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Abstract. – The persistence length of semiflexible polymers and one-dimensional fluid mem-
branes is obtained from the renormalization of their bending rigidity. The renormalized bending
rigidity is calculated using an exact real-space functional renormalization group transforma-
tion based on a mapping to the one-dimensional Heisenberg model. The renormalized bending
rigidity vanishes exponentially at large length scales and its asymptotic behaviour is used to
define the persistence length. For semiflexible polymers, our result agrees with the persistence
length obtained using the asymptotic behaviour of tangent correlation functions. Our defini-
tion differs from the one commonly used for fluid membranes, which is based on a perturbative
renormalization of the bending rigidity.

Introduction. – Thermal fluctuations of two-dimensional fluid membranes and one-
dimensional semiflexible polymers or filaments are governed by their bending energy and can
be characterized using the concept of a persistence length Lp. In the absence of thermal fluc-
tuations at zero temperature, fluid membranes are planar and filaments are straight because
of their bending rigidity. Sufficiently large and thermally fluctuating membranes or filaments
lose their planar or straight conformation. Only subsystems of size L � Lp appear rigid and
maintain an average planar or straight conformation with a preferred normal or tangent direc-
tion, respectively. Larger membranes or filaments of sizes L � Lp, on the other hand, appear
flexible. In the “semiflexible” regime for which L is smaller than or comparable with Lp, the
statistical mechanics is governed by the competition of the thermal energy T and the bending
rigidity κ. Experimental values for the persistence length of one-dimensional biological fila-
ments vary from 50 nm for double-stranded DNA [1], 10µm for actin filaments [2,3] up to the
mm-range for microtubules [2]. The persistence lengths of two-dimensional fluid membranes
composed of lipid bilayers are typically much larger than experimental length scales.

For semiflexible polymers with one internal dimension, Lp is usually defined by the char-
acteristic length scale for the exponential decay of the two-point correlation function between
unit tangent vectors t along the polymer. A continuous model for an inextensible semiflexible
polymer of contour length L is the wormlike chain (WLC) model [4]. In the WLC model the
polymer is parametrized by its arc length s (0 < s < L) and the polymer contour is completely
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determined by the field t(s) of unit tangent vectors. The Hamiltonian is given by the bending
energy

H{t(s)} =
κ0

2

∫ L

0

ds (∂st)2, with t2(s) = 1, (1)

where κ0 is the (unrenormalized) bending rigidity of the model. For a WLC embedded in d
spatial dimensions, the tangent correlation function is found to be [5]

〈t(s) · t(s′)〉 = e−|s−s′|/Lp , with Lp =
2

d − 1
κ0

T
, (2)

where T is the temperature in energy units.
For fluid membranes with two internal dimensions, the analogous quantity is the correlation

function of normal vectors. An approximate result has been given in ref. [6], but a rigorous
treatment is missing due to the more involved differential geometry. Surfaces cannot be fully
determined by specifying an arbitrary set of normal vectors, but have to fulfill additional
compatibility conditions in terms of the metric and curvature tensors, the equations of Gauss,
Mainardi and Codazzi, which ensure their continuity. Implementations of these constraints
lead to a considerably more complicated field theory than (1) describing a two-dimensional
fluid membrane in terms of its normal and tangent vector fields [7].

For fluid membranes, an alternative definition of the persistence length Lp has been given,
which is linked to the effect of κ-renormalization. The mode coupling between thermal shape
fluctuations of different wave lengths modifies the large scale bending behavior, which can be
described by an effective or renormalized bending rigidity κ. The renormalized κ has been
calculated using different perturbative renormalization group (RG) approaches [8–13]. The
results are still controversial: Several authors [8–11] find a thermal softening of the mem-
brane with increasing length scales, but differing prefactors, whereas Pinnow and Helfrich [13]
obtained the opposite result. Furthermore, different definitions of the persistence length are
considered in these approaches: In refs. [9–11], Lp is identified with the length scale, where
the renormalized bending rigidity κ vanishes, while Helfrich and Pinnow defined Lp via the
averaged absorbed area [8, 13].

In this letter, we obtain an exact real-space RG scheme for the bending rigidity of a
semiflexible polymer or a one-dimensional fluid membrane, which allows us to define the
persistence length as the characteristic decay length of the renormalized bending rigidity.

In principle, a perturbative result for the effective κ can be deduced from the RG analysis
of the one-dimensional nonlinear σ-model, which is equivalent to the WLC Hamiltonian (1).
After a Wilson-type momentum-shell RG analysis, one obtains the effective rigidity (see, e.g.,
refs. [14])

κ(Λ)
T

=
κ0

T

[
1− T

κ0

d − 2
π

{ 1
Λ

− 1
Λ0

}
+O(T 2/κ2

0)
]

, (3)

which depends on the momentum Λ. The parameter κ0 = κ(Λ0) is the “bare” coupling taken
at the high momentum cut-off Λ0 = π/b0, which is given by a “lattice spacing” or bond length
b0. Using also Λ = π/� we obtain the renormalized κ = κ(�) as a function of the length scale �.
Following the procedure previously used for membranes, the persistence length can be defined
via

κ(Lp) ≡ 0 and, thus, Lp � π2

d − 2
κ0

T
. (4)

For the case of the polymer in the plane, the Hamiltonian simplifies to a free or Gaussian field
theory such that κ = κ0 is unrenormalized to all orders in κ0/T and, thus, Lp as defined via
κ(Lp) ≡ 0 would become infinitely large.
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A similar perturbative momentum-shell RG procedure is possible in the so-called Monge
parametrization of a weakly bent semiflexible polymer, analogous to the RG analysis for two-
dimensional membranes [9]. Then the polymer is parametrized by its projected length x with
0 < x < Lx, where Lx is the fixed projected length of the semiflexible polymer while its contour
length becomes a fluctuating quantity. The renormalized κ = κ(�x) becomes a function of
the projected length scale �x, which complicates a comparison with the result (3), which was
derived in an ensemble of fixed contour length. Using the analogous criterion κ(Lp) = 0 we
obtain Lp � 2π2κ0/(3d − 1)T within the Monge parametrization.

A comparison of the RG results from the non-linear σ-model, see eq. (4), and the one
obtained in the Monge parametrization with eq. (2) shows that the RG results for the persis-
tence length Lp are not compatible with the definition using the tangent correlation function.
This raises the general question which of the definitions should be preferred.

In this work we concentrate on a discrete description for semiflexible polymers, which is
equivalent to the one-dimensional classical Heisenberg model. The advantage of this model is
that the κ-renormalization as well as the tangent correlation function are exactly computable
in arbitrary dimensions d. Consequently a direct comparison of the persistence length deter-
mined via κ-renormalization and via the tangent correlation function is possible. We introduce
this model in the next section. The κ-renormalization is carried out in a similar fashion as
is commonly used for Ising-like spin systems. In contrast to the nonlinear σ-model, we find
nontrivial results for κ(�) both in two and in three dimensions. As expected for an exact
result, κ(�) is always positive and approaches zero only asymptotically. Finally, we analyze
the large scale behavior of κ(�) leading to a power series of exponentials with the same decay
length as obtained for the tangent-tangent correlations. We define this length scale to be the
persistence length of the polymer.

Theoretical model. – A discretization of the WLC Hamiltonian (1) should preserve its
local inextensibility. In addition, we want to use a discretized Hamiltonian which is locally
invariant with respect to full rotations of single tangents ti —in addition to the global ro-
tational symmetry of the polymer as a whole. A suitable discrete model is an inextensible
semiflexible chain model as given by [15]

H{ti} =
κ0

b0

∑M

i=1
(1− ti · ti−1), with t2i = 1, (5)

with M bonds or chain segments of fixed length b0. The semiflexible chain model is equivalent
to the one-dimensional classical Heisenberg model (except for the first term, which represents
a constant energy term) describing a one-dimensional chain of classical spins.

The partition sum reads

ZM =


 M∏

j=0

∫
dtj


 exp[−H{tj}/T ] =


 M∏

j=0

∫
dtj


 ∏M

i=1
Ti,i−1 , (6)

where we have introduced the transfer matrix

Ti,i−1 = exp [−K0(1− ti · ti−1)] , with K0 ≡ κ0/b0T . (7)

We can parametrize the scalar product of unit tangent vectors using the azimuthal angle
difference ∆θi,i−1 as ti · ti−1 = cos(∆θi,i−1). Then the transfer matrix can be expanded as

Ti,i−1 =
∞∑

m=−∞
λ(0)

m eim∆θi,i−1 , λ(0)
m (K0) = e−K0Im(K0) (8a)
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in two dimensions and

Ti,i−1 =
∞∑

l=0

(2l + 1)λ(0)
l Pl(cos∆θi,i−1), λ

(0)
l (K0) =

√
π

2K0
e−K0Il+1/2(K0) (8b)

in three dimensions, where Ik(x) denotes the modified Bessel function of the first kind and
Pl(x) the Legendre polynomials [16]. In the following, the sums

∑∞
m=−∞ for d = 2 and∑∞

l=0(2l + 1) for d = 3 are abbreviated by
∑(d)

n .
For simplicity, we restricted our analysis to d = 2 and d = 3 spatial dimensions, but

our results can easily be generalized to arbitrary dimensions d: The transfer matrix is then
expanded in Gegenbauer polynomials and the eigenvalues λ

(0)
l are proportional to modified

Bessel functions Il+d/2−1(K0).
The partition sum and tangent-tangent correlations may be calculated exactly for open

and periodic boundary conditions as was done, e.g., in d = 3 by Fisher [17] and Joyce [18]. For
arbitrary dimension d, the tangent-tangent correlation for open boundary conditions is simply

〈t(0) · t(L)〉 =
[
λ

(0)
1 (K0)/λ

(0)
0 (K0)

]L/b0
, (9)

which reduces in the continuum limit of small b0 or large K0 to (2).

Renormalization procedure. – The real-space functional RG analysis for the semiflexible
chain (5) proceeds in close analogy to the one-dimensional Heisenberg model [19] and similarly
to the Ising-like case where the ti’s are confined to discrete values [20]. Similar real-space
functional RG methods have also been used to study wetting transitions or the unbinding
transitions of strings [21, 22]. In each RG step, every second tangent degree of freedom is
eliminated. We introduce a general transfer matrix

Ti,i−1 = exp [h(ti · ti−1,K)] , (10)

where h = h(u,K) defines an arbitrary interaction function depending on the scalar product
of adjacent tangents u = ti · ti−1 and the parameter K. We start the RG procedure with an
initial value K = K0 and an initial interaction function h(u,K) = −K(1−u), see eq. (7). Also
for an arbitrary interaction function h(u,K) we can expand the transfer matrix in the same
sets of functions as in (8), which defines eigenvalues λm = λm(K) in 2d and λl = λl(K) in
3d. Initially, these eigenvalues are given by λm(K) = λ

(0)
m (K) and λm(K) = λ

(0)
l (K), see (8).

Integration over one intermediate tangent t′ between t and t′′ defines a recursion formula
resulting in a new interaction function h′ = h′(u,K) and an energy shift g′ by

exp[h′(t · t′′,K) + g′(K)] =
∫

dt′ exp[h(t · t′,K) + h(t′ · t′′,K)], (11)

where the energy shift g′ is determined by the condition that h′(1,K) = h(1,K) = 0, i.e., the
energy is shifted in such a way that the interaction term is zero for a straight polymer. This
leads to

exp[g′(K)] =
∫

dt exp[2h(t · t′,K)]. (12)

The recursions (11) and (12) are exact and can be used to obtain an exact RG relation for
the eigenvalues λ

(N)
k after N RG recursions,

λ
(N+1)
k =

[
λ

(N)
k

]2 / { ∑(d)

n

[
λ(N)

n

]2
}

=
[
λ

(0)
k

]2N /{ ∑(d)

n

[
λ(0)

n

]2N }
. (13)
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In general, the new and old interactions h′(u,K) and h(u,K) will differ in their functional
structure. Thus the renormalization of the parameter K cannot be carried out in an exact and
simple manner as for one-dimensional Ising-like models with discrete spin orientation [20]. The
only fixed point function of the recursion (11) is independent of u, i.e., h∗(u,K) = 0 because
of h∗(1,K) = 0. This result, together with the condition h′(1,K) = 0, which is imposed at
every RG step, suggests that the function h′(u,K) can be approximated by a linear function

h′(u,K) � −K ′(K) (1− u) for u = t · t′′ � 1, (14)

as long as the scalar product u = t · t′′ is close to one, i.e., sufficiently close to the straight
configuration. This approximation should improve when the whole function h′(u,K) becomes
small upon approaching the fixed point h∗(u,K) = 0 after many iterations, i.e., on large length
scales. Using the approximation (14), K ′(K) is defined by the slope of h′(u,K) at u = 1,

K ′(K) ≡ dh′(u,K)
du

∣∣∣
u=1

=
d
du

exp
[
h′(u,K)

]∣∣∣
u=1

, with u = t · t′′. (15)

Equivalently, one could expand the explicit expression for h′(x,K) given by (11) and the right-
hand side of (14) for small tangent angles and compare the coefficients. In order to extract the
renormalized bending rigidity κ′ from the result for K ′, one has to take into account that K ′

also contains the new bond length b′ = 2b, which increases by a factor of 2 at each decimation
step. Therefore,

κ′(K) = 2bT K ′(K). (16)

Using this procedure we can calculate the renormalized bending rigidity κN after N RG re-
cursions in 2d and 3d starting from the exact RG recursions (13) for the eigenvalues. Inserting
the renormalized eigenvalues into (8), taking the derivative according to (15) and applying
the rescaling (16) finally yields the result

κN

κ0
=

2N

K0

{∑(d)

n

[
λ(0)

n (K0)
]2N

A(d)
n

}/{ ∑(d)

n

[
λ(0)

n (K0)
]2N }

, (17)

with A
(2)
n ≡ n2 and A

(3)
n ≡ 1

2n(n + 1). In the following we will interpret κN as a continu-
ous function κ(�) of the length scale � by replacing the rescaling factor 2N = bN/b0 by the
continuous parameter �/b0.

Persistence length. – The sums in the expressions for the effective bending rigidity (17)
can be computed numerically. Figure 1 displays the results for κ(�)/κ0 as a function of �/b0

for K0 = 1000 and in 2d and 3d. The value K0 = 1000 is appropriate for a semiflexible
polymer with κ0/T = 10µm and a bond length b0 = 10nm, which is close to experimental
values for F-actin [2,3]. For DNA, appropriate values are κ0/T � 50 nm and b0 � 0.3 nm and,
thus, K0 � 150.

As long as � is small, κ decays almost linearly in d = 3, which is also in qualitative
agreement with the result (3) from the RG of the nonlinear σ-model. For d = 2 the decay is
much slower at small length scales, but, in contrast to the non-linear σ-model where κ is not
renormalized. This qualitative difference is due to the following important difference between
the Heisenberg and the nonlinear σ-model: Parametrizing the WLC model (1) via tangent
angle leaves only quadratic terms ∝ (∆θi,i−1)2, whereas the discrete semiflexible chain (5)
gives terms ∝ 1− cos(∆θi,i−1)2, which represent the full expansion of the cosine and obey the
local invariance under full rotations.

As � increases κ(�) approaches zero only asymptotically. Therefore, the definition of the
persistence length as length scale where the renormalized κ vanishes, κ(Lp) = 0 —which is
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Fig. 1 – Renormalized bending rigidity κ(�)/κ0 as a function of the length scale �/b0 = 2N for
K0 = 1000 for d = 2 (◦) and d = 3 (•) according to the recursion relation (17). The lines show the
asymptotic behavior for � � κ0/T and � � κ0/T according to eqs. (18) and (20), respectively.

usually used for fluid membranes— would always give an infinite result. We propose not to
ask at which length scale the renormalized κ reaches zero, but rather how it reaches zero.
For � ≥ b0K0 = κ0/T the sums in (17) converge fast and one has to include only the first
few terms for accurate results. In fact, one can replace the Bessel functions contained in
the eigenvalues λ

(0)
k , see (8), by their asymptotic form Ik(x) ≈ (x/2π)−1/2 exp[x − (k2 −

1/4)(2x)−1] for large x [16]. This is justified for sufficiently large K0 � 100, which is fulfilled
by semiflexible polymers like F-actin (K0 � 1000) or DNA (K0 � 150). Using this asymptotics
we find (λ(0)

m (K0))�/b0 ∼ e−m2�/2b0K0 for d = 2 and (λ(0)
l (K0))�/b0 ∼ e−l(l+1)�/2b0K0 for d = 3.

Moreover, we may expand (17) as a power series in e−�T/κ0 and obtain

κ(�)/κ0 ≈ (�T/κ0)
(
2e−�T/2κ0 − 4e−�T/κ0 + 8e−3�T/2κ0 − . . .

)
for d = 2,

κ(�)/κ0 ≈ (�T/κ0)
(
3e−�T/κ0 − 9e−2�T/κ0 + 42e−3�T/κ0 − . . .

)
for d = 3 .

(18)

The characteristic length scales in the expansions are 2κ0/T in d = 2 and κ0/T in d = 3, which
are, therefore, a natural definition for the persistence length Lp. For general dimensionality
d, the exponent of the first term is determined by the order of the Bessel function appearing
in the eigenvalue. Thus the RG calculation leads to a persistence length

Lp =
2κ0

T (d − 1)
, (19)

which agrees exactly with the result (2) based on the tangent correlation function.
Our definition based on the large-scale asymptotics of the exact RG flow is qualitatively

different from the definition (4) used in perturbative RG calculations. While the result (3)
from the nonlinear σ-model is only valid for small length scales � � κ0/T , where κ(�) is close
to κ0, the expansion (18) describes the region � � κ0/T . Indeed, taking the expansion of (17)
for � � κ0/T , that is

κ(�)/κ0 ≈ 1− (8π2κ0/�T )e−2π2κ0/�T +O(�e−4π2κ0/�T ) for d = 2 ,

κ(�)/κ0 ≈ 1− (�T/6κ0)−O(�2T 2/κ2
0) for d = 3 ,

(20)
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and defining Lp by the exponential decay length in two dimensions, respectively, by the linear
term in three dimensions leads to a persistence length, which is considerably bigger than the
value (19) found above. Hence it is not surprising that the two computations (3) and (18) yield
different results. The slow exponential decay in the expansion (20) for d = 2 is reminiscent of
the non-renormalization of κ in the non-linear σ-model, see eq. (3), and leads to a “plateau”
in the numerical result for κ(�)/κ0 for � � κ0/T in fig. 1.

Conclusion. – In conclusion we have presented a definition of the persistence length Lp of
a semiflexible polymer or one-dimensional fluid membrane based on the large scale behaviour of
the RG flow of the bending rigidity κ, as obtained from a functional real-space RG calculation.
Our result (19) for Lp generalizes the conventional definition based on the exponential decay
of a particular two-point tangent correlation function and gives identical results for Lp, thus
justifying past experimental and theoretical work based on this conventional definition. The
RG flows (17) or (18) allow us to follow the behaviour of a semiflexible polymer from a
stiff polymer on short length scales to an effectively flexible polymer on large length scales
quantitatively as a function of the length scale. On large length scales, our functional RG
gives qualitatively different results from perturbative RG techniques, which have been used
for the closely related problem of fluid membranes [8–13] and which we also applied to the
one-dimensional semiflexible polymer. The generalization of our renormalization approach to
two-dimensional fluid membranes is complicated by the more involved differential geometry of
these two-dimensional objects and remains an open issue for future investigation. In analogy
with our results for one-dimensional polymers and filaments as described here, we expect
that a proper definition of the persistence length for two-dimensional fluid membranes again
requires the aymptotic RG flow on large length scales which remains to be determined.
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