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Abstract. The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via
Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a
single surface domain γ, which strongly attracts this membrane. If the vesicle is larger than the attractive
γ domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain.
Once the contact line of the adhering vesicle has reached the boundaries of the γ domain, further deflation
of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are
now governed by the bending rigidity. For a circular γ domain and a small bending rigidity, the membrane
oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area
increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the
circular γ domain. The lateral localization of the vesicle’s center of mass by such a domain is optimal for a
certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity.
For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the
stripe varies nonmonotonically with the adhesion strength.

PACS. 87.16.Dg Membranes, bilayers, and vesicles – 68.15.+e Liquid thin films – 87.16.Ac Theory and
modeling; computer simulation

1 Introduction

In the last decade, a growing number of applications for
fluid vesicles has been developed. One important applica-
tion area are vesicles as components in microtechnological
systems. Vesicles can be used, for example, as microcom-
partiments for the investigation of chemical reactions [1],
as modules of membrane sensors [2,3], and as basic build-
ing blocks of complex membrane networks [4]. In most of
these applications, the vesicles have to be spatially immo-
bilized, and so they are typically attached to a substrate.
In order to localize the vesicle within the substrate surface
plane, one may use an attractive circular domain within a
chemically heterogenous substrate. In a further step, adhe-
sive stripes may be used to elongate the adhering vesicle
or to specify pathways along which the adhering vesicle
can be moved by an external force.

Vesicle adhesion on chemically structured substrates
has been investigated for various widths of the attractive
domains. In many cases, the extensions of the attractive
patches are distinctly larger than the vesicle diameter. De-
pending on the adhesion strength the adhering vesicles
may either stay intact or they may rupture and fuse with
adjacent vesicles, forming a lipid bilayer that covers the
area of the attractive patch [5]. In this way, a set of lipid
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bilayer stripes can be created. If suitable proteins or lig-
ands are included in the membranes, the stripes can be
used for cell recognition or to test the adhesion strengths
to receptor-covered beads [6,7]. In another experiment,
the width of the adhesive stripes was chosen distinctly
smaller than the diameter of the adhering giant vesicle [8].
As the vesicle adheres to the substrate, the stripes gener-
ate strong local membrane deformations and permeations
which again disappear after one or two minutes.

If the attractive domains are used to localize the vesi-
cles, the diameter of the domains is comparable or slightly
smaller than that of the vesicle. Examples are vesicles
linked by lipid nanotubes to serve as reactors in a chemical
nano-laboratory. Circular attractive domains have been
used to localize the vesicles which were linked by the some-
times rather complex network of lipid nanotubes [4]. Ar-
rays of isolated vesicles and cells are of great relevance for
biosensors since they combine a large detection area with
the facility to discern single biomolecule reactions (com-
pare with Refs. [9,10]). In order to avoid interference or
fusion of neighboring vesicles, the attractive patches or
stripes must be separated by sufficiently large distances.
One scope of this article is to determine the lateral ex-
tension and the range of lateral fluctuations for vesicles
adhering to an attractive substrate region.

Equilibrium shapes of free vesicles and vesicles which
adhere to a homogeneous substrate have been studied
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analytically by several groups. Shape equations for ax-
ially symmetric vesicles have been derived and numeri-
cally solved in the early nineties of the last century [11,
12]. Some years later, analytic expressions for the shape
of axisymmetric adhering vesicles were derived for the
case of low bending rigidity [13,14]. Some general prop-
erties of the adhesion zone boundary were found for non-
symmetrical vesicles adhering to not necessarily planar
substrates [15]. Dynamical aspects of vesicle adhesion have
been investigated experimentally and analytically for ho-
mogeneously binding vesicles and vesicles with mobile
sticker molecules [16–18]. Further analytic studies were
made for the force-induced unbinding of vesicles [19,20]
and the lateral motion of vesicles occurring under certain
conditions [21,22]. At finite temperature, thermal fluctu-
ations are typically of great relevance. As recently shown
for free vesicles, thermal fluctuations can infer qualitative
changes of the vesicle morphology [23]. The influence of
thermal fluctuations on vesicles which adhere to a homo-
geneous substrate has been studied with analytical [24]
and simulation methods [25–27].

In this article, we investigate properties of vesicles ad-
hering to a chemically heterogenous substrate. We assume
that the substrate has two types of surface domains, γ and
δ, which attract and repel the vesicle, respectively. In the
following, we are interested in substrates with attractive
domains whose characteristic lengths are comparable with
the vesicle diameter. Properties of the equilibrium shape
of vesicles on finite domains have been presented in an ar-
ticle in 2005, together with a description of related experi-
ments [28]. However, influences of thermal fluctuations on
the morphology of these vesicles have neither been studied
theoretically nor experimentally in detail. In this article,
we give an insight into fluctuation-based phenomena and
provide results relevant for the localization and controlled
deformation of adhering vesicles.

In the absence of fluctuations, the shape of a vesicle
adhering to a finite attractive patch has been shown to be
intimately related to the shape of a liquid droplet wetting
the same surface patch [28]. Since the energy functional
for the shape of an adhering vesicle is similar to that of
a liquid droplet on a substrate except for the bending en-
ergy and the constant surface area, the shapes that min-
imize the energy functional of an adhering vesicle with
small bending rigidity and those of droplets show simi-
lar properties. Therefore, adhering vesicles with relatively
low bending rigidity or relatively large membrane tension
are predicted to behave very similar to adhering liquid
droplets, if thermal fluctuations are negligible. In this ar-
ticle, we use Monte Carlo simulations and a simple ana-
lytic approach to explore the relation between the wetting
behavior of liquid droplets and the adhesion of strongly
fluctuating vesicles.

The article is organized as follows. After a description
of the model system in Section 2, we report results from
Monte Carlo simulations for a fluid vesicle that adheres to
a planar substrate with a circular γ domain in Section 3.
In this context, we investigate how strongly the vesicle is
localized laterally on this attractive domain. In Section 4,

we present the results of similar simulations for a vesicle
on a striped γ domain within the substrate.

2 The model system

We are interested in the properties of the surface shape
Sve of an adhering vesicle which is considered to have a
fixed area A = 4πR2

0. The vesicle membrane can perform
fluctuations on roughly all length scales between the vesi-
cle diameter and the thickness of the membrane. In the
simplest case, the elastic bending energy can be written
as [29,30]

Eel = 2κ

∮

Sve

dA M2, (1)

where κ is the bending rigidity and M is the mean cur-
vature. Typically, vesicles used in microtechnology have
diameters of the order of 10µm [1,3,4] and a bending
rigidity of the order of κ ≃ 10T , where the Boltzmann
constant kB is absorbed into the temperature T . The vesi-
cle volume can change, in principle. It can be stabilized
by osmotically active particles in- and outside the vesi-
cle, which cannot permeate the lipid membrane. These
molecules, which are for instance sugar molecules, have
an osmotic impact on the vesicle volume V which involves
the energy contribution

Eosm = T

(

−N ln
V

Vref
+ cexV

)

(2)

to the configurational energy. Here, N is the number of
osmotically active particles inside the vesicle, Vref is a
reference volume, and cex is the concentration of osmoti-
cally active particles outside the vesicle. In the following,
cex will simply be called the exterior concentration. If the
vesicle is attached to a homogenous attractive substrate
surface along the xy-plane the adhesion energy is given by

Ead =

∮

Sve

dA V (z), (3)

where V (z) is the attractive substrate potential per mem-
brane area. In the following, the membrane-substrate in-
teraction is modelled by a 9-3-Lennard-Jones potential
VLJ(z). It has the functional form

V (z) = VLJ(z) ≃ WLJ

(

1

90

(σLJ

z

)9

− 1

12

(σLJ

z

)3
)

.

(4)
The strength of the potential per unit membrane area is
given by WLJ , while σLJ is the characteristic range of the
potential. The maximum adhesion strength,

Wmax ≡ −min
z>0

(V (z)) =

√
10

36
WLJ , (5)

is attained for separation z = zmax ≡ (2/5)1/6σLJ be-
tween membrane and substrate. The Lennard-Jones po-
tential was chosen because it is smooth, short-ranged and
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Fig. 1. Schematic plot of the weighting function Φ(s, b) where
ℓ is the mean tether length in the tethered-beads model, 2b
is the diameter of the attractive domain and s is the distance
from the center of the domain.

computationally rather inexpensive even if integrated over
the surface of the model vesicle. Apart from these aspects,
VLJ serves as a simple generic model potential, represent-
ing typical attractive short-range interaction. Especially,
if the adhesion strength is large and most parts of the ad-
hering membrane are located close to the potential mini-
mum, VLJ is approximately harmonic like most other po-
tentials. Properties of vesicles adhering to a substrate via
VLJ are also comparable with those found for a square-
well potential. For both potentials we compared the ad-
hesion behavior of a vesicle with κ = 10T attached to a
homogenous substrate. Results for the 9-3-Lennard-Jones
potential with σ = 0.03 and those for a square-well po-
tential with a potential depth of Wmax and a well width
of σ/2 showed good agreement over the whole range of
adhesion strengths used in this article.

We consider a hard repulsive interaction at z = 0 to-
gether with an attractive interaction that is restricted to
a finite domain on the substrate, which is either a circle
or a stripe. A continuous transition zone between the at-
tractive γ domain and the repulsive δ region is achieved
with the help of the continuous function

Φ(s, b) = 1, for s < b − ℓ,
= b+ℓ−s

2ℓ , for b − ℓ ≤ s < b + ℓ,
= 0, for s ≥ b + ℓ,

(6)

where s is the distance from the center of the γ domain,
2b is the domain diameter and ℓ is the mean edge length
of the used vesicle triangulation, as described below. The
function Φ(s, b), which is shown in Figure 1, is used as a
weighting function for the adhesion energy of a circular γ
domain with radius Rγ . The latter energy is now obtained
via

Ec
ad =

∮

Sve

dA Φ(r,Rγ)V (z), (7)

Fig. 2. Geometry of a vesicle adhering to an attractive circular
γ domain (grey bar) of radius Rγ , surrounded by a repulsive
δ domain (dotted region). Adhering vesicles with low bending
rigidity (irregular grey line) fluctuate around a spherical cap
geometry characterized by the spherical radius Rsp and the
circular base radius Rb.

with r =
√

x2 + y2, see Figure 2. Correspondingly, the
adhesion energy of a γ stripe with width Lγ is defined as

Es
ad =

∮

Sve

dA Φ(x, Lγ/2)V (z). (8)

In the simulations the vesicle is represented by a trian-
gulated surface, including Nt = 996 triangles. For each
triangle, we have used the coordinates xt and yt of its
center of mass to weight the adhesion energy of the trian-

gle with Φ(
√

x2
t + y2

t , Rγ) and Φ(xt, Lγ/2) for the circular
and the striped domain, respectively.

The geometry of the model surface is well defined by
the coordinates of the vertices and a list that indexes
which vertices are connected by edges. In our simulation,
the tethered beads model ensures that the distance be-
tween any pair of beads is larger than d ≃ R0/16 while

vertices connected by an edge stay closer than
√

3d. In
each Monte Carlo (MC) move, pseudo-random numbers
are used to alter the existing configuration. If this leads
to an increase of the energy ∆E > 0, the new configura-
tion is rejected in favor of the old one with a probability
1 − exp(−∆E/T ), as originally introduced by Metropolis
and coworkers [31]. Configurations are altered by two dif-
ferent types of MC moves, which are chosen in random
order: In the displacement move the position of one ver-
tex is changed by a small random vector. In the bond-flip
move [32], the shared edge of two neighboring triangles
is removed and the previously unconnected vertices are
connected. Simulations typically consisted of 107Nt equi-
libration moves and the same number of moves to calculate
averages.

The simulations were performed with κ = 0.1–20T .
For the short-ranged attractive potential in the γ domain
we used σLJ = 0.03R0.

The influence of osmotically active particles is incor-
porated by equation (2) which avoids to simulate the in-
dividual particles. We choose N = 104 osmotically active
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particles inside the vesicle and an exterior concentration
cex with 2600 ≤ cexR3

0 ≤ 4000 in the surrounding medium.
These values reflect the conditions in experiments with
typical concentrations c = 10−4 molm−3 of osmotically
active particles and corresponds to cVT ≃ 103 κ.

One important quantity that characterizes the geom-
etry of an adhering vesicle is its contact area A∗, which
is the size of the membrane region which adheres to the
substrate.

For a triangulated vesicle, we found that A∗ can be
well approximated by the sum of the areas of all triangles
that contribute a negative energy less than −T to Ead.
This definition is well suited for values WLJ & 2000T/R2

0,
corresponding to total adhesion energies Ead . −50T
and maximum adhesion strengths Wmax & 175T/R2

0 ≃
17.5κ/R2

0 for κ = 10 T . However, for distinctly lower
values of WLJ the minimum adhesion energy per tri-
angle, which is −1.4 × 10−3WLJ , gets comparable with
the threshold value −T . As a consequence, the adhe-
sion area undergoes strong fluctuations and drifts for
WLJ . 2000T/R2

0 and our definition of A∗ gets inade-
quate for WLJ . 1000T/R2

0. Therefore we have restricted
simulations to values WLJ ≥ 2000T/R2

0, with one excep-
tion in Figure 6b, where reliable results were obtained for
WLJ = 1500T/R2

0 by averaging over 3 × 107Nt Monte
Carlo moves.

3 Adhesion to an attractive circular domain

Influence of bending rigidity

We consider a vesicle adhering to a circular adhesive γ
domain on an otherwise repulsive substrate. If the vesicle
is located at the center of the domain and the domain
radius is sufficiently large, the vesicle behaves in the same
way as on a homogenous, attractive substrate.

Depending on the bending rigidity of the vesicle, dif-
ferent regimes can be distinguished. The strong adhe-
sion regime is characterized by |Ead| ≫ Eel such that en-
ergy contributions from membrane curvatures are negligi-
ble [11,28]. In this case, the vesicle tends to maximize the
adhesion area A∗. For an approximately fixed membrane
area A this leads to a minimization of the non-adhering
membrane area Ana ≡ A−A∗. At finite temperature, the
shape is subject to small thermal fluctuations, which are
smoothed by the membrane tension that is induced by the
adhesion.

If the external concentration is increased, the vesicle
volume decreases and the adhesion area A∗ gets larger. If
the vesicle volume V is continually decreased and the γ do-
main is smaller than A/2, the adhesion area A∗ eventually
covers the whole γ domain. At a further decrease of V, the
vesicle does not gain more adhesion energy by increasing
the adhesion area. As discussed in [28], a further decrease
of V should leave A∗ unchanged while the membrane ten-
sion decreases. In the appendix, the latter scenario is stud-
ied using a simple analytic model. The latter model pre-
dicts that the vesicle membrane fluctuates strongly around
an average surface with spherical-cap geometry.

(a)

(b)

Fig. 3. Typical configurations of a fluid vesicle with bend-
ing rigidity κ = 0.1 T that is adhering to an attractive circu-
lar γ domain (gray bar segment) surrounded by a repulsive
δ domain (black bar segments). The γ domain has potential
strength WLJ = 5000 T/R2

0 and radius (a) Rγ = 1.1 R0 or (b)
Rγ = 0.5 R0. The length R0 is defined via the vesicle surface
area A = 4πR2

0. Inside the vesicle, there are N = 104 osmot-
ically active particles. Configurations for different concentra-
tions cex of osmotically active particles outside the vesicle are
visualized by vertical cuts through the vesicles’ center of mass.
The contours of the vesicles are plotted on top of the shaded
areas that resemble the vesicles’ interior.

Thus, in the limit of low bending rigidity, the average

shape of the fluctuating vesicle is found to approach the
surface shape of a liquid droplet. For lipid membranes,
the bending rigidity is of the order of κ ≃ 10T or larger
(see, e.g., [33]), and the fluctuations are essentially re-
duced. Other surfactants may form membranes with dis-
tinctly lower bending rigidities. For example, a mixture
of cetyltrimethylammonium tosylate and sodium dodecyl-
benzene sulfonate (CTAT : SDBS) in a sodium chloride
brine has recently been found to form unilamellar vesi-
cles [34]. Measurements of the bending rigidity revealed
extremely low values between κ ≃ 0.01T and κ ≃ 0.62T ,
depending on the CTAT : SDBS composition and the salt
concentration.

In the following, the deflation of vesicles, adhering to a
finite circular γ domain, is discussed in more detail. First,
simulations were performed for a very low bending rigidity
κ = 0.1T . The vesicle volume was determined by the os-
motic conditions as described in the previous section. For
comparison, a second series of simulations was run with
κ = 10T .
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Fig. 4. Typical configurations of a vesicle with bending rigidity
κ = 10 T for the same geometry as in Figure 3.

Typical configurations of a vesicle with κ = 0.1T are
shown in Figure 3 for a large and a small domain radius
and different exterior concentrations cex. As predicted
in [28], they reveal strong membrane fluctuations. By av-
eraging over the small-wavelength deflections, we find the
result predicted by the approach in the appendix: The
membrane fluctuates around an average shape which is
approximately a spherical cap.

The amplitudes of the fluctuations increase with the
area difference Ana−Aav between Ana and the area of the
average shape Aav of the non-adhering membrane. Thus,
the membrane fluctuates around the smallest possible sur-
face for a given volume V with a circular base area, which
is a spherical cap.

Altogether we notice:

– A vesicle which is adhering to a sufficiently large
and sufficiently attractive domain is in a high-tension
regime where the membrane forms a spherical cap in
order to maximize the adhesion area.

– If a vesicle is adhering to a sufficiently small, attrac-
tive, circular domain, deflation leads to a low-tension
regime; with a sufficiently low bending rigidity of the
membrane, the average shape of the fluctuating mem-
brane becomes a spherical cap in order to maximize
the membrane fluctuations.

Figure 4 shows vesicle shapes for the same conditions
as in Figure 3 but for κ = 10T . The surface is much
smoother than for κ = 0.1, but the average shape of
the vesicle deviates distinctly from the spherical cap: The
height to width ratio is smaller and there is a smooth tran-
sition from the flat adhering to the non-adhering part.

For a more quantitative analysis we fitted the center rc

and the radius Rsp of a sphere, cut at the substrate area,
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Fig. 5. Reduced squared deviation Var(Rsp)/R2

0 from the
spherical-cap geometry as a function of the reduced concentra-
tion cexR3

0 of osmotically active molecules outside the vesicle.
The reference length R0 is defined via the vesicle surface area
A = 4πR2

0. Inside the vesicle there are N = 104 osmotically ac-
tive particles. Results are shown for bending rigidity κ = 10 T
(◦) and κ = 0.1 T (•). The dashed line shows results of the
analytic approach, discussed in the appendix. Solid lines are
intended to guide the eye.

with the non-adhering part of the vesicle configurations.
Therefore, only the Nna non-adhering vertices ri of the tri-
angulated vesicle were considered for the minimization of

Var(Rsp) ≡
1

Nna

Nna
∑

i=1

(‖ri − rc‖ − Rsp)
2
, (9)

which vanishes for vesicle configurations with a perfect
spherical-cap geometry. As shown in Figure 5, the
deviation from the spherical cap increases strongly with
the exterior concentration cex for κ = 10T . In contrast,
vesicles with a low bending rigidity κ = 0.1T can be
fitted well by a spherical cap over the whole concentration
regime as studied here. The dashed line shows results
based on the model system in the appendix for a bending
rigidity κ = 0.1T and a maximum wave number (2l)−1.
The values as obtained from the model are slightly lower
than the corresponding simulation results. In the follow-
ing, we use Rsp for the spherical radius and Rb for the
circular base area of the spherical cap. The whole geome-
try is shown in Figure 2. Values of πR2

b were found to agree
well with the separately measured projected contact area.

In Figure 6, the average size A∗
p of the projected con-

tact area is shown as a function of the potential strength
WLJ of the attractive domain for different osmotic condi-
tions. As expected, A∗

p increases monotonically with WLJ .
An increase of the exterior concentration cex leads to a de-
crease of the average vesicle volume. Such a decrease of the
volume may have two consequences: On the one hand, the
surface area of the average spherical-cap geometry may
shrink, giving rise to stronger membrane fluctuations and
a higher entropy. On the other hand, the base area of the
average spherical cap can get larger so that the adhesion
energy gets more negative. As a consequence, the behav-
ior of the average projected area A∗

p of a vesicle adhering
to a circular domain changes qualitatively with the size of
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0 as a function
of the reduced adhesion potential strength WLJR2

0/T with a
bending rigidity κ = 0.1 T . The length R0 is defined via the
vesicle surface area A = 4πR2

0. Lines are intended to guide
the eye. (a) For a circular γ domain with Rγ = 1.1R0, the
projected contact area A∗

p increases as the vesicle is deflated,
i.e. with increasing exterior concentrations cex = 2650/R3

0 (+),
cex = 3200/R3

0 (×), and cex = 3800/R3

0 (�). (b) For Rγ =
0.5R0, the projected area decreases under deflation.

the domain radius Rγ . For Rγ = 1.1R0 the average size
A∗

p of the projected contact area increases with increasing
exterior concentration cex, i.e. deflating volume, while for
Rγ = 0.5R0 the size of A∗

p decreases with increasing cex

for all attraction strengths. For a large radius of the at-
tractive domain, the reduction of the volume allows the
vesicle to increase the projected contact area so that the
remaining γ domain is covered. For the small radius Rγ the
attractive domain is essentially covered with the adher-
ing membrane even for the largest vesicle volume, found
with the exterior concentration cex = 2650R−3

0 . If cex is
increased, the vesicle volume decreases and promotes fluc-
tuations of the membrane which on average turn out to
reduce the projected contact area.

A corresponding effect can be observed for the ra-
dius Rsp of the average spherical cap as a function of the
domain radius Rγ , as shown in Figure 7(a) for WLJ =

(a)
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Fig. 7. Reduced spherical radius Rsp/R0 of a spherical cap
fitted to a vesicle with bending rigidity κ = 0.1 T that is ad-
hering to an attractive domain with radius Rγ . The length
R0 is defined via the vesicle surface area A = 4πR2

0. Results
are shown for adhesion potential strengths WLJ = 2000 T/R2

0

(a) and WLJ = 4000 T/R2

0 (b), and for exterior concentra-
tions cex = 2800/R3

0 (♦), cex = 3000/R3

0 (�), cex = 3200/R3

0

(▽), cex = 3400/R3

0 (×), and cex = 3600/R3

0 (+). Lines are in-
tended to guide the eye.

2000T/R2
0 and in Figure 7(b) for WLJ = 4000T/R2

0. Re-
sults are presented for various values of cex. For small
domain radii Rγ , vesicles exposed to smaller cex and cor-
respondingly larger volume are more inflated and have
a larger spherical radius Rsp than vesicles with a smaller
volume. For WLJ = 2000T/R2

0 the radius of Rsp increases
with increasing Rγ up to Rγ ≈ 0.9R0 where vesicles

exposed to lower exterior concentration cex ≤ 3200R−3
0

reach a plateau, while vesicles exposed to larger cex con-
tinue to increase. Apparently, for WLJ = 2000T/R2

0 the
larger vesicles have an optimum adhesion area correspond-
ing to the size of the γ domain with a radius Rγ ≈ 0.9R0.
Thus, for larger Rγ the geometry of the vesicles exposed
to low cex remains unchanged and Rsp stays constant.
For WLJ = 4000T/R2

0 the value of Rsp increases with Rγ

over the whole range. However, vesicles exposed to high
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Fig. 8. Probability density p(x, y) = p(r) for finding the pro-
jection of the vesicle’s center of mass onto the substrate at
a distance r =

p

x2 + y2 from the center of an attractive cir-
cular domain with radius Rγ = 0.5 R0 (+), Rγ = 0.9 R0 (×),
Rγ = 1.3 R0 (∗), and Rγ = 1.7 R0 (⊡). Results are shown
for potential strength WLJ = 2000 T/R2

0 and bending rigidity
κ = 15 T . The length R0 is defined via the vesicle surface area
A = 4πR2

0. Osmotic effects are excluded. Lines are intended to
guide the eye.

cex concentrations and low volume adapt more flexible
to large domain radii Rγ ≈ 1.1R0 so that the order is
reversed and vesicles exposed to the lowest cex have the
largest spherical radius Rsp.

Lateral localization of adhering vesicles

In the last paragraph, we have investigated the shapes of
fluid vesicles which adhere to an attractive circular do-
main. Such a setup may be used to fix the lateral position
of an adhering vesicle. Returning to vesicles composed of
lipid bilayers with typical bending rigidities κ = 10–15T ,
we investigate how much the center of mass of an adher-
ing vesicle can be localized by a circular attractive do-
main. Therefore, we analyze the fluctuations of the center
of mass of an adhering vesicle which provides information
for finding the center of mass at a certain position.

Let p(x, y) denote the probability density for finding
the center of mass of the vesicle interior at a given x-
and y-coordinate. The z-coordinate characterizes its dis-
tance from the substrate. Since the considered physical
system is axially symmetric with respect to the center
of the attractive circular domain, the probability density
p(x, y) depends only on the distance of the vesicle center

r ≡
√

x2 + y2 from the center of the domain, i.e.,

p(x, y) = p(r) (10)

and can be easily calculated from the probability density
p̃(r) for finding the vesicle’s center at any place with dis-
tance r from the center of the domain via

p(r) =
p̃(r)

2πr
. (11)
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Fig. 9. Probability density p(x, y) = p(r) for finding the pro-
jection of the vesicle’s center of mass onto the substrate at a
distance r =

p

x2 + y2 from the center of an attractive circu-
lar domain as in Figure 8 but with (a) altered bending rigidity
κ = 10 T , WLJ = 2000 T/R2

0 and (b) altered potential strength
WLJ = 4000 T/R2

0, κ = 15 T . Results are shown for domain
radii Rγ = 0.5 R0 (+), Rγ = 0.9 R0 (×), and Rγ = 1.3 R0 (∗).

L I

L
∗
I

L II

Fig. 10. Characteristic configuration of a vesicle adhering to
an attractive stripe on a planar substrate. Arrows indicate the
maximum extension of the vesicle perpendicular to the stripe
L⊥, the maximum extension of the contact area perpendicular
to the stripe L∗

⊥, and the length of the vesicle parallel to the
stripe L‖.
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(a) WLJ = 3000 T/R2

0 (b) WLJ = 6000 T/R2

0 (c) WLJ = 9000 T/R2

0

(d) WLJ = 12000 T/R2

0 (e) WLJ = 15000 T/R2

0 (f) WLJ = 18000 T/R2

0

Fig. 11. Typical configurations of an adhering vesicle with bending rigidity κ = 20 T to an attractive stripe of width Lγ = 0.3 R0.
The strength of the attractive potential varies between WLJ = 3000 T/R2

0 and WLJ = 18000 T/R2

0. In panel (d), the contact
line (dark solid line) attains a shape that is constricted in the middle.

With the help of a sampling scheme for probability distri-
butions that we introduced in [23], we calculated p(r) for
various values of the bending rigidity, the domain radius,
and the strength of its attractive potential, see Figures 8
and 9. The results indicate that there is an optimal do-
main radius of about

Rγ ≃ 0.9R0, (12)

which maximizes the probability p(r) for small r and pro-
vides the optimum lateral localization of the center of mass
above the attractive domain. Smaller domain sizes local-
ize the vesicle’s contact area close to the domain while
the rest of the membrane and, in particular, the center of
mass strongly fluctuates. For large values Rγ & 0.9R0, the
attractive domain is larger than the contact area so that
the vesicle can move laterally until it reaches the domain
boundary. Thus, the strength of localization of the whole
vesicle is reduced.

4 Adhesion to an attractive stripe-shaped

domain

The shape of a fluid vesicle adhering to an attractive

stripe-shaped domain with coordinates −Lγ

2 ≤ x ≤ Lγ

2 at

the planar substrate can be characterized by the following
geometrical quantities:

– L‖, the maximum extension of the vesicle parallel to
the stripe.

– L⊥, the maximum extension of the vesicle perpendic-
ular to the stripe.

– L∗
⊥, the maximum extension perpendicular to the

stripe for the membrane part which is closer to the
substrate than a distance z ≤ ℓ/4, where ℓ is the aver-
age tether length of the tethered-beads model.

Examples of L‖, L⊥, and L∗
⊥ are shown in Figure 10 for

a characteristic vesicle configuration. During the simula-
tions, thermal averages 〈L‖〉, 〈L⊥〉, and 〈L∗

⊥〉 are calcu-
lated from instantaneous values of L‖, L⊥, and L∗

⊥, which
are extracted from vesicle configurations on a regular ba-
sis. The quantity 〈L∗

⊥〉 is basically the average width of
the contact area.

We found the following types of vesicle shapes in our
simulations. For very small potential depths WLJ , the
vesicle has an almost spherical shape in contact with the
attractive stripe (Fig. 11(a)). The shape becomes bulge
like with increasing WLJ and, finally, changes into a mem-
brane tube with hemispheres on both ends. Such config-
urations are shown in Figures 11(b–f). For large bend-
ing rigidities and narrow stripes, there are intermediate
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Fig. 12. Thermal averages of (a) the total width 〈L⊥〉 of the vesicle perpendicular to the stripe and (b) the width 〈L∗
⊥〉 of the con-

tact zone of the vesicle in units of the reference length R0 as function of the reduced strength WLJR2

0/T of the attractive potential
of the stripe with width Lγ = 0.7 R0. The bending rigidity of the vesicle membrane has been set to κ = 5 T (+), κ = 10 T (×),
and κ = 20 T (∗). The length R0 is defined via the vesicle surface area A = 4πR2

0. Lines are intended to guide the eye.

configurations with a contact line shape that is constricted
in the middle (Fig. 11(d)).

The geometry of the vesicle adhering to the attractive
stripe was analyzed with Monte Carlo simulations as a
function of WLJ and κ. An increasing potential strength
WLJ results in an increasing thermal average 〈L‖〉 of the
vesicle extension parallel to the stripe in combination
with a decreasing thermal average 〈L⊥〉 of the maximum
extension perpendicular to the stripe. The same shape
change occurs if the bending rigidity κ is decreased. How-
ever, the thermal average of the contact area extension
〈L∗

⊥〉 perpendicular to the stripe shows a non-monotonic
dependence on WLJ . Plots of 〈L⊥〉 and 〈L∗

⊥〉 are shown in
Figure 12 as a function of the reduced adhesion strength
of the stripe.

The non-monotonic behavior of 〈L∗
⊥〉 as a function of

WLJ is an immediate result of the vesicle’s closed topology.
At low values of WLJ , the vesicle is almost spherical. With
increasing potential strength, the vesicle is more strongly
bound and the contact zone expands in all directions. At
larger values of WLJ , the width of the contact zone per-
pendicular to the stripe is reduced in favor of an expansion
along the stripe.

5 Conclusion

In this article, we have shown that, in addition to the os-
motic conditions inside and outside the vesicle membrane
and the geometry and strength of the attractive γ do-
main, fluctuations of the vesicle membrane can strongly
influence the adhesion behavior of fluid vesicles to chem-
ically structured substrates. If the whole attractive γ do-
main is covered by the contact area of the vesicle, further
deflation of the vesicle lowers the membrane tension. If
the bending rigidity is low, the membrane shows strong
fluctuations around an average shape. For an attractive
circular domain, this shape is approximately a spherical

cap, corresponding with the shape of an adhering drop or
the shape of adhering vesicles in the high-tension regime.
Larger bending rigidities yield smoother shapes which de-
viate clearly from a spherical-cap geometry.

For small bending rigidities, the qualitative behavior
of the projected contact area depends on the radius Rγ of
the attractive domain. While for large Rγ it increases with
increasing exterior concentration cex of osmotically active
particles, it shrinks with increasing cex for small radii Rγ .
A similar behavior is found for the spherical radius Rsp of
the average spherical cap shape.

The localization of a fluid vesicle at a predefined po-
sition on a planar substrate can be achieved by means of
chemically structuring the substrate surface. With an at-
tractive circular domain on the substrate, our simulations
show for various values of WLJ and κ that the strongest
localization of the vesicle is achieved by a domain radius
of Rγ ≃ 0.9R0. Smaller as well as larger domain radii dis-
tinctly reduce the localization strength.

For vesicles adhering to an attractive stripe, we in-
vestigated characteristic properties of the shape like L∗

⊥,
the maximum extension of the contact area perpendicu-
lar to the stripe. The thermal average 〈L∗

⊥〉 changes non-
monotonically with the adhesion strength.

Appendix A. A deflated vesicle adhering to

an attractive circular domain

In the following, a simple model is derived for a vesi-
cle with low bending rigidity adhering to an attractive
circular domain. We consider a deflated vesicle whose
non-adhering membrane region undergoes strong fluctu-
ations. The following considerations rationalize that the
membrane fluctuates around an average surface with the
shape of a spherical cap. Related to the area of the aver-
age surface, a tension can be defined which vanishes with
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increasing external concentration. Our approach is based
on the following assumptions:

– The reduced bending rigidity κ/T is small.
– Due to the adhesion potential the fluctuations in the

contact zone are strongly reduced. In comparison with
the oscillations of the non-adhering membrane, the ad-
hered membrane is rather flat and the intrinsic mem-
brane area in the contact zone can be approximated by
A∗ ≃ A∗

p ≃ πR2
γ (compare configurations in Fig. 3).

– The non-adhering intrinsic membrane surface Sna with
the intrinsic area Ana = A − A∗ is fluctuating around
a constant average shape Sav with an area Aav. Here,
Aav does not include the adhesion area A∗, which im-
plies A∗ + Aav ≤ A.

– The bending energy of the average shape Sav is small in
comparison with that of the strongly fluctuating shape
Sna of the intrinsic membrane.

– The amplitudes of the fluctuations around Sav are
small compared to R0.

– The volume V inside the vesicle is independent of the
fluctuations of Sin, so that the osmotic energy Eosm is
determined by the average shape Sav.

– The fluctuations of the intrinsic surface Sna around the
smooth average surface Sav can be determined from
those of a membrane with intrinsic area Ain on a flat
area of size Aav.

With these assumptions we can determine the optimum
average shape Sav for the non-adhering membrane Sna

with fixed intrinsic area Ana. The free energy of the system
is given by

F = Ffl + Eosm + Ead, (A.1)

where the adhesion energy is roughly constant and Ffl

includes the bending energy and the entropy due to the
membrane fluctuations. It can be written as

Ffl (Aav) = −T ln (Zfl) (A.2)

with

Zfl =

∫

d{h}δ (A[{h}] − Ana) exp (−Eel[{h}]/T ) ,

(A.3)
where {h} is the set of local fluctuation amplitudes. Ac-
cording to our assumptions, Ffl is independent of the os-
motic energy. The integral in equation (A.3) can be cal-
culated by a Fourier transformation. Analogously to the
approach presented by Fournier and coworkers [35], we
find:

Ffl (Aav) =
TAavΛ2

8π

((

(πR0Λ)
−2− 1

)

ln (q− 1)+ ln (q)
)

(A.4)
with

q = exp

(

8π
κ

T

Ana − Aav

Aav

)

. (A.5)

Λ is the largest wave number of the fluctuations, typically
determined by the membrane thickness. The smallest wave
number is set to (πR0)

−1. If R0, Λ, N , cex, κ, T and A
is fixed, F = Ffl(Aav) + Eosm(V ) + const is a function of

V and Aav. For fixed V , the optimum Aav is given by the
minimum of Ffl(Aav). However, for small enough

κ

T
<

1

4π

Aav

Ana − Aav
ln (πR0Λ) , (A.6)

the derivative
(

dF

dAav

)

V

is always positive so that Ffl is minimized by the small-
est possible area Aav. In our case, the smallest average
area for a given volume V is provided by a spherical-cap
geometry with an area Aav =: Asp(V ).

For a spherical cap with a given flat area of radius Rγ ,
there is a unique relation between V and Asp, namely

V =
π

6

√

Asp

π
− R2

γ

(

Asp

π
− R2

γ

)

. (A.7)

Hence, the shape of the average surface Sav is determined
by

dFfl(Asp)

dAsp

dAsp(V )

dV
+

dEosm(V )

dV
= 0. (A.8)

With the mean curvature M of the spherical cap, one has

dAsp(V )

dV
=

M

2
. (A.9)

If we define a tension Σsp ≡ dFfl(Asp)
dAsp

with respect to

the spherical-cap area Asp, equation (A.8) becomes the
Laplace equation, as expected:

Σsp
M

2
= Pos . (A.10)
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Fig. 13. Reduced tension ΣspR2

0/T of a deflated vesicle as
a function of the reduced external concentration cexR3

0. The
vesicle is adhering to a strongly adhesive circular domain with
radius Rγ = 0.5 (solid line), Rγ = 0.7 (dashed line), Rγ = 0.9
(dash-dotted line), and Rγ = 1.1 (dotted line). The curves
show results from the analytic approach described in the ap-
pendix.
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With ∆A ≡ Ana − Asp(Σsp), one has

ln

(

Σsp/κ + Λ2

Σsp/κ + (πR0)−2

)

= 8πκ
∆A

Asp
+ O

(

(

∆A

Ana

)2
)

,

(A.11)
which corresponds to the expression for ∆A(Σ) in equa-
tion (A.7) of [36], if terms of the order (∆A/Ana)2 can
be neglected. By solving equation (A.10), the tension Σsp

can be determined as a function of the adhesion zone ra-
dius Rγ and the external concentration cex. Results for
κ = 0.1T are shown in Figure 13.
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25. A. Baumgärtner, S.M. Bhattacharjee, J. Chem. Phys. 107,

4390 (1997).
26. T. Gruhn, R. Lipowsky, Phys. Rev. E 71, 011903 (2005).
27. T. Gruhn, T. Franke, R. Dimova, R. Lipowsky, Langmuir

23, 5423 (2007).
28. R. Lipowsky, M. Brinkmann, R. Dimova, T. Franke, J.

Kierfeld, X. Zhang, J. Phys.: Condens. Matter 17, S537
(2005).

29. P.B. Canham, J. Theor. Biol. 26, 61 (1970).
30. W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
31. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.

Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).
32. D.M. Kroll, G. Gompper, Science 255, 968 (1992).
33. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).
34. B.A. Coldren, H. Warriner, R. van Zanten, J.A. Zasadzin-

ski, E.B. Sirota, Proc. Natl. Acad. Sci. U.S.A. 103, 2524
(2006).

35. J.-B. Fournier, A. Ajdari, L. Peliti, Phys. Rev. Lett. 86,
4970 (2001).

36. R. Lipowsky, J. Phys. II 2, 1825 (1992).


