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Abstract. The behavior of two membranes that interact by active adhesion molecules or stickers is studied
theoretically using mean-field theory and Monte Carlo simulations. The stickers are anchored in one of
the membranes and undergo conformational transitions between on and off states. In their on states, the
stickers can bind to ligands that are anchored in the other membrane. The transitions between the on
and off states arise from the coupling of the stickers to some active, energy-releasing process, which keeps
the system out of equilibrium. As one varies the transition rates of this active process, the membrane
separation undergoes a stochastic resonance: this separation is maximal at intermediate rates of the sticker
transitions and considerably smaller both at high and at low transition rates. This implies that the effective,
fluctuation-induced repulsion between the membranes contains a rate-dependent contribution that arises
from the switching of the active stickers.

PACS. 87.16.Dg Membranes, bilayers, and vesicles – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 87.68.+z Biomaterials and biological interfaces

1 Introduction

Biological membranes mainly consist of a fluid lipid bilayer
which provides their basic structure and contains different
macromolecules, mostly proteins [1,2]. Some of the pro-
teins anchored in the lipid bilayer protrude from the mem-
brane surface and can locally interact with another mem-
brane, or a substrate surface. The influence of such adhe-
sion or sticker molecules on membrane adhesion has been
theoretically studied for some time [3–10]. The first kinetic
model for the association and dissociation of membrane-
anchored adhesion molecules was introduced in [3]. In the
latter model, the only interactions between different ad-
hesive bonds arise indirectly via an external force that
pulls the membranes apart. In order to include the mu-
tual interactions between different adhesion molecules an-
chored in the same membrane, we have introduced and
studied lattice gas models for these systems [4–6]. Some-
what different theoretical approaches have been used in
references [7,8], and force-induced membrane unbinding
has been theoretically elucidated in references [9,10].

In all of these studies, the sticker molecules were as-
sumed to have a single molecular conformation which is
characterized by a certain binding energy. Biological mem-
branes are, however, coupled to various processes such as
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ATP hydrolysis which drive the membranes out of equi-
librium. As a result, some adhesion molecules such as in-
tegrins can be switched between different conformational
states with distinct affinities for their ligands [11–13].

In the following, we study such active stickers and
their influence on membrane adhesion. In this context, the
term “active” means that the transitions between different
sticker states arise from their coupling to non-equilibrium
processes. Other examples for active membrane compo-
nents are provided by mobile ion channels [14,15], light-
driven proton pumps [16] or two-state active inclusions
which locally perturb the membrane curvature [17].

The adhesion or sticker molecules are anchored or em-
bedded in one of the membranes and can bind to their
ligands which are present in the other membrane, see Fig-
ure 1. Each sticker can attain two states: an “on” state in
which the sticker interacts with its ligands in the oppo-
site membrane, and an “off” state in which this interac-
tion is negligible. Transitions between these states are not
governed directly by thermal fluctuations but require en-
ergy input. In the case of active adhesion molecules in cell
membranes, the energy input is usually provided by ATP
hydrolysis that occurs in the cells, whereas in biomimetic
applications, the conformational transitions of appropri-
ately designed stickers may be triggered by light or ex-
ternal electric field [18–20]. These actively induced sticker
transitions, in principle, can affect membrane adhesion in
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Fig. 1. A membrane with active stickers (top) adhering
to another membrane (bottom). Each sticker can undergo
transitions between two conformational states: an “on” state
(stretched) in which the sticker can bind to ligands that are
present in the other membrane, and an “off” state (bent) in
which the interaction between the sticker and its ligands is
negligible. These transitions require energy input and keep the
system out of equilibrium.

a non-trivial way. The goal of this work is to study, both
qualitatively and quantitatively, their influence on the av-
erage membrane separation.

In a recent letter [21] we studied the same system in
the framework of a stochastic model with discrete time
steps. The average membrane separation was found to ex-
hibit a resonance when the typical time between sticker
transitions was comparable to the relaxation time for
short-wavelength membrane fluctuations. In the present
paper, we consider a continuous-time Markov process as
described by a Fokker-Planck equation and show that it
exhibits a similar resonance as the discrete time model
studied in reference [21]. Therefore, the resonance effect
seems to be robust and essentially independent of the de-
tails of the model dynamics and, thus, should be a generic
feature of the systems under consideration.

Another system with the same type of stochastic dy-
namics has also been recently used to study shape fluctua-
tions of biomimetic membranes bound to a solid substrate
by switchable crosslinker molecules [22]. In the latter case,
the crosslinkers are switched between two conformations
which have a different end-to-end distance. The statisti-
cal properties of the membrane separation are then gov-
erned by an effective potential with two competing min-
ima. In contrast, the situation considered in the present
study leads to an effective potential with a single, short-
ranged potential well that is switched on and off.

This paper is organized as follows. In Section 2 we
introduce a coarse-grained model for the aforementioned
system, construct the Fokker-Planck equation that gives
the model dynamics, and describe methods of computer
simulations of this Fokker-Planck equation. In Section 3
we present results of our simulations and solve the Fokker-
Planck equation numerically within the mean-field ap-
proximation. Both the results of our simulations and those
obtained from the mean-field approximation indicate that
the average membrane separation exhibits stochastic res-
onance: it is maximal at intermediate rates of the active
process and considerably smaller at high or low transition
rates. We investigate how the resonant behavior of the

system depends on the model parameters and summarize
our results in Section 4.

2 Model

We consider a coarse-grained model that describes mem-
branes as elastic sheets which form deformable but, on
average, flat surfaces. To describe membrane configura-
tions, a reference plane parallel to the two interacting
membranes is introduced. Since we want, eventually, to
study our model by computer simulations, the reference
plane is divided into a square lattice with lattice constant
a. Each lattice site is labeled by a pair of integer numbers
i = (x, y) with 1 ≤ x ≤ N , 1 ≤ y ≤ N and periodic
boundary conditions in both directions. The distance be-
tween the membranes at the lattice site i is denoted by
li > 0. The set of variables l = {li} thus specifies the rel-
ative membrane location. Then the elastic energy of the
membranes can be written as [6]

Hel{l} =
∑

i

κ

2a2
(∆dli)2, (1)

where κ = κ1κ2/(κ1 + κ2) denotes the effective bending
rigidity of the membranes with rigidities κ1 and κ2, while
the discrete version of the Laplace operator,

∆dlx,y = lx+1,y + lx−1,y + lx,y+1 + lx,y−1 − 4lx,y, (2)

captures the local mean curvature of the separation field l.
In order to construct a model for the multi-state stick-

ers that are present in one of the membranes, we introduce
an additional set of discrete variables n = {ni}, where ni

indicates the internal state of the sticker located over the
lattice site i. For simplicity, we assume here that each
lattice site is occupied by a sticker that has only two con-
formations. Then the lattice spacing a corresponds to the
lateral distance between stickers and each of the variables
ni has only two possible values: 0 or 1. Here, ni = 0 and
ni = 1 correspond to the “off” and “on” states, respec-
tively, of the sticker at the lattice site i.

As described in the introduction, we consider the sys-
tem where the stickers anchored in one of the membranes
interact with the ligands on the other membrane. The
short-range interaction between a sticker and a ligand de-
pends on the relative position of the two molecules and on
the sticker state. Thus, the energy of the overall interac-
tion between the membranes at the lattice site i, which is
denoted here by V (li, ni), depends on the local membrane
separation li and on the internal state ni of sticker at this
site. The total energy of the system in a given configura-
tion

H{l, n} = Hel{l} +
∑

i

V (li, ni), (3)

contains then —in addition to the bending energy— the
term describing the intermembrane forces.

The sticker present at the lattice site i can bind to a
ligand only when it is in the state “on” (ni = 1). If the
sticker at the lattice site i is in the state “off” (ni = 0),
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Fig. 2. Short-range sticker potential V as a function of the
local membrane separation li. This potential has the Gaussian
shape as given by (5) for ni = 1 and vanishes for ni = 0. A
sticker in the state “on” (ni = 1) thus attracts the membranes
locally towards the potential minimum at li = lm, whereas
a sticker in the state “off” does not mediate interactions be-
tween the membranes. Transitions between the sticker states
correspond to switching the potential V1 on and off.

the local interaction between the membranes at this site
is negligible. Thus, we further assume that for li > 0 the
sticker potential

V (li, ni) = niV1(li) (4)

vanishes for ni = 0 while for ni = 1 it is given by the
Gaussian function

V1(li) = −U exp
[
− (li − lm)2

2l2we

]
. (5)

The positive parameters lm, lwe and U represent the po-
tential range, width and depth, respectively. The profile
of potential (4) is depicted in Figure 2.

2.1 Stochastic dynamics

2.1.1 Thermal motion

The two interacting membranes are embedded in an aque-
ous solution and are, thus, subject to thermal collisions
with the water molecules. This leads to thermally ex-
cited deformations of the membrane shapes [23–25]. In
the framework of the geometric membrane models consid-
ered here, these deformations are described by changes in
the membrane separation field l. In general, there can be
several mechanisms that contribute to the dissipation of
the shape fluctuations of the membranes such as Stokes
friction arising from the coupling to the surrounding liq-
uid and interbilayer dissipation arising from the friction
between the two adjacent monolayers [26,27]. We will con-
sider the simplest type of dynamics which corresponds to
the relaxation of the separation variables li along the gra-
dients of the configuration energy H of the interacting
membranes [28,6]. In the context of polymers and critical
phenomena, this corresponds to Rouse dynamics [29] and

to the so-called model-A dynamics [30], respectively. The
corresponding Langevin equation is given by

φ
∂li
∂t

= −∂H
∂li

+ ηi, (6)

where φ is the viscous friction coefficient and ηi represents
the white Gaussian noise. For the configuration energy H
as given by (1–4), equation (6) takes the explicit form

φ
∂li
∂t

= − κ

a2
∆2

dli − ni
∂V1

∂li
+ ηi (7)

and has a clear physical interpretation. It describes the
overdamped motion of the separation variable li as a result
of three types of forces: i) the elastic restoring force

−∂Hel

∂li
= − κ

a2
∆2

dli (8)

with

∆2
dlx,y = (lx+2,y + lx−2,y + lx,y+2 + lx,y−2)

+2(lx+1,y+1 + lx−1,y+1 + lx+1,y−1 + lx−1,y−1)
−8(lx+1,y + lx−1,y + lx,y+1 + lx,y−1) + 20lx,y

(9)
which couples li with the separation variables at 12 neigh-
boring lattice sites, ii) the force

−ni
∂V1

∂li

which arises from the sticker potential V1(li) and vanishes
when ni = 0, and iii) the thermal white noise ηi. The
average value of this latter noise vanishes at each lattice
site, i.e.,

〈ηi(t)〉 = 0, (10)

and its correlation function is given by

〈ηi(t)ηi′ (t′)〉 = 2φkBTδ(t − t′)δi,i′ (11)

as required by the fluctuation-dissipation theorem (or the
principle of detailed balance).

2.1.2 Active processes

So far, we have not specified how the stochastic vari-
ables ni(t) depend on time. In general, the stochastic field
n = {ni(t)} could exhibit various spatial and temporal
correlations. To ensure consistency with our recent mem-
brane models [21,22], however, the active processes that
occur in the system will be described here in the same
way as in reference [22]. Below we repeat this description
in order to make the present paper self-contained.

The variables ni(t) at different lattice sites are taken
to be statistically independent of each other and to have
temporal correlations that decay with a single character-
istic time scale. More precisely, we will consider, at each
lattice site i, the so-called dichotomic process (or two-
valued Markov process or random telegraph process) [31].
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Fig. 3. Snapshot of one of the flexible membranes for a given
state {ni} of the active stickers. At each lattice site i, a sticker
molecule is present that can be in the state “on” (ni = 1) or
“off” (ni = 0). The white and gray membrane patches corre-
spond to ni = 0 and ni = 1, respectively. The time evolution
of the sticker states is characterized by two transition rates as
described in the main text.

For this process, the probabilities p1(t) and p0(t) to find
the sticker at lattice site i at time t in the “on” and “off”
state, respectively, satisfy the simple evolution equations

dp1

dt
= −p1 ω− + p0 ω+ ,

dp0

dt
= +p1 ω− − p0 ω+ , (12)

which depend on the two transition rates ω+ and ω−. The
transition rate ω+ represents the probability per unit time
to go from the “off” state ni = 0 to the “on” state ni = 1.
Likewise, the transition rate ω− represents the probability
per unit time for the reverse process from the “on” state
ni = 1 to the “off” state ni = 0 (see Fig. 3). These tran-
sition rates are taken to be the same for all lattice sites
i and for all values of the membrane displacement vari-
ables li. They characterize the energy-providing processes
that are coupled to the switchable stickers, and depend
on such quantities as concentration of ATP molecules in
the membrane environment (in the case of active adhesion
molecules present in the cell membranes) or light intensity
(if the stickers are activated by photons).

In order to discuss the statistical properties of our
model, it will be convenient to use the variable

X ≡ ω+

ω+ + ω−
, (13)

which describes the average fraction of “on” sites in the
stationary state, and the mean transition rate

ω ≡ ω+ + ω−
2

(14)

instead of the two transition rates ω+ and ω−. Here and
below, X and ω will be considered as the basic transition
parameters.

2.1.3 Thermal versus active fluctuations

If ω− = 0, the sticker transitions to the state “off” with
ni = 0 do not occur and, in the stationary case, all stickers

remain in their “on” state. Then X = 1 and the Langevin
dynamics as given by (6) describes the relaxation of the
membrane separation field in the laterally uniform poten-
tial V1(li). The membranes then attain a certain equilib-
rium state and relax to the potential well after a suffi-
ciently long time. In such an equilibrium state, the sepa-
ration variables li will undergo thermal fluctuations which
are governed by the thermal energy kBT .

In general, we will consider active processes which are
characterized by an “on” fraction X with 0 < X < 1 and a
mean transition rate ω with 0 < ω < ∞. These processes
induce additional membrane fluctuations which are not
governed by the thermal energy kBT but by the transition
parameters X and ω. In other words, in the presence of the
active, energy-consuming processes, configurational en-
ergy (3) is a functional of the time-dependent field {ni(t)}.
The membranes then are subject to time-dependent forces
which drive the system out of equilibrium.

2.2 Fokker-Planck equation

The model dynamics as introduced in the previous sub-
section is given by

a) the Langevin-type equation (6) which describes the
thermal motion of the membrane separation field l,

b) the definition of the stochastic variables n that de-
scribe random transitions between the sticker states.

The dynamics of our model can be also given by a cor-
responding Fokker-Planck equation [32]. The latter equa-
tion describes the evolution of the probability distribution
P{l, n, t} for finding the system in the given configuration
{li, ni} at time t. In order to construct the Fokker-Planck
equation let us notice that the probability distribution
P{l, n, t} changes in time

a) due to membrane diffusion and membrane drift along
the gradients of the configuration energy H,

b) as a result of the actively induced transitions between
different sticker states.

The above statement can be written as a continuity equa-
tion for the probability distribution,

∂P
∂t

=
∑

i

(Ii + Ii). (15)

The probability current density Ii, related to the i-th lat-
tice site and corresponding to the Langevin dynamics (6),
is obtained from the Smoluchowski or Fokker-Planck equa-
tion [32]

Ii{l, n, t} =
1
φ

∂

∂li

(
∂H
∂li

+ kBT
∂

∂li

)
P{l, n, t}. (16)

The first and second term on the right-hand side of equa-
tion (16) describe membrane drift along the gradients of H
and membrane diffusion, respectively. The probability cur-
rent density Ii is related to the active process at site i and
can be determined from the master equation as described
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below. Let us introduce an auxiliary set n′ of two-valued
variables n′

j , where the subscript j labels the lattice sites,
such that n′

j = nj for all j �= i and n′
i = 1−ni. Then, as an

obvious consequence of definition (12) of the two-valued
Markov process, we have

Ii{l, n, t} = Ioff
i {l, n, t} δ(ni − 1)+ Ion

i {l, n, t} δ(ni) (17)

with

Ioff
i {l, n, t} ≡ P{l, n′(n), t}ω+ − P{l, n, t}ω− (18)

and

Ion
i {l, n, t} ≡ P{l, n′(n), t}ω− − P{l, n, t}ω+. (19)

At this point one should also notice that the variables
ni and li that appear in equations (15–19) are no longer
functions of time; both n and l are treated here as inde-
pendent coordinates for the probability distribution P .

In the stationary case, equations (15–19) supplemented
by the proper boundary conditions can be solved numeri-
cally in the framework of mean-field approximation. This
stationary solution is presented in Section 3.2. The model
dynamics expressed by the Fokker-Planck equation is also
used to establish the procedure of Monte Carlo simula-
tions of our model. We present the latter approach in the
following subsection.

2.3 Monte Carlo simulation and master equation

The statistical properties of the membrane model intro-
duced in this section can be studied by Monte Carlo sim-
ulations [33]. It is then useful to define the dimensionless
separation variable [28]

zi ≡ li
a

√
κ

kBT
(20)

at each lattice site i and to rewrite the configuration en-
ergy (3) in terms of these variables. The membrane shape
is now specified by the set z = {zi}.

As before, we consider a discrete lattice of N×N sites.
Each lattice site is labeled by a pair of integer numbers
i = (x, y) with 1 ≤ x ≤ N , 1 ≤ y ≤ N and periodic
boundary conditions in both the x and the y directions.
The Monte Carlo (MC) simulations described here have
been performed with up to 108 MC steps, i.e., MC moves
per lattice site.

Each MC move consists of two submoves: i) First, a
lattice site, i, is randomly chosen, and the membrane sep-
aration at this site, zi, is shifted to the value zi + ζ, where
ζ is a random number with the probability distribution
p(ζ) = 1/(2 δz) for −δz < ζ < δz, and δz is the step
size for the separation variable. This submove is accepted
according to the standard Metropolis algorithm [33] with
probability

w {z → z′} = min
[
1, exp

(
−H{z′, n} −H{z, n}

kBT

)]
,

(21)

where the new, primed separation variables are defined by
z′j ≡ zj + δi,j ζ. The submoves for which zi + ζ < 0 are
rejected. In this way we capture in our simulations the
reflecting boundary conditions at zi = 0. ii) The second
submove consists of the random choice of another lattice
site j for which the value of the variable nj is switched
from nj = 1 to nj = 0 with probability Ω− and vice versa
with probability Ω+.

It has been previously argued that the Metropolis al-
gorithm has the same scaling properties as the Langevin
dynamics [28] since both describe the relaxational dynam-
ics along the gradients of the configuration energy. How-
ever, we will now show that it is even possible to derive
a quantitative mapping between the Metropolis algorithm
just described and the Langevin dynamics as given by (6).
This mapping is obtained in the limit of small δz, i.e., of
small step size for the separation variables zi, and leads
to explicit relations between the simulation parameters
δz, Ω+, Ω− and the parameters φ, ω+, ω−, which appear
in the continuous-time model.

In order to derive this mapping, let us consider the
probability distribution P{z, n, t} for the membrane con-
figuration {zi, ni} at time t. The probability current den-
sity Ii{z, n, t}, which is induced by the first submove i) as
described above, satisfies the master equation

Ii{z, n, t}δt =
1

2 δz

∫ δz

−δz

dζ

[
P {z′, n, t}w {z′ → z}

−P{z, n, t}w {z → z′}
]

(22)

with the time step δt corresponding to one submove and
the transition probabilities w{z′ → z} as in (21). The
first and second terms in the square brackets describe the
gain and loss of the probability density, respectively. In or-
der to make a connection with the continuous-time model
corresponding to the Langevin dynamics (6), we will now
consider the limit of small time step δt and small step size
δz for the displacement variables.

We thus expand the probability distribution P and the
transition probabilities w, which are present on the right-
hand side of equation (22), in powers of the dimensionless
variable ζ which is then integrated between −δz and +δz.
This calculation is presented in the appendix and leads to
the truncated master equation

Ii{z, n, t}δt =
(δz)2

6
∂

∂zi

(
1

kBT

∂H
∂zi

+
∂

∂zi

)
P{z, n, t}

+O((δz)3). (23)

On the other hand, the probability current density which
corresponds to the Langevin dynamics for the mem-
brane separation li as given by (6) has the Smoluchowski
or Fokker-Planck form (16). Comparing expression (23)
with (16) and using equation (20), we obtain the param-
eter relation

δt =
(δz)2

6
φa2

κ
. (24)
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If this relation is fulfilled, the Langevin dynamics as given
by (6) and the Metropolis dynamics as in (21) are equiv-
alent in the limit of small step size δz ∼ (δt)1/2.

Since we alternate between submove i) and sub-
move ii), the same time step δt is used for both submoves.
This implies that the switching probabilities Ω± and the
transition rates ω± are related via

Ω± = δt ω± =
(δz)2

6
φa2

κ
ω±. (25)

In the long-time limit the system attains a steady state
which is characterized by certain time-independent quan-
tities such as the average membrane separation 〈z〉 and the
two-point correlation function 〈zizj〉 − 〈zi〉〈zj〉. We deter-
mine these steady-state quantities from the Monte Carlo
simulations. In a recent work [22] we used the same simula-
tion procedure and showed that for a harmonic potential
V (zi, ni) the simulation results agree with an analytical
solution.

For all Monte Carlo simulations reported below, the
step size δz was chosen to be δz = 2.5×10−3. In addition,
we used the system size N = 40 and checked that this size
is sufficiently large so that our data are not affected by
finite-size effects.

3 Results

3.1 Simulation results

To describe the simulation results, let us first consider
what could be the influence of the active process on the
membrane separation. In the hypothetical situation when
the thermal fluctuations are absent, T = 0, the membranes
would drift from their initial configurations towards the
minimum of potential (5) and remain at li = lm. Thermal
fluctuations cause, however, accidental collisions between
the membranes. These collisions lead to an effective steric
repulsion between the membranes. We can thus deduce
that 〈l〉 > lm for any T > 0. Moreover, if the tempera-
ture is increased, the membrane collisions become more
violent, the steric repulsion gets then stronger and, conse-
quently, the average membrane separation 〈l〉 increases as
well. On the other hand, 〈l〉 decreases if attractive inter-
actions between the membranes are made stronger. This
can be achieved by increasing values of such parameters
like the concentration X of stickers in the “on” state or
the sticker binding energy U .

Consider now the case when only the transition rates
ω+ and ω− may vary while values of other model param-
eters remain constant. One might expect that the mem-
brane separation depends then only on the average frac-
tion of stickers in their “on” state, X = ω+/(ω+ + ω−).
Our simulation results show, however, that even for a con-
stant fraction X of “on” stickers, the average membrane
separation 〈l〉 in the steady state changes with the mean
transition rate ω. Examples of our simulation data are
shown in Figure 4.
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Fig. 4. Average membrane separation 〈z〉 in the steady state
as a function of the average transition rate ω which is rescaled
with the friction coefficient φ, the molecular size a, and the
bending rigidity κ (semi-logarithmic plot). The average frac-
tion of stickers in their “on” states is X = 0.3. The range and
width of the sticker potential V1 given by (5) are zm = 0.2
and zwe = 0.05, respectively. The sticker binding energy is
U = 5kBT (upper curve) and U = 6kBT (bottom curve). The
dashed lines are plotted to guide the eye.
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Fig. 5. Average membrane separation 〈z〉 in the steady state
as a function of the average transition rate ω which is rescaled
with the friction coefficient φ, the lattice constant a and the
bending rigidity κ (semi-logarithmic plot). The range, width
and depth of the sticker potential (5) are zm = 0.2, zwe = 0.05
and U = 7kBT , respectively. The average fraction of stickers
in their “on” states is X = 0.25 (upper curve), X = 0.3 (mid-
dle curve) and X = 0.35 (bottom curve). The dashed lines
are plotted to guide the eye. The resonance effect is strongly
pronounced for small concentrations X.

It might seem astonishing that the membrane separa-
tion is maximal at intermediate values of ω. This effect
has already been observed in our previous model [21] and
turns out to be closely related to the process of resonant
activation over a fluctuating energy barrier in one-particle
models [34,35]. The typical time for a membrane patch to
diffuse out of the potential range can be made minimal by
a proper tuning of the transition rates. This implies that
there exists an optimal value for the mean transition rate
ω for which the membranes are most weakly bound. This
fact is clearly reflected in Figure 4.

Our simulation data indicates also that the resonance
is more prominent when the average fraction X of stick-
ers in the “on” state is small (see Fig. 5). This effect is
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understandable. A general feature of systems in the vicin-
ity of a continuous phase transition is that small variations
in control parameters lead to large changes of macroscopic
quantities characterizing the systems. In our model, the
membranes are weakly bound when the concentration X
of “on” stickers is small. In this case, small variations of
other model parameters, such as the potential depth U or
the transition rate ω, lead to large changes in the average
membrane separation.

3.2 Mean-field approximation for the Fokker-Planck
equation

We shall now return to the formulation of the model
dynamics given by the Fokker-Planck equation (15) and
the definitions of the probability current densities (16–
19). Our goal is now to solve these equations numerically
within the framework of the mean-field theory proposed
by Van den Broeck [36,37].

Let us consider the one-site stationary probability dis-
tribution, Pα(li) with α ∈ {0, 1}, for finding the mem-
branes at distance li and the sticker in the state ni = α at
the lattice site i. Then P (li) = P0(li) + P1(li) is the sta-
tionary probability distribution for finding the membranes
at distance li over the lattice site i. The one-site proba-
bilities can be obtained from the stationary probability
distribution P{l, n} as follows:

Pα(li) =
∑
{nj}

′ ∏
j �=i

∫ ∞

0

dljP{l, n}, (26)

where the sign
∑′

{nj} denotes the sum over all possible
values of variables n = {nj} with the condition ni = α.

Now, we integrate equation (15) over all variables {lj}
except for li and then sum it over all variables {nj} ex-
cept for ni. Using next definitions (16–19) of the proba-
bility current densities Ii and Ii, equations (1–4) for the
configuration energy H, and the reflecting boundary con-
ditions at li = 0, leads to the following exact steady-state
equations for the one-site probabilities:

∂J0

∂li
+ P0(li)ω+ − P1(li)ω− = 0, (27)

∂J1

∂li
+ P1(li)ω− − P0(li)ω+ = 0, (28)

where the probability currents J0 and J1 are defined as
follows:

J0(li) = − 1
φ

∂W

∂li
P0(li) − kBT

φ

∂P0

∂li
, (29)

J1(li) = − 1
φ

(
∂W

∂li
+

∂V1

∂li

)
P1(li) − kBT

φ

∂P1

∂li
. (30)

The energy W (li) describes coupling of the sticker at site
i with the membrane. Its derivative is given by

∂W

∂li
=

∏
j �=i

∫ ∞

0

dlj

[
∂Hel

∂li
P{l|li}

]
, (31)

where the membrane bending energy Hel is given by equa-
tion (1) and P{l|li} = P{l}/P (li) denotes the condi-
tional probability distribution for the given configuration
l = {lj} with the fixed variable li.

The above equations should be supplemented by the
reflecting boundary conditions at li = 0, i.e., at the mem-
brane contact points,

J0(0) = 0 and J1(0) = 0. (32)

These conditions ensure that the membranes cannot pen-
etrate each other. The additional set of boundary condi-
tions,

lim
li→∞

J0(li) = 0 and lim
li→∞

J1(li) = 0, (33)

can be obtained by integrating (27) and (28) over dli in
the limits from zero to infinity and using the normalization
conditions of the one-site probability distributions:

∫ ∞

0

P0(li)dli = 1 − X and
∫ ∞

0

P1(li)dli = X. (34)

The boundary conditions (32, 33) have been already used
to derive equations (27–31) from the Fokker-Planck equa-
tion (15–19). These are the conditions (32, 33) that allow
us to neglect the boundary terms after integration of (15)
over all variables l except for li.

Note that equations (27) and (28) imply that the prob-
ability current J = J0(li) + J1(li) is constant. Next, the
boundary conditions (32) imply additionally that J = 0.
Thus, in the stationary state, the relative average velocity
of membranes vanishes.

So far we have not applied any approximation and the
equations presented above are exact. However, the energy
W (li) as given by equation (31) depends on the condi-
tional probability distribution P{l|li} = P{l}/P (li) and,
for this reason, we are not able to solve the set of equa-
tions (27–33). We therefore apply a simple approxima-
tion [37] which is analogous to the traditional mean-field
theory. In this approximation, one neglects correlations
between neighboring lattice sites so that

P{l|li} =
∏
j �=i

P (lj) (35)

which leads to a significant simplification of equation (31),

∂W

∂li
= 20

κ

a2
(li − 〈l〉) . (36)

The numerical factor 20 is a consequence of equation (9)
for the spatial fourth derivative on the square lattice. In
the framework of mean-field approximation (36), equa-
tions (27–30) supplemented by the boundary condi-
tions (32, 33) and definition (5) of the sticker potential
V1 constitute a self-consistent set of equations for the av-
erage membrane separation

〈l〉 =
∫ ∞

0

li [P0(li) + P1(li)] dli. (37)
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Fig. 6. Probability distributions P0 and P1 for the dimension-
less membrane separation zi and the sticker state ni = 0 and
ni = 1, respectively. The distributions have been determined in
the framework on the mean-field approximation and represent
a numerical solution of the self-consistent set of equations in-
troduced in this section. The potential range, width and depth
are zm = 0.2, zwe = 0.05 and U = 7kBT , respectively. The
average fraction of “on” stickers is X = 0.25. The average
transition rate is given by ωφa2/κ = 25, where φ is the friction
coefficient, a is the lattice constant and κ is the effective bend-
ing rigidity. The transition rate as given by ωφa2/κ = 25 is
approximately equal to the resonant frequency for the middle
curve in Figure 8. The average membrane separation as given
by (37) and obtained from the numerical integration with the
distributions P0(zi) and P1(zi) is 〈z〉 ≈ 0.31673.
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Fig. 7. The probability current J0 rescaled with the friction
coefficient φ, the lattice constant a and the bending rigidity
κ as a function of the dimensionless membrane separation zi.
The probability current J0 as plotted here is related via equa-
tion (29) to the probability distribution P0 which is presented
in Figure 6. The following boundary conditions are fulfilled:
J0(0) = 0 and J0 vanishes for zi � zm. The numerical solution
of the mean-field equations ensures that J0 + J1 = 0.

It is generally known that, for 2-dimensional mem-
branes as considered here, the mean-field theory provides
a reliable approximation as long as the membrane poten-
tial has a sufficiently deep potential well and the effective
repulsion between the membranes arising from their shape
fluctuations is sufficiently weak. Thus, we shall restrict our
further considerations to the regimes in the model param-
eter space where the average membrane separation 〈l〉 is
comparable with the distance lm that describes the range
of the sticker potential V1 as given by equation (5). In
this case it seems reasonable to replace boundary condi-
tions (33) by the requirement that the probability currents
J0(li) and J1(li) vanish for li 
 lm. The mean-field equa-
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Fig. 8. Average membrane separation 〈z〉 in the stationary
state as a function of the mean transition rate ω which is
rescaled with the friction coefficient φ, lattice constant a and
the effective bending rigidity κ. This plot represents numerical
solutions of the Fokker-Planck equation in the mean-field ap-
proximation. The average fraction of stickers in their “on” state
is X = 0.25. The potential range and width are zm = 0.2 and
zwe = 0.05, respectively. Depth of potential V1 is U = 6kBT
(upper curve), U = 7kBT (middle curve) and U = 8kBT (bot-
tom curve). The resonance effect is relatively weak and sup-
pressed by the mean-field approximation.
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Fig. 9. Average membrane separation 〈z〉 in the station-
ary state as a function of the mean transition rate ω which
is rescaled with the friction coefficient φ, lattice constant a
and the effective bending rigidity κ. This plot represents nu-
merical solutions of the Fokker-Planck equation in the mean-
field approximation. The potential range, width and depth are
zm = 0.2, zwe = 0.05 and U = 7kBT , respectively. The aver-
age fraction of stickers in their “on” state is X = 0.25 (upper
curve) and X = 0.3 (bottom curve). The simulation results for
the same model parameters are shown in Figure 5. Compared
to these simulations, the mean-field approximation leads to a
less pronounced resonance effect.

tions with such modified boundary conditions have been
solved numerically by using Mathematica. Examples of the
numerical results are depicted in Figures 6–9.

In Figure 6 we show the stationary probability dis-
tributions P0(zi) and P1(zi) for dimensionless membrane
separation zi and the sticker state ni = 0 and ni = 1, re-
spectively. In Figure 7 we present the probability current
J0 that is related via equation (29) to the probability
distribution P0 which is presented in Figure 6. Here, the
probability current J0 is shown as a function of dimension-
less membrane separation zi. These two plots represent a
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numerical solution of the mean-field equations for a
given set of model parameters, as explained in the figure
captions.

In Figures 8 and 9 the average membrane separation
〈z〉, given in dimensionless units, is shown as a function of
the mean transition rate ω for several values of the sticker
binding energy U and fraction X of stickers in the state
“on”.

The average membrane separation as presented in Fig-
ures 8 and 9 exhibits stochastic resonance. The mean-field
predictions thus confirm the results of our MC simula-
tions. However, comparison of Figures 5 and 9 shows that,
compared to the MC simulations, the mean-field approx-
imation gives smaller values for the average membrane
separation. The mean-field theory thus underestimates the
effective membrane repulsion which arises from the shape
fluctuations of the membranes. This fluctuation-induced
repulsion varies with the average transition rate ω, see Fig-
ures 5 and 9, and, thus, contains an ω-dependent contri-
bution that arises from the switching of the active stickers.

4 Summary

We have presented a stochastic model for two membranes
that interact by active adhesion molecules, or stickers. The
stickers are anchored or embedded in one of the mem-
branes and can bind to their ligands which are present
in the other membrane. Each sticker can undergo actively
induced transitions between two states: an “on” state in
which the sticker interacts with the apposing membrane,
and an “off” state in which this interaction is negligible.
These transitions arise from the coupling of the stickers
to some active, energy-releasing process, which keeps the
system out of equilibrium.

Both the actively induced transitions between sticker
states and the thermal motion of the membranes repre-
sent stochastic processes. We use the Langevin-type equa-
tion (6) in order to describe the overdamped motion of the
membrane separation field, and the two-valued Markov
process (12) in order to model the random transitions be-
tween different states of the stickers.

We have used both Monte Carlo simulations and mean-
field theory to study the statistical properties of this
model. Our results show that the actively induced sticker
transitions affect the average membrane separation 〈l〉 in
a non-trivial way: 〈l〉 is maximal at intermediate transi-
tion rates and considerably smaller at high or low rates of
the active process.

In a recent letter [21], we studied a similar system in
the framework of a stochastic model with discrete time
steps. The average membrane separation was found to ex-
hibit a similar resonance when the typical time between
sticker transitions was comparable to the relaxation time
for short-wavelength membrane fluctuations. Therefore,
the resonance effect seems to be robust and insensitive to
details of model dynamics and, thus, should be a generic
feature of the systems under study.

B.R. thanks Marek Napiórkowski for helpful discussions and
acknowledges support from the Ministry of Science and Higher
Education via grant N202 076 31/0108.

B Equation (23)

Here we prove that for sufficiently small simulation step
size, δz, equation (22) reduces to (23). As described in
Subsection 2.3, the energy difference related to a MC
move is

δH = H(z′, n) −H(z, n), (B.1)

where z′j = zj + ζδi,j and ζ ∈ [−δz, δz] is a small, dimen-
sionless parameter. The potential V1 as given by (5) is a
smooth function of the membrane separation. This implies
that δH is a smooth function and of parameter ζ and hence

δH = ζ
∂H
∂zi

+
ζ2

2
∂2H
∂z2

i

+ O(ζ3). (B.2)

The above derivatives with respect to the spatial variable
zi are taken at ζ = 0.

To simplify the notation, let D = [−δz, δz]. Let us also
introduce the set D< ⊂ D, such that δH ≤ 0 for ζ ∈ D<.
Then, according to definition (21) for the transition prob-
ability w, for ζ ∈ D< we have w(z′ → z) = exp(δH/kBT )
and w(z → z′) = 1. Similarly, let D> ⊂ D be such a set
that δH > 0 for ζ ∈ D>. In this case w(z′ → z) = 1 and
w(z → z′) = exp(−δH/kBT ). Since D = D< ∪ D> and
D<∩D> = ∅, equation (22) can be now written as follows:

Ii(z, n, t)δt =
1

2δz

∫
D<

[
P(z′, n, t)eδH/kBT − P(z, n, t)

]
dζ

+
1

2δz

∫
D>

[
P(z′, n, t) − P(z, n, t)e−δH/kBT

]
dζ. (B.3)

Expansion of the integrand up to second order in ζ leads to

Ii(z, n, t)δt =
1

2δz

[( P
kBT

∂2H
∂z2

i

+
∂2P
∂z2

i

) ∫
D

ζ2

2
dζ

+
P

(kBT )2

(
∂H
∂zi

)2 (∫
D<

ζ2

2
dζ −

∫
D>

ζ2

2
dζ

)

+
1

kBT

∂P
∂zi

∂H
∂zi

∫
D<

ζ2dζ + O((δz)4)
]

, (B.4)

where we have used
∫

D
ζdζ = 0. The above derivatives

with respect to zi are taken at ζ = 0.
If ∂H

∂zi
= 0, then equation (B.4) simplifies to

Ii(z, n, t)δt =
(δz)2

6

( P
kBT

∂2H
∂z2

i

+
∂2P
∂z2

i

)
+ O((δz)3).

(B.5)
If ∂H

∂zi
�= 0, then according to expansion (B.2), δH = 0

when ζ = 0 or ζ = −2 ∂H
∂zi

/∂2H
∂z2

i
. Within the framework of

approximation (B.2), the energy change δH plotted as a
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function of the parameter ζ is a parabola and since |ζ| ≤
δz, we have for

δz < 2

∣∣∣∣∣
∂H
∂zi

∂2H
∂z2

i

∣∣∣∣∣ (B.6)

only two alternative cases:

1) D< = [0, δz] and D> = [−δz, 0],
2) D< = [−δz, 0] and D> = [0, δz].

In both cases equation (B.4) reduces to

Ii(z, n, t)δt =
(δz)2

6

[ P
kBT

∂2H
∂z2

i

+
∂2P
∂z2

i

+
1

kBT

∂H
∂zi

∂P
∂zi

]

+O((δz)3). (B.7)

Both equations (B.5) and (B.7) can be rewritten
as (23). Thus, for sufficiently small simulation step size
δz, when inequality (B.6) is fulfilled, equation (22) reduces
to (23), quod erat demonstrandum.
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