbinding ~
transitions on the domaip or the substraté. Then we expect L4 _ga:/
a change in the general topology of the morphological diagram. . . 1
In the present article, we do not consider this case. For both 0.25 0.5 075 1 1.25 15 L75 2

linophilic and linophobic domains, we find a strong hysteretic
behavior at the discontinuous depinning transitions, which is

also evident from the bifurcation diagrams in Figures 7 and 8

(blue curves), where we plot the global and metastable minima (b) 2
of the free energy as a function of the volume control parameter

pv.

Approaching the depinning transition between regimes Il and 1.9
Il for a linophilic domainAA > 0 from small volumes (i.e.,
decreasingy), the pinned state of the droplet at the boundary
minimum p = py never becomes mechanically unstable in the 1.8
absence of thermal fluctuations. In this metastable configuration,
the droplet can exhibit very large contact angles. Another hallmark
of the line tension contrast is the existence of a novel regime lib, 17
where metastable states also appear in regime Il. For this range | 45 \
of volumes, the boundary minimum continues to be the global
minimum because the contact line can gain energy by staying T 03 04 05 06 o7 os
within the linophilicy-domain, although a metastable minimum p

Vv

1.95

1.85

corresponding to a droplet sitting on th&substrate and

completelycove.r'mgth&(j(?maln already exists. Thet\/\{o minima Figure 7. Linophilic domain. Free energy bifurcation diagram
exchange stability at aritical value py . corresponding to a showing the global minimd(ony) = f(pe(pv)) together with the

critical volumeVc. Above this critical volume, itis energetically  pranches of metastable minima as a function of the dimensionless
advantageous for the droplet to depin in adiscontinuous transitiondomain radiusy (see eq 24), fow, = 0.5,w; = —0.5, andi, =

with a discontinuity in the contact radius and wet the surrounding 0.1,4;=0.2. The diagramin panel b is a close-up of the full diagram
d-matrix. Regimes IIb and I, where additional metastable states in panel a. Blue lines: Analytic results for axisymmetric shapes and

exist, are bounded by two instability lines where these metastable;ﬁi'jke !1”8 t792”93i9|_r;] gorre‘gﬁﬁgsml/e”f;ﬂiihcb za?]ﬁTl?'gééonilﬁgzt% o
. . . . . . v,2 = U. . , , )
minima vanish and which are displayed as dashed lines in the 535 e ingicated. The pinning and depinning transition between

morphological diagram in Figure 6. Because the pinned gtate regimes | and lla is continuous, the depinning from regimes Il to
= pv does not become mechanically unstable for large volumes, regime 111 is discontinuous, and the re-pinning from regime Ill to
regime Il is bounded by aertical instability line A1 = 0. regimes Il is continuous. The dashed blue line represents the branch

The hysteresis behavior at the depinning transition between of unstable free energy maxima. Black points: Results from numerical

. L and 1l for 4i hobic d ML <0 i | minimization restricted to axisymmetric shapes. Red points: Results
regimes [ and Il for anophobic domal IS analogous. — fom numerical minimization allowing for nonaxisymmetric shapes.

Approaching the transition from large volumes (i.e., increasing The nonaxisymmetric shape in point a is shown in Figure 10a.
pv), the pinned state of the droplet at the boundary mininpum  Numerical results for continuous line tension and wettability contrasts
= pv never becomes mechanically unstable in the absence of of width 44, = 45 = 0.002.

thermal fluctuations. In this metastable droplet configuration, The morphological diagram in Figure 6 is modified when
the droplet can exhibit very small contact angles. Again, there thermal fluctuations are taken into account. In the absence of
also exists a novel regime Ilb, where the boundary minimum thermal fluctuations, we find metastable states in regimes Ilb
continues to be the global minimum, although a metastable and 11l for a linophilic domain and in regimes Ilb and | for a
minimum corresponding to a droplet sitting within thelomain linophobic domain. In going from regimes I1 to 11 on a linophilic
already exists. The boundary minimum is stable because thedomain bydecreasingy and from Il to | on a linophobic domain
contact line gains additional energy by staying outside the byincreasingoy, the boundary minima at= py always remain
linophobic domain and on the surroundibhygnatrix. Only below metastable, which results in vertical instability lines located at
the critical volumeV; corresponding tey, ., it is energetically AA=0inthe morphological diagramin Figure 6a. In the presence
favorable for the droplet to depin and retreat in a discontinuous of thermal fluctuations, however, barriers in the free energy
transition with a discontinuity in the contact radius onto the profilesf = f(p), which are induced by line tension contrasts and
linophobicy-domain. Regime lIb and regime |, where additional stabilize these states (see Figures 14 and 15 in Appendix B), can
metastable states exist, are again bounded by two instabilitybe overcome by thermal activation. If the barrier is smaller than
lines (see Figure 6). Because the pinned statepy does not T, we assume that these boundary states are mechanically stable
become mechanically unstable for large volumes, regime | is but unstable with respect to thermal agdition. Applying this

also bounded by aertical instability line, AA = 0. criterion to all instability lines in the morphological diagram in
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Figure 9. Plot ofd,f(p) according to eq 39 fow, = 0.5,w; = —0.5,
A, =0.1,4s = 0.2, and/ys, = 0.05 at the depinning transitiqsy
= pv,c ~ 0.536. The discontinuity o, f(0) at p = py is due to the
wettability contrast. Local free energy minima are= py, andp,

Figure 8. Linophobic domain. Free energy bifurcation diagram " go. The shading illustrates the Maxwell-like construction
showing the global minim&n,) = f(ond(ov)) and the branches of according to eq 40.

metastable minima as a function of the dimensionless domain radius
pv (see eq 24), fow, = 0.5,w; = — 0.5, andl, = 0.2,4, = 0.1.

Blue lines: Analytic results for axisymmetric shapes and steplike
line tension contrast. We fin,clf‘,’C = 2.087,pv1 = 1.528, antby »

=~ 0.830. The regimes I, lla, IIb, and Ill according to eq 64 are
indicated. The pinning and depinning transition between regimes
Ila and Il is continuous, the depinning from regimes Il to regime

| is discontinuous, the re-pinning from regime | to regimes Il is
continuous. The dashed blue line represents the branch of unstable
free energy maxima. Black points: Results from numerical
minimization restricted to axisymmetric shapes. Red points: Results
from numerical minimization allowing for nonaxisymmetric shapes.
The nonaxisymmetric shape in point b is shown in Figure 10b.
Numerical results for continuous line tension and wettability contrasts
of width 4, = 4 = 0.002a.

Figure 6a, we find the modified morphological diagrams,
including thermal fluctuations, in Figure 6b, where the regimes
containing metastable states are decreased in size. In regime I,
for a linophilic domain and regime | for a linophobic domain,
the size of the free energy barriers only depends on the line
tension contrast and the domain size, but they are volume-
independent, which leads again to vertical instability lines. These
lines are shifted ta\l ~ +a2/nof by thermal fluctuations. In Figure 10. Nonaxisymmetric equilibrium droplet shapes stabilized
the region between the shifted vertical lines arotid= 0, we by a line tension contrast on a planar substrate containing a circular
can regard the depinning transitiongjassi-continuougexcept ~ domain (red): (a) for a lyophilic and linophilic domaiw,(= 0.5,

for the case in whict\l = 0, where it is strictly continuous); W = —0-5,4, = 0.1,4; = 0.2) atpv = 0.5. (b) for alyophilic and

S Y e linophobic domain\y, = 0.5,ws = —0.5,1, = 0.2, 4, = 0.1) at
by thermal activation, the system can find its minimum pv =2.0. (c)foraIinoTohiIicdomaiwithoutwyettabilitycontrastwy

spontaneouslyn this regime. =w, = 0,4, = 0.1,4, = 0.2) atpy = 0.9. (d) for alyophobicbut
5.1.2. Nonaxisymmetric Shapéss will be discussed in the linophilic domain g, = —0.5,w, = 0.5,4, = 0.1,4, = 0.2) atpy
last section, line tension contrasts can stabilize nonaxisymmetric= 1.1.
shapes, both foAl > 0 andAA < 0, as shown in Figure 10a,b.
Even in this case, there still exists a steplike free energy barrier changes the hysteresis behavior when the droplet approaches the
that gives rise to morphological diagrams similar to those for depinning transition from large volumes or increasingi.e.,
axisymmetric shapes. when it re-pins). This re-pinning becomasntinuoudollowing
For the case of &nophilic domainAi > 0 (i.e., A, < Ay), the free energy branch with broken axisymmetry, that is, there
the droplet tends to maximize its contact line length within the is no “latent heat” released.
domain and, at the same time, cover the lyophilic domain. This  On the other hand, for lnophobic domaimA4 < 0 (i.e., A,
leads to a “geometrically frustrated” situation for larger volumes, > As), the droplet tends to maximize its contact line length
where the droplet wets the surrounding substdatinat is, for outside the domain and, at the same time, cover the lyophilic
the states in regimes llb and Il (see Figure 7). They become domain. This leads to geometric frustration for smaller volumes,
unstable with respect to a displacement of the droplet relative where the droplet is inside thedomain, that is, for the states
to the circular domain such that the circular domain touches the in regimes I and IIb (see Figure 8). The droplet becomes unstable
droplet contact line, as indicated in Figure 10a. This breaks the with respect to displacements to the boundary of the circular
axial symmetry of the problem. Such configurations become the domain such that its contact line touches the embedding substrate
global minimum in regime lll and an energetically more favorable outside of the domain, as shown in Figure 10b, thus breaking
metastable branch in regime llb. The free energy branch with the axial symmetry. Such configurations become the global
broken axial symmetry is indicated in the free energy bifurcation minimum in regime | and an energetically more favorable
diagramin Figure 7 (red curve). The broken axial symmetry also metastable branch in regime llb. The free energy branch with




11050 Langmuir, Vol. 22, No. 26, 2006 Blecua et al.

broken axial symmetry is indicated in the free energy bifurcation the boundary minimum remains stable, although there already
diagram in Figure 8 (red curve). Also, for this case, the broken exists a metastable minimum corresponding to a droplet wetting

axial symmetry modifies the hysteresis behavior when the droplet the d-substrate and covering thedomain. This metastable

approaches the pinning transition from small volumes or
decreasingy. This pinning becomesontinuougfollowing the

minimum appears above the boundary voluwethat is, for
valuespy < pv2, Wherepy > is given by eq 61, as calculated in

free energy branch with broken axisymmetry, that is, there is no Appendix B. The corresponding boundary contact angle is given

“latent heat” released.
5.2. Two-Valued Line Tension ContrastIn this section, we

present analytical results for the two-valued steplike line tension

contrast (eq 29) in addition to the wettability contrast with
> w;,. Then the dimensionless free enerfggf the spherical
cap-shaped, axisymmetrically placed droplet is given by

1 1
f=f, =501+ H(p)] = Sw,p” + Apoyp forp <py

1 1
f=f; =501+ HAp)] — SWep” + Aspyp —

1
EPVZ(W;/ —w;) forp>p, (31)

whereA, andi, stand for the values of, according to eq 25,

in the lyophilic domain and in the lyophobic matrix, respectively.
We present a detailed analysis of the free enérgyf (p) as

given by eq 31 in Appendix B. The results of this analysis are

presented in the following for the two cases of a linophilic domain

(A, < As) and a linophobic domainy, < A) separately. The

by

cosf, =ws — A; (33)
(see eq 60). The lower boundary valpg; is identical to the
boundary value obtained for the pinning of a droplet wetting the
d-domain and completely covering thedomain and with a
homogeneous line tensidn= 4. Within the regimepy 2 < pv
< pv.1, the droplet is in regime lla, and the boundary minimum
at ppo = pv is theonly free energy minimum (see Figure 7).
Upon further increasing the volume, the droplet enters regime
[Ib for pvc < pv < pv.2, Where the boundary minimum is still
the global minimum, but the metastable minimum appears
corresponding to a droplet wetting thematrix. As can be seen
in Figure 7, the two minima exchange stability araical value
pv.c corresponding to a critical volumé; and a contact angle
6, which can only be determined numerically. At this critical
volume, adiscontinuous depinning transiticiakes place into
regime 1l with a jump,Apye > 0, in the equilibrium contact
radius. The size of this jump is estimated in Appendix B.3 in eq
69. This jump also leads to a corresponding discontinuity,

results are summarized in the two bifurcation diagrams in Figures = 65 — 6. < 0, in the equilibrium contact angl@; is the (weakly
7 and 8 (blue curves), where we plot the global and metastablevolume-dependent) contact angle of a droplet wetting the

minima of the free energy as a function of the volume control
parameteipy.

5.2.1. Line Tension Contrast, < As (Linophilic Domain).
For a linophilic domain, there are now four regimes (I, lla, lib,
and I11) of wetting behavior, which are illustrated in the bifurcation
diagram in Figure 7. The wetting behavior in regimes Il and I

d-substrate in the presence of a line tensibrs 1s5. For the
contact angle discontinuity we find

A0~ =2, (Rs — A,)"A(L — wy)?*(2 + w,)*° (34)

in eq 70 in Appendix B. Thus, the discontinuity in the contact

is qualitatively changed compared to the case of a spatially angle at the discontinuous depinning transition of the contact
homogeneous line tension due to steplike features in the freeline depends on (i) the critical droplet volume, (ii) the line tension
energy from the line tension contrast (see Figure 14, Appendix contrast, and (iii) the wettability or contact angle of hsubstrate.

B).
For a linophilic domain, the behavior of the droplet within
regime | for small volume¥ or largepy as well as the pinning

In the entire regime Il (i.e., fasy ¢ < pv < pv,1), the equilibrium
contact line is pinned, and the contact angle varies with the
volume in the rangé@; < 6 < 6, according to the relation given

transition between regimes | and Il are exactly as those for ain eq 28.

spatially homogeneous line tensidn= 4,, which has been

Inregime lll, for large volumes or small, < py ¢, the droplet

discussed previously in section 4. Therefore, the contact anglewets thed-substrate in its equilibrium shape. Note, however,
of the droplet is the (weakly volume-dependent) contact angle that, in the absence of thermal fluctuations, the bound state remains

0, of the y-domain in the presence of a line tensibr= 4,.
Moreover, the pinning transition between regime | and Il is

metastable within the entire regime lll. This leads to the
pronounced hysteresis displayed in the bifurcation diagram in

continuous as can also be seen in the smooth behavior of the Figure 7. The contact angle in this metastable state can increase

global minimum of the free energy as a functionmfin the
bifurcation diagram in Figure 7. Upon increasing the volume or
decreasingy, the droplet gets pinned to tlyé domain boundary
at a boundary volum¥; corresponding to an upper boundary
valuepy,1, which is calculated in Appendix B (see eq 59). The
corresponding boundary contact angle is given by
cosf; =w, — 4, (32)

(see eq 58).

Within regime Il, where the contactline is pinned at the domain

dramatically by following the relation in eq 28 for @l < pv 2.
Because the boundary state does not get mechanically unstable
for increasing volume, the actual depinning transition has to be
enabled by thermal fluctuations or some other external perturba-
tion, which will be discussed below. It also means that the
corresponding spinodal or instability line of the transition cannot
be accessed by decreasing This results in a vertical second
instability line, A1 = 0, in the morphological diagram in Figure
6.

Upon approaching the pinning transition from the large volume
regime |l by increasingoy (i.e., upon re-pinning), the local

boundary, the behavior becomes qualitatively different from that minimum corresponding to a droplet wetting thesubstrate

for a homogeneous line tension because of the discontindity
= pv¥(Ls — Ay) (see eq 57) in the free energy profiles f(p).

remains metastable far, . < pv < pv,2. Therefore, the other
spinodal or instability line is given byy = py 2. It should also

This steplike feature increases the stability of the boundary be noted that, for sharp line tension contrasts, there is practically

minimum corresponding to the pinned droplet witk a or p

no discontinuity in the equilibrium radiug or in the contact

= pv, which leads to the existence of a new regime Ilb, where angle upon re-pinning at; = pv 2. Thus, the re-pinning transition
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will appear continuous, although there is a discontinuity in the depinning transitioninto regime | takes place with a jump,
free energy, that is, there is a “latent heat” released. App, < 0, inthe equilibrium contact radius. The size of this jump
5.2.2. Line Tension Contragt, > A, (Linophobic Domain). is estimated in Appendix B.3 in eq 71. This jump also leads to
We can perform an analogous analysis for a linophobic domain, g corresponding discontinuitpe* = 6, — 6% > 0, in the
which also exhibits four regimes (I, lla, Ilb, and IIl) of wetting  equilibrium contact anglé), is the (weakly volume-dependent)
behavior, which are illustrated in the bifurcation diagramin Figure contact angle of a droplet in thedomain in the presence of a

8 (blue curves). It turns out that the depinning behavior for the Jine tension/ = 4,. For the contact angle discontinuity, we find
linophilic domain forincreasingvolume, which we treated in

the previous section, is qualitatively similar to the depinning * ~ oll6 U201 823 5/6
behavior for the linophobic domain fatecreasingvolume. In AG* ~ 27y AV) (L= w) ™2+ w)™ (37)
both cases, the contact line depins discontinuously from the . . . . . .
boundary of the circular domain upon entering into the region Ineq 7& in Appendl?(_ B'_ In the ent|re_reg!me_ll (i-e., fov.2
with the less favorable line tension. These similarities are also ~ PV = Pv,¢), the equilibrium contact line is pinned, and the
obvious from comparing the basic structure of the bifurcation contact angle varies with the volume in the rarfije< 6 < 6>
diagrams in Figures 7 and 8. Accordingly, for the linophobic according to the relation in eq 28.
domain, the wetting behavior in regimes | and Il is qualitatively ~ In regime I, for small volumes or large, > oy, ., the droplet
changed compared to that in the case of a spatially homogeneouss on they-domain in its equilibrium shape. Note, however, that,
line tension due to steplike features in the free energy (see Figurein the absence of thermal fluctuations, the bound state remains
15, Appendix B). metastable within the entire regime I. This leads to the pronounced
The behavior of the droplet within regime Ill for large volumes  hysteresis displayed in the bifurcation diagram in Figure 8. The
V; or smallpy as well as the pinning transition between regimes contact angle in this metastable state can decrease dramatically
llland Il are exactly the same as those for a spatially homogeneousPy following the relation in eq 28 for aly > pv 1. Because the
line tension,A = s, which has been discussed previously in boundary state does not get mechanically unstable for decreasing
section 4. The contact angle of the droplet s the (weakly volume- vVolume, the actual depinning transition has to be enabled by
dependent) contact anglgwetting thed-substrate in the presence thermal fluctuations or some other external perturbation, which
of a line tensiork. = 4. The pinning transition between regimes ~ Will be discussed below. It also means that the corresponding
llland Il is continuousas can also be seen in the smooth behavior spinodal or instability line of the transition cannot be accessed

of the global minimum of the free energy as a functiopgin by increasingy. This results in a vertical second instability line,
the bifurcation diagram in Figure 8. Upon decreasing the volume A4 = 0, in the morphological diagram in Figure 6.
or increasingpy, the droplet gets pinned to thed domain Upon approaching the pinning transition from the small volume

boundary at a boundary volumé& corresponding to a lower ~ regime | by decreasingy (i.e., upon re-pinning), the local
boundary valuey 2, which is given by eq 61 as calculated in minimum corresponding to a droplet within thelomain remains
Appendix B. The corresponding boundary contact angle is given metastable fopy 1 < py < pf,yc. Therefore, the other spinodal
by or instability line is given bypy = py.1. It should also be noted
that, for sharp line tension contrasts, there is practicatly
C0S0, = W; — 4, (35) discontinuity in the equilibrium radius or in the contact angle
upon re-pinning gby = pyv,1. Thus, the re-pinning transition will
Withinregime II, where the contactline is pinned at the domain appear continuous, although there is a discontinuity in the free
boundary, the behavior becomes qualitatively different fromthat energy, that is, there is a “latent heat” released.
for a homogeneous line tension because of the discontinuity in 5.3, Continuous Line Tension Contrast and Maxwell-like
the free energy profiles. This steplike feature increases the stabilityConstruction. So far we have considered the situation of a sharp
of the boundary minimum corresponding to the pinned droplet line tension contrast (eq 29). Then the boundary minimugn at
with r = a or p = py, which leads to the existence of a new = p, remains a metastable minimum throughout the entire regimes
regime llb, where the boundary minimum remains stable, although | or 111 for linophobic and linophilic domains, respectively, and
there already exists a metastable minimum corresponding to athe pinned contact line never becomes mechanically unstable
droplet sitting within they-domain. This metastable minimum  with respect to depinning. In this situation, contact line depinning

appears below the boundary volurve (i.e., for valuespy > has to happen by additional external forces acting on the droplet,
pv.1), wherepy 1 is given by eq 59. The corresponding boundary for example, thermal noise.
contact angle is given by In amore realistic model, the line tension contrastistinuous
that is, the line tension step is smeared over a characteristic
cost =w, — 4, (36) width, which is given by the width of the contact liig, (see

. . eq 30), which can be written as
The upper boundary valyg ; is identical to the boundary value

obtain_ed for the pinning of_a droplgt sitting W_ith_in ttzedom_a\in Ay — A ploy — 1\ Ay+2

and with a homogeneous line tensiars 4,. Within the regime Mp) = Tt }‘( ) -

pv.2 < pv < pv1, the droplet is in regime lla, and the boundary 2 2

minimum atpp, = pv is the only free energy minimum (see _

Figure 8). using dimensionless quantities witky, = /Zws./a. Then the
Upon further decreasing the volume, the droplet enters regime dimensionless free energy of the dropies given by

IIb for pv1 < pv < pf,yc, where the boundary minimum is still 1 1 1

the global minimum, but the metastable minimum appears, ¢ — £+ 2 2 _ 4 2 oo\t 2

corrgsponding to a droplet sitting within tredomain. As [():zn F=5P T+ HI = 5we)e” + Ale)pve + Oo — pv)zey

be seen in Figure 7, the two minima exchange stability at a (W, —wy) (39)

critical value oy, . corresponding to a critical volumé; and a

critical contact anglé@?. At this critical volume, aliscontinuous wherew(p) =w, + ©(p — pv)(Ws — W, ). For a continuous line

(38)
Jng
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tension contrast, the free energy (eq 39) has no discontinuity continuous contrast (eq 38), provided that the contrast wiggh
acrossp = py. is small enough, as discussed above. In the absence of thermal
We find that the results for a continuous line tension contrast fluctuations, we find metastable states in regimes IIb and Il for
are qualitatively the same as those for a steplike two-valued line a linophilic domain and in regimes Ilb and | for a linophobic
tension contrast. In particular, we find the same three regimesdomain. Moreover, we found that the metastable states in regime
following the global minimunpy, > 0 of the free energy (eq 31) Il (for the linophilic case) and in regime | (for theénophobic
as a function of the dimensionless surface domain ragiLishe case)never become mechanically unstable in the absence of
notable difference is that the global minimum in regime Il is not external perturbations. However, as discussed in section 5.1, in
necessarily the boundary minimum @t= py, but it can also the presence of thermal fluctuations some of these states can
become a local minimum. Then two local minima exchange become unstable with respect thermal actvation. In the
their stability at the discontinuous depinning transition of the following, we derive the condition for an instability with respect

contact line at the critical value gf,. to thermal activation and the resulting changes in the morpho-
Because the free energy (eq 39) has no discontinuities, we carlogical diagram in Figure 6.

obtain the critical valuegy, or py,. for the discontinuous Thermal activation over an energy barri&F involves

depinning transitions from a Maxwell-like construction, which thermally activated shape changes of the droplet at a constant

we illustrate for the linophilic case), < A,. At the transition liquid volumeV;. Thermally activated nucleation processes, which

atpv = pv,c, the locations of the two local minima ape < pv, involve the deposition of liquid and thus volume growth, have

wherep; is within they-domain and determined iy, (o1) = been studied in the literature in the framework of classical

0 or p1 = py, on one hand, anpb > py on thed-substrate, with nucleation theory! for example, nucleation on homogeneous

d,fs(02) = 0, on the other hand. The corresponding free energies substrate® or circular domaing®2* We assume that similar

are equal at the transition, that is, concepts can describe thermally activated shape changes, which
then proceed with a rateéproportional to the Arrhenius factor,

0="1,(o) — Ts(pp) = ["dpif J=1J, expAFIT) (42)

pvA(p)

= j:zdpp cosf(p) — w(p) + + pyd A (40) where the prefactod, depends on the details of the kinetic

' mechanisms involved in the shape changes. Therefore, a
reasonable criterion for the instability with respect to thermal
activation is to assume that barriek& < T can be overcome
by thermal activation on the experimental time scale. Using

dimensionless units (eq 12), this leads to a condition

which leads to a Maxwell-like construction, in which we locate
the critical valuepy ¢ by requiring that the curva,f(p) intersect
three times with the ling,f(p) = 0 (i.e., atps, p2, and an
intermediate poinp;, corresponding to an unstable free energy
maximum), and that the areaﬂ;'la,,f(pﬂ and|f Zizapf(p)| of the
curve above and below zero are equal (see Figure 9).
For py only slightly belowpy ¢, the local minimum ap = p;

remains metastable. WhereaS, for a two-valued line tensionWhiCh determines the |nStab|I|ty linesin the presence of thermal

Af=T127Z L7 ~ foo 1277 = py %ot 128” (43)

contrast, this minimum was always a boundary minimim fluctuations and where we used the approximatip ~ (T/
pv) and remained metastable f@lf py < pv., the minimum at  /mor®)es ~ Tlino?, as discussed in section 2.2. Using this criterion
p1 can become mechanically unstable at a lower valyes py s (eq 43), we obtain the modified instability lines in the
< pv., for a continuous line tension contrast. The vaiyg is morphological diagram in Figure 6b in regimes lib and 11l for
determined by the two conditiodsf(o1) =0, whichis the contact ~ @ I|n_oph|I|c doma_ln and regimes lIb and | fora Imophobu_: domain.
line equation for thg-domain, and,2f(p1) = 0. These conditions First we consider the metastable states within regime 11l for

can only be fulfilled for a sufficiently smooth line tension contrast, 2 linophilic domain or regime | for a linophobic domain, which
that is, for a sufficiently largés,. The maximal gradientinline  do not become mechanically unstable in the absence of thermal
tension is attained fop ~ py and is approximately given by  fluctuations. The line tension contrast gives rise to steplike
3,A(ov) ~ (Ao — A,)/Zapleps- A sufficient condition for the local  discontinuities inthe free energy (see Figures 14 and 15, Appendix
minimum atp = p; to become unstable is that no boundary B)- Assuming axisymmetric shapes throughout the thermal

minimum p; = py exists (i.e.9,f (ov) < 0 with w(py) = W), activation process, the free energy barrier that these metastable
which gives states have to overcome is given by
MNmh bl L w g 1) Af=Ify(py) — F,(p0)l = py212s — 2| (44)
22 s 7 o 70
o Z/“ﬂ“ (see also eq 57), &F = 2ralAs — A, | in original units, which
For large line tension contrasts or a small contrast widif, shows that this free energy barrier is volume-independent. Using

this condition is violated and, thus, the boundary minimum at €d 44, the condition (eq 43) for the instability lines becomes
p = pyv never becomes mechanically unstable like that for a

steplike line tension contrast. One can also show that, in this |AA] = /m0|2/27'£a2 (45)
case, there is a small range of ragij, < p < pv + s, Where

therenever exists a solution to the contact line equation, that is, which is independent of volume py and, thus, again gives two

a “forbidden” range of radii where it is not possible to find an vertical instability lines in the morphological diagram in Figure
axisymmetric solution to the contact line equation. This paradox 6b. Compared to the morphological diagram in Figure
can only be resolved by including nonaxisymmetric shapes into

the analysis, as will be done in section 5.5. (31) Frenkel, JKinetic Theory of LiquidsDover: New York, 1955.
: . . : (32) McDonald, J. EAm. J. Phys1963 31, 31.
5.4. Thermal Fluctuations. The morphological diagram in (33) Smorodin, V. ELangmuir1994 10, 2250.

Figure 6a is valid for a sharp line tension contrast (eq 29) or a  (34) Valencia, A.; Lipowsky, RLangmuir200Q 20, 1986.



Line Tension Effect on Droplets on Circular Domains Langmuir, Vol. 22, No. 26, 200653

6a, in the absence of thermal fluctuations, both of the vertical (g) 196
instability lines are shifted. In the region between the shifted

vertical lines aroundAl = 0, we can regard the depinning 1.94
transitions agjuasi-continuougexcept for the case in whichd

= 0, where it is strictly continuous); by thermal activation, the f 1.92
system can find its minimurspontaneouslyn this regime.

Similarly, we can apply the criterion in eq 43 to the other
instability lines,py = pv 2 for a linophilic domain angy = pv 1 1.88
for alinophobic domain. In the morphological diagram in Figure
6b, the resulting shifted instability lines have been calculated 1.86
numerically fora = 104y using the criterion in eq 43. For both
AA > 0andAl < 0, the modified instability lines meet at a single

point for a small line tension contrast, where minima exchange 04 (WI;T)O'é
stability and the energy barrier separating them is of helght p
From the criterion given in eq 43, we recognize that thermal eff

fluctuation effects are essentially governed by the ratiga. (b)
With 4n0 being on the order of 1 nm, effects from thermal
fluctuations should be small, even for the smallest realistic domain
sizes, which are on the order of 10 nm. This is also clearly seen

in the morphological diagram in Figure 6b, where the shift of

the instability lines is rather small far= 10/nq. It should also af 2
be noted that the energy barriers between metastable states c

be further reduced by breaking the axial symmetry, as we will
see in the next section.

5.5. Numerical Minimization and Nonaxisymmetric Shapes.
Although the problem of a droplet on a single circular lyophilic Lo
domain has axial symmetry, equilibrium droplet shapes can break I
this symmetry in the presence dfrge tension contrastn Figure 1.2 14 1.6 IIS(DT)
10, we give an overview of possible nonaxisymmetric droplet p
shapes, which are stabilized by a line tension contrast. For a eff
smaller linophilic domain, large droplets that wet the lyophobic Figure 11. (a) Linophilic domain. Free enerdy= f(oer) as a function
substrate are unstable with respect to displacements such thaef the effective dimensionless droplet radisg (see eq 46), fopy
they touch the domain boundary (Figure 10a). For a linophobic =0-5andv,=0.5w;=—0.5,4,=0.1,andi; =0.2. (b) Linophobic
domain, small droplets on the lyophilic domain are unstable with domain. Free energy= f(per) for py = 1.9 andw, = 0.5,w, =

. . —0.5,1,=0.2,andl;=0.1. Blue: Analytic results for axisymmetric
respect to displacements such that they touch the domain boundaryy,; yod ang stepliéke line tension c)(;ntrast. Black: Ryesults from

(Figure 10b). Also, inthe absence of a wettability contrast, droplets nymerical minimization restricted to symmetric shapes. Red: Results
on alinophilic domain are unstable with respect to displacements from numerical minimization allowing for nonaxisymmetric shapes.
in order to maximize the length of their contact line on the domain Numerical results for continuous line tension and wettability contrasts
(Figure 10c). Obviously, for a lyophobic domain in a lyophilic  of width 43, = 45 = 0.01a. The nonaxisymmetric constrained
substrate, droplets preferentially nucleate and attach outside ofduilibrium shapes of droplets representing the "transition states”
the domain on the lyophilic substrate, thus breaking the axial of a“wettongue” (WT) or a“dry tongue” (DT) are shown in Figure
symmetry also in the absence of a line tension contrast. In this

case, a linophilic domain can stabilize states where the dropletihe wettability contrast width, as small as the numerical stability
partially covers the lyophobic domain (Figure 10d). In this paper, f the algorithm allows.

we want to focus on lyophilic domains embedded in alyophobic 14 confirm our analytical results on the free energy bifurcation
substrate, that is, cases a and b of Figure 10. diagrams for the pinning and depinning transitions in the presence
5.5.1. Numerical Minimizatiorzor nonaxisymmetric droplet  of line tension contrasts, we first perform a numerical minimiza-
shapes, analytical calculations are no longer feasible, and wetion of the free energy for axisymmetric shapes. As can be seen
resort to numerical minimization of the droplet free energy using in Figures 7 and 8, the agreement is good. Small differences in
the dynamical triangulation algorithms of the freely available Figure 8 are due to the finite width of the continuous contrasts
SURFACE EVOLVER 2.145 The numerical minimization of used for numerical minimization.
the free energy functional (eq 1) is performed at a fixed volume 552, Nonaxisymmetric Shapes Stabilized by Line Tension
V; or a fixed py. Using the additional constraint for the center Contrasts.As we already discussed in 5.1, nonaxisymmetric
of mass of the contact line to lie in the center of the circular droplet shapes can be stabilized by a line tension contrast and
domain, the minimum stays within the subspace of axisymmetric provide more favorable metastable and global minimain regimes
shapes. Lifting this constraint, we can also access nonaxisym-||b and Iil for the linophilic case (see Figure 7) and in regimes
metric shapes. Using these techniques, we first confirmed our|ib and | for the linophobic case (see Figure 8). These shapes
analytical result for the global and metastable minima of the free assume the form indicated in Figure 10a for a linophilic domain
energy in the subspace of axisymmetric shapes for steplike (see also arrow in Figure 7) and in Figure 10b for a linophobic
wettability and line-tension contrasts. Numerically, we ap- domain (see arrow in Figure 8).
proximate steplike contrasts by continuous contrasts of the form  Furthermore, for axisymmetric shapes, we found a window
given in eq 30 and make the line tension contrast wigthand of radii py < p < py + Zaﬁg for the linophilic case, where it is
not possible to find an axisymmetric solution to the Young
(35) Brakke, K.Exp. Math.1992 1, 141. equation for large line tension gradients. The contact line of

1.8

2 2.2
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Af(Apeg) ~ —CpyApes + (Wy — W, ) oy Apeg +
(As = 2,)oy *Aper™ (47)

wherec is a numerical constant of order unity. For smiafles,
the term from the line tension codfl (Apefd) dominates and
gives rise to an energy barrier

N Pvz(;ta - /1;/)2
Cc

ch'glﬂ{fa%éiticoﬁnsst'ggg?gﬁﬂg"t'gg%ﬂﬁgaeﬂf;g;%rgﬁi'gi 'irﬁﬁ’:ri%suergt'lnfl which is, by a factor oft, — 2, < 1, smaller than the result (eq
(WT) Droplet configuration with a “wet tongue” (dark blue area) 44) f?,r QX|symmetr|c sh_apes. Th_e_ dr_opletshqpe in _the transition
for py = 0.5 andw, = 0.5,w, = —0.5,4, = 0.1, andi, = 0.2 at state” (i.e., the constrained equilibrium configuration at the top
pet = 0.51. (DT) Droplet configuration with a “dry tongue” f@x, of the barrier) is shown in Figure 12(WT). Although the barrier
= 1.9 andw, = 0.5,ws = —0.5,4, = 0.2, andi; = 0.1 atper = is reduced, itis also still existing if we include nonaxisymmetric
1.88. shapes into the analysis. Therefore, the pinned state of the droplet
at the boundary minimunp,, = pv, Nneverbecomes mechanically
nonaxisymmetric solutions such as the equilibrium shape shownunstable upon approaching the depinning transition from small
in Figure 10a, however, clearly crosses this ring-shaped “forbid- volumes (i.e., decreasing ), even if we allow for nonaxisym-
den” region. These shapes can fulfill the Young equation (eq 3) metric shapes (for the zero temperature case).
because the contact line crosses this region with an angle with In Figure 11b, we show the analogous comparison of the
respect to the domain boundary, which is sufficiently close to constrained free energy profiles for a linophobic domain and a
m/2 such that the scalar produdi: VA/Zz in the last term of droplet volume close to the transition, that is, at the boundary
the Young equation becomes small. Thus, a solution fulfilling between regimes llb and I. For this type of contrast and typical
—1 < cosf < 1 can be found. nonaxisymmetric shapes wiga slightly smaller tharpy, the
5.5.3. Resaling the BifurcationsBy applying a constrainton  droplet pulls back from the circular domain where the line tension
the adhered are&, of the droplet, we can numerically resolve is high, leaving a “dry tongue” behind (see Figure 12(DT)). We

Af (48)

the constrained free energy landscape as a functioneffectve can use arguments analogous to those in the previous section in
dimensionless radius order to estimate the barrier height that is associated with the
formation of such a “dry tongue”, which leads to the same result
2\1/2 eq 48). Also, inthis case, a barrier persists if the axial symmet
Peit = (Ag,lmly) (46)  (€a49) p ymmetry

can be broken by the transition states.
From Figure 11, we also recognize that, for both types of line

at fixed pv. For axisymmetric droplet shapes the effective tension contrasts, the discontinuithdy,, or Apf,) of the
radius coincides with the radiys(i.e., pett = p), and we can  dimensionless radius at the depinning transitions (see egs 69 and
compare numerical results with the corresponding free energy 71 in Appendix B.3) is not significantly modified if nonaxi-
profiles forf = f(p) as given by eq 31 and displayed in Figures symmetric shapes are taken into account.
14 and 15 (Appendix B).

In Figure 11a, we show a detailed comparison of the constrained 6. Summary and Discussion
free energy profiles for alinophilic domain and a dropletvolume e studied line tension effects for a single droplet wetting a
close to the transition, that is, at the boundary between regimeslyophilic circular domainy embedded in a lyophobic substrate
lIb and I1. If we constrain the numerical minimizationto axially ~ § in the presence of a line tension contrast. By analyzing the
symmetric shapes (black points), we get good agreement withinterfacial and line free energies of the droplet, we found that
the analytical results (blue line). Close to the free energy a line tension contrast gives rise tiiscontinuousdepinning
maximum, the axisymmetric shape is hard to stabilize in the transitions of the contact line from the domain boundary and
numerical minimization such that the data points are missing in thus leads to pronouncétstericbehavior. For a line tension
this region. For axisymmetric shapes, the energy barrier separatingcontrastA, < A, (linophilic domain), the depinning from the
the competing minima is given by the step (eq 44) in free energy. domain boundary upon increasing the droplet volume becomes
However, this barrier is drasticaltgducedf we allow for shapes discontinuous, whereas, for a line tension contrast> A
breaking the axial symmetry in the numerical minimization (red (linophobic domain), the depinning upon decreasing the droplet
points in Figure 11). Typical nonaxisymmetric shapesdar volume becomes discontinuous. In both cases, we obtain the full

slightly larger tharpy (i.e., for small positive\ pest = peft — pv) bifurcation diagram for the free energy analytically and numeri-
exhibit a single “tongue”-like protrusion (see Figure 12), which cally for axisymmetric shapes.
is formed from the excess adhered atefa= 7L g%(per® — pv?) Numerically, we also addressed instabilities with respect to

that cannot fit on the lyophilic domain and extends into the axial symmetry breaking. Inthe presence of aline tension contrast,
lyophobic substrate. The excess adhered area assumes a compage find instabilities in the global and metastable equilibrium
shape similar to a half-circle in order to minimize the length of shapes in the regimes where the droplet has spread onto the part
the excess contact linklL, which becomes subject to the higher of the surface with the higher line tension, that is, for a linophilic
line tensior of the surrounding substrate. Therefore, we expect domain if the droplet wets the surrounding linophobic substrate
AL ~ (2nAA)Y2. Formation of the tongue is favored by the free at large volume, or for a linophobic domain if the droplet resides
energy gain from decreasing the area of dfeinterface. This entirely within this domain for small volumes (see Figure 10).
free energy gain is linear inpert and proportional t&ys. Then The broken axisymmetry leads to alowering of the corresponding
the total change in dimensionless free eneuf,due to the free energy branches in the bifurcation diagram, which makes
formation of the tongue can be estimated as re-pinning transitionsontinuousAxial symmetry breaking also
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f . pv is large. In regime |, the global minimum 6fs identical to
the local minimump, on they-domain (i.e.,opo = p,). The
06 minimum p, = p,(pv) is generally volume- opy-dependent
because of line tension effecys. is determined by,f,(o,) =
o 0 or, equivalently, by the generalized Young equation (eq 20),
02 l
cosh, =w, -~ =w, — prad (49)
5 1 15 2 25 py y
il p . 3 .
which relateg, to the contact angl@, = 0, (pv) of they-domain
“0s n or within regime |, which is also volume-dependent because of
line tension effects, and@, also fulfill the geometrical relation
e ! in eq 21. Inserting eq 49 into the geometrical relation in eq 21,
Figure 13. Plots off(p) — f(0) according to eq 26 fow, = 0.5, we obtain self-consistent equations for= p,(pv) or the cosine

1.1, and 0.4, i.e., for increasing volume corresponding to the three
regimes in eq 56. In all three regimds= f, for p < py andf =
fs for p > py, according to eq 26.

If we start within regime | and increase the droplet volume
to a certain lower boundary volunvg corresponding to an upper
boundary valugy 1 and a contact angté = 0, (pv,1), the droplet

ets pinned to the boundary, and regime | is left. This happens
or ppo = pv OF py(pv,1) = pv,1. Then, the Young equation (eq
CA%Q) simplifies to an explicit equation for the contact an@le

strongly reduces the barrier between metastable and global minim
close to the transition.

These results suggest several experimental avenues to dete
and eventually quantify line tension contrasts. The discontinuous cos6, =W, — A (50)
nature of depinning transitions in the presence of a line tension v
contrast leads to a hysteretic behavior of the contact line, which 54 the self-consistent equation fpy becomes an explicit
should be observable in experiments. The hysteretic behavior aSsquation forpy 1,
displayed in the bifurcation diagrams in Figures 7 and 8 for a '

linophilic and linophobic domain, respectively, can then be used 22/3(1 +w — /1)1/2
to (i) determine the sign of the line tension contrast, that is, to Pvi= 6 - 3 (51)
detect whether the domain is linophilic or linophobic, and (ii) TA-w, )2t w, —4)

to quantify the size of the line tension contrast (see eqs 34 and

37). Moreover, line tension contrasts always lead to instabilities  Inregime lll, the droplet spreads onto the surrounding substrate
with respect to axial symmetry breaking in regimes where the o and completely covers thedomain (i.e.,opo > pv). This is
droplet is spreading onto the part of the surface with the higher the case for large volumeég; such thatpy is small. In regime

line tension. Observation of droplet shapes as shown in Figure!ll, the global minimumpy, of f is the local minimunp, of the

10 are thus an indicator for the presence of aline tension contrastsubstrated (i.e., pho = ps). ps = ps(pv) iS again volume- or
The shapes are also indicative of the sign of the line tension pv-dependent because of line tension effects and is determined
contrast: A linophilic domain will exhibit nonaxisymmetric by d,fs(0s) = 0 or the equivalent generalized Young equation
shapes at large volumes where the droplet spreads on theeq 20),

surrounding linophobic substrate, whereas a linophobic domain

exhibits such shapes at small volumes where the droplet resides Ay _ _ AP_V (52)

. I : CoSts =w; —— =W,
entirely within this domain. o T g 0 Ty
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504465. to a certain upper boundary volurWecorresponding to a lower
) ) ) boundary valuey » and a contact ang® = 6s(pv 2), the droplet
Appendix A. Free Energy Analysis for Circular gets pinned to the boundary, and regime Il is left. This happens
Lyophilic Domains and Spatially Homogeneous Line for pwo = pv OF ps(pv.2) = pv.2. Then the Young equation (eq
Tension 52) simplifies to an explicit equation for the contact angje

In this appendix, we present the detailed analysis of the free
energyf = f(p) as given by eq 26 for an axisymmetrical spherical
cap-shaped droplet on a circular lyophilic domain. Although the
function f(p) is specified in a piecewise manner in eq 26, the

cosf, =ws — 1 (53)

and the self-consistent equation fgrgives an explicit equation

wettability contrast doasotgenerate discontinuitiesf(p) across for pv.2,

p = py. In the following, we consider bounddroplet, that is, 22/3(1 +w. — /1)1/2

sufficiently small line tensions, so that the bound state &t Py o= ° (54)
pbo > O is the global minimum (see Figure 1). Following this T A= wy + )Y+ w, — )M

global minimum as a function of the volume py (see eq 24)

for fixed 4, we find three regimes (see Figure 13). For intermediate volumeg; < V < V, 0r py2 < pv < pv,1,

In regime [, the droplet stays entirely within the domain there is the intermediate regime I, where the contact line is
(i.e., poo < pv). This is the case for small volum&g such that pinnedat theyd domain boundary (the embedding substrate
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Figure 14. Linophilic domain. Plots of(p) — f(0) according to eq

31, forw, = 0.5,ws = —0.5, andl, = 0.1,15 = 0.2. Plots from
right to left are forpy = 2.0, 1.1, 0.6, and 0.3, i.e., for increasing
volume corresponding to the four regimes in eq 63. In each of the
regimesf = f, for p < py andf = f; for p > py, according to eq
31. Note the discontinuity in the free energy as given by eq 57.

is lyophobic such thaty2 < pv.1). In this regime II, the global
minimum of f is the commorboundaryminimum off, andfs
atppo = pv, and the Young equation, which applies onlydoal
minima, is violated. This leads to a freedom of the contact angle
in regime 1, which varies with the volume in the ran@e=< 6

< 0, according to eq 19,

forpy, = py =pys  (55)

Following the global minimum of the free energy (eq 26) at
Poo = puo(pv) through all three regimeslll) by increasing the
droplet volumeVy or decreasingy, we have found

p, (py) forpy > py, regime |
Poo(Pv) = Pv for py, < py = pys1 regimell
Py (py) forpy < py, regime Il

(56)

where the boundary values fulfil,(ov,1) = pv,1 andps(ov,2) =

pv.2. Thusppo(pv) decreasesontinuouslythrough the pinning
and depinning transitions of the contact line@at= py 1 andpy

= pv,2, respectively. The reason for the continuous pinning and
depinning transition is that(p) as defined in eq 26 has no
discontinuity acrosp = py such thaff, andfs have acommon
boundary minimum in regime II.

Appendix B. Free Energy Analysis for Circular
Lyophilic and Two-Valued Line Tension Contrast

B.1. Line Tension ContrastA, < A¢ (Linophilic Domain).

In this appendix, we present the detailed analysis of the free

energyf = f(p) as given by eq 31 for an axisymmetrical spherical

Blecua et al.

In regime |, the droplet stays entirely within the domain
(i.e., pro < pv) and evolves as for the case of a homogeneous
line tensionA = 4,, which was treated in Appendix A. The
droplet is in regime | for small volumegg or largepy. The
global minimum off at py, is identical to the local minimurp,
in the y-domain, which is determined kf,(o,) = 0, and the
contact angle i9,. As discussed in Appendix A, the volume-
dependent local minimump, = p,(pv) and the cosine of the
contact angle co8, = cos6,(pv) can be obtained by combining
the relation given in eq 49 (with = 4,) and the geometrical
relation given in eq 21.

The boundary volum¥; or the upper boundary valyg ; at
which regime | terminates upon increasing the volume are also
obtained in the same way as for a homogeneous line tetision
= 1,. Specifically we find

cosf; =w, — 4, (58)
for the corresponding contact angle and
22/3(1+ W — A )1/2
Pv,1 ” . (59)

A -w,+1)%2+w,—2,)"
If the volume is increased such that < py 1, the intermediate
regime Il is reached.

We can also consider a droplet with large volume, which wets
thed-substrate and completely covers thdomain and is, thus,
in regime lll. Then the droplet is in the local minimysy > pv
of the o-substrate, which fulfillsd,fs(os) = 0, and the corre-
sponding contact angle &, For large volumes, this state is the
global free energy minimum &fIn this state, the droplet behaves
as that for the case of a homogeneous line tenksier.;, which
was treated in Appendix A. As discussed in the previous section,
ps = ps(pv) and the cosine of the contact angle égs= cos
0s(pv) can be obtained by combining the relation given in eq 52
(with 2 = 1) and the geometrical relation given in eq 21. Upon
decreasing the volume, the droplet reaches jthedomain
boundary for a volume parametgy , given by the condition
ps(pv.2) = pv2. pv2is obtained in the same way as in Appendix
A for a homogeneous line tensidn= 1. Specifically, we find

cosf, =w; — A; (60)
for the corresponding contact angle and
22/3(1 +wy — /15)1/2
Pv,2 (61)

The crucial difference compared to the case of a spatially
homogeneous line tension lies in the fact tf{@) now has a

cap-shaped droplet on a circular lyophilic domain in the presencediscontinuity acrosg = py (see Figure 14). For the linophilic

of a line tension contrast\, < As, which makes the domain
linophilic. As opposed to the case of a pure wettability contrast,

domain, this leads to qualitative changes within regimes 1l and
[ll. For intermediate volumes withy 1 > py = pv.2, the global

the piecewise result (eq 31) for the free energy generates aminimumis the boundary minimum éfandpyo = pv. Therefore,

discontinuity Af of f(p) acrossp = py with

Af=1(py) = f,(0y) = p," (A5 — 4,)

which stems from the increase in line free energy upon moving
the contact line into thé-substrate with higher line tension.
Similarly to the case of a wettability contrast, we find three
distinct regimes when following the global minimysg, > 0 of

(57)

the contact line ipinnedat theyd domain boundary as for a
homogeneous line tension; the contact line equation is violated,
and the contact angkchanges with droplet volume according
to the above relation (eq 55).

However, the minimum gt = ps(pv) is no longer the global
minimumppofor all larger volumed/s > V, or py < py 2 because
of the discontinuity app = pv (see Figure 14). Increasing the
volume starting withV, or decreasingy starting withpy 2, the

the free energy (eq 31) as a function of the dimensionless surfaceminimum ps appears first as metastabléocal minimum, while

domain radiusy (see Figure 14).

the global minimum is still the boundary minimum ©fat ppo
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= pv. Only if this second local minimum becomes the global
minimum upon further increasing the volume uiilis larger
than acritical volume \ or py is smaller than aritical value

pv.c Will the contact line finally depin, and we enter regime I,
where the droplet spreads onto the substiad py = py ¢, both
minima exchange stability such thay is determined by the
conditionf,(ov,c) = fs(ps(pv.c))- Also within the regimepy ¢ <

pv < pv.2, the Young equation is violated, and the contact angle
6 changes with droplet volume according to the geometric relation
given in eq 19:

1—Hpy)

cosf(py) =
1+ H(py)

(62)

The same relation determines the critical contact afights cos
0. = cosb(pv,c). Becausey . < ps(pv.c), the global equilibrium
radius jumpgdiscontinuoushffrom ppe = pv.c t0 pro = ps(pv.c)
> py,c at the volume parametex, = pyc. We call the regime
pv2 =< pv < pv1, Wwhere the global boundary minimumgat, =
pv is the only minimum, regime lla, and the regimg: < pv
< pv,2, Where an additional metastable minimunpat ps(pv)
exists, regime llb.

Within regime I, for py < pvc, the global minimum is the
local minimum in the embedding substraie ppo = ps. The
contact angle forregime lll is the contact an@lef the substrate
0. Note that, in the entire regime Ill, the boundary minimum at
p = pv remains anetastableninimum due to the steplike nature
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Figure 15. Linophobic domain. Plots df{p) — f(0) according to
eq 31, fow, = 0.5,w; = —0.5, andl,, = 0.2,4, = 0.1. Plots from
right to left are forpy = 2.25, 1.8, 1, and 0.5, i.e., for increasing
volume corresponding to the four regimes in eq 64.

to the depinning behavior fok, > A, for decreasingsolume.
In both cases, the contact line depins discontinuously from the
boundary of the circular domain upon entering into the region
with the less favorable line tension.

In regime lll, the droplet wets the surrounding substéeaad
completely covers thg-domain (i.e.ppo > pv). In this regime,
it evolves as for the case of a homogeneous line terisiors,
treated in Appendix A. The droplet is in regime Il for large
volumesV; or smallpy. The global minimum of at py, is the
local minimumps on thed-substrate, which is determined by

of the line tension contrast (eq 29). Therefore, the contact angle 3,fs(os) = 0, and the contact anglefis. As discussed in Appendix

in this metastable state can increase dramatically by following
the relation given in eq 62 for ally < pv 2.

Following the global minimum of the free energy (eq 31) at
Poo = poo(pv) through all three regimes-llll) by increasingthe
droplet volumeVy or decreasingy, we find

regime | ‘

p, (py) forpy > pyy
Py forpy, < py = py; regimella
Yy forpy. <py <py, regimellb,
Pooloy) = p = ps(py) Metastable
ps(py) forpy < py. regime lIl,
p = py Metastable ‘

(63)

Whereaspno(pv) changescontinuouslyupon pinning of the
contact line atoy = py.1 between regimes | and Il, there is a
discontinuous depinning transitiasf the contact line between
regimes Il and Ill atoy = pvc, Which is caused by the line

A, the volume-dependent local minimupg = ps(pv) and the
cosine of the contact angle c8s = cosfs(pv) can be obtained
by combining the relation in eq 52 (with = 45) and the
geometrical relation in eq 21.

The boundary volum¥, or the lower boundary value, , at
which regime Il terminates upon decreasing the volume are also
obtained in the same way as for a homogeneous line tension,
= s. Forpy 2 and the corresponding contact an@ewe obtain
the same equations (61 and 60) as for the linophilic case. If the
volume is decreased such that> py 2, the intermediate regime
Il is reached.

We can also consider a droplet with small volukg which
stays within they-domain. Then the droplet is in the local
minimump, < py of they-domain, which fulfillsa,f,(o,) = 0,
and the corresponding contact angl@,isin this state, the droplet
behaves as for the case of a homogeneous line terfsiord,,,
which was treated in the Appendix A. As discussed theyes
py(pv) and the cosine of the contact angle ¢os= cosb,(pv)
can be obtained by combining the relation given in eq 49 (with

tension contrast. The corresponding morphological diagram, asi = 1,) and the geometrical relation given in eq 21. Upon

discussed in 5.1, is shown in Figure 6 (fok = 15 — 4, > 0).
Calculating the global minimi(ppo(pv)) of the free energy and
the metastable free energy minima as a functign,ofve obtain

increasing the volume, the droplet reaches fhe domain
boundary for a volume parametpy 1 given by the condition
py(pv,1) = pv,1. pv,1 is obtained in the same way as described

the corresponding bifurcation diagram in Figure 7 and observe in Appendix A for a homogeneous line tensidrs 4,. Forpy 1

the strong hysteretic effect mentioned in section 5.1. In the
bifurcation diagram in Figure 7, we also complete the Gibbs
triangle of the discontinuous transition by plotting the unstable
boundary maximunis(ov) for py < pv,2.

B.2. Line Tension ContrastA, > As (Linophobic Domain).

and the corresponding contact anglg we obtain the same
equations (59 and 58) as for the linophilic case.

Also, for the linophobic case, the crucial difference to the case
of a spatially homogeneous line tension is the discontinuity of
f(p) acrossp = pv (see Figure 15. For the linophobic domain,

In this appendix, we present the detailed analysis of the free this leads to qualitative changes within regimes | and Il. For

energyf = f(p) as given by eq 31 for an axisymmetrical spherical

intermediate volumes withy 1 = pv = pv.2, the global minimum

cap-shaped droplet on a circular lyophilic domain in the presenceis the boundary minimum ofs and p,, = py. Therefore, the

of a line tension contrask, > A,, which makes the domain
linophobic.

The depinning behavior for the case in whidh < A, for
increasingvolume treated in the previous section will be similar

contact line ispinned at the y6 domain boundary as for a
homogeneous line tension; the contact line equation is violated,
and the contact angkechanges with droplet volume according
to the above relation (eq 55).
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However, the minimum a = p,(pv) is no longer the global
minimum pp, for all smaller volume&/s < V3 or py > py,1 due
to the discontinuity ap = pv (see Figure 15). Decreasing the
volume starting withv, or increasingoy starting withpy 1, the
minimump, appears first as metastabléocal minimum, while
the global minimum is still the boundary minimum Bfat pno
= py. Only if this second local minimum becomes the global
minimum upon further increasing the volume unfils larger
than acritical volume \} or py is smaller than a&ritical value
py . will the contact line finally depin, and we enter regime |,
where the droplet retreats to the domainAt py = oy, ., both
minima exchange stability such thaf . is determined by the
conditionfs(oy .) = f, (0, (oY ). Also, within the regimepy 1 <
pv < py . the Young equation is violated, and the contact angle
6 changes with droplet volume according to the geometric relation
given in eq 62, which also determines the critical contact angle
07 by cos@; = cos6(py, ). Becausey, . > p,(pv ). the global
equilibrium radius jumpsliscontinuouslyrom ppo = py, . t0 pro
= p,(pyo) < py. at the volume parametex, = oy, .. We call
the regimepy 2 < py < pv,1, Wwhere the global boundary minimum
atppo= p\/ is the only minimum, regime lla, and the regimg;
< pv < py Where an additional metastable minimumpat
py(pv) exists, regime llb.

Within regime |, foroy > py, ., the global minimum is the local
minimum of the domairy, ppo = p,. The contact angle for regime
| is the contact angl@, of the substratg. Note that, in the entire
regime |, the boundary minimum at= py remains anetastable
minimum due to the steplike nature of the line tension contrast
(eq 29). Therefore, the contact angle in this metastable state can
decrease dramatically by following the relation given in eq 62
for PV = pv1.

Following the global minimum of eq 31 as a function®f
(i.e.,pp0= pod(pv)) through all three regimes (M) by decreasing
the droplet volumevy or increasingoy, we find

ps(py) forpy < py, regime Il
Py forpy, < py < pv1 regime lla
Pv forpy, < py < py.  regime llb,

Pbo(Pv) = p= py(pv) metastable

p,(py) for py > py.c"
p = py Metastable

regime |,

(64)

Thus,ppo(pv) changegontinuouslyat the pinning of the contact
line at py = pyv2 between regimes Il and IlI, but there is a
discontinuous depinning transitiasf the contact line between
regimes Il and | apy = py, ., which is caused by the line tension
contrast. Figure 6 shows the corresponding morphological
diagram (forAA = As — 4, < 0), and Figure 8 shows the
corresponding bifurcation diagram of the global and metastable
free energy minima, as previously discussed in section 5.1. In
the bifurcation diagram in Figure 8, we also complete the Gibbs
triangle of the discontinuous transition by plotting the unstable
boundary maximuni,(pv) for pyv > pv 1.

B.3. Contact Radius and Contact Angle Discontinuities at
Depinning. In this appendix, we calculate the discontinuities in

droplet contact radius and contact angle at the discontinuous®

depinning transitions.

For alinophilicdomaing, < As), the size of the discontinuity
Appo = ps(pv.d — pve > 0 in the dimensionless droplet radius
at the depinning transition from regime llb to regime Il can be
calculated from the two conditiorig(pv,c) = fs(ps) andd,fs(os)
= 0 for pyc andps. Assuming that\ ppo << 1 is small, we expand

Blecua et al.

fs(p) aroundpy  and obtain the conditions

f,(ov.0) = fs(0s) = f5(oy.c) T Appsd,fs(oy.o)
0=19,fs(ps) = 0,fs(ov o) + APboapzfa(Pa) (65)
which can be combined into the result
f —f
Apboz ~ s(Pv.0) y(Pv,c) ~ Af (66)
3pzfa(Pv,c) 3p2fa(Pa)
Using the result from eq 18 fdt,%fs together with the relation
H _1—cosb, o7
(s = 1+ cosd, (67)

and neglecting line tension contributions in the contact line
equation, we can write

apzfo(Pa) ~ (1 — w;)(2 + 3w, + W(sz)
in terms of the wettability of thé-substrate. Using eq 57 for the
free energy discontinuiti\f, we arrive at our final result

i(s - l

Y
(1 — wy)(2 + 3w, + w,)

(68)

1/2

Appo ™ Py c (69)

Thus the discontinuityApy, at the discontinuous depinning
transition of the contact line depends on (i) the critical droplet
volume, (ii) the line tension contrast, and (iii) the wettability or
contact angle of thé-substrate.

We can use the result from eq 69 to obtain the discontinuity
in the contact angla6 = 65 — 6. < 0 by expanding the relation
given in eq 19 for co9,

1 Ao 4H(0,)(3 + H(p,))
sinfs ps  (1+ H¥(py))?

~ _21/6p (ﬂ. _ l )1/2(1 W )2/3(2 +w )5/6
V,c\*o [ (70)

AO ~

where we neglected line tension contributions in the contact line
equation.

For a linophobic domainX, > As), the calculation of the
discontinuitiesApp, = p,(py,) — Py < 0 in the dimensionless
radius andA6* = 0, — 6 > 0 in the contact angle at the
depinning transition of the contact line from regime llb to regime
| proceeds analogously with the result

l]/ - /lb
_p;k/,c 2
(1—w)2+ 3w, +w))

1/2

Appo ™~

AO* ~ 21/ pv C(la iy)llz(l _ Wy)2/3(2 + Wy)5/6 (71)

Appendix C: List of Symbols

vapor phase
radius of the circular domain

5 area of the liquie-vapor interface

Ao surface of the liquiervapor interface
Apo surface of the liquig-solid interface
Ag Hamaker constant

B liquid phase

c* geodesic curvature of the contact line

g
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o lyophobic substrate
Af discontinuity inf at p = py
AL dimensionless line tension contrast
AP Laplace pressure
Apbo, discontinuity ofp at depinning
Appo
A6, AG* discontinuity of 6 at depinning
f dimensionless free energy
fs f in the lyophobic matrix

f, f in the lyophilic domain

y lyophilic substrate

h maximal height of the droplet

H dimensionless maximum height of the droplet (eq 12)
ks Boltzmann constant

I droplet profile in interface model

Lg linear size of the droplet (eq 11)

L characteristic length scale (eq 6)

/o liquid—vapor interface width

loy contact line width

Lapy dimensionless contact line width

Lopy three-phase contact line

% capillary length

I min interface position minimizindJ(l)

fnol typical intermolecular distance

I in inflection point of U(l)

Av dimensionless volume-dependent line tension (eq 12)
A dimensionless volume-independent line tension (eq 25)
Ay A in the y-domain

As A on thed-substrate

Aviin instability threshold ofi (eq 23)

Av.ub unbinding threshold of (eq 22)

A line tension

Av.s A in the lyophobic domain

Av,y, A in the lyophilic domain

Avgw contribution toA from van der Waals forces
m conormal of the contact line

M mean curvature of the droplet

Py pressure of the vapor phase

Ps

r

R

Ry, R
0

Pv
PV,1s PV,2
Pv,c
Pt/,c
Pbo
Peff

Langmuir, Vol. 22, No. 26, 200659

pressure of the liquid phase

radius of the contact area of a spherical droplet
curvature radius of a spherical droplet
lower/upper boundary curvature radii at pinning
dimensionless radius of contact area (eq 12)
dimensionless domain radius (eq 24)
upper/lower boundary values pf,

critical py (linophilic domain)

critical py (linophobic domain)

equilibrium value ofp (bound droplet)
effective p of contact area (eq 46)

solid substrate

interfacial energy of the liquidvapor interface
interfacial energy of vapersubstrate interface
interfacial energy of liquie-substrate interface
temperature

contact angle

lower/upper boundary values éfat pinning

6 of a macroscopic droplet

6 on the lyophobic matrix

6., on the lyophobic matrix

6 on the lyophilic domain

0., on the lyophilic domain

critical 6

Heaviside function

attractive interface potential

minimum of U(l)

lower/upper boundary volumes

critical volume

volume of the droplet

local wettability (eq 4)

w of the lyophobic matrix

w of the lyophilic domain

instability threshold ofw

unbinding threshold ofv

coordinate on the substrate
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