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We study the morphologies of single liquid droplets wetting a substrate in the presence of the line tension of the
three-phase contact line. On a homogeneous substrate, the line tension leads to a discontinuous unbinding of the droplet
if its volume is decreased below a critical value. For a droplet wetting a structured surface with a circular domain,
a line tension contrastgives rise to discontinuous depinning transitions of the contact line from the domain boundary
as the droplet volume is varied. We calculate the corresponding free energy bifurcation diagram analytically for
axisymmetric droplet shapes. Numerical minimization of the droplet free energy shows that line tension contrasts can
stabilize nonaxisymmetric droplet shapes, thus modifying the bifurcation diagram. These latter shapes should be
accessible to experiments and can be used to reveal the presence of a line tension contrast.

1. Introduction

The morphology of liquid droplets on chemically or topo-
graphically structured substrates is determined by the interplay
of the interfacial free energies of the droplet and the wettability
pattern on the substrate for droplets in the millimeter and
micrometer regime. This interplay can give rise to morphological
transitions upon changing the volumeVâ of the droplet or the
wettability contrast and thus the contact angle of the substrate.1,2

Experimentally, techniques such as microcontact printing3 or
monolayer lithography4 allow the fabrication of imprinted or
structured planar surfaces with tailored patterns of lyophilic and
lyophobic surface domains. Morphological transitions of single
droplets have been theoretically and experimentally studied for
a variety of wettability patterns such as lyophilic circles on a
lyophobic substrate,5 lyophilic and lyophobic stripes,6-9 and
lyophilic rings on a lyophobic background.10 Morphological
transitions take place if the droplet volumeVâ becomes
comparable or bigger than a reference volume defined by the
surface domain. Within this regime of droplet volumes, the
morphology can change by exploiting the variability of the contact
angle at the boundary of a surface domain.2

With decreasing droplet size, the line tension free energy
contribution (i.e., the excess free energy arising from the three
phase contact line11) becomes increasingly important. Line tension
effects can no longer be neglected for droplets with a linear size
below 100 nanometers.1,12,13Experimentally, line tension effects
have been observed for droplet sizes in the nanometer regime14,15

up to the micrometer regime.16 For droplets wetting a homo-
geneous substrate, line tension effects have been theoretically
studied in ref 17. It has been found that, in the presence of line
tension, the droplet discontinuously unbinds from the substrate
upon decreasing its volume below a critical value. In this paper,
we want to focus on the line tension effects for patterned
substrates. In general, chemical patterning of substrates will lead
both to a wettability contrast and to a contrast of the line tension.
Such line tension contrasts can strongly modify the morphological
transitions of small droplets. In this article, we study the effect
of a line tension contrast for a single droplet on a lyophilic circular
domain embedded in a lyophobic substrate.5 Even for this
relatively simple system, the line tension contrast leads to a
qualitative change in the depinning behavior of the droplet’s
contact line at the boundary of the circular domain. Whereas the
depinning of the contact line at the circular domain boundary is
continuous if line tension effects can be ignored,5 it becomes
discontinuousin the presence of a line tension contrast (see Figure
6). For axisymmetric droplet shapes, we can characterize the
discontinuous depinning of the contact line analytically by
analyzing the interfacial and line free energies as a function of
the droplet volumeVâ. Line tension contrasts can also give rise
to stable nonaxisymmetric shapes, as shown in Figure 10 below,
and thus to a spontaneous breaking of the axial symmetry of the
system. Using numerical free energy minimization, we study
how the analytical results for axisymmetric shapes are modified
if nonaxisymmetric shapes are taken into account in the analysis.

The paper is organized as follows. In section 2, we present
our geometric interface model for fluids wetting a structured
substrate. In section 3, we briefly review the discontinuous
unbinding transition of a droplet wetting a homogeneous substrate
in the presence of line tension.17 In section 4, we study effects
from a spatially homogeneous line tension on the continuous
depinning transition of a single droplet on a circular domain. In
section 5, we present a detailed study of a single droplet on a
circular domain in the presence of a line tension contrast, where
the droplet exhibits discontinuous depinning transitions. In
subsection 5.1, we present the main results, and, in subsection
5.2, we present an analytical study for a sharp line tension contrast.
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In subsection 5.3, we investigate a continuous line tension contrast,
and, in subsection 5.4, we study the effects from thermal
fluctuations. In subsection 5.5, we analyze nonaxisymmetric
droplet shapes numerically and discuss how they modify the
depinning transitions. Finally, we discuss the experimental
implications of our theory in section 6.

2. Model

2.1. Free Energy.We consider a single droplet of a liquidâ
that is deposited onto a solid substrateσ and surrounded by a
vapor phase or another immiscible liquid phaseR. We will study
two simple generic substrate geometries: (i) ahomogeneous
substrate and (ii) a structured substrate containing asingle circular
lyophilic domainγ, which is embedded in a lyophobic substrate
δ (see Figure 1).

Our analysis is based on the minimization of the interfacial
and contact line free energies associated with theRâ interface,
which is represented by the mathematical surfaceARâ with area
ARâ ≡ |ARâ|. The dropletâ wets a surfaceAâσ on the substrate,
which is bounded by the three phase contact lineLRâσ (see Figure
1). On a chemically heterogeneous substrate, both surface tensions
ΣRσ(x) andΣâσ(x) as well as the line tensionΛ(x) are functions
of the positionx on the substrate. The total free energy of the
droplet on a chemically heterogeneous substrate assumes the
form8,12

whereVâ is the volume of the droplet and∆P is the Laplace
pressure, defined as∆P ≡ PR - Pâ. For a fixed volumeVâ, the
last term on the right-hand side of eq 1 plays the role of a Lagrange
multiplier.8

For locally stable equilibrium morphologies, the first variation
of the free energy (eq 1) with respect to small displacements of
theRâ interface and associated displacements of the three phase
contact lineLRâσ vanishes. Local equilibrium with respect to
displacements of theRâ interface leads to the Laplace equation

whereM is the mean curvature of theRâ interface. According
to the Laplace equation (eq 2) the droplet attains a shape of
constant mean curVature.

For uniform substrate surfaces, the Young equation represents
the condition of mechanical equilibrium of the three-phase contact
line. This equation has to be generalized for nonvanishing line
tension, as was first realized in ref 18 and extended to certain

surface domain geometries in refs 19 and 20. More recently,
Swain and Lipowsky12 derived a rather general contact line
equation, which is valid for rigid substrates, both topographically
and chemically structured, and stability criteria based on the
second variation with respect to the contact line position were
obtained in refs 13, 21, and 22. Local equilibrium with respect
to displacements of the three phase contact lineLRâσ leads to the
generalized Young or contact line equation12,13,21

whereθ is the local contact angle and where we introduce the
wettability

which is the cosine of the contact angleθ∞ of a macroscopic
droplet, for which line tension effects can be ignored (w ) cos
θ∞). Furthermore,cg

/ is the geodesic curvature ofLRâσ with
respect to the substrate,∇* is the two-dimensional gradient on
the substrate, andm̂ is a conormal perpendicular to both the
surfaceAâσ and the tangent to the three-phase contact line. In
the following, we will focus on planar substrates, wherem̂ equals
the normal of the contact lineLRâσ, andcg

/ equals the curvature
of LRâσ.

In the following sections, we will study the effects of line
tension on the equilibrium morphologies of a single droplet of
fixed volumeVâ. The equations of Laplace and Young describe
locallystable configurations of the droplet. The Laplace equation
(eq 2) is satisfied by shapes of constant mean curvature, which
arespherical capson a homogeneous substrate, with the contact
line equation (eq 3) determining the contact angle and thus the
radius of the spherical cap. Apart from homogeneous substrates,
we also consider structured surfaces withcircular domains, for
which the contact line equation (eq 3) is also compatible with
the spherical cap shape. For spherical caps, the wetted substrate
surface,Aâσ, is a circular domain of radiusr, and the contact
line equation (eq 3) becomes

We will first constrain our local stability analysis to the subset
of droplet shapes consisting of spherical caps. For this subset,
we can obtain an analytical theory of the discontinuous unbinding
transition on the homogeneous substrate, as in ref 17. Using the
same subset of axisymmetric spherical cap shapes, we will also
analytically treat the discontinuous depinning transitions arising
from line tension effects for a circular lyophilic domain. In a
second step, we will discuss how these results are modified if
nonaxisymmetric shapes are included into the analysis. This will
be done systematically using numerical minimization methods.

To find thegloballystable state, we have to analyze all locally
stableconfigurationsand, furthermore,possibleboundaryminima.
For a homogeneous substrate, the only relevant boundary
minimum is a spherical droplet, which becomes unbound from
the substrate, as shown in Figure 2. For a structured surface with
a circular domain, additional minima arise for droplets whose
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Figure 1. (a) Spherical droplet on a homogeneous substrateσ. (b)
Circular lyophilic domainγ embedded in a lyophobic substrateδ.

F ) ΣRâARâ + ∫Aâσ
dA[Σâσ(x) - ΣRσ(x)] + ∫LRâσ

dLΛ(x) +

∆PVâ (1)

2MΣRâ ) -∆P (2)

ΣRâ cosθ ) ΣRâw - Λcg
/ - m̂·∇*Λ (3)

w(x) ≡ ΣRσ(x) - Σâσ(x)

ΣRâ
(4)

cosθ ) w - Λ
ΣRâr

-
∂rΛ
ΣRâ

(5)
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circular contact line ispinnedat the boundary of the circular
lyophilic substrate domainγ.

2.2. Separation of Length Scales.Apart from the linear size
Lâ ∝ Vâ

1/3 of the droplet, which is determined by its volumeVâ,
the free energy of the droplet contains a number of different
length scales associated with (i) gravity, (ii) molecular distances
and interface widths, (iii) critical correlations of the wetting
transition, and (iv) line tension.

In the expression (eq 1) for the droplet free energy, we neglected
contributions arising from gravity. This is justified for droplet
sizesLâ, which are much smaller than the capillary lengthlG,
which is typically in the millimeter range.

On the other hand, the interfacial and contact line free energy
model (1) is only applicable for droplet sizesLâ much larger than
typical molecular distanceslmol, and much larger than the interface
width lRâ and the contact line widthlRâσ. All of these microscopic
length scales should be on the order of 1 nm.1 We also assume
that we have coexistence of theR andâ phases, but that we are
far away from a critical point, such that the correlation length
êâ in the liquid phase is comparable to the molecular lengthlmol

and much smaller than the droplet length scaleLâ. It is assumed
as well that the temperatureT of the system is below the wetting
temperatureTw, that is,T < Tw.

Finally, we want to estimate the range of length scales where
we expect line tension effects to become relevant. The line free
energy contribution in eq 1 becomes comparable with the
interfacial contribution for droplet sizesLâ below a characteristic
length scale1

where we used the estimates|Λ| ∼ (T/lmol
3)lRâσ

2 andΣRâ ∼ (T/
lmol

3)lRâ (T is measured in energy units). For droplet sizesLâ <
Lâ
/, the line tension contribution to the free energy (eq 1) is

dominating, and we expect pronounced line tension effects. Also,
computer simulations on polymer melts demonstrate that the
length scaleLâ

/ is comparable to a microscopic molecular length
scale of the liquid.23,24ForLâ . Lâ

/, the line free energy is small
compared to the interfacial contributions. In this regime, line
tension effects are small but still observable. Line tension
measurements based on the generalized Young equation (eq 3)
are typically performed in this regime.16

The estimateLâ
/ ∼ lRâγ

2/lRâ in (eq 6) suggests that the regime
Lâ < Lâ

/ is hardly accessible in experiments if the width of the
contact linelRâγ is small. The estimate for the line tension and
thus Lâ

/ ) |Λ|/ΣRâ can be substantially improved in the
framework of an effective interface model25 with an attractive

interface potentialU(l), which has a minimum atl ) lmin for
partial wetting. Within the effective interface model, the potential
depthUmin ) U(lmin) is related to the (local) interfacial tensions
by

and the line tension can be calculated as13,26

wherelpin is the inflection point of the effective interface potential
U(l).

Using the expression (eq 8) for short-range interface potentials
with a rangelmin ∼ lpin, we obtain an estimate

If the wetting layer thicknesslmin is comparable to the molecular
sizelmol, the lengthLâ

/ ∼ lmol is also comparable to the molecular
length scalelmol such that, indeed, the regimeLâ < Lâ

/ is not
experimentally accessible.

In the presence of long-range van der Waals forces, on the
other hand, the effective interface potential has a tailU(l) ≈
AH/12πl2 for largel, whereAH is the Hamaker constant.27 Then
we find13

where we used the small gradient expansion|Umin| ≈ ΣRâθ2/2.
For small contact anglesθ or small wetting layer thicknesseslpin,
the line tensionΛvdW and thus the corresponding lengthLâ

/ ∼
AH/ΣRâlpinθ becomes large. In this limit, the regimeLâ < Lâ

/

becomes experimentally accessible. On curved substrates, the
line tension can also be controlled by varying the substrate
curvature.28,29

Experimental values forLâ
/ ) |Λ|/ΣRâ range from tens of

nanometers to tens of micrometers, reflecting the fact that line
tension values in the range 10-11J/me |Λ| e 10-6J/m have been
reported.14-16,30

3. Homogeneous Substrates

We first review the analysis of equilibrium droplet shapes on
homogeneoussubstrates with a spatially uniform wettabilityw
) cosθ∞ and a spatially uniform line tensionΛ. This case has
been studied previously by Widom.17As already pointed out, we
can limit our analysis to the subset of droplet shapes consisting
of spherical caps, which represent surfaces of constant mean
curvature satisfying the Laplace equation (eq 2). We consider
a fixed droplet volumeVâ, and we define the droplet size by

(23) Milchev, A. I.; Milchev, A. A. Europhys. Lett.2001, 56, 695.
(24) Milchev, A.; Milchev, A.; Binder, K.Comput. Phys. Commun.2002,
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Figure 2. Bound and unbound droplets.

Lâ
/ ) |Λ|

ΣRâ
∼ lRâγ

2

lRâ
(6)

|Umin| ) ΣRâ + Σâσ - ΣRσ ) ΣRâ(1 - cosθ) (7)

Λ ≈ (2ΣRâ)
1/2(∫lmin

lpin dl(U(l) + |Umin|)1/2 +

∫lpin

∞
dl

U(l )

(U(l) + |Umin|)1/2) (8)

Λ ∼ lmin(ΣRâ|Umin|)1/2 ∼ ΣRâlmin(1 - cosθ)1/2 (9)

ΛvdW ≈ ( 2ΣRâ

|Umin|)
1/2 AH

12πlpin
≈ 1

6πθ
AH

lpin
(10)
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that is, as the radius of a sphere of volumeVâ. For spherical caps,
the wetted substrate surfaceAâσ is a circle with radiusr. For
a fixed droplet volume, the radiusr uniquely determines the
shape of the spherical droplet. Inlocal equilibrium, the radius
r will be determined by the local minimum of the free energy
(eq 1) as a function ofr under the constraint of fixed volume
Vâ. The equilibrium value ofr should fulfill the corresponding
contact line equation (eq 5). Local equilibrium shapes represent
bounddroplets that partially wet the substrate (see Figure 2).
Theglobal equilibrium shape is given by the global minimum
of the free energy, which can also be a boundary minimum. On
a homogeneous substrate at a fixed volumeVâ, the only possible
boundary minimum is atr ) 0, corresponding to a dewetting
from the substrate, with the liquidâ forming anunboundspherical
droplet of radiusLâ (see Figure 2). If the boundary minimum
becomes the global minimum, the droplet unbinds from the
substrate.17

For a spherical cap placed on the substrate such that the wetted
surfaceAâσ is a circle with radiusr and areaAâσ ) πr2, the
length of the three phase contact line isLRâσ ) 2πr. The area
of the surfaceARâ of the cap isARâ ) 2πr2/(1 + cosθ) ) π(r2

+ h2), whereh is the maximal height andθ is the contact angle
of the spherical cap (see Figure 2). The geometry of a spherical
cap is completely determined by specifying the two parameters
h and r. For the following, it is convenient to introduce
dimensionless quantities

with the droplet sizeLâ defined in eq 11. The total dimensionless
free energyf of the droplet assumes the form

where the wettabilityw and the dimensionless line tensionλV

are the remaining material parameters. The dimensionless line
tension|λV| ) Lâ

//Lâ ∼ Lâ
//Vâ

1/3 is our control parameter for the
droplet volume, which decreases with increasing volume. Because
the wettability w is volume-independent, it follows from
comparing free energy contributions in eq 13 that line tension
effects become increasingly relevant at small volumes.

We want to consider the free energy (eq 13) for a fixed volume
Vâ ) πr3(H3 + 3H)/6 of the spherical cap. The volume constraint
thus gives a relation

betweenF andH, which can be inverted to obtainH as a function
of F,

We use the relationH ) H(F) in the free energy (eq 13) to
explicitly include the volume constraint and obtain an expression

for the free energyf ) f (F) as a function of the dimensionless
wetted radiusF alone such that no Lagrange multiplier for the
volume constraint is needed in the following. We now analyze
f as a function ofF in order to find the global free energy minimum,
which can be either a local minimum fulfilling∂Ff (Fbo) ) 0 at
a certainF ) Fbo > 0 corresponding to abounddroplet or a
possible boundary minimum atF ) Fub ) 0 corresponding to an
unbounddroplet (see Figure 2).

To calculate the derivatives off(F) at constant volumeVâ, we
take derivatives with respect toF on both sides of eq 14, which
gives

This can be used to calculate

whereH ) H(F) according to eq 15. Because

for a spherical cap, we verify from eq 17 that the condition
∂F f(Fbo) ) 0 for a local minimum corresponding to a bound
droplet is equivalent to the generalized Young equation (eq 5):

The last line of eq 20 is an implicit equation for the contact angle
θ of a bound droplet in terms of the wettabilityw and the
dimensionless line tensionλV (cf. ref 17), which we obtained by
eliminatingFbo from eq 20 using the geometrical relation

which follows from eqs 14 and 19. BecauseλV ∼ Λ/ΣRâVâ
1/3 is

volume dependent according to eqs 12 and 11, the contact angle
is also volume dependent in the presence of line tension.

Because∂Ff(0) ) λV, there is indeed a boundary minimum at
F ) Fub ) 0 for positive line tension, and the unbound droplet
is locally stable. For negative or zero line tension, the unbound
state becomes unstable, and the droplet is always in the bound
state partially wetting the substrate.

For small positive line tension, the local minimum atF ) Fbo

> 0 corresponding to a bound droplet is the global minimum.
Upon increasing the line tension to valuesλV > λV,ub above an
unbinding thresholdλV,ub, the unbound state of the droplet with
F ) Fub ) 0 becomes the global minimum, and the droplet
undergoes adiscontinuous unbinding transition. The locus of
the transition or unbinding line in parameter space is given by
the generalized Young equation∂Ff(Fbo) ) 0, or eq 20, and the
conditionf(Fbo) - f(0) ) 0 (wheref(0) ) 2). Using eqs 13 and
17 in these conditions, we can calculate an explicit parametrization
of the unbinding line in theλV-w plane in terms of the
dimensionless height variableH:

Lâ ≡ (3Vâ

4π )1/3

(11)

f ≡ F/2πΣRâLâ
2

F ≡ r/Lâ

H ≡ h/r

λV ≡ Λ/ΣRâLâ (12)

f ) 1
2
F2(1 + H2) - 1

2
wF2 + λVF (13)

F ) 2(H3 + 3H)-1/3 (14)

H ) H(F) ) g(4F-3) with

g(x) ≡ [x + (1 + x2)1/2]1/3 - [x + (1 + x2)1/2]-1/3 (15)

∂FH ) -(H3 + 3H)4/3/2(1 + H2) (16)

∂F f ) F1 - H2

1 + H2
- wF + λV (17)

∂ F
2 f ) 1 + 13H2 + 3H4 - H6

(1 + H2)3
- w (18)

cosθ ) 1 - H2

1 + H2
(19)

cosθ ) w -
λV

Fbo
) w - λV

(1 - cosθ)1/6(2 + cosθ)1/3

22/3(1 + cosθ)1/2

(20)

F )
22/3(1 + cosθ)1/2

(1 - cosθ)1/6(2 + cosθ)1/3
(21)
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The parameterH ) h/r runs fromH ) 0 (corresponding to cos
θ ) 1 or complete wetting) toH ) ∞ (corresponding to cosθ
) -1 or dewetting) for spherical caps. The resulting unbinding
line is displayed in the morphological diagram of Figure 3.

Upon further increasing the line tension, the bound state
becomes unstable forλV > λV,in beyond aninstability threshold
λV,in. Within the regimeλV,ub < λV < λV,in of line tension, the
bound state of the droplet remains metastable. The locus of the
instability lineis determined by the generalized Young equation
∂Ff (Fbo) ) 0, or eq 20, and the additional condition∂F

2f(Fbo) )
0. Using the results of eqs 17 and 18, we also obtain an explicit
parametrization of the instability line in theλV-w plane:

which is also shown in the morphological diagram of Figure 3.
In the λV-w plane, only the region-1 e w e 1 is physically
accessible for bound droplets. At the boundaryw) 1, the droplet
completely wets the substrate, whereas it always unbinds from
the substrate atw ) -1, corresponding to dewetting.

Using the geometrical relation (eq 19) for cosθ, we can also
readily obtain an explicit parametrization of the unbinding and
instability line in theλV-θ plane in terms ofH (see Figure 3),
which has been obtained previously in a slightly different manner
by Widom.17 The condition-1 e w e 1 defines, together with
the generalized Young equation∂Ff (Fbo) ) 0, or eq 20, a region
in theλV-θ plane that is physically accessible for droplets and
is also shown in the morphological diagram in Figure 3.

4. Circular Lyophilic Domains and Spatially
Homogeneous Line Tension

In the remainder of the article, we focus on the effects of line
tension ondepinning transitionsof the contact line of abound
droplet in the presence of wettability contrasts. We start with the
analysis of the effect of a spatially uniform line tensionΛ on
droplet morphologies on a chemically patterned surface containing
a single circular lyophilic domainγ with wettability wγ ) cos
θγ,∞ and radiusa embedded in a lyophobic substrateδ with
wettability wδ ) cosθδ,∞ < wγ (see Figures 1 and 4).

For a circular lyophilic domain with spatially homogeneous
line tension, the droplet shapes of minimal energy arespherical
caps, which are axisymmetrically placed on the circular domain.
These shapes can be studied analytically. As in the previous
section, we work at fixed droplet volumeVâ, which is the basic
control parameter in an experiment. Then the droplet shape is
uniquely determined by the radiusr of the contact area, or the
dimensionless radiusF ) r/Lâ (see eq 12). The radius of the
circular domaina (see Figure 4) introduces another length scale
into the problem, and we define a dimensionless radius

In the experiment,FV is controlled by varying the volumeVâ of

the droplet, that is, by changing its sizeLâ ∼ Vâ
1/3 at fixed radius

a of the surface domain.

The two other material parameters are the wettabilities and
the dimensionless line tensions. By definition (eq 12), the
dimensionless line tension is volume-dependent and, thus,
acquires a dependence onFV (λV ) FVΛ/ΣRâa) if the radiusa
is fixed. To display the full volume dependence of the free energy,
it is advantageous to use the dimensionless and volume-
independent line tension

in the following.

Then, the dimensionless free energyf of a spherical cap-shaped
droplet, which is axisymmetrically placed on the circular domain,
assumes the compact and simple form

λV,ub(H) ) -
2H(H3 + 3H)2/3

1 + H2
+ 2(H3 + 3H)1/3

wub(H) ) 1 - 4H2 - H4

1 + H2
+ (H3 + 3H)2/3 (22)

λV,in(H) ) 8H

(1 + H2)3(H3 + 3H)2/3

win(H) ) 1 + 13H2 + 3H4 - H6

(1 + H2)3
(23)

FV ≡ a
Lâ

) (4πa3

3Vâ
)1/3

(24)

Figure 3. Morphological diagrams for a single droplet on a
homogeneous substrate as a function of wettabilitiesw and
dimensionless line tensionsλV (top) and as a function of contact
anglesθ and dimensionless line tensionsλV (bottom).λV,in denotes
the instability line andλV,ub is the unbinding line, as given by eqs
22 and 23, respectively. ForλV < λV,ub, the bound droplet is globally
stable, forλV,ub < λV < λV,in it becomes metastable, and forλV >
λV,in it becomes unstable. Only the unshaded region-1 e w e 1
in thew-λV plane is physically accessible for bound droplets; atw
) 1, we find complete wetting, and, atw ) -1, droplets always
unbind. In theθ-λV plane, the condition-1 e w e 1 defines,
together with the generalized Young equation (eq 20), a corresponding
region of physically accessible states for bound droplets.

Figure 4. The three regimes of a single droplet in a circular lyophilic
domain in a lyophobic matrix. From left to right, with increasing
volume: regime I withθ ) θγ, regime II withθγ < θ < θδ, and
regime III with θ ) θδ.

λ ≡ Λ/ΣRâa ) λV/FV (25)
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whereH(F) is given by eq 15. For fixed wettabilitieswγ andwδ
and fixed line tensionλ, the basic control parameter is the volume
Vâ, which enters into the equation through the dimensionless
domain sizeFV, as explained above. By minimizing this free
energy with respect toF, for a given volume or givenFV, we
obtain the equilibrium value ofr, which, as mentioned,
parametrizes the droplet’s shape.

We present a detailed analysis of the free energyf ) f(F) as
given by eq 26 in Appendix A. The main results of this analysis
are presented in the following. For increasing volume, there are
three regimes (I, II, III) of wetting behavior, which are illustrated
in Figure 4. The wetting behavior is qualitatively similar to what
was found in ref 5 for zero line tension.

In regime I, for small volumesVâ or largeFV, the droplet is
entirely within the domainγ, and the contact angle is given by
the generalized Young equation (eq 20) with the corresponding
wettability w ) wγ, which describes the line tension effects on
the contact angle. The generalized Young equation can be solved
by using the additional geometrical relation (eq 21). This gives
a weakly volume-dependent contact angleθγ ) θγ(FV).

Analogously, in regime III, for large volumesVâ or smallFV,
the droplet wets the surrounding substrateδ and completely
covers theγ-domain. Then the contact angle is given by the
generalized Young equation (eq 20) with the corresponding
wettabilityw ) wδ. Again, the generalized Young equation can
be solved by using the additional geometrical relation (eq 21),
which gives a weakly volume-dependent contact angleθδ )
θδ(FV).

For intermediate volumes in regime II, the droplet gets pinned
to the domain boundary. This creates a freedom of the contact
angle, which will become strongly volume-dependent. Regime
II occurs between twoboundaryVolumes, V1 e Vâ e V2, or FV,1

g FV g FV,2. These boundary valuesFV,1 andFV,2 are calculated
explicitly in the appendix (see eqs 51 and 54). The corresponding
boundary contact anglesθ1,2 fulfill

(see eqs 50 and 53 in Appendix A). The contact angle varies with
the volume in the rangeθ1 e θ e θ2 according to eq 19:

At the transition from regimes I or III into regime II, the
contact line becomes pinned, whereas it depins when it leaves
regime II. We find that, for a lyophilic domain, both the pinning
and depinning transition arecontinuousfor ahomogeneousline
tension. This means that the equilibrium radiusFbo ) Fbo(FV) of
the bound droplet as a function of the volume changes
continuouslythrough the pinning and depinning transitions of
the contact line atFV ) FV,1 andFV ) FV,2, respectively.

This wetting behavior is qualitatively similar to what was
found in ref 5 for zero line tension, where analogous regimes
exist. However, in the presence of line tension, the contact angles
θγ and θδ in regimes I and III, respectively, are shifted with
respect to the “macroscopic” anglesθγ,∞ ) arccoswγ andθδ,∞

) arccoswδ due to the line tension corrections in the contact line
equation (eq 20).

For comparison with experiments, it is instructive to see how
relevant quantities describing the droplet’s shape change in the
presence of the (dimensionless) line tensionλ. Because the volume
Vâ of a droplet or the corresponding parameterFV (cf. eq 24) are
the basic experimental control parameters, the boundary volumes
FV,1 and FV,2 are two quantities that can be determined
experimentally. The dependence ofFV,1 and FV,2 on the line
tensionλ is given by eqs 51 and 54, derived in Appendix A. The
left side of Figure 5 shows howFV,1 andFV,2 change as a function
of the dimensionless line tensionλ. Both FV,1 andFV,2 change
approximately linearly for small positive and negativeλ; for λ
> 0, both quantities are reduced compared toλ ) 0, and, forλ
< 0, they are increased compared toλ ) 0.

Another quantity that is measurable is the droplet’s radius of
curvatureR (see Figure 2). For a pinned droplet, its radius of
curvatureR is related to its contact angleθ and its volume
Vâ by purely geometric relations. We insert cosθ )
((1 - (R/a)2)1/2 into the geometric relation (eq 21) withF ) FV

(for a pinned droplet withr ) a) to obtainFV as a function of
the dimensionless radius of curvatureR/a. This purely geometric
relation is shown on the right side of Figure 5. For a given
dimensionless line tensionλ, we can now read off the rangeFV,1

g FV g FV,2 of pinned droplet volumes on the left-hand side of
Figure 5 and determine the corresponding range of dimensionless
curvature radiiR1/a andR2/a using the right side of Figure 5.
Because of the nonmonotonic behavior ofR/a as a function of
FV with a minimum atFV ) 21/3 = 1.26 corresponding to a half
sphere withR/a ) 1, the lower boundary radiusR1 is decreased,
while the upper boundary radiusR2 is increased if the line tension
increases from zero to positive values. For negative line tension,
the opposite happens.

5. Circular Lyophilic Domains and Line Tension
Contrast

In the preceding sections, we studied effects from ahomo-
geneousline tension on a single droplet wetting either a
homogeneous substrate or a lyophilic circular domainγ embedded
in a lyophobic substrateδ. By analyzing the interfacial and line
free energies of the droplet, we found up to three distinct types
of (meta)stable droplet morphologies. These shapes correspond
to (i) unbound droplets for small volumes, as discussed in section
3, (ii) bound droplets inside the circular domain (regime I) or
completely covering theγ-domain (regime III), and (iii) bound
droplets with the contact line pinned at the domain boundary
(regime II), as discussed in section 4. The two competing minima
(ii) and (iii) give rise to the three morphological regimes I-III

f ) fγ ) 1
2
F2[1 + H2(F)] - 1

2
wγF2 + λFVF for F < FV

f ) fδ ) 1
2
F2[1 + H2(F)] - 1

2
wδF2 + λFVF -

1
2
FV

2(wγ - wδ) for F > FV (26)

cosθ1,2 ) wγ,δ - λ (27)

cosθ(FV) )
1 - H2(FV)

1 + H2(FV)
for FV,1 g FV g FV,2 (28)

Figure 5. (left) The two dimensionless boundary domain sizesFV,1
andFV,2 (compare eq 24) as a function of the dimensionless line
tensionλ according to eqs 51 and 54. (right) The dimensionless
boundary domain size as a function of the dimensionless curvature
radiusR/a of the droplet, which is given by a purely geometric
relation. For each value ofλ, we can read off the corresponding
boundary domain sizes (FV,1 andFV,2) on the left and use them on
the right to determine the corresponding range of observable curvature
radii R1 < R < R2 for a pinned droplet.
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for bound droplets, which are separated bycontinuouspinning
and depinning transitions for a homogeneous line tension.

In the present section, we want to discuss, in detail, how these
transitions are affected by the presence of aline tension contrast
and, in particular, how the line tension contrast can give rise to
discontinuous and hysteretic depinning transitions.

In general, chemical patterning not only leads to a wettability
contrast withwγ > wδ for a lyophilic domain, but will also give
rise to aline tension contrast. This can be easily understood in
the framework of the effective interface model introduced in
section 2.2: because of chemical patterning, thedepth Umin of
the interface potential and, according to eq 7, the wettability will
vary across the domains. Also theshapeof the interface potential
and, therefore, according to eq 8, the line tensionΛ will vary.
Therefore, we study effects from a line tension contrast with
different valuesΛγ * Λδ for the line tensions inside and outside
the domain, respectively. In general, we can distinguish two
cases: (i) ForΛγ < Λδ, the three-phase contact line prefers to
run through theγ-domain because it offers a lower value of the
line tension. Therefore, we will call theγ-domain “linophilic”
in this case. (ii) ForΛγ > Λδ, the contact line prefers to avoid
theγ-domain. Therefore, we will call theγ-domain “linophobic”
in this latter case.

The change in line tension between the domainγ and the
substrateδ changes over a characteristic width, which is
comparable to the width of the contact linelRâσ. Regarding the
spatial variation of the line tension, we can study two different
cases: (i) In the limit of vanishinglRâσ, we can consider atwo-
Valuedline tension contrast, which exhibits a steplike behavior,
as described by

whereΘ(x) is the Heaviside step function. (ii) In a more realistic
model, we can also consider acontinuousline tension contrast,
as given by

where the line tension changes continuously over the finite width
lRâσ across theγδ boundary on the substrate. The qualitative
results regarding the droplet depinning for a circular lyophilic
domain will be the same for both steplike and continuous line
tension contrasts.

5.1. Main Results.In this section, we will present our main
results, which are summarized in the morphological diagrams in
Figure 6 in the plane spanned by the two parameters∆λ ≡ λδ
- λγ, whereλγ andλδ are the dimensionless volume-independent
line tensions inside and outside of the domain, respectively, which
are defined as in eq 25, andFV ∼ Vâ

-1/3 is the dimensionless
domain radius (eq 24) measuring the droplet volume.∆λ > 0
and∆λ < 0 correspond to the cases of a linophilic and linophobic
domain, respectively. We postpone detailed derivations and
discussions to the subsequent sections. In the previous section,
we foundcontinuouspinning and depinning transitions of the
contact line for a lyophilic domain and a spatially homogeneous
line tension∆λ ) 0 both between the regimes I and II and
between the regimes II and III. If we also include a line tension
contrast (eq 29 or 30), we find for both the linophilic domain
(∆λ > 0) and the linophobic domain (∆λ < 0) discontinuous
depinning transitions, where the contact area of the droplet
exhibits a discontinuity. For the linophilic case, the discontinuity
occurs uponincreasingthe volume between regimes II and III.
Then the contact line of a droplet on theγ-domain tends to

adhere to the linophilic domain against the increasing interfacial
energy of theRâ interface of the growing droplet, and the droplet
spreads onto theδ-substrate in a discontinuous depinning
transition. For the linophobic case, the discontinuity occurs upon
decreasingthe volume between regimes II and I. Then the droplet
initially wets theδ-substrate and covers the entireγ-domain.
The shrinking contact line tends to avoid the linophobicγ-domain,
although this stretches theRâ interface, and the droplet pulls
back onto theγ-substrate in a discontinuous depinning transition.

5.1.1. Axisymmetric Shapes.For axisymmetric shapes, that is,
spherical droplets placed axisymmetrically on the circular domain,
we can perform analytical calculations of the droplet morphologies
based on the minimization its free energyf ) f(F) in order to find
the equilibrium dimensionless contact radiusFbo of the droplet,
analogously to the case of a homogeneous line tension in the
previous section. The discontinuous depinning transitions show
up as discontinuities∆Fboin the equilibrium radius of the droplet.
This analysis finally leads to the morphological diagram Figure
6a in the absence of thermal fluctuations. The effects of thermal

Λ(r) ) Λγ + Θ(r - a)(Λδ - Λγ) (29)

Λ(r) )
Λδ - Λγ

2
tanh(r - a

lRâσ
) +

Λδ + Λγ

2
(30)

Figure 6. Morphological diagram as a function of the dimensionless
line tension contrast∆λ and the rescaled domain radiusFV, where
∆λ ) λδ - λγ with fixed λγ ) 0.1, and for wettabilitieswγ ) 0.5
and wδ ) -0.5 in the absence (a) and presence (b) of thermal
fluctuations. Pinning or depinning transitions are indicated by solid
lines; dashed lines indicate instability lines, where metastable states
becomemechanically unstable. The free energy landscape along the
trajectories (tr1) and (tr2) are shown in Figures 7 and 8, respectively.
Blue dashed lines in the morphological diagram for nonzero
temperature in panel b indicate instability lines, where the corre-
sponding metastable states becomeunstable with respect to thermal
actiVation for a domain radiusa ) 10lmol. Effects from thermal
fluctuations are small; therefore, we chose a smaller range of values
∆λ in panel b. In the region between the blue dashed vertical lines
close to∆λ ) 0, the system finds its minimum spontaneously, and
the depinning transitions can be regarded as quasi-continuous.
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fluctuations can be included into the analysis by taking into
account that energy barriers with heights up to the order ofT can
be overcome by thermal activation and, thus, are effectively
absent. This leads to modifications in the morphological diagram
(see Figure 6b).

Our findings for zero temperature are summarized in the
morphological diagram in Figure 6a. This morphological diagram
is generic for the depinning behavior ofbounddroplets. If one
of the line tensions becomes larger than the instability threshold
λV,in (i.e., λγFV > λV,in(wγ) or λδFV > λV,in(wδ); see section 3),
the depinning transitions start to interfere with the unbinding
transitions on the domainγ or the substrateδ. Then we expect
a change in the general topology of the morphological diagram.
In the present article, we do not consider this case. For both
linophilic and linophobic domains, we find a strong hysteretic
behavior at the discontinuous depinning transitions, which is
also evident from the bifurcation diagrams in Figures 7 and 8
(blue curves), where we plot the global and metastable minima
of the free energy as a function of the volume control parameter
FV.

Approaching the depinning transition between regimes II and
III for a linophilic domain∆λ > 0 from small volumes (i.e.,
decreasingFV), the pinned state of the droplet at the boundary
minimumF ) FV neVer becomes mechanically unstable in the
absence of thermal fluctuations. In this metastable configuration,
the droplet can exhibit very large contact angles. Another hallmark
of the line tension contrast is the existence of a novel regime IIb,
where metastable states also appear in regime II. For this range
of volumes, the boundary minimum continues to be the global
minimum because the contact line can gain energy by staying
within the linophilicγ-domain, although a metastable minimum
corresponding to a droplet sitting on theδ-substrate and
completely covering theγ-domain already exists. The two minima
exchange stability at acritical Value FV,c corresponding to a
critical volumeVc. Above this critical volume, it is energetically
advantageous for the droplet to depin in a discontinuous transition
with a discontinuity in the contact radius and wet the surrounding
δ-matrix. Regimes IIb and III, where additional metastable states
exist, are bounded by two instability lines where these metastable
minima vanish and which are displayed as dashed lines in the
morphological diagram in Figure 6. Because the pinned stateF
) FV does not become mechanically unstable for large volumes,
regime III is bounded by aVertical instability line ∆λ ) 0.

The hysteresis behavior at the depinning transition between
regimes I and II for alinophobic domain∆λ < 0 is analogous.
Approaching the transition from large volumes (i.e., increasing
FV), the pinned state of the droplet at the boundary minimumF
) FV neVer becomes mechanically unstable in the absence of
thermal fluctuations. In this metastable droplet configuration,
the droplet can exhibit very small contact angles. Again, there
also exists a novel regime IIb, where the boundary minimum
continues to be the global minimum, although a metastable
minimum corresponding to a droplet sitting within theγ-domain
already exists. The boundary minimum is stable because the
contact line gains additional energy by staying outside the
linophobic domain and on the surroundingδ-matrix. Only below
the critical volumeVc

/ corresponding toFV,c
/ , it is energetically

favorable for the droplet to depin and retreat in a discontinuous
transition with a discontinuity in the contact radius onto the
linophobicγ-domain. Regime IIb and regime I, where additional
metastable states exist, are again bounded by two instability
lines (see Figure 6). Because the pinned stateF ) FV does not
become mechanically unstable for large volumes, regime I is
also bounded by aVertical instability line, ∆λ ) 0.

The morphological diagram in Figure 6 is modified when
thermal fluctuations are taken into account. In the absence of
thermal fluctuations, we find metastable states in regimes IIb
and III for a linophilic domain and in regimes IIb and I for a
linophobic domain. In going from regimes II to III on a linophilic
domain bydecreasingFV and from II to I on a linophobic domain
by increasingFV, the boundary minima atF ) FV always remain
metastable, which results in vertical instability lines located at
∆λ ) 0 in the morphological diagram in Figure 6a. In the presence
of thermal fluctuations, however, barriers in the free energy
profilesf ) f(F), which are induced by line tension contrasts and
stabilize these states (see Figures 14 and 15 in Appendix B), can
be overcome by thermal activation. If the barrier is smaller than
T, we assume that these boundary states are mechanically stable
but unstable with respect to thermal actiVation. Applying this
criterion to all instability lines in the morphological diagram in

Figure 7. Linophilic domain. Free energy bifurcation diagram
showing the global minimaf(Fbo) ) f(Fbo(FV)) together with the
branches of metastable minima as a function of the dimensionless
domain radiusFV (see eq 24), forwγ ) 0.5,wδ ) -0.5, andλγ )
0.1,λδ ) 0.2. The diagram in panel b is a close-up of the full diagram
in panel a. Blue lines: Analytic results for axisymmetric shapes and
steplike line tension contrast. We findFV,c = 0.476,FV,1 = 1.528,
andFV,2 = 0.729. The regimes I, IIa, IIb, and III according to eq
63 are indicated. The pinning and depinning transition between
regimes I and IIa is continuous, the depinning from regimes II to
regime III is discontinuous, and the re-pinning from regime III to
regimes II is continuous. The dashed blue line represents the branch
of unstable free energy maxima. Black points: Results from numerical
minimization restricted to axisymmetric shapes. Red points: Results
from numerical minimization allowing for nonaxisymmetric shapes.
The nonaxisymmetric shape in point a is shown in Figure 10a.
Numerical results for continuous line tension and wettability contrasts
of width lRâσ ) lγδ ) 0.002a.

11048 Langmuir, Vol. 22, No. 26, 2006 Blecua et al.



Figure 6a, we find the modified morphological diagrams,
including thermal fluctuations, in Figure 6b, where the regimes
containing metastable states are decreased in size. In regime III,
for a linophilic domain and regime I for a linophobic domain,
the size of the free energy barriers only depends on the line
tension contrast and the domain size, but they are volume-
independent, which leads again to vertical instability lines. These
lines are shifted to∆λ ∼ (a2/lmol

2 by thermal fluctuations. In
the region between the shifted vertical lines around∆λ ) 0, we
can regard the depinning transitions asquasi-continuous(except
for the case in which∆λ ) 0, where it is strictly continuous);
by thermal activation, the system can find its minimum
spontaneouslyin this regime.

5.1.2. Nonaxisymmetric Shapes.As will be discussed in the
last section, line tension contrasts can stabilize nonaxisymmetric
shapes, both for∆λ > 0 and∆λ < 0, as shown in Figure 10a,b.
Even in this case, there still exists a steplike free energy barrier
that gives rise to morphological diagrams similar to those for
axisymmetric shapes.

For the case of alinophilic domain∆λ > 0 (i.e.,Λγ < Λδ),
the droplet tends to maximize its contact line length within the
domain and, at the same time, cover the lyophilic domain. This
leads to a “geometrically frustrated” situation for larger volumes,
where the droplet wets the surrounding substrateδ, that is, for
the states in regimes IIb and III (see Figure 7). They become
unstable with respect to a displacement of the droplet relative
to the circular domain such that the circular domain touches the
droplet contact line, as indicated in Figure 10a. This breaks the
axial symmetry of the problem. Such configurations become the
global minimum in regime III and an energetically more favorable
metastable branch in regime IIb. The free energy branch with
broken axial symmetry is indicated in the free energy bifurcation
diagram in Figure 7 (red curve). The broken axial symmetry also

changes the hysteresis behavior when the droplet approaches the
depinning transition from large volumes or increasingFV (i.e.,
when it re-pins). This re-pinning becomescontinuousfollowing
the free energy branch with broken axisymmetry, that is, there
is no “latent heat” released.

On the other hand, for alinophobic domain∆λ < 0 (i.e.,Λγ
> Λδ), the droplet tends to maximize its contact line length
outside the domain and, at the same time, cover the lyophilic
domain. This leads to geometric frustration for smaller volumes,
where the droplet is inside theγ-domain, that is, for the states
in regimes I and IIb (see Figure 8). The droplet becomes unstable
with respect to displacements to the boundary of the circular
domain such that its contact line touches the embedding substrate
outside of the domain, as shown in Figure 10b, thus breaking
the axial symmetry. Such configurations become the global
minimum in regime I and an energetically more favorable
metastable branch in regime IIb. The free energy branch with

Figure 8. Linophobic domain. Free energy bifurcation diagram
showing the global minimaf(Fbo) ) f(Fbo(FV)) and the branches of
metastable minima as a function of the dimensionless domain radius
FV (see eq 24), forwγ ) 0.5,wδ ) - 0.5, andλγ ) 0.2,λδ ) 0.1.
Blue lines: Analytic results for axisymmetric shapes and steplike
line tension contrast. We findFV,c

/ = 2.087,FV,1 = 1.528, andFV,2
= 0.830. The regimes I, IIa, IIb, and III according to eq 64 are
indicated. The pinning and depinning transition between regimes
IIa and III is continuous, the depinning from regimes II to regime
I is discontinuous, the re-pinning from regime I to regimes II is
continuous. The dashed blue line represents the branch of unstable
free energy maxima. Black points: Results from numerical
minimization restricted to axisymmetric shapes. Red points: Results
from numerical minimization allowing for nonaxisymmetric shapes.
The nonaxisymmetric shape in point b is shown in Figure 10b.
Numerical results for continuous line tension and wettability contrasts
of width lRâσ ) lγδ ) 0.002a.

Figure 9. Plot of∂Ff(F) according to eq 39 forwγ ) 0.5,wδ ) -0.5,
λγ ) 0.1,λδ ) 0.2, andlhRâσ ) 0.05 at the depinning transitionFV
) FV,c ≈ 0.536. The discontinuity of∂Ff(F) at F ) FV is due to the
wettability contrast. Local free energy minima areF1 ) FV, andF2
≈ 0.80. The shading illustrates the Maxwell-like construction
according to eq 40.

Figure 10. Nonaxisymmetric equilibrium droplet shapes stabilized
by a line tension contrast on a planar substrate containing a circular
domain (red): (a) for a lyophilic and linophilic domain (wγ ) 0.5,
wδ ) -0.5,λγ ) 0.1,λδ ) 0.2) atFV ) 0.5. (b) for a lyophilic and
linophobic domain (wγ ) 0.5, wδ ) -0.5, λγ ) 0.2, λδ ) 0.1) at
FV ) 2.0. (c) for a linophilic domainwithoutwettability contrast (wγ
) wδ ) 0, λγ ) 0.1,λδ ) 0.2) atFV ) 0.9. (d) for alyophobicbut
linophilic domain (wγ ) -0.5,wδ ) 0.5,λγ ) 0.1,λδ ) 0.2) atFV
) 1.1.
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broken axial symmetry is indicated in the free energy bifurcation
diagram in Figure 8 (red curve). Also, for this case, the broken
axial symmetry modifies the hysteresis behavior when the droplet
approaches the pinning transition from small volumes or
decreasingFV. This pinning becomescontinuousfollowing the
free energy branch with broken axisymmetry, that is, there is no
“latent heat” released.

5.2. Two-Valued Line Tension Contrast.In this section, we
present analytical results for the two-valued steplike line tension
contrast (eq 29) in addition to the wettability contrast withwγ
> wδ. Then the dimensionless free energyf of the spherical
cap-shaped, axisymmetrically placed droplet is given by

whereλγ andλδ stand for the values ofλ, according to eq 25,
in the lyophilic domain and in the lyophobic matrix, respectively.

We present a detailed analysis of the free energyf ) f (F) as
given by eq 31 in Appendix B. The results of this analysis are
presented in the following for the two cases of a linophilic domain
(Λγ < Λδ) and a linophobic domain (Λγ < Λδ) separately. The
results are summarized in the two bifurcation diagrams in Figures
7 and 8 (blue curves), where we plot the global and metastable
minima of the free energy as a function of the volume control
parameterFV.

5.2.1. Line Tension ContrastΛγ < Λδ (Linophilic Domain).
For a linophilic domain, there are now four regimes (I, IIa, IIb,
and III) of wetting behavior, which are illustrated in the bifurcation
diagram in Figure 7. The wetting behavior in regimes II and III
is qualitatively changed compared to the case of a spatially
homogeneous line tension due to steplike features in the free
energy from the line tension contrast (see Figure 14, Appendix
B).

For a linophilic domain, the behavior of the droplet within
regime I for small volumesVâ or largeFV as well as the pinning
transition between regimes I and II are exactly as those for a
spatially homogeneous line tensionλ ) λγ, which has been
discussed previously in section 4. Therefore, the contact angle
of the droplet is the (weakly volume-dependent) contact angle
θγ of the γ-domain in the presence of a line tensionλ ) λγ.
Moreover, the pinning transition between regime I and II is
continuous, as can also be seen in the smooth behavior of the
global minimum of the free energy as a function ofFV in the
bifurcation diagram in Figure 7. Upon increasing the volume or
decreasingFV, the droplet gets pinned to theγδ domain boundary
at a boundary volumeV1 corresponding to an upper boundary
valueFV,1, which is calculated in Appendix B (see eq 59). The
corresponding boundary contact angle is given by

(see eq 58).
Within regime II, where the contact line is pinned at the domain

boundary, the behavior becomes qualitatively different from that
for a homogeneous line tension because of the discontinuity∆f
) FV

2(λδ - λγ) (see eq 57) in the free energy profilesf ) f(F).
This steplike feature increases the stability of the boundary
minimum corresponding to the pinned droplet withr ) a or F
) FV, which leads to the existence of a new regime IIb, where

the boundary minimum remains stable, although there already
exists a metastable minimum corresponding to a droplet wetting
the δ-substrate and covering theγ-domain. This metastable
minimum appears above the boundary volumeV2, that is, for
valuesFV < FV,2, whereFV,2 is given by eq 61, as calculated in
Appendix B. The corresponding boundary contact angle is given
by

(see eq 60). The lower boundary valueFV,2 is identical to the
boundary value obtained for the pinning of a droplet wetting the
δ-domain and completely covering theγ-domain and with a
homogeneous line tensionλ ) λδ. Within the regimeFV,2 e FV

e FV,1, the droplet is in regime IIa, and the boundary minimum
at Fbo ) FV is the only free energy minimum (see Figure 7).

Upon further increasing the volume, the droplet enters regime
IIb for FV,c < FV < FV,2, where the boundary minimum is still
the global minimum, but the metastable minimum appears
corresponding to a droplet wetting theδ-matrix. As can be seen
in Figure 7, the two minima exchange stability at acritical Value
FV,c corresponding to a critical volumeVc and a contact angle
θc, which can only be determined numerically. At this critical
volume, adiscontinuous depinning transitiontakes place into
regime III with a jump,∆Fbo > 0, in the equilibrium contact
radius. The size of this jump is estimated in Appendix B.3 in eq
69. This jump also leads to a corresponding discontinuity,∆θ
≡ θδ - θc < 0, in the equilibrium contact angle.θδ is the (weakly
volume-dependent) contact angle of a droplet wetting the
δ-substrate in the presence of a line tension,λ ) λδ. For the
contact angle discontinuity we find

in eq 70 in Appendix B. Thus, the discontinuity in the contact
angle at the discontinuous depinning transition of the contact
line depends on (i) the critical droplet volume, (ii) the line tension
contrast, and (iii) the wettability or contact angle of theδ-substrate.
In the entire regime II (i.e., forFV,c < FV e FV,1), the equilibrium
contact line is pinned, and the contact angle varies with the
volume in the rangeθ1 e θ < θc, according to the relation given
in eq 28.

In regime III, for large volumes or smallFV < FV,c, the droplet
wets theδ-substrate in its equilibrium shape. Note, however,
that, in the absence of thermal fluctuations, the bound state remains
metastable within the entire regime III. This leads to the
pronounced hysteresis displayed in the bifurcation diagram in
Figure 7. The contact angle in this metastable state can increase
dramatically by following the relation in eq 28 for allFV e FV,2.
Because the boundary state does not get mechanically unstable
for increasing volume, the actual depinning transition has to be
enabled by thermal fluctuations or some other external perturba-
tion, which will be discussed below. It also means that the
corresponding spinodal or instability line of the transition cannot
be accessed by decreasingFV. This results in a vertical second
instability line,∆λ ) 0, in the morphological diagram in Figure
6.

Upon approaching the pinning transition from the large volume
regime III by increasingFV (i.e., upon re-pinning), the local
minimum corresponding to a droplet wetting theδ-substrate
remains metastable forFV,c < FV < FV,2. Therefore, the other
spinodal or instability line is given byFV ) FV,2. It should also
be noted that, for sharp line tension contrasts, there is practically
no discontinuity in the equilibrium radiusF or in the contact
angle upon re-pinning atFV ) FV,2. Thus, the re-pinning transition

f ) fγ ) 1
2
F2[1 + H2(F)] - 1

2
wγF2 + λγFVF for F < FV

f ) fδ ) 1
2
F2[1 + H2(F)] - 1

2
wδF2 + λδFVF -

1
2
FV

2(wγ - wδ) for F > FV (31)

cosθ1 ) wγ - λγ (32)

cosθ2 ) wδ - λδ (33)

∆θ ≈ -21/6FV,c(λδ - λγ)
1/2(1 - wδ)

2/3(2 + wδ)
5/6 (34)
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will appear continuous, although there is a discontinuity in the
free energy, that is, there is a “latent heat” released.

5.2.2. Line Tension ContrastΛγ > Λδ (Linophobic Domain).
We can perform an analogous analysis for a linophobic domain,
which also exhibits four regimes (I, IIa, IIb, and III) of wetting
behavior, which are illustrated in the bifurcation diagram in Figure
8 (blue curves). It turns out that the depinning behavior for the
linophilic domain forincreasingvolume, which we treated in
the previous section, is qualitatively similar to the depinning
behavior for the linophobic domain fordecreasingvolume. In
both cases, the contact line depins discontinuously from the
boundary of the circular domain upon entering into the region
with the less favorable line tension. These similarities are also
obvious from comparing the basic structure of the bifurcation
diagrams in Figures 7 and 8. Accordingly, for the linophobic
domain, the wetting behavior in regimes I and II is qualitatively
changed compared to that in the case of a spatially homogeneous
line tension due to steplike features in the free energy (see Figure
15, Appendix B).

The behavior of the droplet within regime III for large volumes
Vâ or smallFV as well as the pinning transition between regimes
III and II are exactly the same as those for a spatially homogeneous
line tension,λ ) λδ, which has been discussed previously in
section 4. The contact angle of the droplet is the (weakly volume-
dependent) contact angleθδ wetting theδ-substrate in the presence
of a line tensionλ ) λδ. The pinning transition between regimes
III and II is continuous, as can also be seen in the smooth behavior
of the global minimum of the free energy as a function ofFV in
the bifurcation diagram in Figure 8. Upon decreasing the volume
or increasingFV, the droplet gets pinned to theγδ domain
boundary at a boundary volumeV2 corresponding to a lower
boundary valueFV,2, which is given by eq 61 as calculated in
Appendix B. The corresponding boundary contact angle is given
by

Within regime II, where the contact line is pinned at the domain
boundary, the behavior becomes qualitatively different from that
for a homogeneous line tension because of the discontinuity in
the free energy profiles. This steplike feature increases the stability
of the boundary minimum corresponding to the pinned droplet
with r ) a or F ) FV, which leads to the existence of a new
regime IIb, where the boundary minimum remains stable, although
there already exists a metastable minimum corresponding to a
droplet sitting within theγ-domain. This metastable minimum
appears below the boundary volumeV1 (i.e., for valuesFV >
FV,1), whereFV,1 is given by eq 59. The corresponding boundary
contact angle is given by

The upper boundary valueFV,1 is identical to the boundary value
obtained for the pinning of a droplet sitting within theγ-domain
and with a homogeneous line tension,λ ) λγ. Within the regime
FV,2 e FV e FV,1, the droplet is in regime IIa, and the boundary
minimum atFbo ) FV is the only free energy minimum (see
Figure 8).

Upon further decreasing the volume, the droplet enters regime
IIb for FV,1 < FV < FV,c

/ , where the boundary minimum is still
the global minimum, but the metastable minimum appears,
corresponding to a droplet sitting within theγ-domain. As can
be seen in Figure 7, the two minima exchange stability at a
critical Value FV,c

/ corresponding to a critical volumeVc
/ and a

critical contact angleθc
/. At this critical volume, adiscontinuous

depinning transitioninto regime I takes place with a jump,
∆Fbo

/ < 0, in the equilibrium contact radius. The size of this jump
is estimated in Appendix B.3 in eq 71. This jump also leads to
a corresponding discontinuity,∆θ* ≡ θγ - θc

/ > 0, in the
equilibrium contact angle.θγ is the (weakly volume-dependent)
contact angle of a droplet in theγ-domain in the presence of a
line tension,λ ) λγ. For the contact angle discontinuity, we find

in eq 71 in Appendix B. In the entire regime II (i.e., forFV,2

< FV e FV,c
/ ), the equilibrium contact line is pinned, and the

contact angle varies with the volume in the rangeθc
/ e θ < θ2

according to the relation in eq 28.
In regime I, for small volumes or largeFV > FV,c

/ , the droplet
is on theγ-domain in its equilibrium shape. Note, however, that,
in the absence of thermal fluctuations, the bound state remains
metastable within the entire regime I. This leads to the pronounced
hysteresis displayed in the bifurcation diagram in Figure 8. The
contact angle in this metastable state can decrease dramatically
by following the relation in eq 28 for allFV g FV,1. Because the
boundary state does not get mechanically unstable for decreasing
volume, the actual depinning transition has to be enabled by
thermal fluctuations or some other external perturbation, which
will be discussed below. It also means that the corresponding
spinodal or instability line of the transition cannot be accessed
by increasingFV. This results in a vertical second instability line,
∆λ ) 0, in the morphological diagram in Figure 6.

Upon approaching the pinning transition from the small volume
regime I by decreasingFV (i.e., upon re-pinning), the local
minimum corresponding to a droplet within theγ-domain remains
metastable forFV,1 < FV < FV,c

/ . Therefore, the other spinodal
or instability line is given byFV ) FV,1. It should also be noted
that, for sharp line tension contrasts, there is practicallyno
discontinuity in the equilibrium radiusF or in the contact angle
upon re-pinning atFV ) FV,1. Thus, the re-pinning transition will
appear continuous, although there is a discontinuity in the free
energy, that is, there is a “latent heat” released.

5.3. Continuous Line Tension Contrast and Maxwell-like
Construction. So far we have considered the situation of a sharp
line tension contrast (eq 29). Then the boundary minimum atF
) FV remains a metastable minimum throughout the entire regimes
I or III for linophobic and linophilic domains, respectively, and
the pinned contact line never becomes mechanically unstable
with respect to depinning. In this situation, contact line depinning
has to happen by additional external forces acting on the droplet,
for example, thermal noise.

In a more realistic model, the line tension contrast iscontinuous,
that is, the line tension step is smeared over a characteristic
width, which is given by the width of the contact linelRâσ (see
eq 30), which can be written as

using dimensionless quantities withlRâσ ≡ lhRâσ/a. Then the
dimensionless free energy of the dropletf is given by

wherew(F) ) wγ + Θ(F - FV)(wδ - wγ). For a continuous line

cosθ2 ) wδ - λδ (35)

cosθ1 ) wγ - λγ (36)

∆θ* ≈ 21/6FV,c
/ (λδ - λγ)

1/2(1 - wγ)
2/3(2 + wγ)

5/6 (37)

λ(F) )
λδ - λγ

2
tanh(F/FV - 1

lhRâσ
) +

λδ + λγ

2
(38)

f ) 1
2

F2[1 + H2(F)] - 1
2
w(F)F2 + λ(F)FVF + Θ(F - FV)

1
2

FV
2

(wγ - wδ) (39)
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tension contrast, the free energy (eq 39) has no discontinuity
acrossF ) FV.

We find that the results for a continuous line tension contrast
are qualitatively the same as those for a steplike two-valued line
tension contrast. In particular, we find the same three regimes
following the global minimumFbo > 0 of the free energy (eq 31)
as a function of the dimensionless surface domain radiusFV. The
notable difference is that the global minimum in regime II is not
necessarily the boundary minimum atF ) FV, but it can also
become a local minimum. Then two local minima exchange
their stability at the discontinuous depinning transition of the
contact line at the critical value ofFV.

Because the free energy (eq 39) has no discontinuities, we can
obtain the critical valuesFV,c or FV,c

/ for the discontinuous
depinning transitions from a Maxwell-like construction, which
we illustrate for the linophilic case,Λγ < Λδ. At the transition
at FV ) FV,c, the locations of the two local minima areF1 < FV,
whereF1 is within theγ-domain and determined by∂Ffγ(F1) )
0 orF1 ) FV, on one hand, andF2 > FV on theδ-substrate, with
∂Ffδ(F2) ) 0, on the other hand. The corresponding free energies
are equal at the transition, that is,

which leads to a Maxwell-like construction, in which we locate
the critical valueFV,c by requiring that the curve∂Ff(F) intersect
three times with the line∂Ff(F) ) 0 (i.e., at F1, F2, and an
intermediate pointFi, corresponding to an unstable free energy
maximum), and that the areas|∫F1

Fi ∂Ff(F)| and |∫Fi

F2∂Ff(F)| of the
curve above and below zero are equal (see Figure 9).

For FV only slightly belowFV,c, the local minimum atF ) F1

remains metastable. Whereas, for a two-valued line tension
contrast, this minimum was always a boundary minimum (F1 )
FV) and remained metastable forall FV < FV,c, the minimum at
F1 can become mechanically unstable at a lower value,FV ) FV,s

< FV,c, for a continuous line tension contrast. The valueFV,s is
determined by the two conditions∂Ff(F1) ) 0, which is the contact
line equation for theγ-domain, and∂F

2f(F1) ) 0. These conditions
can only be fulfilled for a sufficiently smooth line tension contrast,
that is, for a sufficiently largelRâσ. The maximal gradient in line
tension is attained forF ∼ FV and is approximately given by
∂Fλ(FV) ∼ (Λδ - Λγ)/ΣRâlRâσ. A sufficient condition for the local
minimum atF ) F1 to become unstable is that no boundary
minimum F1 ) FV exists (i.e.,∂Ff (FV) < 0 with w(FV) ) wδ),
which gives

For large line tension contrasts or a small contrast width,lhRâσ,
this condition is violated and, thus, the boundary minimum at
F ) FV neVer becomes mechanically unstable like that for a
steplike line tension contrast. One can also show that, in this
case, there is a small range of radii,FV < F < FV + lhRâσ, where
thereneVer exists a solution to the contact line equation, that is,
a “forbidden” range of radii where it is not possible to find an
axisymmetric solution to the contact line equation. This paradox
can only be resolved by including nonaxisymmetric shapes into
the analysis, as will be done in section 5.5.

5.4. Thermal Fluctuations.The morphological diagram in
Figure 6a is valid for a sharp line tension contrast (eq 29) or a

continuous contrast (eq 38), provided that the contrast widthlhRâσ
is small enough, as discussed above. In the absence of thermal
fluctuations, we find metastable states in regimes IIb and III for
a linophilic domain and in regimes IIb and I for a linophobic
domain. Moreover, we found that the metastable states in regime
III (for the linophilic case) and in regime I (for thelinophobic
case)neVer become mechanically unstable in the absence of
external perturbations. However, as discussed in section 5.1, in
the presence of thermal fluctuations some of these states can
become unstable with respect tothermal actiVation. In the
following, we derive the condition for an instability with respect
to thermal activation and the resulting changes in the morpho-
logical diagram in Figure 6.

Thermal activation over an energy barrier∆F involves
thermally activated shape changes of the droplet at a constant
liquidvolumeVâ. Thermallyactivatednucleationprocesses,which
involve the deposition of liquid and thus volume growth, have
been studied in the literature in the framework of classical
nucleation theory,31 for example, nucleation on homogeneous
substrates32 or circular domains.33,34 We assume that similar
concepts can describe thermally activated shape changes, which
then proceed with a rateJ proportional to the Arrhenius factor,

where the prefactorJ0 depends on the details of the kinetic
mechanisms involved in the shape changes. Therefore, a
reasonable criterion for the instability with respect to thermal
activation is to assume that barriers∆F j T can be overcome
by thermal activation on the experimental time scale. Using
dimensionless units (eq 12), this leads to a condition

which determines the instability lines in the presence of thermal
fluctuations and where we used the approximationΣRâ ∼ (T/
lmol

3)lRâ ∼ T/lmol
2, as discussed in section 2.2. Using this criterion

(eq 43), we obtain the modified instability lines in the
morphological diagram in Figure 6b in regimes IIb and III for
a linophilic domain and regimes IIb and I for a linophobic domain.

First we consider the metastable states within regime III for
a linophilic domain or regime I for a linophobic domain, which
do not become mechanically unstable in the absence of thermal
fluctuations. The line tension contrast gives rise to steplike
discontinuities in the free energy (see Figures 14 and 15, Appendix
B). Assuming axisymmetric shapes throughout the thermal
activation process, the free energy barrier that these metastable
states have to overcome is given by

(see also eq 57), or∆F ) 2πa|Λδ - Λγ| in original units, which
shows that this free energy barrier is volume-independent. Using
eq 44, the condition (eq 43) for the instability lines becomes

which is independent of volume orFV and, thus, again gives two
Vertical instability lines in the morphological diagram in Figure
6b. Compared to the morphological diagram in Figure

(31) Frenkel, J.Kinetic Theory of Liquids; Dover: New York, 1955.
(32) McDonald, J. E.Am. J. Phys.1963, 31, 31.
(33) Smorodin, V. E.Langmuir1994, 10, 2250.
(34) Valencia, A.; Lipowsky, R.Langmuir2000, 20, 1986.

0 ) fγ(F1) - fδ(F2) ) ∫F1

F2dF∂Ff

) ∫F1

F2dFF[cosθ(F) - w(F) +
FVλ(F)

F
+ FV∂Fλ] (40)

Λδ - Λγ

2ΣRâlRâσ
)

λδ - λγ

2lhRâσ

< 1 + wδ - λδ (41)

J ) J0 exp(-∆F/T) (42)

∆f ) T/2πΣRâLâ
2 ∼ lmol

2/2πLâ
2 ) FV

2lmol
2/2πa2 (43)

∆f ) |fδ(FV) - fγ(FV)| ) FV
2|λδ - λγ| (44)

|∆λ| ) lmol
2/2πa2 (45)
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6a, in the absence of thermal fluctuations, both of the vertical
instability lines are shifted. In the region between the shifted
vertical lines around∆λ ) 0, we can regard the depinning
transitions asquasi-continuous(except for the case in which∆λ
) 0, where it is strictly continuous); by thermal activation, the
system can find its minimumspontaneouslyin this regime.

Similarly, we can apply the criterion in eq 43 to the other
instability lines,FV ) FV,2 for a linophilic domain andFV ) FV,1

for a linophobic domain. In the morphological diagram in Figure
6b, the resulting shifted instability lines have been calculated
numerically fora ) 10lmol using the criterion in eq 43. For both
∆λ > 0 and∆λ < 0, the modified instability lines meet at a single
point for a small line tension contrast, where minima exchange
stability and the energy barrier separating them is of heightT.

From the criterion given in eq 43, we recognize that thermal
fluctuation effects are essentially governed by the ratiolmol/a.
With lmol being on the order of 1 nm, effects from thermal
fluctuations should be small, even for the smallest realistic domain
sizes, which are on the order of 10 nm. This is also clearly seen
in the morphological diagram in Figure 6b, where the shift of
the instability lines is rather small fora ) 10lmol. It should also
be noted that the energy barriers between metastable states can
be further reduced by breaking the axial symmetry, as we will
see in the next section.

5.5. Numerical Minimization and Nonaxisymmetric Shapes.
Although the problem of a droplet on a single circular lyophilic
domain has axial symmetry, equilibrium droplet shapes can break
this symmetry in the presence of aline tension contrast. In Figure
10, we give an overview of possible nonaxisymmetric droplet
shapes, which are stabilized by a line tension contrast. For a
smaller linophilic domain, large droplets that wet the lyophobic
substrate are unstable with respect to displacements such that
they touch the domain boundary (Figure 10a). For a linophobic
domain, small droplets on the lyophilic domain are unstable with
respect to displacements such that they touch the domain boundary
(Figure 10b). Also, in the absence of a wettability contrast, droplets
on a linophilic domain are unstable with respect to displacements
in order to maximize the length of their contact line on the domain
(Figure 10c). Obviously, for a lyophobic domain in a lyophilic
substrate, droplets preferentially nucleate and attach outside of
the domain on the lyophilic substrate, thus breaking the axial
symmetry also in the absence of a line tension contrast. In this
case, a linophilic domain can stabilize states where the droplet
partially covers the lyophobic domain (Figure 10d). In this paper,
we want to focus on lyophilic domains embedded in a lyophobic
substrate, that is, cases a and b of Figure 10.

5.5.1. Numerical Minimization.For nonaxisymmetric droplet
shapes, analytical calculations are no longer feasible, and we
resort to numerical minimization of the droplet free energy using
the dynamical triangulation algorithms of the freely available
SURFACE EVOLVER 2.14.35 The numerical minimization of
the free energy functional (eq 1) is performed at a fixed volume
Vâ or a fixedFV. Using the additional constraint for the center
of mass of the contact line to lie in the center of the circular
domain, the minimum stays within the subspace of axisymmetric
shapes. Lifting this constraint, we can also access nonaxisym-
metric shapes. Using these techniques, we first confirmed our
analytical result for the global and metastable minima of the free
energy in the subspace of axisymmetric shapes for steplike
wettability and line-tension contrasts. Numerically, we ap-
proximate steplike contrasts by continuous contrasts of the form
given in eq 30 and make the line tension contrast widthlRâσ and

the wettability contrast widthlγδ as small as the numerical stability
of the algorithm allows.

To confirm our analytical results on the free energy bifurcation
diagrams for the pinning and depinning transitions in the presence
of line tension contrasts, we first perform a numerical minimiza-
tion of the free energy for axisymmetric shapes. As can be seen
in Figures 7 and 8, the agreement is good. Small differences in
Figure 8 are due to the finite width of the continuous contrasts
used for numerical minimization.

5.5.2. Nonaxisymmetric Shapes Stabilized by Line Tension
Contrasts.As we already discussed in 5.1, nonaxisymmetric
droplet shapes can be stabilized by a line tension contrast and
provide more favorable metastable and global minima in regimes
IIb and III for the linophilic case (see Figure 7) and in regimes
IIb and I for the linophobic case (see Figure 8). These shapes
assume the form indicated in Figure 10a for a linophilic domain
(see also arrow in Figure 7) and in Figure 10b for a linophobic
domain (see arrow in Figure 8).

Furthermore, for axisymmetric shapes, we found a window
of radii FV < F < FV + lhRâσ for the linophilic case, where it is
not possible to find an axisymmetric solution to the Young
equation for large line tension gradients. The contact line of(35) Brakke, K.Exp. Math.1992, 1, 141.

Figure 11. (a) Linophilic domain. Free energyf ) f(Feff) as a function
of the effective dimensionless droplet radiusFeff (see eq 46), forFV
) 0.5 andwγ ) 0.5,wδ ) -0.5,λγ ) 0.1, andλδ ) 0.2. (b) Linophobic
domain. Free energyf ) f(Feff) for FV ) 1.9 andwγ ) 0.5, wδ )
-0.5,λγ ) 0.2, andλδ ) 0.1. Blue: Analytic results for axisymmetric
shapes and steplike line tension contrast. Black: Results from
numerical minimization restricted to symmetric shapes. Red: Results
from numerical minimization allowing for nonaxisymmetric shapes.
Numerical results for continuous line tension and wettability contrasts
of width lRâσ ) lγδ ) 0.01a. The nonaxisymmetric constrained
equilibrium shapes of droplets representing the “transition states”
of a “wet tongue” (WT) or a “dry tongue” (DT) are shown in Figure
12.
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nonaxisymmetric solutions such as the equilibrium shape shown
in Figure 10a, however, clearly crosses this ring-shaped “forbid-
den” region. These shapes can fulfill the Young equation (eq 3)
because the contact line crosses this region with an angle with
respect to the domain boundary, which is sufficiently close to
π/2 such that the scalar productm̂‚∇Λ/ΣRâ in the last term of
the Young equation becomes small. Thus, a solution fulfilling
-1 < cosθ < 1 can be found.

5.5.3. ResolVing the Bifurcations.By applying a constraint on
the adhered areaAâσ of the droplet, we can numerically resolve
the constrained free energy landscape as a function of aneffectiVe
dimensionless radius

at fixed FV. For axisymmetric droplet shapes the effective
radius coincides with the radiusF (i.e., Feff ) F), and we can
compare numerical results with the corresponding free energy
profiles for f ) f(F) as given by eq 31 and displayed in Figures
14 and 15 (Appendix B).

In Figure 11a, we show a detailed comparison of the constrained
free energy profiles for a linophilic domain and a droplet volume
close to the transition, that is, at the boundary between regimes
IIb and III. If we constrain the numerical minimization to axially
symmetric shapes (black points), we get good agreement with
the analytical results (blue line). Close to the free energy
maximum, the axisymmetric shape is hard to stabilize in the
numerical minimization such that the data points are missing in
this region. For axisymmetric shapes, the energy barrier separating
the competing minima is given by the step (eq 44) in free energy.
However, this barrier is drasticallyreducedif we allow for shapes
breaking the axial symmetry in the numerical minimization (red
points in Figure 11). Typical nonaxisymmetric shapes forFeff

slightly larger thanFV (i.e., for small positive∆Feff ≡ Feff - FV)
exhibit a single “tongue”-like protrusion (see Figure 12), which
is formed from the excess adhered area∆A ) πLâ

2(Feff
2 - FV

2)
that cannot fit on the lyophilic domain and extends into the
lyophobic substrate. The excess adhered area assumes a compact
shape similar to a half-circle in order to minimize the length of
the excess contact line∆L, which becomes subject to the higher
line tensionλδ of the surrounding substrate. Therefore, we expect
∆L ∼ (2π∆A)1/2. Formation of the tongue is favored by the free
energy gain from decreasing the area of theRâ interface. This
free energy gain is linear in∆Feff and proportional toΣRâ. Then
the total change in dimensionless free energy,∆f, due to the
formation of the tongue can be estimated as

wherec is a numerical constant of order unity. For small∆Feff,
the term from the line tension cost (∝ ∆Feff

1/2) dominates and
gives rise to an energy barrier

which is, by a factor ofλδ - λγ , 1, smaller than the result (eq
44) for axisymmetric shapes. The droplet shape in the “transition
state” (i.e., the constrained equilibrium configuration at the top
of the barrier) is shown in Figure 12(WT). Although the barrier
is reduced, it is also still existing if we include nonaxisymmetric
shapes into the analysis. Therefore, the pinned state of the droplet
at the boundary minimum,Fbo) FV,neVerbecomes mechanically
unstable upon approaching the depinning transition from small
volumes (i.e., decreasingFV), even if we allow for nonaxisym-
metric shapes (for the zero temperature case).

In Figure 11b, we show the analogous comparison of the
constrained free energy profiles for a linophobic domain and a
droplet volume close to the transition, that is, at the boundary
between regimes IIb and I. For this type of contrast and typical
nonaxisymmetric shapes withFeff slightly smaller thanFV, the
droplet pulls back from the circular domain where the line tension
is high, leaving a “dry tongue” behind (see Figure 12(DT)). We
can use arguments analogous to those in the previous section in
order to estimate the barrier height that is associated with the
formation of such a “dry tongue”, which leads to the same result
(eq 48). Also, in this case, a barrier persists if the axial symmetry
can be broken by the transition states.

From Figure 11, we also recognize that, for both types of line
tension contrasts, the discontinuity (∆Fbo or ∆Fbo

/ ) of the
dimensionless radius at the depinning transitions (see eqs 69 and
71 in Appendix B.3) is not significantly modified if nonaxi-
symmetric shapes are taken into account.

6. Summary and Discussion

We studied line tension effects for a single droplet wetting a
lyophilic circular domainγ embedded in a lyophobic substrate
δ in the presence of a line tension contrast. By analyzing the
interfacial and line free energies of the droplet, we found that
a line tension contrast gives rise todiscontinuousdepinning
transitions of the contact line from the domain boundary and
thus leads to pronouncedhystericbehavior. For a line tension
contrastΛγ < Λδ (linophilic domain), the depinning from the
domain boundary upon increasing the droplet volume becomes
discontinuous, whereas, for a line tension contrastΛγ > Λδ
(linophobic domain), the depinning upon decreasing the droplet
volume becomes discontinuous. In both cases, we obtain the full
bifurcation diagram for the free energy analytically and numeri-
cally for axisymmetric shapes.

Numerically, we also addressed instabilities with respect to
axial symmetry breaking. In the presence of a line tension contrast,
we find instabilities in the global and metastable equilibrium
shapes in the regimes where the droplet has spread onto the part
of the surface with the higher line tension, that is, for a linophilic
domain if the droplet wets the surrounding linophobic substrate
at large volume, or for a linophobic domain if the droplet resides
entirely within this domain for small volumes (see Figure 10).
The broken axisymmetry leads to a lowering of the corresponding
free energy branches in the bifurcation diagram, which makes
re-pinning transitionscontinuous. Axial symmetry breaking also

Figure 12. Constrained equilibrium shapes of droplets representing
the “transition states” at the top of the energy barriers in Figure 11.
(WT) Droplet configuration with a “wet tongue” (dark blue area)
for FV ) 0.5 andwγ ) 0.5,wδ ) -0.5, λγ ) 0.1, andλδ ) 0.2 at
Feff ) 0.51. (DT) Droplet configuration with a “dry tongue” forFV
) 1.9 andwγ ) 0.5, wδ ) -0.5, λγ ) 0.2, andλδ ) 0.1 atFeff )
1.88.

Feff ≡ (Aâσ/πLâ
2)1/2 (46)

∆f(∆Feff) ∼ -cFV∆Feff + (wδ - wγ)FV∆Feff +

(λδ - λγ)FV
3/2∆Feff

1/2 (47)

∆f ∼ FV
2(λδ - λγ)

2

c
(48)
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strongly reduces the barrier between metastable and global minima
close to the transition.

These results suggest several experimental avenues to detect
and eventually quantify line tension contrasts. The discontinuous
nature of depinning transitions in the presence of a line tension
contrast leads to a hysteretic behavior of the contact line, which
should be observable in experiments. The hysteretic behavior as
displayed in the bifurcation diagrams in Figures 7 and 8 for a
linophilic and linophobic domain, respectively, can then be used
to (i) determine the sign of the line tension contrast, that is, to
detect whether the domain is linophilic or linophobic, and (ii)
to quantify the size of the line tension contrast (see eqs 34 and
37). Moreover, line tension contrasts always lead to instabilities
with respect to axial symmetry breaking in regimes where the
droplet is spreading onto the part of the surface with the higher
line tension. Observation of droplet shapes as shown in Figure
10 are thus an indicator for the presence of a line tension contrast.
The shapes are also indicative of the sign of the line tension
contrast: A linophilic domain will exhibit nonaxisymmetric
shapes at large volumes where the droplet spreads on the
surrounding linophobic substrate, whereas a linophobic domain
exhibits such shapes at small volumes where the droplet resides
entirely within this domain.
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Appendix A. Free Energy Analysis for Circular
Lyophilic Domains and Spatially Homogeneous Line

Tension

In this appendix, we present the detailed analysis of the free
energyf ) f(F) as given by eq 26 for an axisymmetrical spherical
cap-shaped droplet on a circular lyophilic domain. Although the
function f(F) is specified in a piecewise manner in eq 26, the
wettability contrast doesnotgenerate discontinuities inf(F) across
F ) FV. In the following, we consider abounddroplet, that is,
sufficiently small line tensions, so that the bound state atF )
Fbo > 0 is the global minimum (see Figure 1). Following this
global minimum as a function of the volume orFV (see eq 24)
for fixed λ, we find three regimes (see Figure 13).

In regime I, the droplet stays entirely within the domainγ
(i.e.,Fbo < FV). This is the case for small volumesVâ such that

FV is large. In regime I, the global minimum off is identical to
the local minimumFγ on theγ-domain (i.e.,Fbo ) Fγ). The
minimum Fγ ) Fγ(FV) is generally volume- orFV-dependent
because of line tension effects.Fγ is determined by∂Ffγ(Fγ) )
0 or, equivalently, by the generalized Young equation (eq 20),

which relatesFγ to the contact angleθγ ) θγ(FV) of theγ-domain
or within regime I, which is also volume-dependent because of
line tension effects.Fγ andθγ also fulfill the geometrical relation
in eq 21. Inserting eq 49 into the geometrical relation in eq 21,
we obtain self-consistent equations forFγ ) Fγ(FV) or the cosine
of the contact angle cosθγ ) cosθγ(FV).

If we start within regime I and increase the droplet volume
to a certain lower boundary volumeV1 corresponding to an upper
boundary valueFV,1 and a contact angleθ1≡ θγ(FV,1), the droplet
gets pinned to the boundary, and regime I is left. This happens
for Fbo ) FV or Fγ(FV,1) ) FV,1. Then, the Young equation (eq
49) simplifies to an explicit equation for the contact angleθ1,

and the self-consistent equation forFγ becomes an explicit
equation forFV,1,

In regime III, the droplet spreads onto the surrounding substrate
δ and completely covers theγ-domain (i.e.,Fbo > FV). This is
the case for large volumesVâ such thatFV is small. In regime
III, the global minimumFbo of f is the local minimumFδ of the
substrateδ (i.e., Fbo ) Fδ). Fδ ) Fδ(FV) is again volume- or
FV-dependent because of line tension effects and is determined
by ∂Ffδ(Fδ) ) 0 or the equivalent generalized Young equation
(eq 20),

whereθδ ) θδ(FV) is the volume-dependent contact angle of the
δ-substrate or within regime III. Inserting eq 52 into the
geometrical relation (eq 21), we also obtain self-consistent
equations forFδ ) Fδ(FV) or cosθδ ) cosθδ(FV).

If we start within regime III and decrease the droplet volume
to a certain upper boundary volumeV2 corresponding to a lower
boundary valueFV,2 and a contact angleθ2≡ θδ(FV,2), the droplet
gets pinned to the boundary, and regime III is left. This happens
for Fbo ) FV or Fδ(FV,2) ) FV,2. Then the Young equation (eq
52) simplifies to an explicit equation for the contact angleθ2,

and the self-consistent equation forFδ gives an explicit equation
for FV,2,

For intermediate volumesV1 e V e V2 or FV,2 e FV e FV,1,
there is the intermediate regime II, where the contact line is
pinnedat theγδ domain boundary (the embedding substrateδ

Figure 13. Plots of f(F) - f(0) according to eq 26 forwγ ) 0.5,
wδ ) -0.5, andλ ) 0.1. Plots from right to left are forFV ) 2.0,
1.1, and 0.4, i.e., for increasing volume corresponding to the three
regimes in eq 56. In all three regimes,f ) fγ for F < FV and f )
fδ for F > FV, according to eq 26.

cosθγ ) wγ -
λV

Fγ
) wγ - λ

FV

Fγ
(49)

cosθ1 ) wγ - λ (50)

FV,1 )
22/3(1 + wγ - λ)1/2

(1 - wγ + λ)1/6(2 + wγ - λ)1/3
(51)

cosθδ ) wδ -
λV

Fδ
) wδ - λ

FV

Fδ
(52)

cosθ2 ) wδ - λ (53)

FV,2 )
22/3(1 + wδ - λ)1/2

(1 - wδ + λ)1/6(2 + wδ - λ)1/3
(54)
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is lyophobic such thatFV,2 < FV,1). In this regime II, the global
minimum of f is the commonboundaryminimum of fγ and fδ
atFbo ) FV, and the Young equation, which applies only tolocal
minima, is violated. This leads to a freedom of the contact angle
in regime II, which varies with the volume in the rangeθ1 e θ
e θ2 according to eq 19,

Following the global minimum of the free energy (eq 26) at
Fbo ) Fbo(FV) through all three regimes (I-III) by increasing the
droplet volumeVâ or decreasingFV, we have found

where the boundary values fulfillFγ(FV,1) ) FV,1 andFδ(FV,2) )
FV,2. ThusFbo(FV) decreasescontinuouslythrough the pinning
and depinning transitions of the contact line atFV ) FV,1 andFV

) FV,2, respectively. The reason for the continuous pinning and
depinning transition is thatf(F) as defined in eq 26 has no
discontinuity acrossF ) FV such thatfγ andfδ have acommon
boundary minimum in regime II.

Appendix B. Free Energy Analysis for Circular
Lyophilic and Two-Valued Line Tension Contrast

B.1. Line Tension ContrastΛγ< Λδ (Linophilic Domain).
In this appendix, we present the detailed analysis of the free
energyf ) f(F) as given by eq 31 for an axisymmetrical spherical
cap-shaped droplet on a circular lyophilic domain in the presence
of a line tension contrast,Λγ < Λδ, which makes the domain
linophilic. As opposed to the case of a pure wettability contrast,
the piecewise result (eq 31) for the free energy generates a
discontinuity∆f of f(F) acrossF ) FV with

which stems from the increase in line free energy upon moving
the contact line into theδ-substrate with higher line tension.
Similarly to the case of a wettability contrast, we find three
distinct regimes when following the global minimumFbo > 0 of
the free energy (eq 31) as a function of the dimensionless surface
domain radiusFV (see Figure 14).

In regime I, the droplet stays entirely within the domainγ
(i.e., Fbo < FV) and evolves as for the case of a homogeneous
line tensionλ ) λγ, which was treated in Appendix A. The
droplet is in regime I for small volumesVâ or largeFV. The
global minimum off at Fbo is identical to the local minimumFγ
in theγ-domain, which is determined by∂Ffγ(Fγ) ) 0, and the
contact angle isθγ. As discussed in Appendix A, the volume-
dependent local minimumFγ ) Fγ(FV) and the cosine of the
contact angle cosθγ ) cosθγ(FV) can be obtained by combining
the relation given in eq 49 (withλ ) λγ) and the geometrical
relation given in eq 21.

The boundary volumeV1 or the upper boundary valueFV,1 at
which regime I terminates upon increasing the volume are also
obtained in the same way as for a homogeneous line tensionλ
) λγ. Specifically we find

for the corresponding contact angle and

If the volume is increased such thatFV e FV,1, the intermediate
regime II is reached.

We can also consider a droplet with large volume, which wets
theδ-substrate and completely covers theγ-domain and is, thus,
in regime III. Then the droplet is in the local minimumFδ > FV

of the δ-substrate, which fulfills∂Ffδ(Fδ) ) 0, and the corre-
sponding contact angle isθδ. For large volumes, this state is the
global free energy minimum off. In this state, the droplet behaves
as that for the case of a homogeneous line tensionλ ) λδ, which
was treated in Appendix A. As discussed in the previous section,
Fδ ) Fδ(FV) and the cosine of the contact angle cosθδ ) cos
θδ(FV) can be obtained by combining the relation given in eq 52
(with λ ) λδ) and the geometrical relation given in eq 21. Upon
decreasing the volume, the droplet reaches theγδ domain
boundary for a volume parameterFV,2 given by the condition
Fδ(FV,2) ) FV,2. FV,2 is obtained in the same way as in Appendix
A for a homogeneous line tensionλ ) λδ. Specifically, we find

for the corresponding contact angle and

The crucial difference compared to the case of a spatially
homogeneous line tension lies in the fact thatf(F) now has a
discontinuity acrossF ) FV (see Figure 14). For the linophilic
domain, this leads to qualitative changes within regimes II and
III. For intermediate volumes withFV,1 g FV g FV,2, the global
minimum is the boundary minimum offγ andFbo) FV. Therefore,
the contact line ispinnedat theγδ domain boundary as for a
homogeneous line tension; the contact line equation is violated,
and the contact angleθ changes with droplet volume according
to the above relation (eq 55).

However, the minimum atF ) Fδ(FV) is no longer the global
minimumFbofor all larger volumesVâ > V2 orFV < FV,2 because
of the discontinuity atF ) FV (see Figure 14). Increasing the
volume starting withV2 or decreasingFV starting withFV,2, the
minimumFδ appears first as ametastablelocal minimum, while
the global minimum is still the boundary minimum offγ at Fbo

Figure 14. Linophilic domain. Plots off(F) - f(0) according to eq
31, for wγ ) 0.5, wδ ) -0.5, andλγ ) 0.1, λδ ) 0.2. Plots from
right to left are forFV ) 2.0, 1.1, 0.6, and 0.3, i.e., for increasing
volume corresponding to the four regimes in eq 63. In each of the
regimes,f ) fγ for F < FV and f ) fδ for F > FV, according to eq
31. Note the discontinuity in the free energy as given by eq 57.

cosθ(FV) )
1 - H2(FV)

1 + H2(FV)
for FV,2 e FV e FV,1 (55)

Fbo(FV) ) {Fγ (FV) for FV > FV,1 regime I
FV for FV,2 e FV e FV,1 regime II
Fδ (FV) for FV < FV,2 regime III} (56)

∆f ) fδ(FV) - fγ(FV) ) FV
2(λδ - λγ) (57)

cosθ1 ) wγ - λγ (58)

FV,1 )
22/3(1 + wγ - λγ)

1/2

(1 - wγ + λγ)
1/6(2 + wγ - λγ)

1/3
(59)

cosθ2 ) wδ - λδ (60)

FV,2 )
22/3(1 + wδ - λδ)

1/2

(1 - wδ + λδ)
1/6(2 + wδ - λδ)

1/3
(61)
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) FV. Only if this second local minimum becomes the global
minimum upon further increasing the volume untilVâ is larger
than acritical Volume Vc or FV is smaller than acritical Value
FV,c will the contact line finally depin, and we enter regime III,
where the droplet spreads onto the substrateδ. At FV ) FV,c, both
minima exchange stability such thatFV,c is determined by the
conditionfγ(FV,c) ) fδ(Fδ(FV,c)). Also within the regimeFV,c <
FV < FV,2, the Young equation is violated, and the contact angle
θ changes with droplet volume according to the geometric relation
given in eq 19:

The same relation determines the critical contact angleθc by cos
θc ) cosθ(FV,c). BecauseFV,c < Fδ(FV,c), the global equilibrium
radius jumpsdiscontinuouslyfrom Fbo ) FV,c to Fbo ) Fδ(FV,c)
> FV,c at the volume parameterFV ) FV,c. We call the regime
FV,2 e FV e FV,1, where the global boundary minimum atFbo )
FV is the only minimum, regime IIa, and the regimeFV,c < FV

< FV,2, where an additional metastable minimum atF ) Fδ(FV)
exists, regime IIb.

Within regime III, for FV < FV,c, the global minimum is the
local minimum in the embedding substrateδ, Fbo ) Fδ. The
contact angle for regime III is the contact angleθδ of the substrate
δ. Note that, in the entire regime III, the boundary minimum at
F ) FV remains ametastableminimum due to the steplike nature
of the line tension contrast (eq 29). Therefore, the contact angle
in this metastable state can increase dramatically by following
the relation given in eq 62 for allFV e FV,2.

Following the global minimum of the free energy (eq 31) at
Fbo ) Fbo(FV) through all three regimes (I-III) by increasingthe
droplet volumeVâ or decreasingFV, we find

WhereasFbo(FV) changescontinuouslyupon pinning of the
contact line atFV ) FV,1 between regimes I and II, there is a
discontinuous depinning transitionof the contact line between
regimes II and III atFV ) FV,c, which is caused by the line
tension contrast. The corresponding morphological diagram, as
discussed in 5.1, is shown in Figure 6 (for∆λ ) λδ - λγ > 0).
Calculating the global minimaf (Fbo(FV)) of the free energy and
the metastable free energy minima as a function ofFV, we obtain
the corresponding bifurcation diagram in Figure 7 and observe
the strong hysteretic effect mentioned in section 5.1. In the
bifurcation diagram in Figure 7, we also complete the Gibbs
triangle of the discontinuous transition by plotting the unstable
boundary maximumfδ(FV) for FV < FV,2.

B.2. Line Tension ContrastΛγ > Λδ (Linophobic Domain).
In this appendix, we present the detailed analysis of the free
energyf ) f(F) as given by eq 31 for an axisymmetrical spherical
cap-shaped droplet on a circular lyophilic domain in the presence
of a line tension contrastΛγ > Λδ, which makes the domain
linophobic.

The depinning behavior for the case in whichΛγ < Λδ for
increasingvolume treated in the previous section will be similar

to the depinning behavior forΛγ > Λδ for decreasingvolume.
In both cases, the contact line depins discontinuously from the
boundary of the circular domain upon entering into the region
with the less favorable line tension.

In regime III, the droplet wets the surrounding substrateδ and
completely covers theγ-domain (i.e.,Fbo > FV). In this regime,
it evolves as for the case of a homogeneous line tensionλ ) λδ,
treated in Appendix A. The droplet is in regime III for large
volumesVâ or smallFV. The global minimum off at Fbo is the
local minimumFδ on theδ-substrate, which is determined by
∂Ffδ(Fδ) ) 0, and the contact angle isθδ. As discussed in Appendix
A, the volume-dependent local minimumFδ ) Fδ(FV) and the
cosine of the contact angle cosθδ ) cosθδ(FV) can be obtained
by combining the relation in eq 52 (withλ ) λδ) and the
geometrical relation in eq 21.

The boundary volumeV2 or the lower boundary valueFV,2 at
which regime III terminates upon decreasing the volume are also
obtained in the same way as for a homogeneous line tension,λ
) λδ. ForFV,2 and the corresponding contact angleθ2, we obtain
the same equations (61 and 60) as for the linophilic case. If the
volume is decreased such thatFV g FV,2, the intermediate regime
II is reached.

We can also consider a droplet with small volumeVâ, which
stays within theγ-domain. Then the droplet is in the local
minimumFγ < FV of theγ-domain, which fulfills∂Ffγ(Fγ) ) 0,
and the corresponding contact angle isθγ. In this state, the droplet
behaves as for the case of a homogeneous line tension,λ ) λγ,
which was treated in the Appendix A. As discussed there,Fγ )
Fγ(FV) and the cosine of the contact angle cosθγ ) cosθγ(FV)
can be obtained by combining the relation given in eq 49 (with
λ ) λγ) and the geometrical relation given in eq 21. Upon
increasing the volume, the droplet reaches theγδ domain
boundary for a volume parameterFV,1 given by the condition
Fγ(FV,1) ) FV,1. FV,1 is obtained in the same way as described
in Appendix A for a homogeneous line tension,λ ) λγ. ForFV,1

and the corresponding contact angleθ1, we obtain the same
equations (59 and 58) as for the linophilic case.

Also, for the linophobic case, the crucial difference to the case
of a spatially homogeneous line tension is the discontinuity of
f(F) acrossF ) FV (see Figure 15. For the linophobic domain,
this leads to qualitative changes within regimes I and II. For
intermediate volumes withFV,1 g FV g FV,2, the global minimum
is the boundary minimum offδ and Fbo ) FV. Therefore, the
contact line ispinned at the γδ domain boundary as for a
homogeneous line tension; the contact line equation is violated,
and the contact angleθ changes with droplet volume according
to the above relation (eq 55).

cosθ(FV) )
1 - H2(FV)

1 + H2(FV)
(62)

Fbo(FV) ) {Fγ (FV) for FV > FV,1 regime I
FV for FV,2 e FV e FV,1 regime IIa
FV for FV,c < FV < FV,2 regime IIb,

F ) Fδ(FV) metastable
Fδ(FV) for FV < FV,c regime III,

F ) FV metastable
}
(63)

Figure 15. Linophobic domain. Plots off(F) - f(0) according to
eq 31, forwγ ) 0.5,wδ ) -0.5, andλγ ) 0.2,λδ ) 0.1. Plots from
right to left are forFV ) 2.25, 1.8, 1, and 0.5, i.e., for increasing
volume corresponding to the four regimes in eq 64.
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However, the minimum atF ) Fγ(FV) is no longer the global
minimumFbo for all smaller volumesVâ < V1 or FV > FV,1 due
to the discontinuity atF ) FV (see Figure 15). Decreasing the
volume starting withV1 or increasingFV starting withFV,1, the
minimumFγ appears first as ametastablelocal minimum, while
the global minimum is still the boundary minimum offδ at Fbo

) FV. Only if this second local minimum becomes the global
minimum upon further increasing the volume untilV is larger
than acritical Volume Vc

/ or FV is smaller than acritical Value
FV,c
/ will the contact line finally depin, and we enter regime I,

where the droplet retreats to the domainγ. At FV ) FV,c
/ , both

minima exchange stability such thatFV,c
/ is determined by the

conditionfδ(FV,c
/ ) ) fγ(Fγ(FV,c

/ )). Also, within the regimeFV,1 <
FV < FV,c

/ , the Young equation is violated, and the contact angle
θ changes with droplet volume according to the geometric relation
given in eq 62, which also determines the critical contact angle
θc
/ by cosθc

/ ) cosθ(FV,c
/ ). BecauseFV,c

/ > Fγ(FV,c
/ ), the global

equilibrium radius jumpsdiscontinuouslyfrom Fbo ) FV,c
/ to Fbo

) Fγ(FV,c
/ ) < FV,c

/ at the volume parameterFV ) FV,c
/ . We call

the regimeFV,2 e FV e FV,1, where the global boundary minimum
atFbo ) FV is the only minimum, regime IIa, and the regimeFV,1

< FV < FV,c
/ , where an additional metastable minimum atF )

Fγ(FV) exists, regime IIb.
Within regime I, forFV >FV,c

/ , the global minimum is the local
minimum of the domainγ, Fbo) Fγ. The contact angle for regime
I is the contact angleθγ of the substrateγ. Note that, in the entire
regime I, the boundary minimum atF ) FV remains ametastable
minimum due to the steplike nature of the line tension contrast
(eq 29). Therefore, the contact angle in this metastable state can
decrease dramatically by following the relation given in eq 62
for FV g FV,1.

Following the global minimum of eq 31 as a function ofFV

(i.e.,Fbo) Fbo(FV)) through all three regimes (III-I) by decreasing
the droplet volumeVâ or increasingFV, we find

Thus,Fbo(FV) changescontinuouslyat the pinning of the contact
line at FV ) FV,2 between regimes III and II, but there is a
discontinuous depinning transitionof the contact line between
regimes II and I atFV ) FV,c

/ , which is caused by the line tension
contrast. Figure 6 shows the corresponding morphological
diagram (for∆λ ) λδ - λγ < 0), and Figure 8 shows the
corresponding bifurcation diagram of the global and metastable
free energy minima, as previously discussed in section 5.1. In
the bifurcation diagram in Figure 8, we also complete the Gibbs
triangle of the discontinuous transition by plotting the unstable
boundary maximumfγ(FV) for FV > FV,1.

B.3. Contact Radius and Contact Angle Discontinuities at
Depinning. In this appendix, we calculate the discontinuities in
droplet contact radius and contact angle at the discontinuous
depinning transitions.

For a linophilic domain (Λγ < Λδ), the size of the discontinuity
∆Fbo ≡ Fδ(FV,c) - FV,c > 0 in the dimensionless droplet radius
at the depinning transition from regime IIb to regime III can be
calculated from the two conditionsfγ(FV,c) ) fδ(Fδ) and∂Ffδ(Fδ)
) 0 for FV,c andFδ. Assuming that∆Fbo , 1 is small, we expand

fδ(F) aroundFV,c and obtain the conditions

which can be combined into the result

Using the result from eq 18 for∂F
2fδ together with the relation

and neglecting line tension contributions in the contact line
equation, we can write

in terms of the wettability of theδ-substrate. Using eq 57 for the
free energy discontinuity∆f, we arrive at our final result

Thus the discontinuity∆Fbo at the discontinuous depinning
transition of the contact line depends on (i) the critical droplet
volume, (ii) the line tension contrast, and (iii) the wettability or
contact angle of theδ-substrate.

We can use the result from eq 69 to obtain the discontinuity
in the contact angle∆θ ≡ θδ - θc < 0 by expanding the relation
given in eq 19 for cosθ,

where we neglected line tension contributions in the contact line
equation.

For a linophobic domain (Λγ > Λδ), the calculation of the
discontinuities∆Fbo

/ ≡ Fγ(FV,c
/ ) - FV,c

/ < 0 in the dimensionless
radius and∆θ* ≡ θγ - θc

/ > 0 in the contact angle at the
depinning transition of the contact line from regime IIb to regime
I proceeds analogously with the result

Appendix C: List of Symbols

R vapor phase
a radius of the circular domain
ARâ area of the liquid-vapor interface
ARâ surface of the liquid-vapor interface
Aâσ surface of the liquid-solid interface
AH Hamaker constant
â liquid phase

cg
/ geodesic curvature of the contact line

fγ(FV,c) ) fδ(Fδ) ≈ fδ(FV,c) + ∆Fbo∂Ffδ(FV,c)

0 ) ∂Ffδ(Fδ) ≈ ∂Ffδ(FV,c) + ∆Fbo∂F
2fδ(Fδ) (65)

∆Fbo
2 ≈ fδ(FV,c) - fγ(FV,c)

∂F
2fδ(FV,c)

≈ ∆f

∂F
2fδ(Fδ)

(66)

H2(Fδ) )
1 - cosθδ

1 + cosθδ
(67)

∂F
2fδ(Fδ) ≈ (1 - wδ)(2 + 3wδ + wδ

2) (68)

∆Fbo ≈ FV,c[ λδ - λγ

(1 - wδ)(2 + 3wδ + wδ
2)]1/2

(69)

∆θ ≈ - 1
sin θδ

∆Fbo

Fδ

4H2(Fδ)(3 + H2(Fδ))

(1 + H2(Fδ))
3

≈ -21/6FV,c(λδ - λγ)
1/2(1 - wδ)

2/3(2 + wδ)
5/6

(70)

∆Fbo
/ ≈ -FV,c

/ [ λγ - λδ

(1 - wγ)(2 + 3wγ + wγ
2)]1/2

∆θ* ≈ 21/6FV,c
/ (λδ - λγ)

1/2(1 - wγ)
2/3(2 + wγ)

5/6 (71)

Fbo(FV) ) {Fδ(FV) for FV < FV,2 regime III
FV for FV,2 e FV < FV,1 regime IIa
FV for FV,1 e FV < FV,c

/ regime IIb,
F ) Fγ(FV) metastable

Fγ(FV) for FV > FV,c
/ regime I,

F ) FV metastable
}
(64)
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δ lyophobic substrate
∆f discontinuity inf at F ) FV

∆λ dimensionless line tension contrast
∆P Laplace pressure
∆Fbo,

∆Fbo
/

discontinuity ofF at depinning

∆θ, ∆θ* discontinuity of θ at depinning
f dimensionless free energy
fδ f in the lyophobic matrix
fγ f in the lyophilic domain
γ lyophilic substrate
h maximal height of the droplet
H dimensionless maximum height of the droplet (eq 12)
kB Boltzmann constant
l droplet profile in interface model
Lâ linear size of the droplet (eq 11)

Lâ
/ characteristic length scale (eq 6)

lRâ liquid-vapor interface width
lRâγ contact line width
lhRâγ dimensionless contact line width
LRâγ three-phase contact line
lG capillary length
lmin interface position minimizingU(l)
lmol typical intermolecular distance
lpin inflection point ofU(l)
λV dimensionless volume-dependent line tension (eq 12)
λ dimensionless volume-independent line tension (eq 25)
λγ λ in the γ-domain
λδ λ on theδ-substrate
λV,in instability threshold ofλ (eq 23)
λV,ub unbinding threshold ofλ (eq 22)
Λ line tension
ΛV,δ Λ in the lyophobic domain
ΛV,γ Λ in the lyophilic domain
ΛvdW contribution toΛ from van der Waals forces
m̂ conormal of the contact line
M mean curvature of the droplet
PR pressure of the vapor phase

Pâ pressure of the liquid phase
r radius of the contact area of a spherical droplet
R curvature radius of a spherical droplet
R1, R2 lower/upper boundary curvature radii at pinning
F dimensionless radius of contact area (eq 12)
FV dimensionless domain radius (eq 24)
FV,1, FV,2 upper/lower boundary values ofFV

FV,c critical FV (linophilic domain)

FV,c
/ critical FV (linophobic domain)

Fbo equilibrium value ofF (bound droplet)
Feff effectiveF of contact area (eq 46)
σ solid substrate
ΣRâ interfacial energy of the liquid-vapor interface
ΣRσ interfacial energy of vapor-substrate interface
Σâσ interfacial energy of liquid-substrate interface
T temperature
θ contact angle
θ1, θ2 lower/upper boundary values ofθ at pinning
θ∞ θ of a macroscopic droplet
θδ θ on the lyophobic matrix
θδ,∞ θ∞ on the lyophobic matrix
θγ θ on the lyophilic domain
θγ,∞ θ∞ on the lyophilic domain

θc, θc
/ critical θ

Θ(x) Heaviside function
U(l) attractive interface potential
Umin minimum of U(l)
V1, V2 lower/upper boundary volumes

Vc, Vc
/ critical volume

Vâ volume of the droplet
w(x) local wettability (eq 4)
wδ w of the lyophobic matrix
wγ w of the lyophilic domain
win instability threshold ofw
wub unbinding threshold ofw
x coordinate on the substrate
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