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In this Appendix we present details of the simulation
model. Our microscopic model for motility assays de-
scribes filament configurations, motor heads, and poly-
meric motor tails as separate degrees of freedom. One
end of the motor tail is anchored to the substrate, and
the motor head on the other end can bind to a filament
in the correct orientation due to the tail flexibility. The
motion of the motor head along the filament stretches the
polymeric motor tail, which gives rise to a loading force
acting both on the motor head and the attached filament.
Accordingly our model is completely defined by specify-
ing (i) the filament dynamics arising from all forces and
torques acting on each filament which originate from at-
tached motors, the steric repulsion with other filaments
and thermal noise, (ii) the response of the polymeric mo-
tor tail to stretching, (iii) the dynamics of a motor head
bound to a filament, and (iv) rules for the attachment of
motors to filaments.

Filament equations of motion. Filaments follow an
overdamped dynamics for translation and rotation with
thermal noise and external forces and torques from the
stretched motor tails of attached motors and the repul-
sive filament-filament interaction. We consider N rigid
filaments of length L (with index i = 1, ..., N). The con-
figuration of filament i on the planar substrate is specified
by the two-dimensional vector ri for its center of mass
and by the angle θi or the unit vector ui = (cos θi, sin θi)
for its orientation, see Fig. 1.

The filament is subject to forces Fαi from Ni attached
motors (with index α = 1, ..., Ni). Each such force arises
from stretching the polymeric tail of motor α. In addition
to motor forces, the filaments are subject to interaction
forces Fij due to the repulsive interactions between fil-
aments i and j. Both motor and interaction forces give

α

i

ui

riθi r
0

riα

α

FIG. 1: Schematic top view of a filament i with two motors
attached. ri is the filament’s center of mass, θi and ui its ori-
entational angle and unit vector, respectively. The attached
motor α is anchored at rα0 , and its head is positioned at rαi .

rise to corresponding torques Mα
i and Mij . In the planar

geometry all torque vectors are parallel to the direction
perpendicular to the plane. Both forces and torques are
described in detail in the following two sections.

The equations for an overdamped translational and ro-
tational motion are

Γ · ∂tri =
∑Ni

α=1
Fαi +

∑N

j=1
Fij + ζi (1)

Γθ∂tθi =
∑Ni

α=1
Mα
i +

∑N

j=1
Mij + ζθ,i (2)

where Γ is the matrix of translational friction coefficients,

Γ = Γ‖ui ⊗ ui + Γ⊥(I− ui ⊗ ui) (3)

(I is the unit matrix and ⊗ the dyadic vector product)
and Γθ is the rotational friction coefficient. The trans-
lational friction coefficients are given by Γ⊥ = 2Γ‖ =
4πηL/ ln(L/D), where η is the viscosity of the surround-
ing liquid, and the rotational friction coefficient is Γθ =
Γ‖L2/6 [1]. ζi(t) are the Gaussian distributed thermal
random forces and ζθ,i(t) is a Gaussian distributed ther-
mal random torque with correlations 〈ζ i(t) ⊗ ζj(t′)〉 =
2TΓδijδ(t − t′) and 〈ζθ,i(t)ζθ,j(t′)〉 = 2TΓθδijδ(t − t′),
respectively.

Interaction forces and torques. Because hard-core in-
teractions give rise to singular force contributions as soon
as two filaments of diameter D overlap, we use a purely
repulsive short-range interactions in the simulation. The
forces between two filaments are calculated by discretiz-
ing each filament into M = L/D beads with their cen-
ters at positions ra,i (with index a = 1, ...,M). In the
simulation we choose M = 40 Any two beads a and b
on different filaments i 6= j have a repulsive interaction
U(|ra,i − rb,j |) (a, b = 1, ...,M) of finite range rr,

U(r) = U0

(
D2

(r − 3D/4)2
− D2

r2

)
for r < rr

= 0 for r > rr

(4)

This interaction potential diverges at a bead distance
r = 3D/4 and the energy scale U0 is chosen such that
beads do not come closer than D during the simulation,
such that it approximates a hard-core interaction. As the
maximal force exerted by a filament is FstL/〈dm〉, where
〈dm〉 ∼ 1/σw is the mean distance between bound mo-
tors we typically have to choose a value U0/D ∼ FstσwL
for a motor density σ and a capture radius `m. Summing
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FIG. 2: Left: Schematic top view of two interacting filaments
i and j, which are discretized into M = L/D beads. rr is
the range of the interaction between beads. Right: Bead
interaction potential U(r)/U0 as a function of r/D.

over all beads of two filaments gives the interaction forces
and torques

Fij = −
M∑

a=1

M∑

b=1

U ′(|rai,bj |)
rai,bj
|rai,bj |

(5)

Mij = −
M∑

a=1

M∑

b=1

U ′(|rai,bj |)
ui×rai,bj
|rai,bj |

[(
a− 1

2

)
D − L

2

]

(6)

where rai,bj ≡ ra,i − rb,j and U ′(r) = dU/dr.
Motor forces and torques and polymeric motor tail.

Each force Fαi arises from the polymeric tail of a mo-
tor α, which is attached to filament i and stretched by
the directed motion of the motor head on the filament.
−Fαi is the stretching force acting on the polymeric tail
of motor α. The tail of motor α is anchored at rα0 and
the position of the head on filament i is rαi . The end-
to-end vector of the polymeric tail is ∆rα ≡ rαi − rα0 .
For simplicity, we model the polymeric tail as a freely
jointed chain such that −Fαi is obtained by inverting the
force-extension relation of a freely jointed chain in three
spatial dimensions (we neglect confinement effects due
to the planar substrate). Then −Fαi is pointing in the
direction ∆rα and its absolute value given by

|∆rα|/Lm = fFJC(|Fαi |bm/T ) with (7)

fFJC(x) ≡ 1/ tanhx− 1/x , (8)

where Lm is the contour and bm the monomer length of
the polymeric motor tail. Other chain models can be
implemented similarly if the force-extension relation is
known, for example, semiflexible chain models [2]. In
order to obtain the force as a function of the motor head
position or the end-to-end vector of the motor tail the
force-extension relation (7) is inverted using

−Fαi =
T

bm

∆rα

|∆rα|f
−1
FJC(|∆rα|/Lm) with (9)

f−1
FJC(y) ≈ 1

1− y − 1 + 2y , (10)
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FIG. 3: Force-velocity relation of motor heads. For F αi ·ui ≥ 0
the head moves with maximal velocity v = vmax. For Fαi ·
ui < 0 the motor head is pulled backwards and the velocity
decreases linearly. If the projected pulling force exceeds the
stall force Fst, i.e., for Fαi · ui < −Fst the motor head stops,
v = 0.

which gives the correct limits f−1
FJC(y) ≈ 3y of a Gaussian

chain for small extensions y � 1 and f−1
FJC(y) ≈ 1/(1−y)

for y ≈ 1 close to full stretching. Finally, the motor
torques on the filament are given by

Mα
i = (rαi − ri)× Fαi (11)

Motor head equation of motion. The position of the
head of motor α on filament i is given by

rαi = ri + xαi ui (12)

with |xαi | ≤ L/2. The filament polarity is such that the
motor head moves in the direction ui. The dynamics of
the motor head is described by the deterministic equation
of motion

∂tx
α
i = v(Fαi ) (13)

where v = v(Fαi ) is the force-velocity relation of a mo-
tor α on a filament i with orientation ui. We assume a
piecewise linear force-velocity relation

v(Fαi ) = vmax for Fαi · ui ≥ 0

= vmax

(
1− |F

α
i |

Fst

)
for 0 > Fαi · ui > −Fst

= 0 for Fαi · ui < −Fst
(14)

with the maximal motor velocity vmax and the stall force
Fst.

Motor attachment and detachment. We assume that
the motor binds to the filament when the distance be-
tween the fixed end of the motor tail at rα0 and the fil-
ament is smaller than a capture radius `m. Apart from
the stall force Fst the motor is also characterized by its
detachment force Fd, above which the unbinding rate of
the motor head becomes large. For simplicity we assume
in our model that the motor head detaches whenever the
force Fαi exceeds a threshold value Fd. We consider the
case of processive motors with a high duty ratio close
to unity, i.e., motors detach from a filament only if they
reach the filament end or if the total force becomes larger
than the detachment force Fd.
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FIG. 4: Plots of the order parameter 〈S〉 crossing the
isotropic-nematic transition. Left: The order parameter as
a function of the dimensionless filament density ρL2 at zero
motor density. The transition point is at ρL2 = 4.3. Right:
The order parameter as a function of the dimensionless motor
density σ`mL for a filament density ρL2 = 2 and L/`m = 100
(which is the same as for the snapshots in Figs. 1 and 4 of
the article). The transition point is at σ`mL = 0.047. In each
plot we can identify the transition points as inflection points
of the order parameter curve. Each data point in the order
parameter plots corresponds to the average value of the order
parameter taken over 106 time steps.

Simulation. The above equations of motion (1) and
(2) for the filaments with the interaction forces (5) and
torques (6) and the motor forces (9) and torques (11)
completely describe the filament dynamics for a given
configuration of motor heads on the filaments. The equa-
tion of motion (13) for the motor heads on a filament with
the force-velocity relation (14), on the other hand, de-
scribes the dynamics of motor heads on the filaments. For
the simulation these equations of motion are discretized
into time steps ∆t. At each time step, we update the mo-
tor head positions xαi according to (13) and the filament

positions and orientations according to (1) and (2). Each
data point in the phase diagram in Fig. 3 of the article
and Fig. 4 below corresponds to simulation runs over 106

time steps.

We simulate a quadratic assay of size 25µm2 with pe-
riodic boundary conditions and rigid filaments of length
L = 1µm and diameter D = L/40 at room temperature
T ' 4×10−3pNµm. For the viscosity of the surrounding
liquid we use a value η = 0.5pN s/µm

2
. We use a max-

imum motor speed of vmax = 1µm s−1 and a stall force
of Fst = 5pN. The capture radius for motor proteins is
`m = 10−2µm and the length of the fully stretched motor
tail Lm = 5× 10−2µm.

Order parameter. In our simulations the phase tran-
sition between nematic and isotropic phase is charac-
terized by time averages of the order parameter S ≡∑
i6=j cos (2(θi − θj))/N(N − 1). The equilibrium tran-

sition is found numerically from the inversion point of
the curve 〈S〉 = 〈S〉(ρ) as a function of filament density
or 〈S〉 = 〈S〉(σ) as a function of motor density. We find
a second order isotropic-nematic transition also for non-
zero motor-density, which can be seen in the additional
plots for the order parameter, Fig. 4, which we include
in this appendix. The transition happens around a value
〈S〉 ' 0.2, which can therefore be used as a threshold
value for active nematic ordering.
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