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Abstract. Activity or spin patterns on a random scale-free network are studied
using mean field analysis and computer simulations. These activity patterns
evolve in time according to local majority rule dynamics which is implemented
using (i) parallel or synchronous updating and (ii) random sequential or
asynchronous updating. Our mean field calculations predict that the relaxation
processes of disordered activity patterns become much more efficient as the scaling
exponent γ of the scale-free degree distribution changes from γ > 5/2 to γ < 5/2.
For γ > 5/2, the corresponding decay times increase as ln(N) with increasing
network size N whereas they are independent of N for γ < 5/2. In order to
check these mean field predictions, extensive simulations of the pattern dynamics
have been performed using two different ensembles of random scale-free networks:
(A) multi-networks as generated by the configuration method, which typically
leads to many self-connections and multiple edges, and (B) simple networks
without self-connections and multiple edges. We find that the mean field
predictions are confirmed (i) for random sequential updating of multi-networks
and (ii) for both parallel and random sequential updating of simple networks
with γ = 2.25 and 2.6. For γ = 2.4, the data for the simple networks seem to
be consistent with mean field theory as well, whereas we cannot draw a definite
conclusion from the simulation data for the multi-networks. The latter difficulty
can be understood in terms of an effective scaling exponent γeff = γeff(γ,N)
for multi-networks. This effective exponent is determined by removing all self-
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connections and multiple edges; it satisfies γeff ≥ γ and decreases towards γ with
increasing network size N . For γ = 2.4, we find γeff � 5/2 up to N = 217.

Keywords: neuronal networks (theory), pattern formation (theory), network
dynamics, random graphs, networks
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1. Introduction

Both the overall topology and the local structure of complex networks influence the
efficiency as well as the robustness or sensitivity of dynamic processes occurring on
these networks. Furthermore, the local network architecture often evolves with time in
order to optimize certain network properties. This interplay of structure and dynamics
eventually leads to the formation of highly optimized network topologies for specific
dynamic processes.

Understanding the underlying mechanism for the optimization of networks via
evolution is an important but challenging problem of current network research. There
are two major difficulties. First, the optimization of different dynamic processes may
require different network architectures. For example, we would not be surprised to find
out that the architectures of car traffic networks and electronic networks on microprocessor
chips are rather different. Therefore in order to study network evolution, we should focus
on a particular dynamic process. Second, the evolution process is usually governed by
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some more or less complex growth rules which are coupled in some unknown way to the
dynamic process under consideration.

In this paper, we use a somewhat different approach and study the influence of network
architectures on relatively simple dynamic processes. By performing such an analysis,
we are able to identify those aspects of the network structure that are important for
the dynamic processes. Such a theoretical investigation should also be useful to analyse
the available empirical data about complex networks in terms of optimization to design
improved network structures for a particular dynamic process.

A network can be represented by a graph of vertices (nodes) and edges (links). Each
edge of the network connects two vertices of the network. The vertex degree k is equal
to the total number of edges that are connected to this vertex. Recent structural studies
on complex networks [1]–[3] show that the topology of real-world networks often has the
so-called scale-free property [4]. This means that the total number N(k) of vertices with
degree k scales with k as a power law, N(k) ∼ k−γ, with the decay or scaling exponent
γ. Such a power-law scaling of the degree distribution appears if the network grows via a
preferential attachment mechanism [4]. It is also plausible that the scale-free scaling is a
result of network evolution and optimization, but so far there are only a few theoretical
studies that have addressed this issue (e.g., [5]–[8]).

In the following, we will consider the influence of scale-free random networks on the
activity patterns of binary or Ising-like variables which are governed by local majority rule
dynamics. We focus on scale-free networks because they are abundant in our biosphere.
We study local majority rule dynamics because it is simple and frequently encountered
in the real world, and also because it can be readily extended to a large class of more
complicated dynamic processes.

We perform both analytical mean field calculations and extensive numerical
simulations on these model systems. Our mean field calculations predict that, when
the scaling exponent γ of the substrate network changes from γ > 5/2 to γ < 5/2, a
qualitative improvement in the efficiency of the dynamic process can be achieved, namely
the typical relaxation time changes from being proportional to ln(N) to being independent
of N , where N is the total number of nodes in the network. In the simulations, we consider
two different methods for generating ensembles of random scale-free networks: (i) multi-
networks, which are generated using the so-called configuration model and contain some
multiple edges and self-connections; and (ii) simple networks, which involve some random
reshuffling of edges and do not contain any multiple edges or self-connections. Our mean
field results are quantitatively confirmed by the simulations for simple networks whereas
the behaviour on multi-networks exhibits strong finite-size corrections arising from the
presence of multiple edges and self-connections. We use both parallel (or synchronous) and
random sequential (or asynchronous) updating and find that the two updating methods
give very similar results for simple networks whereas they lead to somewhat different
results for multi-networks. The present study extends our previous work in [9] in which
we focused on parallel updating for multi-networks.

Our mean field theory can be extended to related dynamic processes. Instead of
Ising-like variables, we have studied Potts-like variables which can attain three or more
different states. We have also considered more complex dynamic rules for which one
applies the local majority rule to each spin variable with a certain probability, say P,
and another dynamic rule such as random Boolean dynamics with probability 1 − P.
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Likewise, we have extended our analysis to majority rule dynamics on directed networks
and to Hopfield models on scale-free networks [9]. In all cases, the mean field theory
predicts that the dynamic behaviour changes qualitatively as one crosses the boundary
value γ = 5/2. It is of interest to note that many scale-free networks are characterized
by scaling exponents γ which fall into the narrow range 2 < γ ≤ 5/2 as observed in [10].
Indeed, table 2 of [1] contains a list of ten scale-free networks with 2 < γ < 5/2, one with
γ = 2.5, and only three with 2.5 < γ < 3.

This paper is organized as follows. We first describe our model system in more detail
in section 2. Then our mean field analysis is presented in section 3. Simulation results
for local majority rule dynamics are discussed in section 4 for random multi-networks
with multiple edges and self-connections, and in section 5 for random simple networks
without any such connections. The simulation results for simple networks are in complete
agreement with the mean field predictions whereas we find only partial agreement between
the simulation results for multi-networks and mean field theory. We then argue in section 6
that the remaining discrepancies can be understood if one characterizes the multi-networks
by an effective N -dependent scaling exponent γeff ≥ γ. Finally we conclude our work in
section 7 with a summary and an outlook on related problems.

2. Scale-free networks and majority rule dynamics

In the following, we study local majority rule dynamics on scale-free random networks.
In order to do so, we first describe the ensemble of random networks used in our study
and then define the dynamic rules.

2.1. Scale-free degree sequences

We consider an ensemble of random networks. Each network consists of N vertices and
edges that connect pairs of vertices. Each vertex i with i = 1, 2, . . . , N is connected to
ki ≥ k0 edges where k0 represents the minimal value of the vertex degrees ki. As in [9],
we will focus on k0 ≥ 2 for which the network has no ‘dangling ends’ and consists of
many cycles. We consider an ensemble of random networks that provide realizations of
the degree distribution

P (ki) ∝ k−γ
i for ki ≥ k0 (1)

which is characterized by a power-law decay with scaling exponent γ. In order to generate
such a network ensemble, we treat the vertex degree ki as a random integer variable
governed by the degree distribution (1).

In order to generate a single random network with N vertices, we used the following
algorithm for generating a vertex degree sequence consisting of N vertex degrees ki. We
successively draw a random integer ki according to the degree distribution (1). If the
drawn vertex degree satisfies ki ≤ N −1, we add it to our degree sequence. Otherwise, we
discard it and draw another ki until we obtain one that fulfils this inequality. Thus, we

use the upper cut-off k
(1)
max ≡ N −1 for the vertex degree sequences. This procedure differs

slightly from the one that we used previously in [9]. In the latter study, we did not discard
and redraw the vertex degrees ki with ki > N − 1 but replaced them by ki = N − 1. This
procedure has the disadvantage that the actual degree distribution corresponding to the
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generated vertex degree sequence may develop a small peak at ki = N − 1 for sufficiently
small network size N . The new algorithm used here avoids this artefact. The choice for

the upper cut-off k
(1)
max = N − 1 is rather natural since this is the maximal vertex degree

for a network without multiple edges and self-connections. Note that we do not use an

upper cut-off k
(1)
max ∼ N1/2 as in [11, 12].

For analytical estimates, it will be useful to define a second upper cut-off, k
(2)
max ≡

k0N
1/(γ−1), for the vertex degree. The latter cut-off was introduced in [13] and rederived by

different arguments in [9]; see the appendix. The effective upper cut-off for the generated
vertex degree sequence is then given by

kmax ≡ min
(
k(1)

max, k
(2)
max

)
= k0N

1/(γ−1) (2)

where the last equality applies to N > k
(γ−1)/(γ−2)
0 , and the actual vertex degree

distribution for the generated degree sequence is well approximated by

P (ki) = k−γ
i /A for k0 ≤ ki ≤ kmax (3)

with the normalization constant A =
∑

k−γ
i . In the limit of large kmax, the degree

distribution (3) is normalizable provided γ > 1, and the normalization constant is then
given by

A ≡
kmax∑

k=k0

k−γ ≈ k1−γ
0 − k1−γ

max

γ − 1
. (4)

The mean vertex degree of the generated degree sequence is

〈k〉 =
kmax∑

k=k0

kP (k) ≈ k0
(γ − 1) (1 − (k0/kmax)

γ−2)

(γ − 2) (1 − (k0/kmax)γ−1)
. (5)

The mean vertex degree 〈k〉 attains a finite limit for large kmax provided γ > 2. It behaves
as 〈k〉 ≈ k0 for large positive γ, corresponding to a random network with uniform vertex
degree k = k0. On the other hand, the expression (5) also implies

〈k〉 ≈ k0
ln(kmax/k0)

1 − (k0/kmax)
for γ = 2, (6)

which diverges as ln kmax for large kmax.

2.2. Multi-networks and simple networks

After one degree sequence {k1, k2, . . . , kN} has been generated, we attach ki half-edges
to vertex i. Then we repeatedly cross-link two half-edges into a complete edge of the
network, until all half-edges have been used up. In this way, an initial network with the
specified degree sequence is created which is then further randomized by performing a
certain number of edge switching moves [14]. We use two different ways to implement
the cross-linking process and the subsequent switching process which lead to two different
ensembles of networks, multi-networks and simple networks:

(A) Multi-networks. During the initial cross-linking process, two half-edges are
randomly chosen from the set of remaining half-edges and are then cross-linked into an
edge of the network. During the subsequent randomization or edge switching process, two
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edges 〈ij〉 and 〈kl〉 are randomly chosen from the set of all edges of the network, and they
are replaced by two new edges 〈ik〉 and 〈jl〉. A network that has been generated in this
way will, in general, contain both self-connections and multiple edges [15].

(B) Simple networks. During the initial cross-linking process, we again randomly
choose two half-edges from the set of remaining half-edges but cross-link them only into
a tentative edge. This tentative edge is only kept if it provides a connection between
two different vertices that have not been connected before. Otherwise, the tentative edge
is discarded. In this way, we discard all tentative edges that represent self-connections
or multiple edges. During the subsequent randomization or edge switching process, we
proceed in an analogous manner:

(i) we randomly choose two edges 〈ij〉 and 〈kl〉 of the network;

(ii) we create two new tentative edges 〈ik〉 and 〈jl〉; and

(iii) we keep these tentative edges only if they do not represent self-connections or multiple
edges.

Otherwise, we reject this move and keep the old edges 〈ij〉 and 〈kl〉. The networks
generated in this way are simple in the sense that they contain no self-connections and
no multiple edges.

In principle, the network graphs generated by these two procedures could have several
disconnected components. In such a situation, the activity pattern would consist of several
subpatterns that are disconnected and, thus, evolve independently of each other. The
number and size of these components depends primarily on the scaling exponent γ and
the minimal vertex degree k0. In the following, we will discuss ensembles of networks with
2 < γ < 3 and k0 ≥ 5. For these parameter values, all multi-networks and simple networks
that we generated by the procedures (A) and (B) were found to consist of only a single
component. Each of these networks is then characterized by a single activity pattern in
which all N vertices participate.

So far, we have not distinguished between a network and its most intuitive
representation, the corresponding graph with vertices i and (undirected) edges 〈ij〉.
Another general representation is provided by the adjacency matrix I of the network.
Each element Iij of this N × N matrix counts the number of edges, m(i, j), between
vertex i and vertex j, i.e.,

Iij ≡ m(i, j) ≥ 0. (7)

For an undirected graph as considered here, the adjacency matrix is symmetric and
Iji = Iij . Furthermore, a simple network without self-connections and multiple edges
is characterized by Iii = 0 and Iij = 0 or 1 for all vertex pairs (i, j).

2.3. Local majority rule dynamics

We now place a binary or Ising-like spin σi = ±1 on each vertex i of the network.
Alternatively, we can use the activity variable σ′

i ≡ (σi + 1)/2 which assumes the values
σ′

i = 1 and 0 corresponding to an active and inactive vertex i, respectively. Thus, the
spin configuration {σ(t)} ≡ {σ1(t), σ2(t), . . . , σN(t)} represents the activity pattern on the
network at time t.
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For the dynamics considered here, the time evolution of the spin or activity pattern
is governed by the local time-dependent fields

hi(t) ≡
∑

j �=i

Iijσj + 2Iiiσi. (8)

Because of the adjacency matrix I, the sum contains contributions from all vertices j that
are connected to vertex i, and this contribution is weighted by the multiplicity Iij = m(i, j)
which counts the number of edges between i and j. Therefore, the sign of the local field hi

is positive and negative if the weighted majority of the nearest neighbour spins is positive
or negative, respectively. For multi-networks, the nearest neighbours are weighted with
the corresponding edge multiplicity. For simple networks, all nearest neighbours have the
same multiplicity equal to one, and the absence of self-connections implies Iii = 0 for all
vertices i.

In the parallel or synchronous version of the local majority rule dynamics, the discrete
time t is increased by Δt ≡ 1, and the spin or activity pattern at time t is updated
simultaneously on all vertices i using the rule

σi(t + 1) ≡
{

+1 if hi(t) > 0,

−1 if hi(t) < 0.
(9)

In the random sequential or asynchronous version of the local majority rule dynamics,
time t is increased by Δt ≡ 1/N , a vertex i is randomly chosen, and the spin value σi on
this vertex is updated according to

σi(t + 1/N) ≡
{

+1 if hi(t) > 0,

−1 if hi(t) < 0
(10)

while the spin values for all the other vertices remain unchanged during this update. In
this way, the update of the whole network from time t to time t + 1 is divided up into N
successive substeps.

If the local field hi(t) = 0 corresponding to an equal number of up and down
spins on the nearest neighbour vertices, we choose σi(t + Δt) = +1 or −1 with
equal probability both for the parallel update described by (9) and for the random
sequential update as given by (10). These local majority rules, which are equivalent
to Glauber dynamics [16, 17] at zero temperature, have two fixed points corresponding
to the two completely ordered patterns with {σ(t)} = {σ(−)} ≡ {−1,−1, . . . ,−1} and
{σ(t)} = {σ(+)} ≡ {+1, +1, . . . , +1}.

2.4. Average properties of activity patterns

In general, the analysis of activity patterns on scale-free networks involves several types
of averaging. First, we consider an ensemble of networks which is characterized by the
degree distribution P (k). Second, we are interested in typical trajectories for the time
evolution of the spin or activity pattern and, thus, consider an average over an ensemble
of different initial patterns. Third, in order to characterize the global behaviour of the
patterns, we perform spatial averages, i.e., averages over the vertices i.

The dynamics of the spin located on vertex i is governed by the local field hi(t) as
defined in (8) which depends on the ki neighbouring spins. Therefore, it will be useful to
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divide the spatial average over all vertices up into averages over those vertices that have
the same vertex degree k. The simplest average property is the expectation value 〈σi(t)〉
which may be divided up according to

〈σi(t)〉 =
∑

k

P (k)〈σi(t)〉k ≡
∑

k

P (k)[2qk(t) − 1] (11)

where 〈σi(t)〉k represents the average over all vertices with degree k and qk(t) is the
probability to find a k-vertex in the spin up state.

The expectation value 〈σi(t)〉 may also be viewed as an overlap function. In general,
the overlap of the actual pattern {σ(t)} with an arbitrary reference pattern {σ̂} is given
by

Λ({σ(t)}, {σ̂}) ≡ 1

N

∑

i

σi(t) σ̂i. (12)

Thus, the expectation value 〈σi(t)〉 measures the overlap of the actual pattern with the
completely ordered pattern {σ(+)} = {+1, +1, . . . , +1} and

〈σi(t)〉 = Λ({σ(t)}, {σ(+)}) ≡ Λ(t). (13)

The average local field 〈hi(t)〉k acting on a k-vertex depends on the expectation value
〈σi(t)〉k−ne where the subscript k-ne indicates an average over all k neighbours of the
k-vertex. The latter expectation value can be expressed in terms of the nn-spin up
probability Qk(t) that a randomly chosen neighbour of a k-vertex is in the spin up state.
One then has

〈hi(t)〉k = k〈σi(t)〉k−ne ≡ k[2Qk(t) − 1]. (14)

The probabilities qk(t) and Qk(t) are not independent but related via

Qk(t) =
∑

k′

P (k′|k) qk′ (15)

with the conditional probability P (k′|k) that a randomly chosen neighbour of a k-vertex
is a k′-vertex. In the following, the quantity Qk will be called the nn-spin up probability
where the prefix ‘nn’ stands for ‘nearest neighbour’.

In the multi-networks as defined in section 2.2 above, there are no vertex degree
correlations. Following a randomly chosen edge of a vertex with degree k, one will arrive at
a vertex with degree k′. In such uncorrelated random networks, the conditional probability
P (k′|k) is independent of the vertex degree k, and one has

P (k′|k) = k′P (k′)/〈k〉. (16)

In such a situation, the relation as given by (15) simplifies and becomes

Qk(t) =
∑

k

kP (k)

〈k〉 qk(t) ≡ Q(t). (17)

Therefore, for networks without vertex degree correlations, the nn-spin up probability
Qk(t) is independent of k and Qk(t) = Q(t) [9]. The latter probability satisfies the
relation

2Q(t) − 1 =
∑

k

kP (k)

〈k〉 〈σi(t)〉k
1

〈k〉〈kiσi〉 (18)

doi:10.1088/1742-5468/2007/01/P01009 8

http://dx.doi.org/10.1088/1742-5468/2007/01/P01009


J.S
tat.M

ech.
(2007)

P
01009

Activity patterns on random scale-free networks

where we used the identity 2qk(t) − 1 = 〈σi(t)〉k. Thus, the k-independent probability
Q(t) is directly related to the weighted expectation value 〈kiσi〉 which puts more weight
on vertices with larger degree k.

During the generation of a simple network, compare section 2.2, the elimination of self-
connections and multiple edges leads to correlations in the vertex degrees of neighbouring
vertices. Such correlations become significant for scale-free networks with γ < 3 [11], [18]–
[20]. Therefore, the relation (16) represents an approximation for scale-free random simple
networks with γ < 3. In these latter networks, the average vertex degree of the neighbours
of a k-vertex, 〈k′〉k−ne =

∑
k′ k′P (k′|k), is a decreasing function of k.

3. Mean field analysis

In the mean field analysis, we use two simplifications. First, we assume that there are
no correlations between the vertex degrees. Thus, we use the relationship P (k′|k) =
k′P (k′)/〈k〉 as in (16). This implies that the nn-spin up probability Qk(t) is independent
of k and identical to Q(t) = 1

2
[1 + 〈kiσi〉/〈k〉]. As previously mentioned, this identity is

valid for the multi-networks but represents an approximation for the simple networks.
Second, we express the probability P(hi(t) > 0) for the local field hi(t) to be positive

in terms of the probability Q(t). In order to do so, we sum over all spin configurations
of the neighbouring vertices that correspond to a majority of up spins. At this point, we
assume that multi-edges are rare and that all ki neighbouring spins are distinct. This
assumption applies to the simple networks but represents an approximation for the multi-
networks. Using this assumption, we obtain for all vertices i with vertex degree ki that

P(hi(t) > 0) =

k∑

m=m1

B(k, m) [Q(t)]m[1 − Q(t)]k−m with k ≡ ki (19)

where the summation over m starts with

m1 ≡
{

ki/2 for even ki

(ki + 1)/2 for odd ki
(20)

and

B(k, m) ≡ k!

m!(k − m)!
≡

(
k
m

)
(21)

denotes the binomial coefficient.
If we now update the spin σi(t) using the local majority rule as introduced above, we

obtain σi(t + Δt) = +1 with probability

P(+)
i (t + Δt) = P(hi(t) > 0) + 1

2
P(hi(t) = 0) (22)

and σi(t + Δt) = −1 with probability 1 − P(+)
i (t). If the vertex degree ki is odd, one

cannot have the same number of neighbouring up and down spins which implies that the
probability P(hi(t) = 0) vanishes for all t. If the vertex degree ki is even, we obtain

P(hi(t) = 0) = B(k, k/2) [Q(t)]k/2 [1 − Q(t)]k/2 with k ≡ ki (23)

where ki distinct neighbouring spins have been assumed as before.
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3.1. Parallel or synchronous updating

First, we apply the mean field analysis just described to parallel or synchronous updating
with Δt = 1 as defined by (9). Inspection of the relations (19) and (23) for the probabilities
P(hi(t) > 0) and P(hi(t) = 0) shows that, within mean field theory, these probabilities are
identical for all vertices with the same vertex degree ki = k. Since these two probabilities

determine the probability P(+)
i (t + Δt) via (22), the latter probability is also identical for

all vertices i with the same ki = k. Thus, mean field theory implies that

P(+)
i (t + Δt) = qk(t + Δt) with k ≡ ki (24)

where the up spin probability qk has been defined in (11). After rearranging the summation
over m, one obtains the iteration equation

qk(t + Δt) =
∑

m

′
(1 − 1

2
δm,k/2) B(k, m) Qm(t) (1 − Q(t))k−m (25)

where the prime indicates that the summation now runs over all integer m with k/2 ≤
m ≤ k, and δ is the Kronecker symbol. The iteration equation (25) is valid both for even
and for odd values of k.

If we insert the spin up probability qk(t + Δt) as given by (25) with Δt = 1 into the
relation (17) for time t + 1, we obtain the evolution equation

Q(t + 1) = Ψ (Q(t)) (26)

for the nn-spin up probability Q(t) where the evolution function Ψ(Q) is defined by

Ψ(Q) ≡
∑

k

∑

m

′
(1 − 1

2
δm,k/2) k P (k)B(k, m) Qm(1 − Q)k−m/〈k〉. (27)

The evolution equation (26) has two stable fixed points at Q = 0 and 1, and an
unstable one at Q = 1/2. The fixed points with Q = 0 and 1 correspond to the patterns
with all spins down and all spins up, respectively. The unstable fixed point with Q = 1/2
represents the phase boundary between these two ordered patterns; the corresponding
boundary patterns are characterized by probabilities q̂k which satisfy

∑

k

k P (k) q̂k = 〈k〉/2. (28)

Since Q = 1/2 represents an unstable fixed point for the time evolution of the nn-spin
up probability Q(t), a natural question to ask is what the typical time needed for the
system to escape from Q = 1/2 is. Figure 1 displays the histogram of the decay times td
needed for the system to evolve from Q(t0) = 1/2 at time t0 to |Q(t0 + td)−1/2| > 1/4 at
time t0 + td. For the four scale-free random networks with mean vertex degree 〈k〉 
 20,
we find that the typical decay time is positively correlated with the scaling exponent γ.
The most probable decay time, for example, is td,mp = 6 for γ = 2.25 but td,mp = 9 for
γ = 2.75. Figure 2 shows the mean value of Q(t) and Λ(t) as a function of time t for
the same four different random networks. As the scaling exponent γ becomes smaller, the
system approaches the completely ordered patterns more quickly.

To understand this difference in decay times, we now estimate the mean decay time
according to our mean field theory. For this purpose, we define the order parameter

y ≡ Q − 1/2. (29)

doi:10.1088/1742-5468/2007/01/P01009 10

http://dx.doi.org/10.1088/1742-5468/2007/01/P01009


J.S
tat.M

ech.
(2007)

P
01009

Activity patterns on random scale-free networks

Figure 1. Histogram of decay times td for parallel local majority rule dynamics
on a uncorrelated random multi-network. The decay time is measured in units
of iteration steps. The four sets of data are obtained for two random scale-free
networks with γ = 2.25, k0 = 5 (triangles) and two random scale-free networks
with γ = 2.75, k0 = 9 (squares). All four networks have the same vertex number
N = 218 and almost the same mean vertex degree 〈k〉 
 20. For each data set,
2000 individual trajectories with the initial condition of Λ = 0 and Q = 1/2 are
simulated. Each trajectory is tracked until the shifted nn-spin up probability
|Q(t) − 1/2| exceeds 1/4 for the first time (the main figure) or the average spin
value |Λ(t)| exceeds 1/2 for the first time (the inset).

The order parameter y vanishes for all the boundary patterns satisfying equation (28). In
the vicinity of y = 0, the evolution of y is governed by the following linearized evolution
equation:

y(t + 1) = Ψ′(1/2)y(t), (30)

where Ψ′(1/2) ≡ dΨ/dQ|Q=1/2 is expressed as

Ψ′(1/2) =
∑

k

k∑

m>k/2

kP (k)

〈k〉 B(k, m)21−k(2m − k)

=
∞∑

m=0

(2m + 1)2P (2m + 1)

〈k〉22m
B(2m, m) +

∞∑

m=1

(2m)2P (2m)

〈k〉22m
B(2m, m). (31)

The binomial coefficient in equation (31) can be estimated using Stirling’s formula which
leads to

B(2m, m) =
(2m)!

m!m!
≈ 22m

√
π

m−1/2. (32)

If this relation is inserted into equation (31), we obtain

Ψ′(1/2) ≈
√

2/π

〈k〉
∑

k

k3/2P (k). (33)
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Figure 2. Time evolution of (a) the nn-spin up probability Q(t) and (b)
the average spin value Λ(t) for parallel local majority rule dynamics on an
uncorrelated random multi-network of size N = 218 and mean vertex degree
〈k〉 
 20. Time is measured in units of iteration steps. The four sets of data
correspond to the same four scale-free random networks as in figure 1.

In the limit of large network size N , equation (33) is well approximated by

Ψ′(1/2) ≈
(

2k0

π

)1/2
(γ − 2)

((5/2) − γ)

(kmax/k0)
(5−2γ)/2 − 1

1 − (k0/kmax)γ−2
. (34)

In the limiting cases of γ = 5/2 and 2, the expressions for Ψ′(1/2) are, respectively,

Ψ′(1/2) ≈
(

k0

2π

)1/2
ln(kmax/k0)

1 − (k0/kmax)1/2
for γ = 5/2 (35)

Ψ′(1/2) ≈ 2

(
2k0

π

)1/2
(kmax/k0)

1/2 − 1

ln(kmax/k0)
for γ = 2. (36)
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Finally, using the relation that kmax = k0N
1/(γ−1) as given by equation (2) for sufficiently

large network size N , we obtain the following asymptotic behaviour for Ψ′(1/2):

Ψ′(1/2) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

2k0/πN1/2/ ln(N) for γ = 2,
√

2k0/π
γ − 2

(5/2) − γ
N (5−2γ)/2(γ−1) for 2 < γ < 5/2,

1

3

√
2k0/π ln(N) for γ = 5/2,

√
2k0/π

γ − 2

γ − (5/2)
for γ > 5/2.

(37)

From equation (37) we know that Ψ′(1/2) is independent of network size N for γ > 5/2
while it increases with N for γ ≤ 5/2. Since the slope Ψ′(1/2) determines the evolution
of y(t) for small y, we expect to see a qualitative change at γ = 5/2.

Iterating the linear evolution equation (30) n times from an initial time t0 up to a
final time t1, one obtains the time difference

Δt01 ≡ t1 − t0 ≈
ln |y(t1)| − ln |y(t0)|

ln Ψ′(1/2)
(38)

in the limit of small y(t0).
Now consider an initial state of the network at time t = t0 that corresponds to a

strongly disordered pattern with order parameter y(t0) = ±1/(2M) = ±1/〈k〉N where
M denotes the total number of edges with 2M =

∑
i ki. We characterize the decay of

this strongly disordered pattern by the decay time td, which is the time it takes to reach
a pattern with an order parameter y∗ that satisfies |y∗| ≥ 1/4. Using equation (38) with
t1 ≡ td as well as the asymptotic expressions (37) for Ψ′(1/2), the functional dependence
of the decay time td on the network size N is found to be [9]

td ∼

⎧
⎪⎨

⎪⎩

ln(N) for γ > 5/2

ln(N)/ ln ln(N) for γ = 5/2

2(γ − 1)/(5 − 2γ) for 2 < γ < 5/2

(39)

in the limit of large N . Equation (39) predicts that, for random scale-free networks with
2 < γ < 5/2, strongly disordered patterns always escape from the unstable fixed point
after a finite number of iteration steps even in the limit of large N . In contrast, for
networks with γ > 5/2, the escape time diverges as ln(N). This latter behaviour also
applies to Poisson networks and other types of network with single-peaked vertex degree
distributions. The ln(N) scaling in response times was predicted for opinion spreading on
social networks [21]–[23], it was also observed in simulations of information spreading on
small-world networks [24].

We will check these mean field predictions in sections 4 and 5 by means of extensive
computer simulations.

3.2. Random sequential or asynchronous updating

Next, we apply our mean field analysis to random sequential or asynchronous updating.
In this case, we randomly choose single spins. Each single-spin update corresponds to the
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time step Δt = 1/N which becomes small for large N . It is now useful to consider the
quantity Δn(k, t) which represents the change in the number of up spins on all k-vertices
during such a single-spin update. The average value of this quantity is given by

〈Δn(k, t)〉 = P (k) [1 − qk(t)] qk(t + Δt) − P (k) qk(t) [1 − qk(t + Δt)]. (40)

The total number of up spins on all k-vertices then changes according to

NP (k)qk(t + Δt) = NP (k)qk(t) + 〈Δn(k, t)〉. (41)

Using the expansion qk(t + Δt) ≈ qk(t) + Δt dqk(t)/dt for large N or small Δt = 1/N on
the left-hand side and inserting the expression (40) for Δn(k, t)〉 on the right-hand side,
we obtain

dqk(t)

dt
= −qk(t) + qk(t + Δt). (42)

In addition, the up spin probability qk(t + Δt) is still given by (25) which leads to the
continuous-time evolution equations

dqk(t)

dt
= −qk(t) +

∑

m

′
(

1 − 1

2
δm,k/2

)
B(k, m) [Q(t)]m [1 − Q(t)]k−m (43)

for the spin up probabilities qk(t) and
dQ(t)

dt
= −Q(t) + Ψ (Q(t)) (44)

for the nn-spin up probability Q(t) where Ψ(Q) is still given by (27). Equation (44) has
again three fixed points, two stable ones at Q = 0 and 1 as well as an unstable one at
Q = 1/2.

As in the scheme with parallel updating, we define a new order parameter y = Q−1/2;
compare (29). For an initial value y(t0) ∼ 1/N that represents a strongly disordered initial
pattern, the order parameter y(t) behaves as

y(t1) ≈ y(t0)e
(Ψ′(1/2)−1)(t1−t0) (45)

which implies the time difference

Δt01 ≡ t1 − t0 ≈
ln y(t1) − ln y(t0)

Ψ′(1/2) − 1
. (46)

We again characterize the decay of this strongly disordered pattern by the decay time
t1 = td, which is the time it takes to reach a pattern with an order parameter y∗ that
satisfies |y∗| ≥ 1/4. Using the initial value y(t0) ∼ 1/N , we now obtain from (46) that
the typical decay time td scales as

td ∼

⎧
⎪⎨

⎪⎩

ln(N) for γ > 5/2

N0 for γ = 5/2

N0 for 2 < γ < 5/2

(47)

in the limit of large network size N . Equation (47) is qualitatively very similar to the
scaling relation (39) for the parallel updating scheme. A transition in dynamic behaviour
is therefore also predicted for random sequential local majority rule dynamics. For
uncorrelated scale-free random networks with γ > 5/2, equation (47) again predicts a
logarithmic scaling of the typical decay time td with network size N . When the scaling
exponent γ < 5/2, on the other hand, the typical decay time is independent of N . The
case γ = 5/2 is special since the mean field analysis predicts that td is independent of N
for random sequential updating but grows logarithmically with N for parallel updating.
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4. Simulation results for random multi-networks

As a complementary approach to our mean field analysis in section 3, in this and the
following section, we perform local majority rule dynamics on individual random scale-free
networks. In this section, the substrate networks are generated by rule (A) of section 2.2.
These multi-networks are completely random and uncorrelated, and typically contain both
self-connections and multiple edges.

After a network is constructed with given parameters N , γ, and k0, a random initial
spin pattern {σi(0)} is assigned to vertices of the network. The system then evolves
according to equation (9) for parallel updating and according to equation (10) for random
sequential updating. Each resulting trajectory is monitored and the values of Λ(t) and
Q(t) as defined in equations (13) and (18), respectively, are recorded at each time point
t. The initial spin patterns are chosen such that the average spin value Λ and the nn-spin
up probability Q have the initial values

Λ(0) ≡ 0 and Q(0) ≡ 1
2
, (48)

i.e., these patterns are disordered both with respect to the average spin value and with
respect to the nn-spin up probability. We track each trajectory until the two conditions
|Λ(t)| > 1/2 and |Q(t) − 1/2| > 1/4 are both satisfied. For each random network, 2000
such trajectories are simulated and analysed in order to estimate the median decay time.

In our previous study [9], we used parallel or synchronous updating in order to
generate the time evolution of the activity patterns. In the present study, we use
both parallel updating and random sequential or asynchronous updating and check the
robustness of our qualitative conclusions in [9]. For parallel updating, our simulational
results are summarized in figure 3, for random sequential updating in figure 4. In these
figures, we plot the median decay time, td,m, as a function of the network size or vertex
number N . By definition, the median decay time td,m splits the decay time histogram
up into two parts of equal size, i.e., the probability to observe a decay time td with
td < td,m is equal to the probability of observing one with td > td,m. In figures 3(a)
and 4(a), we display the median decay time needed for the system to reach a pattern
characterized by |Q(t) − Q(0)| ≥ 1/4 from an initial strongly disordered pattern, which
satisfies equation (48). Likewise, in figures 3(b) and 4(b), we show the median decay time
for the system to attain a pattern characterized by |Λ(t)| ≥ 1/2 starting again from an
initially disordered pattern satisfying equation (48).

The data for parallel updating of multi-networks as shown in figure 3 do not exhibit
a clear distinction between networks with γ > 5/2 and those with γ < 5/2. In contrast,
the data for random sequential updating of multi-networks as shown in figure 4 exhibit
such a distinction, at least for γ = 2.25 and 2.6. For scaling exponent γ ≥ 2.6, the median
decay times td,m increases with network size N according to td,m ∼ (lnN)η, where the
exponent η appears to be slightly larger than 1. Our mean field theory predicts η = 1.
For γ = 2.25, which is smaller than but not close to γ = 5/2, the median decay time
td,m is found to be independent of network size N , see figures 4(a) and (b), in agreement
with our mean field prediction. However, for γ = 2.4, which is smaller than but close to
γ = 5/2, inspection of figure 4 indicates that the median decay time increases slowly with
network size N . This observation disagrees with our mean field prediction.
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Figure 3. Median decay time td,m as a function of network size N for random
multi-networks and parallel or synchronous updating. Each data point is obtained
by performing simulations on 100 multi-networks. (a) Median decay time needed
to reach a partially ordered pattern characterized by |Q(t) − 1/2 > 1/4| for the
first time; and (b) median decay time needed to reach a partially ordered pattern
with |Λ(t) > 1/2| for the first time.

5. Simulation results for random simple networks

The random multi-networks discussed in the previous section 4 contain self-connections
and multiple edges between the same pair of vertices. Such connections are absent in many
real networks. Thus, we will now consider the temporal evolution of activity patterns
on random simple networks without self-connections and multiple edges. As previously
mentioned, such networks exhibit some vertex degree correlations.

We use rule (B) as described in section 2.2 in order to generate an ensemble of
scale-free random simple networks. Each vertex of the network is occupied by a binary
variable or spin which evolves again according to local majority rule dynamics. We use
both parallel and random sequential updating starting from random initial conditions as
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Figure 4. Median decay time td,m as a function of network size N for random
multi-networks and random sequential or asynchronous updating. Each data
point is obtained by performing simulations on the same set of 100 random multi-
networks as in figure 3. (a) Median decay time needed for |Q(t)− 1/2| to exceed
1/4 for the first time. (b) Median decay time needed for |Λ(t)| to exceed 1/2 for
the first time.

specified by equation (48). The degree sequences of the generated networks are the same
as those used in the preceding section. Therefore, if the results of this subsection are
different from those of section 4, the differences must be related to the correlations in the
random simple networks. Our simulational results are summarized in figures 5 and 6 for
parallel and random sequential updating, respectively.

In figures 5(a) and 6(a), we display the median decay time td,m needed for the network
to reach an activity pattern that is characterized by a nn-spin up probability Q(t) that
satisfies |Q(t)−Q(0)| ≥ 1/4 when the initial pattern is characterized by the relation (48).
Likewise, in figures 5(b) and 6(b), we show the median decay time for the network to
reach a pattern with average spin value |Λ(t)| ≥ 1/2 starting again from an initial pattern
which satisfies (48).
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Figure 5. Median decay time as a function of network size N for random simple
networks and parallel or synchronous updating. Each data point is obtained by
performing simulations for an ensemble of 100 networks. Each simulation run
starts from an initial spin or activity pattern characterized by relation (48). (a)
Median decay time needed to reach a spin pattern for which the nn-spin up
probability Q(t) satisfies |Q(t) − 1/2| > 1/4 for the first time; and (b) median
decay time needed to reach a spin pattern for which the average spin value Λ(t)
exceeds 1/2 for the first time.

For scaling exponent γ > 5/2, the median decay time td,m increases with network size
N as td,m ∼ (ln N)η with a growth exponent η that again appears to be slightly larger
than the mean field value η = 1. The same behaviour was observed in the preceding
section for random multi-networks. For γ = 2.25, which is smaller than but not close
to γ = 5/2, the median decay times are essentially independent of the network size N .
The latter behaviour was also found for random sequential updating of multi-networks.
For γ = 2.4, i.e., smaller than but close to γ = 5/2, on the other hand, both figures 5
and 6 demonstrate that the median decay time first increases slowly and then saturates for
increasing network size N . In other words, the function td,m = td,m(ln N) is now convex
downwards. This situation is remarkably different from what was found in random multi-
networks, see figures 3 and 4, for which the function td,m = td,m(ln N) is convex upwards
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Figure 6. Median decay time as a function of vertex size N for random simple
networks and random sequential or asynchronous updating. Each data point is
obtained by performing simulations for the same ensemble of 100 simple networks
as in figure 5. (a) Median decay time needed for |Q(t) − 1/2| to exceed 1/4 for
the first time; and (b) median decay time needed for |Λ(t)| to exceed 1/2 for the
first time.

over the whole range of accessible values of N . Therefore, for random simple networks,
we conclude that the median decay time td,m becomes independent of network size N in
the limit of large N if the scaling exponent γ of the scale-free degree distribution satisfies
γ < 5/2 as predicted by mean field theory.

6. Effective scaling exponent for multi-networks

Multi-network typically contain self-connections and multiple edges. As shown in
figure 7(a), the fraction of edges that represent multiple edges is found to vary between
about 10−1 and 10−3 depending on the number N of vertices and the scaling exponent
γ of the scale-free degree distribution. Furthermore, the fraction of edges that represent
self-connections varies between 10−2 and 10−5; see figure 7(b). Both fractions decrease
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Figure 7. Fraction of (a) multiple edges and (b) self-connections in a random
scale-free multi-network. Each data point is an average over the same ensemble
of 100 random networks as used in the simulations of the preceding sections.

with increasing network size N and increase with decreasing scaling exponent γ. This
behaviour can be understood from the following considerations.

In a random multi-network, the probability that an edge is a self-connection of vertex
i is equal to (ki/

∑
j kj)

2 = k2
i /(4M2), where ki is the degree of vertex i and M is the total

number of edges as before. The average number of self-connections of a certain vertex i
with degree ki is then given by k2

i /4M . Therefore, the total number of self-connections is
estimated to be

Mself =

N∑

i=1

k2
i

4M
=

∑

k

NP (k)
k2

4M
(49)

≈ k2
0(γ − 1)

2〈k〉(3 − γ)

N (3−γ)/(γ−1) − 1

1 − 1/N
(50)

for a scale-free network with scaling exponent γ. This relation shows that, for γ ≥ 3,
the total number of self-connections is of order unity. In contrast, for scale-free networks
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with 2 < γ < 3, the total number Mself of self-connections scales with network size N
as Mself ∼ N (3−γ)/(γ−1) for large N . Therefore, the fraction of self-connections decays as
Mself/M ∼ N (4−2γ)/(γ−1) with increasing network size N .

Likewise, in a random multi-network, the probability that an edge is formed between
a certain vertex i with degree ki and another vertex j with degree kj is given by

2
ki∑
l kl

kj∑
l kl

=
kikj

2M2
. (51)

Using this probability, one may derive an approximate expression for the total number
Mmult of multiple edges. The formula is a little bit more complex than equation (50) so
we do not write down the explicit formula here. The average number of multiple edges is
also found to be of order unity for γ ≥ 3 and to increase with network size N as a power
law for 2 < γ < 3. This is consistent with the data shown in figure 7(a).

Furthermore, we find that the removal of all self-connections and multiple edges from
a scale-free multi-network leads to a simple network that is again scale free but with the
modified vertex degree distribution

Peff(k) ∼ k−γeff with γeff = γeff(γ, N). (52)

In equation (52), k is the effective degree of a vertex, i.e., the number of connections of
the vertex after all its self-connections are removed and all its multiple edges are reduced
to a single edge. The scaling exponent γeff can be obtained by calculating the cumulative
distribution function of the effective degree k [25]. The functional dependence of the
effective scaling exponent γeff on the scaling exponent γ of the original multi-network
and on the network size N is displayed in figure 8. Inspection of this figure shows that
the effective scaling exponent satisfies γeff ≥ γ and decreases towards γ with increasing
network size N . For γ = 2.9, 2.75, and 2.6, the data strongly indicate that the effective
exponent γeff becomes asymptotically equal to γ for large N . We expect that the same
behaviour applies to the multi-networks with γ < 5/2 but this remains to be shown.

Now, let us focus on the case γ = 2.4 for which we found some qualitative differences
between multi-networks and simple networks. As shown in figure 8, the effective scaling
exponent is found to satisfy γeff � 2.5 up to N = 217 for multi-networks with γ = 2.4.
Thus, these multi-networks lead to simple networks with γeff ≥ 5/2 for almost all values
of N that are accessible to the simulations. In this way, we obtain a rather intuitive
explanation for our difficulty to confirm the mean field predictions for multi-networks
with γ = 2.4.

As far as the network’s topology is concerned, both self-connections and multiple
edges can be regarded as redundant. However, these self-connections and multiple edges
have very significant effects for the dynamics of activity patterns of these networks. Let us
consider the following simple example. Suppose there are two high-degree vertices i and
j with initial spin state σi = 1 and σj = −1. Each of these two vertices is taken to have
many self-connections, and there are many edges between them. The self-connections tend
to stabilize the current spin state of each vertex, while the edges between i and j tend to
align the two spins. The frustration caused by the competition of these two effects can
lead to an increase in the relaxation time. More generally, in a scale-free multiple network
with γ < 3, there exists a densely connected core of high-degree vertices. Each vertex of
this core has many self-connections (which tend to stabilize its current spin state) and is
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Figure 8. Effective scaling exponent γeff for random simple networks that have
been obtained by removal of all multiple edges and self-connections from an
ensemble of random multi-networks. Each data point is obtained by merging
all the 100 vertex degree sequences corresponding to the 100 multi-networks
used in the simulation. The degree distributions of these multi-networks are
characterized by the parameter values γ = 2.25, k0 = 5 (triangles left), γ = 2.4,
k0 = 6 (triangles up), γ = 2.6, k0 = 8 (diamonds), γ = 2.75, k0 = 9 (squares),
and γ = 2.9, k0 = 10 (circles).

connected by multiple edges to many vertices in this core (which tend to align the spins
on neighbouring vertices). Starting from a random initial spin configuration, spin state
frustrations may easily build up within such a core. Such frustrations can be ‘annealed’ by
external influences as provided, e.g., by the interactions with vertices outside the core, but
for scale-free multi-networks with γ ∼ 5/2, this annealing process may take a relatively
long time, since the fraction of ‘redundant’ edges is high and the effective scaling exponent
is larger than 5/2.

In our simulation, we have studied only the dynamic properties of random scale-free
networks. In general, the vertex degrees of neighbouring vertices may be correlated. In the
case of simple networks, these correlations are caused by prohibition of self-connections
and multiple edges [11], [18]–[20]; in the case of multiple networks, these correlations
exist between the effective vertex degrees of neighbouring vertices. Such correlations of
vertex degrees may also have some influence on the majority rule dynamics. In order
to study the influence of vertex degree correlations on the dynamic network processes in
a quantitative manner, one may generate ensembles of random networks with specified
vertex degree and specified vertex correlation patterns (see, e.g., [19]). In fact, the co-
evolution of correlations in the network structure and network dynamics represents a
rather interesting topic for future studies.

7. Conclusion and discussion

We have studied the time evolution of activity patterns on scale-free random networks
which are characterized by the degree distribution P (k) ∼ 1/kγ for k0 < k < kmax.
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We constructed two different ensembles of such networks as explained in section 2.2: (A)
multi-networks with self-connections and multiple edges as generated by the configuration
method and (B) simple networks without any self-connections and multiple edges as
generated by a combination of the configuration method and an edge switching or
reshuffling algorithm. We focused on networks with minimal vertex degree k0 ≥ 5 for
which all network graphs were found to consist of only a single component.

On each vertex of these networks, we place a binary variable or Ising-like spin σi = ±1.
For a given network with N vertices, the activity pattern at time t is described by the
spin configuration {σ(t)} ≡ {σ1(t), σ2(t), . . . , σN (t)}. The time evolution of this pattern
is governed by local majority dynamics, which represents a Markov process in pattern
space and is equivalent to Glauber dynamics at zero temperature. We used two different
updating schemes as explained in section 2.3: (i) parallel or synchronous updating as
defined by (9) and (ii) random sequential or asynchronous updating as in (10).

We focused on the relaxation or decay of initial activity patterns that are strongly
disordered both with respect to the average spin value Λ = 〈σ〉 as given by (13) and with
respect to the nn-spin up probability Q as defined in (15) (where nn stands for ‘nearest
neighbour’). Indeed, these initial patterns are chosen to satisfy Λ = 0 and Q = 1/2
as in (48). The relaxation process is measured by the decay time td it takes to reach a
pattern with |Λ| ≥ 1/2 and/or |Q − 1/2| ≥ 1/4. This decay time is governed by a single
peak distribution from which we determined the median decay time td,m.

The mean field theory described in section 3 predicts that the N -dependence of the
decay time is different for scaling exponents γ < 5/2 and γ > 5/2. For γ < 5/2, the
typical decay time remains finite even in the limit of large network size N . In contrast, this
timescale increases as ln N with increasing N for γ > 5/2. In order to check these mean
field predictions, we have performed four types of numerical simulations corresponding to
parallel and random sequential updating of multi-networks and simple networks.

The simulation data for parallel updating of multi-networks are shown in figure 3. In
this case, the median decay time is found to increase with network size N up to N = 218

for all values of γ. Random sequential updating of the same ensemble of multi-networks
leads to the data shown in figure 4. Inspection of this latter figure shows that the median
decay time is now essentially independent of N for γ = 2.25 as predicted by mean field
theory. However, for γ = 2.4, this timescale still seems to increase with N in contrast to
the mean field predictions. This apparent increase can be understood if one defines an
effective scaling exponent γeff for multi-networks as discussed in section 6. As shown in
figure 8, this effective scaling exponent decreases monotonically with increasing network
size N and satisfies γeff ≥ γ. In particular, for multi-networks with γ = 2.4, we find
γeff � 5/2 up to N = 217.

The simulation data for parallel and random sequential updating of simple networks
are shown in figures 5 and 6, respectively. In this case, both updating schemes are in
complete agreement with the mean field predictions. Thus, we conclude that mean field
theory is valid for the ensemble of random simple networks but is more difficult to confirm
for the ensemble of random multi-networks because of strong finite-size effects as described
by the N -dependent value of the effective scaling exponent γeff .

In this paper, we have analysed the time evolution of strongly disordered patterns at
t = 0 into partially ordered patterns characterized by |Λ| > 1/2 and/or |Q − 1/2| > 1/4
at t = td. These partially ordered patterns further evolve towards completely ordered
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patterns. If the network has κ components, one has 2κ such ordered patterns. However,
there is always a small but non-zero probability that the local majority rule dynamics
does not achieve complete order [12]. One major reason for this failure is the existence of
small network components with certain ‘balanced’ shapes that lead to domain boundaries
and blinkers [26, 27]. The probability of finding such components is expected to decrease
with increasing mean vertex degree 〈k〉 and increasing minimal vertex degree k0.

Both for d-dimensional regular lattices [28] and for tree-like networks [29], the time
evolution of activity patterns typically leads to metastable states with many domain
boundaries and blinkers. In contrast, we did not find such a behaviour for random scale-
free networks with k0 ≥ 2 as studied here. Indeed, our simulations show that most of the
spins are already aligned after about 30 time steps; see figure 2.

Our mean field analysis can also be applied to more complicated dynamical models as
we have previously discussed in [9]. One such extension is provided by finite-connectivity
Hopfield models [30] on scale-free random networks. In this case, our mean field theory
predicts the storage capacity to grow as Nα with network size N where the growth
exponent α satisfies 1 > α > 0 provided 2 < γ < 5/2. According to recent experimental
studies [31, 32], the functional networks of the human brain are scale-free with a scaling
exponent γ 
 2.1. In the latter case, our mean field theory leads to a storage capacity
that grows as Nα with α 
 0.73, i.e., almost as fast as for the original Hopfield models
on complete graphs.

Likewise, we have extended our mean field theory to scale-free networks for which each
vertex i contains a Potts-like variable σi that can attain q ≥ 3 values. These dynamic
systems exhibit q ordered patterns (in each network component) and may evolve towards
any of those patterns when they start from a strongly disordered one. For these Potts-
like systems, we find the same distinction between the relaxation behaviour for scale-free
networks with γ < 5/2 and γ > 5/2 as in the case of the Ising-like systems studied here.
We also considered some hybrid dynamics constructed from local majority dynamics and
random Boolean dynamics: each spin variable σi is updated with probability P according
to local majority rule dynamics and with probability 1−P according to random Boolean
dynamics as in the Kauffman models [33, 34]. As long as P > 0, the relaxation behaviour of
this more general class of models shows the same qualitative change at γ = 5/2. Finally, we
have extended our mean field theory to binary or Ising-like variables on directed networks,
see [9]. The elucidation of these mean field results by appropriate simulation studies is
highly desirable and remains to be done.
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Appendix. Upper cut-off for vertex degree

In this appendix, we explain the dependence of the maximal degree k
(2)
max on N in more

detail. In [13], the scaling k
(2)
max ∼ N1/(γ−1) was obtained from the requirement that the
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average number of vertices with degree k ≥ k
(2)
max should be of order one, that is

N

∑∞
k=k

(2)
max

k−γ

∑∞
k=k0

k−γ

 1. (A.1)

It is instructive to rederive the same scaling relation for k
(2)
max through an alternative way.

To do this, we start from the scale-free degree distribution P∞(k) which has the same
form as that of P (k) in equation (3) but with kmax = ∞. The distribution P∞(k) is used
to generate N random numbers xi with i = 1, 2, . . . , N and xi ≥ k0 which correspond
to the vertex degrees of the N vertices. Since the normalization factor A as given by
equation (4) behaves as A ≈ k1−γ

0 /(γ − 1) for large kmax, the random variables xi are
generated according to the probability density

P∞(x) = (γ − 1)kγ−1
0 x−γ . (A.2)

The maximal value xmax of the N random numbers xi is then governed by the probability
density

ρ(xmax) = N(γ − 1)kγ−1
0 x−γ

max

(

1 −
(

k0

xmax

)γ−1
)N−1

. (A.3)

It follows from this latter probability density, which is normalized as well, that xmax has
the average value

〈xmax〉 = Nk0B

(
γ − 2

γ − 1
, N

)
, (A.4)

where B(z, N) is the standard beta function [35]. In the limit of large network size N ,
one has B(z, N) ≈ Γ(z) exp(z)N−z , which implies

〈xmax〉 ≈ k0N
1/(γ−1), (A.5)

i.e., the same k0 and N dependence as for k
(2)
max. The same dependences are also obtained

for the most probable value of xmax which corresponds to the maximum of the distribution
ρ(xmax) and is given by

x(mp)
max = k0

(
1

γ
+

γ − 1

γ
N

)1/(γ−1)

. (A.6)

Using the probability density ρ(xmax) as given by (A.6), we obtain for the second
moment of xmax the expression

〈x2
max〉 = Nk2

0B

(
γ − 3

γ − 1
, N

)
. (A.7)

For γ < 3, 〈x2
max〉 is infinite since one of the arguments of the beta function in

equation (A.7) is negative. Thus, the fluctuations in xmax are unbounded unless we use

the natural upper cut-off k
(1)
max = N − 1.
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