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Biological membranes have properties and behavior that emerge from the propagation
of the molecular characteristics of their components across many scales. Artificial smart
materials, such as drug delivery vehicles and nanoparticles, often rely on modifying
naturally-occurring soft matter, such as polymers and lipid vesicles, so that they possess
useful behavior. Mesoscopic simulations allow in silico experiments to be easily and
cheaply performed on complex, soft materials requiring as input only the molecular
structure of the constituents at a coarse-grained level. They can therefore act as a guide
to experimenters prior to performing costly assays. Additionally, mesoscopic simulations
provide the only currently feasible window on the length and time scales relevant to
important biophysical processes such as vesicle fusion. We describe here recent work
using Dissipative Particle Dynamics simulations to explore the structure and behavior
of amphiphilic membranes, the fusion of vesicles, and the interactions between rigid
nanoparticles and soft surfaces.

Keywords: Dissipative particle dynamics; simulations; lipid membranes; vesicle fusion;
nanoparticles.

1. Introduction

Computer simulations have been used to study the properties of small amounts of
matter for more than 50years, but it is only in the last decade or so that such simu-
lations have been able to approach the length and time scales relevant to biological
processes. The Molecular Dynamics (MD) technique was first used to study the
properties of a set of hard disks1 by integrating Newton’s equations of motion. The
Monte Carlo (MC) technique2 was invented to calculate thermodynamic properties
of matter, such as the equation of state. Even as MD simulations have become more
applicable to experimental systems with the development of increasingly accurate,
and complex, force fields, they remain limited to nanometer length scales by the
computational demand of calculating the interactions amongst all the particles.
For biological systems that are immersed in aqueous solvent, reaching beyond tens
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of nanometers and a few microseconds requires the use of prohibitively-expensive
supercomputers.

Such restrictions have driven the development of coarse-grained, or mesoscopic,
simulations that are able to follow the dynamical behavior of micron-sized amounts
of matter for microseconds and, sometimes, milliseconds. By attempting to keep
only those molecular details that are expected to be essential in determining the
long length- and time-scale properties of a system, mesoscopic simulations are able
to represent dynamical phenomena in systems that are visible in the light micro-
scope. This provides fascinating glimpses into the complex, dynamic life of cells,
but also gives us the ability to model and visualize the properties of artificial mate-
rials, such as vesicles and nanoparticles, an ability that is becoming increasingly
important in the development of new drugs,3 drug delivery systems,4 and semicon-
ductor nanomaterials.5 A wide variety of mesoscopic simulation techniques6 have
been developed to reveal the dynamics of biophysical processes, and they each
have their strengths and weaknesses. This article describes the application of one
particular mesoscopic technique, Dissipative Particle Dynamics7,8 (DPD), to the
problems of creating a semi-quantitative model of naturally-occurring phospholipid
membranes9−12 and artificial polymeric vesicles13; the fusion of a vesicle with a
larger membrane14; and the interaction of rigid nanoparticles with soft membranes.
This choice of problems reflects the authors’ belief that modeling soft materials, such
as lipid membranes, and gradually adding dynamical capabilities to the model, such
as the fusion of vesicles, is a promising route towards constructing increasingly accu-
rate in silico cell models. When these models have been sufficiently developed, they
can be used to generate hypotheses that can be subsequently checked in experimen-
tal assays. The ability to map data obtained from multiple experimental techniques
onto molecular components within a unified simulation model is also a crucial inte-
grative function of such simulations.

Experimental techniques for visualizing the structure and behavior of living
cells have revealed more and more details in recent years. Fluorescence microscopy
and fluorescence resonant energy transfer (FRET) in particular now allow the
motion and interactions of single molecules within living cells to be observed and
followed in time. This has resulted in a huge flow of experimental data on the
concentration, and interactions between, for example, the protein and lipid com-
ponents within cells under specific conditions. Making sense of these data sets,
especially when trying to integrate results from distinct experimental protocols, is
very difficult. Computer models of cellular processes could be used to make pre-
dictions about the consequences of varying key parameters in the model, with a
speed and precision that is often experimentally impossible due to inextricable
couplings between different components in the system. In order to achieve this
goal, the model must contain enough complexity to allow it to reproduce the
experimental observations, but also be simple enough to yield insights that can-
not be obtained simply by data-mining the experimental results. Dynamical pro-
cesses in a cell, such as synaptic vesicle transport to the plasma membrane and
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its subsequent fusion, represent valuable model systems for testing the utility of
computer models.

Advances in understanding the structure and function of cellular components
has led to an increasing desire to modify or create from scratch supramolecular
systems that can perform therapeutic functions.15 Examples include targetting16

tumor cells with toxic payloads17 while leaving surrounding (healthy) cells unaf-
fected, and delivering healthy genes to replace defective ones using polymers.18 A
key step towards developing these systems is being able to rationally modify the
properties of complex molecular aggregates, including liposomal19 and polymeric20

vesicles, and rigid nanoparticles dubbed artificial viruses.4 As such systems often
have dimensions up to a few hundred nanometers, this means that they are ideal
candidates for being studied using a mesoscopic simulation technique. Nanopar-
ticles may be given a layered structure21,22, in which each layer is composed of
a different material and serves a specific role in the process of transporting the
drug payload to the target cells.4 Even simple questions such as the effects of size
variation on the properties of the nanoparticles can be hard to answer experimen-
tally unless precise control over the construction process is obtained. Simulations
of amphiphilic membranes, vesicles and nanoparticles are relatively simple to per-
form compared to their experimental counterparts. Such simulations can therefore
act as a search-light to explore the huge parameter space for complex aggregates,
and pose questions to which subsequent experiments can give definitive answers.
In order to capture in a simulation the behavior of typical nanoparticles in cellular
environments, a minimum set of supramolecular entities is required. These include:
membranes of varying composition and physical properties; rigid particles or shells
that can encapsulate bulk fluid; hydrophobic, hydrophilic or amphiphilic polymers.
Additionally, it is important to be able to modify the properties of the simulated
aggregates embedded within the surrounding fluid environment so as to mimic, for
example, the effects of pH, the response of a polymer species to a good or bad
solvent, or cytoplasmic crowding of molecular species.

In the remainder of this article, we give an overview of the DPD technique,
describe some recently-published applications to biophysical systems, and conclude
with our vision of using a combination of mesoscopic simulation techniques to model
a cell signaling network. Such a model could be used to test hypotheses relating to
the design of artificial materials and nanoparticles for therapeutic intervention.

2. Coarse-grained Modeling of Complex Fluids: The DPD
Approach

Dissipative Particle Dynamics is a particle-based, explicit-solvent simulation tech-
nique that was created for the simulation of fluids at larger length and time scales
than is possible using atomistic Molecular Dynamics, whilst retaining the hydro-
dynamic modes that are missing in techniques such as Monte Carlo and Brownian
Dynamics.
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The original DPD algorithm of Hoogerbrugge and Koelman7 had some deficien-
cies that were removed by later workers,8,23 and it is the Groot-Warren version23

of the DPD integration scheme that is now most commonly used. An early review
of the technique was published by Warren24, and a comparison of various methods
of simulating surfactant solutions followed.25 A detailed analysis of DPD simula-
tions of phospholipid systems has been published recently.26 Early applications of
the DPD technique included microphase separation of polymeric mixtures,27 the
dynamics of an oil droplet near a hard surface in shear flow,28 aggregation of surfac-
tants onto a polymer in a bulk surfactant solution,29 colloidal motion in a solvent,30

and rupture of a planar membrane patch by incorporation of nonionic surfactants.31

It was also applied to the packing of surfactants at an oil-water interface and their
efficiency at reducing the surface tension,32 following the evolution of the interface
between pure surfactant and water33 and the behavior of grafted polymer brushes
subject to shear flow.34

The Dissipative Particle Dynamics simulation algorithm7 defines small fluid
elements as its fundamental units. This makes it distinct from classical Molecular
Dynamics which uses atoms and molecules. The volume elements, which are often
referred to as beads, are assumed to contain a number of molecules or molecular
groups. A solvent bead in a DPD simulation of an amphiphilic membrane in water
typically represents between 3 and 10 water molecules.31 The exact mapping from
one bead to a number of molecules depends on the molecular nature of the material
the bead is to represent.13 The physical masses of all beads (m) in a DPD simu-
lation are usually assumed to be identical, as are their sizes (d0). Note that this
length d0 is the distance at which all non-bonded, bead-bead forces vanish, and it
corresponds to the diameter of a bead if one pictures two beads at the extreme
of their interaction range as two spheres whose surfaces just touch. The remain-
ing physical unit required to convert from dimensionless simulation quantities to
physical quantitites is a time-scale (or, equivalently, an energy scale). This can be
extracted from the time-scale of a relevant process in the simulated system. For the
simulation of fluid amphiphilic membranes and vesicles, it is common to use the
amphiphiles’ in-plane diffusion coefficient to set the time-scale. This is obtained by
calculating the average of the mean-square displacement of all the molecules in a
membrane, and taking the ratio of its long-time limiting value to the elapsed time
as a measure of the diffusion coefficient. This is not the only choice, however, and
the time-scale associated with a simulated process may depend on details of the
DPD implementation.35

Once the beads are defined, they must interact. The forces between beads in a
DPD simulation are effective forces that are chosen so that they locally conserve
mass and momentum and are pairwise additive. These conservation laws, together
with the fact that the total force on a bead is the sum of all the forces due to its
neighbors within a fixed distance, ensure that hydrodynamic interactions emerge
in a DPD fluid for much smaller particle numbers and on shorter time-scales than
is possible in MD simulations.
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The total force between two beads in the fluid is the sum of three contributions.
The first type of force is a conservative interaction that corresponds in purpose,
although not in its functional form, to the Lennard-Jones interaction between two
atoms in an MD simulation. It allows beads to be given an identity, so that a
water bead and an oil bead feel a mutual repulsion that leads to phase separation.
The magnitude of the conservative force is related to the compressibility of the
fluid being simulated.23 The other two forces are a random and a dissipative force
that together constitute a thermostat that adds energy to the fluid and extracts
energy from the fluid respectively. Unlike the thermostats commonly used in MD
simulations (for a comparison of their properties see Stoyanov and Groot35 and
Soddemann et al.36), the DPD thermostat conserves momentum locally, and it
is this that allows the hydrodynamic interactions in the fluid to propagate. To
maintain the fluid at a pre-set temperature, the magnitudes and functional forms
of the thermostat forces have to be chosen appropriately; when this is done, they
satisfy a fluctuation-dissipation theorem, and the equilibrium states of the fluid
are generated with a probability that obeys the Boltzmann distribution. All three
forces are soft and short-ranged, vanishing beyond the cut-off distance d0.

As DPD has become more widely used, attempts have been made to improve
the scheme’s thermostat, which has been shown37−39 to lead to spurious results if
too large a time-step is used in the integration scheme. These include changing the
type of thermostat40,41 to improve the temperature control,42 and combining two
different thermostats,35 and randomly selecting one or the other for each interact-
ing particle pair, that allows the viscosity of a DPD fluid to be varied by orders of
magnitude. The DPD thermostat can also be applied to other particle-based simula-
tion techniques.36 Other changes have included simulations in the constant pressure
and constant surface tension ensemble,39 and the replacement of the original poten-
tials with density-dependent ones that include an attractive part thereby allowing
liquid-gas interfaces to appear in the simulations,43 a process that is forbidden in
the original algorithm by the quadratic nature of the DPD fluid’s equation of state.

The state of the fluid is evolved in time by integrating Newton’s equations of
motion for all the beads in the system. Because the thermostat involves a stochastic
term (in the random force) and a velocity-dependent term (in the dissipative force),
the choice of integrator is not as simple as for MD simulations that contain (velocity-
independent) Lennard-Jones interactions. A variety of integration schemes have
been proposed40,42,44 to reduce artifacts due to the step size and to handle the
thermostat force appropriately, but the most commonly-implemented one, which
has been shown38 to be as good as more complicated schemes if the integration
time-step is chosen small enough, is a modified Velocity-Verlet scheme introduced
by Groot and Warren.23 For more details of the scheme, the reader is referred to
their original paper.

We note here that temperature enters into the DPD formulation in two ways.
First, the average kinetic energy of the beads defines the kinetic temperature; and,
second, the ratio of the random force parameter to the dissipative force parameter
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defines the thermostat temperature. These should be the same for any simulation,
but if the integration scheme is not chosen carefully, or the integration step size
is chosen too large, the kinetic and thermostat temperatures may diverge. This
leads to the somewhat surprising result that the kinetic temperatures of different
bead types may be different in the same simulation. These artifacts have recently45

been extensively investigated, and are related to the use of too large an integration
step-size. For concreteness, we have found that an integration step of 0.02 (in DPD
time units of

√
md2

0/kBT ) is usually appropriate for lipid membrane simulations,
although an even smaller value may be necessary if stiff Hookean springs are used
within molecules.

The forms of soft matter we consider here are composed of amphiphilic molecules
such as phospholipids and diblock copolymers. Amphiphiles contain a hydrophilic
piece chemically bonded to a hydrophobic piece. Phospholipids come in many shapes
and sizes, and may possess one, two or more hydrocarbon tails, and have a charged,
polar or neutral headgroup with a variable degree of bulkiness. Diblock copoly-
mers are typically long-chain polymers composed of a mixture of hydrophilic and
hydrophobic monomers. Goetz and Lipowsky46 introduced a simple model phospho-
lipid architecture consisting of three hydrophilic beads (designated H) to which are
attached two linear hydrophobic tails each containing four chain beads (C). Such
an amphiphile is represented as H3(C4)2. A representative diblock copolymer com-
posed of similar monomer types could be H24C40, in which 24 hydrophilic monomers
are connected in a linear chain to 40 hydrophobic monomers. The amphiphiles are
contained within an aqueous solvent (W). Each solvent bead represents a volume
of water consisting of several molecules. Because the solvent beads have a length
scale of the order of 1 nm, there are no explicit hydrogen bonds. Their effects are
subsumed in the conservative interaction parameters between the solvent beads
and the hydrophilic and hydrophobic beads. The functional forms of the various
non-bonded and bonded forces between all bead types is given next.

The conservative force between two beads i, j separated by a distance rij is

FC
ij = aij (1 − rij/d0) r̂ij (1)

for rij < d0, and zero otherwise. The range of the force is set by d0, and aij

is the maximum force between beads of types i, j; rij is the distance between the
centres of beads i, j, and r̂ij is the unit vector pointing from bead j to bead i. Note
that the conservative force is always finite, taking its maximum value, aij , at zero
separation.

The dissipative force between two beads is linear in their relative momenta and
takes the form

FD
ij = −γij (1 − rij/d0)

2 (r̂ij · vij) r̂ij (2)

where γij is the strength of the dissipation between beads i, j, and vij = vi − vj

is their relative velocity (which is the same as their momentum as we measure all
masses in units of the mass scale m in our simulations).
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Finally, the random force between a bead pair is

FR
ij =

√
2 γij kBT (1 − rij/d0) ζij r̂ij (3)

where values of the random force are generated by sampling a uniformly-
distributed random variable, ζij (t), that satisfies 〈ζij (t)〉 = 0 and 〈ζij (t) ζi′j′ (t′)〉 =
(δii′δjj′ + δij′δji′ ) δ (t − t′). The random force has the symmetry property ζij (t) =
ζji (t) that ensures local momentum conservation, and hence the correct hydrody-
namic behavior of the simulated fluid on long length scales. Note that we have
replaced the (nominally-independent) random force parameter σij by its value as
determined from the fluctuation-dissipation relation σ2

ij = 2 γij kBT as shown by
Groot and Warren.23

Molecules are constructed by tying beads together using Hookean springs with
the potential

U2 (i, i + 1) =
1
2
k2 (rii+1 − l0)

2 (4)

where i, i + 1 label adjacent beads in the molecule. The spring constant, k2, and
unstretched length, l0, are chosen so as to fix the average bond length to a desired
value. Both parameters may be specified independently for each bead type pair
allowing a linear chain’s bond strength to vary along its length.

Chain stiffness is modeled by a three-body potential acting between adjacent
bead triples in a chain,

U3 (i − 1, i, i + 1) = k3 (1 − cos (φ − φ0)) (5)

where the angle φ is defined by the scalar product of the two bonds connecting the
pairs of adjacent beads i−1, i and i, i+1. In general, the bending constant, k3, and
preferred angle, φ0, may be specified independently for different bead type triples
allowing the chain stiffness to vary along a molecule’s length. A preferred angle of
zero means that the potential minimum occurs for parallel bonds in a chain.

3. Membranes, Vesicles and Polymersomes: Material Properties

Several groups have used DPD to simulate the formation47 and equilibrium proper-
ties of amphiphilic bilayer membranes, including the lateral stress profile,9 and the
effects of various amphiphile architectures on membrane material properties.10−12

This has extended previous work that used coarse-grained Molecular Dynamics
simulations to measure the surface tension47 and bending rigidity46,48 of planar
bilayer patches. The advantage of DPD over MD for these systems is that mem-
branes containing tens of thousands of lipid molecules can be simulated using a
few days of CPU time. This allows good statistics to be collected on membrane
observables.

These simulations have been extended to more complex systems, such as
nanospheres in multicomponent fluids49 and the fusion of tense vesicles to pla-
nar membranes.14 The range of soft matter systems now being studied by DPD
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includes vesicles formed of diblock copolymers,13 called polymersomes, blends of
homopolymers and diblock copolymers,50 the aggregation of copolymer analogues
of the exon1 fragment of the protein Huntingtin that is involved in Huntington’s
disease driven by the relative hydrophobicity of different regions of the fragment,51

the behavior of a worm-like chain model of DNA polymers,52 and the influence of
model proteins embedded in a fluid membrane.53

Planar amphiphilic membranes in aqueous solvent tend to close into vesicles,
and DPD has been used to follow vesicle formation,54 and the budding12 and fission
of two-component vesicles.55,56 A recent review57 of the self-assembly of vesicles and
liposomes shows that it is a generic behavior of many different types of molecule, and
some of the resulting aggregates have exciting properties for medicinal and phar-
maceutical applications. Diblock copolymers are an example of a non-lipidic class
of bilayer and vesicle forming molecule.58,59 Each molecule consists of a hydrophilic
block, containing water-soluble monomers, chemically bonded to a hydrophobic
block, containing water-insoluble monomers. The properties of the polymers, and
the aggregates they form, depend on the relative lengths of the two blocks, the
molecular weight of the polymer, and the presence of functional groups attached
to side chains. A typical example of this class of polymer is poly(ethylene-oxide)-
polyethylethylene (PEO-PEE). The size of each block can be varied from a few
monomers up to hundreds of monomers.

Polymersomes have physical properties, such as the membrane thickness and
elastic moduli, that span a wider range of values59 than lipid vesicles, and can be
designed to automatically degrade under given conditions.60,61 This makes them
attractive as drug delivery vehicles because they are not recognised by a patients’
immune system. The interior structure of the membrane of a polymersome differs
substantially from that of a phospholipid membrane. Figure 1 shows a snapshot
taken at 600ns from an equilibrated system containing both a polymersome and a
lipid vesicle with comparable diameters of about 30 nm immersed in a solvent. The
solvent particles are invisible for clarity. The membrane thickness and character
of the inner and outer surfaces are quite distinct. The hydrophobic block of the
polymersome is sequestered between the well-hydrated hydrophilic blocks, and the
aqueous solvent penetrates to the edge of the hydrophobic region. The entanglement
of the individual molecules leads to slow inplane diffusion, and a greater resistance
to rupture under lateral stress. By contrast, the vesicle membrane is about one half
the thickness of the polymersome’s membrane, and its surface is quite smooth. It
also shows a greater degree of thickness variation than the polymersome. These
vesicles are similar in size to synaptic vesicles in neurons, and show that DPD
can capture the behavior of quite distinct aggregates. Recent experiments62 have
explored the interactions of short, amphipathic peptides, such as alamethicin, with
(uncharged) diblock copolymer membranes and found that even though the pep-
tides are less than one half of the membrane width they permeabilize it quite
effectively. Other experiments using 50 micron diameter polymer vesicles63 have
shown that they undergo fusion when subject to ultrasound. Molecularly-detailed
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Fig. 1. Snapshot of a system containing both a model lipid vesicle and polymersome with diam-
eters approximately 30 nm in bulk solvent. The polymersome contains 2616 diblocks with the
architecture H29IT47. The vesicle contains 5887 lipids with architecture H3(T4)2. The simulation
box has size 56*56*84 nm3, and contains approximately 2.3 million beads of all types. For clarity,
the solvent particles, which fill the inside and outside of the vesicle and polymersome, are invisible.
For more details on the interaction parameters for the hydrophilic and hydrophobic monomers
of the diblocks13 and the head and tail beads of the lipids14 the reader is referred to the litera-
ture. The bead type I connects the hydrophilic and hydrophobic blocks of the diblocks, and has
interaction parameters similar to those of the hydrophobic monomers. The contrast between the
smooth lipid vesicle membrane and the thicker, rough polymersome membrane is evident. The
hydrophilic blocks of the copolymers are well hydrated and extend into the solvent phase, while
their hydrophobic blocks are compressed between them. The surface of the lipid vesicle is smooth
because the small lipid headgroups are pressed against the hydrophobic tails shielding them from
the solvent. The width of the polymersome membrane, around 6 nm, is approximately twice that
of the vesicle membrane. (The beads visible at the extreme left of the image belong to diblocks
in the polymersome that are wrapped around because of the period boundary conditions in the
simulation box. Image produced using the PovRay ray tracing program: www. povray. org.)

simulations of the fusion of two polymersomes would be valuable for exploring the
molecular architectural space of polymersomes, and for optimizing their physico-
chemical properties for clinical applications.

Unfortunately, the high molecular weight of some diblock copolymers, and the
large diameter of polymersomes, currently restricts atomistic MD simulations to
a few tens of molecules, and even coarse-grained MD simulations are limited to
patches of a hundred or so molecules.64 These limitations, and the soft nature of
polymer vesicles, makes them a prime target for DPD modeling. The variation
in polymersome physical properties with the molecular weight of the constituent
molecules forms an important link between experimental results, analytical theo-
ries and simulations. Ortiz et al. have performed DPD simulations13 of membrane
patches of diblock copolymers of various molecular weights, calibrating the DPD
parameters using data obtained from atomistic MD simulations of the same system.

Typically, every bead of each molecular species in a multi-component DPD sim-
ulation is considered to contain the same amount of matter, and the self-interaction
parameters are chosen so that the compressibility of each pure species matches that
of water at room temperature. The cross-terms are then matched to the relative
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solubility of each species in the others. For species that are mutually soluble, such
as the PEO block and water relevant for polymersome simulations, a different prop-
erty has to be chosen. Ortiz et al. choose the radial distribution function of PEO in
water for this purpose.13 Using the conventional DPD mapping for simulations of a
planar membrane patch of diblocks, they find that the geometry of the hydrophobic
block is incorrect and the hydrophobic density is too high. This leads to unphysical
values for the membrane area stretch modulus. A revised mapping was developed
in which the beads of each species are considered to contain an amount of matter
that depends on the species, and is chosen so as to reproduce the experimental
bulk density. For the PEO-PEE diblock considered this leads to the density-based
mapping of 1.392 PEO monomers/bead, 0.774 PEE monomer/bead and 3.01 water
molecules/bead. This is in contrast to the conventional mapping in which the first
two ratios are unity.

Using the new mapping, the membrane area stretch modulus is found to be
137mN/m, which is in good agreement with the experimental value59 of 120
±20mN/m. Additionally, the scaling of the membrane hydrophobic block thickness
with polymer molecular weight was found to obey the experimentally-observed
scaling law d ∼ M1/2. Neither of these results were obtained using the conven-
tional DPD mapping. The new DPD mapping13 was used to simulate the rupture
of a 28nm diameter polymersome containing 1569 diblock copolymers after being
inflated with excess internal solvent. The first step in the rupture pathway appears
to be micellization of the inner leaflet which subsequently weakens the outer leaflet
allowing the solvent to escape via multiple pores.

4. Vesicle Fusion

Vesicle fusion has been estimated to require tens of milliseconds in laboratory
experiments,65,66 and in vivo experiments suggest it may require hundreds of
microseconds.67 Very recently, the controlled fusion of vesicles driven by either
electroporation or the interactions of fusogenic molecules embedded in the vesi-
cle membranes has been visualized68 using a fast digital camera with a temporal
resolution of 50µs. The relevant length scales range from less than a nanometer
for the initial fusion pore width up to tens of microns for the vesicle diameter.
Several reviews69−72 of experimental fusion processes and theoretical models have
appeared in the last few years, including two recent ones.73,74 Although fusion of
giant (1–20 micron diameter) vesicles can observed using video microscopy,68 flu-
orescence microscopy75 and optical dark-field microscopy,76 and SNARE-mediated
fusion of liposomes to a supported planar membrane has been followed using total
internal reflection fluorescence microscopy,77 the molecular rearrangements that
take place during the final stage of the fusion process, when the two initially-
distinct membranes join and produce a fusion pore, cannot yet be resolved by these
experimental techniques.
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The length and time scales of vesicle fusion render the use of atomistic MD
simulations computationally demanding, and even coarse-grained MD simulations
are restricted to small systems. This is due to the twin requirements of having to
simulate the motion of every atom in the system and needing a small (femtosecond)
integration time step. The soft potentials of DPD, which contain no hard core as
do the Lennard-Jones potentials typically used in MD simulations, together with
the grouping of several atoms or atomic groups into one DPD bead, allows vesicle
fusion events to be simulated for times that approach the experimental range. The
steady increase in computer processing speeds has allowed the more quantitative
method of coarse-grained MD to match DPD in the simulation time-scale, but it is
still restricted to smaller length-scales. We compare here the application of various
simulation techniques to the fusion of lipid membranes. Coarse-grained MD simu-
lations have been used by several groups to explore the fusion of two 15 nm vesicles,
containing about 1000 lipids each.78−80 These studies found that holding the vesi-
cles close together for tens of nanoseconds was sufficient to cause fusion. Stevens
et al. studied79 the fusion of two vesicles containing about 1000 lipids that were
pushed together by the application of a transient force to all membrane molecules.
The force was removed after a few lipids had exchanged between the vesicles, and
the subsequent fusion processes were followed for hundreds of microseconds. Fusion
appeared to start at the edge of the flattened contact zone between the two vesicles,
where the curvature of the surface is greatest. The stalk in these fusion events was
found to expand asymmetrically around the strained edge of the contact zone lead-
ing to a partially-confined solvent cavity between the two vesicles. This results in
the fusion pore typically forming at points distant from the point of closest approach
of the vesicles. In the simulations of Marrink et al.,80,81 the vesicles were held a
fixed distance apart until the lipids started to mix. The initial contact between the
vesicles was provided by a few lipids whose protrusion fluctuations caused them
to merge into the apposed monolayer. They found that successful fusion depended
on the lipid species in the vesicles80: mixtures of dipalmitoylphosphatidylcholine
(DPPC) and palmitoyl-oleoyl phosphatidylethanolamine (POPE) fused most easily
at separations up 1.5 nm; vesicles composed of pure DPPC only fused when held
closer together than 1 nm for more than 50 ns; and vesicles containing DPPC and
25% lysoPC were not seen to fuse at all within 200ns. Although limited in their
spatial scope by available computing resources, coarse-grained81 and atomistic82

MD simulations reveal unprecedented detail on the molecular rearrangements in
membranes during phase transitions, such as the formation of an hexagonal phase.
The latter work82 showed that stalks connecting lamellae form spontaneously as
the initial gel phase lipids transform into an inverted hexagonal phase.

The high curvature of the vesicles in these MD simulations (each of which is
approximately 15 nm in diameter) may influence their fusion pathway, and larger
vesicles would be a better model for experimental systems such as synaptic vesicle
fusion in which vesicles of 40 nm diameter take part. The fusion of two closely-
apposed, tense planar membrane patches composed of amphiphilic copolymers has
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been studied using canonical ensemble, lattice Monte Carlo simulations83 in three
dimensions. The size ratio of the hydrophilic to hydrophobic parts (11 segments
and 21 segments respectively) is chosen to be close to that appropriate to biological
lipids. The solvent is a homopolymer. The molecules in these simulations do not
obey Newtonian dynamics, but evolve according to a Markov process (using the
Metropolis2 algorithm) that ensures the correct statistical weight for states of the
system in equilibrium. Ensemble averages then provide the connection with physical
properties. Because the total densities of each segment type are conserved, the
motion of the polymers is diffusive.

Contacts between the molecules in the membranes arise naturally in this model
as a result of thermal shape fluctuations. Most of these contacts rapidly disappear,
but some lead to formation of a “stalk” or merging of regions of the closest (cis)
monolayers. Once a stalk has formed, the probability of a hole appearing in one
or other bilayer near the stalk increases markedly. The presence of the nearby hole
then appears to encourage the stalk to traverse around it and form a ring-like
connection between the membranes. The authors explain the increased probability
of hole formation close to a stalk as the result of a lowering of the line tension around
such a hole caused by the reduction in the curvature of the piece of membrane
between the hole and the stalk. The final stage in the observed fusion process
is the appearance of a second hole in the other membrane and the movement of
the stalk to surround both holes. This results in the full fusion pore connecting
the distal sides of the membranes. Similar results were observed in Self-Consistent
Field Theory (SCFT) simulations84 of large systems of symmetric, amphiphilic
diblock copolymers, including the formation of a pore close to the stalk connecting
two fusing membranes. Recent work85 on a similar model using SCFT methods
emphasizes the key role of line tension in this model of membrane fusion.

The key steps leading to membrane fusion are: close proximity of the two mem-
branes; initial contact and inter-penetration of the outer leaflets; opening of a
pore connecting both membranes; and release of the vesicle contents. In order to
get closer to the experimental length scale for synaptic vesicles, we have recently
studied14 the tension-induced fusion of a 28nm diameter vesicle to a 50 × 50nm2

planar membrane patch using DPD simulations. We focus on the molecular rear-
rangements that occur after the initial contact of the two fusing membranes, and
use the global tension in the membranes as the control parameter. Increasing the
tension in a membrane eventually results in its rupture. If an alternative pathway is
possible, such as merging with a closely-apposed, less tense membrane, the rupture
end-point can be avoided. In these simulations, the relaxed vesicle contains approx-
imately 6,500 lipids, and the relaxed planar membrane contains around 8,200 lipids.
These are an order of magnitude larger than any published atomistic, or coarse-
grained, Molecular Dynamics fusion study. We note here that the membranes used
in this study are significantly more stretchable than typical lipid membranes, and
are more similar in this respect to those formed of diblock copolymers. This may
influence the time-scale over which the fusion pore opens up, and partially explain
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the difference between the hundreds of nanoseconds required for fusion in the sim-
ulations and the hundreds of microseconds estimated from experiments67. How-
ever, the model system captures the features that we believe are important for
understanding the molecular rearrangements that occur during the fusion of tense
membranes. The global tensions in the vesicle and planar membrane are created
by appropriately choosing the number of molecules in each membrane. Repeating
the protocol for each tension pair, using thermodynamically equivalent, but molec-
ularly distinct, initial states, allows the probabilities of the various outcomes to be
obtained. A typical fusion event proceeds as follows. After the initial membrane
contact there is a rapid transfer of molecules from the (more relaxed) vesicle to
the cis leaflet of the (more tense) planar membrane which destabilizes the merged
contact zone, and leads to the fusion pore, which subsequently enlarges rapidly due
to the larger tension in the membrane. For more details, the reader is referred to
the original paper.14

Successful fusion events were only observed in these simulations for membrane
and vesicle tensions not far from values that caused their spontaneous rupture.
Lower tensions resulted in the adhesion or hemifusion of the vesicle to the planar
membrane. Secondly, successful fusion events all occurred between 150 and 350ns
after initial contact of the two membranes even though the simulations were run
out to almost 2 microseconds. The fusion time is defined here as the simulation
time between the first contact of the two membranes, and the time when the pore
has expanded approximately to the diameter of the vesicle. These times are con-
sistent with the extrapolation of recent experimental studies68 of controlled fusion
of vesicles. The upper cut-off of the fusion time distribution arises from the stabi-
lization of the hemifused state in the membrane geometry used here. Because the
hemifused state is metastable for relatively large initial tensions, fusion can occur
only at even higher tensions for which the fusion pathway exhibits no activation
barrier. The stabilization of the hemifused state depends on the membrane areas
that are initially stretched: if the vesicle and planar membrane areas are compa-
rable, the planar membrane can relax its (higher) tension by incorporating vesicle
lipids before a fusion pore can appear. If the planar membrane area is much larger
than the vesicle area, the hemifused states are only stabilized for smaller initial
tensions, and the region of successful fusion is shifted towards smaller tensions.

In these DPD simulations, one can measure the functional dependence of the
membrane tension on the projected area per molecule up to the tension of rupture
as observed within about 10µs. For the DPD parameters used in Refs. 9 and 14,
this functional relationship between tension and molecular area is rather non-linear,
and the membrane becomes more and more compressible as it is stretched. Varying
the DPD parameters in a systematic manner, we have identified parameter sets
for which the functional dependence between tension and molecular area is fairly
linear86,87. For the parameter set in Ref. 87, we have observed a strong increase in
the fusion time with decreasing tension, which implies a tension-dependent energy
barrier for the fusion process.
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Vesicle fusion in vivo requires the participation of proteins, such as the SNARE
proteins that cause synaptic vesicle fusion in neurons. A more realistic fusion
protocol is to embed model proteins in relaxed membranes, and to explore their
possible actions in driving the membranes to fuse. Several groups are exploring how
to embed peptides or proteins into simulated membranes using atomistic88,89 and
coarse-grained90 MD, and DPD,6,53 The challenge for these groups is to integrate
the results of different simulation techniques into an understanding of the complete
fusion process from the molecular rearrangements occurring on the microscopic
scale to the time course of the fusion pore conductivity on physiological length and
time scales.

5. Nanoparticles and Vesicles

Interest in the development of rigid nanoparticles and layered capsules has grown
as these substances have found application as anti-tumor devices,17,91 and as drug
delivery vehicles.4,15 This has resulted in a need to understand and optimize their
properties for specific purposes. DPD has previously been used to simulate col-
loidal systems,30,49 and recently also the flow of fluid through microchannels.92

The latter ability may be useful in developing models for clinical applications
of microfluidics.93 An important potential application involves the interactions
between flexible polymers and quantum dots. Quantum dots are a class of nanopar-
ticles whose preparation and growth properties5 are still incompletely understood.
Experimental manipulation of quantum dots can involve transferring them from
non-polar solvents into water, and using amphiphilic, hyperbranched polymers to
prevent their aggregating in the water.94 Exploring the interactions of amphiphilic
polymers with the quantum dots’ hydrophobic surfaces is an interesting target
system for DPD. In this section we describe the first step to understanding the
dynamics of rigid nanoparticles in DPD by quantifying the bulk diffusion of non-
aggregating, rigid, colloidal particles embedded in a solvent. This system may be
useful in modeling the motion of globular proteins in fluid, or rigid drug delivery
vehicles such as polymerised capsules.

Dissipative Particle Dynamics has mainly been applied to the study of fluid
systems, as this is the field in which it was originally developed. There have been a
few publications describing quasi-rigid peptides embedded in a lipid membrane,53

the flow behavior of fluids at solid surfaces,28 the interaction of colloidal particles
in a solvent,95 and the derivation of the DPD equations from first principles for a
one-dimensional harmonic solid,96 but these are the exception. In keeping with the
spirit of DPD, in which the forces are soft and short-ranged, we construct a “rigid”
particle embedded in a solvent by selecting all the solvent beads whose centre of
mass coordinates lie within a specified geometric volume (either a cylinder, sphere
or an ellipsoid), and tying them together with stiff Hookean springs. Hereafter, we
refer to such a “polymerised particle” as a nanoparticle to distinguish it from the
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spherical DPD solvent particles. By choosing the spring parameters appropriately,
the rigidity of the nanoparticle can be tuned within a fairly wide range. A sim-
ple measure of rigidity is given by the fluctuations of the average shape of the
particle: a rigid particle has only small-amplitude shape fluctuations whereas a less
rigid nanoparticle has larger shape fluctuations. We are interested in simulating the
interactions between nanoparticles, membranes and bulk solvents, so an appropri-
ate criterion for their rigidity is that the fluctuations in the size of the nanoparticles
should be less than a few percent of their mean size. This ensures that they interact
with the surrounding soft fluids as a relatively hard object.

The first test we have performed on the nanoparticles is to measure their dif-
fusion in a bulk solvent. Because a DPD fluid correctly represents hydrodynamic
forces,7,8 we expect that the diffusion of such particles should obey Stokes’ law,
which states that the diffusion coefficient of a spherical particle (D) varies inversely
with its radius (R):

D =
kBT

6 π η R
(6)

where η is the solvent viscosity, kB is Boltzmann’s constant, and T is the tem-
perature. The mean-square displacement (MSD) of a single nanoparticle is a three-
dimensional random walk, and in order to obtain a statistically-significant result for
small particles, we average the MSD over four independent trajectories. The larger
particle’s trajectory showed smaller fluctuations so a single trajectory is used. How-
ever, because of the long-range hydrodynamic forces, the larger particles must be
simulated in a box with linear dimensions 48 ∗ d0, while the smaller particle was
simulated in one with dimensions 32 ∗ d0.

Figure 2 shows the mean-square displacement (MSD) of rigid, spherical nanopar-
ticles with radius R/d0 = 2 and 4 normalised by the elapsed time as a function of
the simulation time. The ratio of the y intercepts of the two curves is very close to
the ratio of their radii, showing that the diffusion of the nanoparticles does obey
Stokes law, at least for the particle sizes chosen. We note here that there are prac-
tical limits to the sizes of rigid particles that can be accurately represented in a
DPD simulation. If the diffusing particle is comparable in size to the surrounding
solvent particles, the assumption of random independent collisions of the fluid on
the particle no longer holds. At the other extreme, a large diffusing particle is sub-
ject to hydrodynamic forces whose range is many times the size of the particle,
and can be larger than the simulation box (except for extremely large boxes whose
investigation would waste computer resources in simulating a system that is almost
entirely solvent). Even for particles with a radius only four times the solvent bead
diameter, R/d0 = 4, we were obliged to use a larger simulation box than for the
smaller particle. The calculation of each trajectory for the small particle required
5 cpu-days on a single-processor 2GHz Xeon processor, whereas the larger particle
trajectory required 17.5 cpu-days.
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Fig. 2. Ratio of the mean-square displacement (MSD) to the elapsed time for freely-diffusing
nanoparticles with radii R = 2 ∗ d0 and 4 ∗ d0 in bulk solvent versus the simulation time (Note
that the y-axis values must be divided by the constant term 6 ∗ ∆t, where ∆t= 0.01 is the
integration time-step in order to obtain the actual ratio; the x-axis values are the number of time-
steps elapsed). Each nanoparticle is constructed out of a sphere of solvent beads that are “tied”
together using stiff Hookean springs as described in the text. The curve for the smaller particle is
an average over 4 independent runs, whereas the curve for the larger particle is for a single run.
Because the total force on a nanoparticle is the sum over the forces acting on its surface, and
momentum is converved by the DPD interactions, the long-range hydrodynamic forces mediated
by the solvent are present. This requires the use of a simulation box with linear dimension 48 ∗ d0

for the D = 4 ∗ d0 particle as smaller box sizes showed artificially damped diffusion due to the
periodic images of the nanoparticle. The smaller particle was simulated in a box with linear
dimension 32 ∗ d0. We calculate the diffusion constants of the nanoparticles by fitting the data
between 200,000 and 500,000 time steps to a straight line of zero slope and taking the intercept
on the y axis. This gives values of D = 0.0005 ± 0.0001 and D = 0.0011 ± 0.00005 for the larger
and smaller nanoparticles respectively (the quoted standard deviation is for statistical errors only,
and the correlations between successive data points are removed by binning the data into three
groups and calculating the standard deviation of the groups’ mean values).

The interaction of rigid nanoparticles with soft surfaces is relevant to clinically-
important processes such as virus envelopment by cell membranes,97 and the practi-
cal problems of translocation of nanoparticles through a liquid-liquid interface.98 A
theoretical analysis99 of the interaction between spherical nanoparticles and vesicles
revealed different situations that depended on whether the particles were repelled
from the membrane or attracted to it, and on the particle size. Such processes are
amenable to investigation using DPD. We have performed simulations in which four
nanoparticles, whose diameter of 4 nm is comparable to the membrane thickness,
are constructed out of fluid beads inside a vesicle’s lumen using the above protocol.
The surface of the nanoparticles can be hydrophilic or hydrophobic. They diffuse
freely inside the vesicle until they encounter the membrane’s inner surface. If the
nanoparticles’ surface is hydrophilic they wrap themselves in the membrane causing
it to bulge outwards, as illustrated in Fig. 3. This is similar to recent theoretical100
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Fig. 3. A cut through a vesicle with diameter 28 nm containing four small, rigid nanoparticles
each approximately 4 nm in width. The surfaces of the nanoparticles are hydrophilic, and their
conservative interaction parameters are chosen so that they tend to adhere to the vesicle membrane
when they encounter it. As the membrane wraps around a nanoparticle, it tends to bulge outwards
in a process that is similar to the initial stage of budding of the vesicle membrane. Only one of
the nanoparticles is clearly visible in the vesicle lumen in this image, a second is wrapped in the
membrane producing the large bulge at the upper right, and the other two are embedded in the
membrane at the top left and bottom right of the image, and are hidden by the perspective.
Althoug not obvious in a static image, the rigidity of the nanoparticles is such that their shape
fluctuations are smaller than one DPD bead diameter. (Image produced using the PovRay ray
tracing program: www.povray.org.)

and Molecular Dynamics simulation101 studies of a colloidal particle being wrapped
by a membrane. Hydrophobic nanoparticles burrow into the membrane’s hydropho-
bic core where they cause the membrane to bulge around them. Figure 3 shows a cut
through the vesicle showing the hydrophilic nanoparticles partially wrapped in the
vesicle membrane. Adhesion of nanoparticles to membranes, and their subsequent
budding off, has also been studied using Brownian Dynamics simulations.102 The
ability to study a process using different simulation methodologies is important to
avoid the bias that may be present in a single technique. Additionally, the incor-
poration of hydrodynamic forces in DPD, which are absent in Brownian Dynamics
and solvent-free simulations, may be important in the in vivo flow environment of
cells in the human body. Such forces may play an important role in the approach
of globular proteins and drug molecules to cell membrane receptors.3
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6. Conclusions and Outlook

DPD allows fluid systems with hydrodynamics to be simulated and visualized. For
certain systems, such as polymeric fluids and amphiphilic membranes, it can provide
quantitative information similar to that available from coarse-grained Molecular
Dynamics simulations. In particular, quantities such as the lateral stress profile
and elastic moduli of fluid membranes can be measured. Many groups are now
applying DPD to diverse systems, such as lipid membranes,10−12 diblock copolymer
vesicles,13 fusion of vesicles to planar membrane patches,14 surface-grafted polymer
brushes,34,103 colloidal micropumps,92 and models of protein fragments that are
implicated in the development of Huntington’s disease.51 The range of applications
will doubtless grow further over the next few years. The incorporation of movable,
rigid particles into DPD simulations, such as transmembrane proteins,6,53 whilst
retaining the benefits of a larger time-step than coarse-grained MD, is an important
advance of the method.

Nanoparticles are used in various processes including ones important for the
development of effective therapeutic agents,4,16,17 and the construction5 of Quan-
tum Dots. The construction of such nanoparticles requires that their growth be
accurately characterized and controllable. Visualizing the effects of changes in
growth conditions on the evolution of the nanoparticles provides important feed-
back for optimizing the growth process. We have begun to validate the behavior
of rigid nanoparticles in a DPD simulation by verifying the Stokes’ drag relation
between particle size and diffusion for small particles. We have also shown that
nanoparticles can adsorb to, and be wrapped by, a vesicle membrane. This opens
the way to using mesoscopic simulations to explore the interactions of nanoparti-
cles, membranes, and other soft materials, and developing a systematic method for
quantifying their properties in support of experimental efforts to create useful new
materials. A promising application of these simulations is the interaction between
nanoparticles and the proteins involved in cell signaling networks. The clinical use
of designed nanoparticles requires understanding their biophysical behavior and the
ability to minimize their toxic effects. We conclude with our vision of how meso-
scopic simulations may aid in the development of our understanding of, and our
ability to rationally modify, cell signaling networks.

Cell signaling networks combine the various topics we have discussed in this
article. They are important as targets for therapeutic intervention in disease detec-
tion and control. The ability to simulate the cellular uptake of a drug, and its
modulated response when either the drug or its delivery mechanism are modified,
are recognised as crucial to future drug development.3 It is not possible to capture
a signaling network in a single type of simulation because of the huge range of rel-
evant length and time scales. These encompass the nanometer width of the plasma
membrane and the ten-micron size of the cell, and span nanoseconds to seconds
or longer. A combination of techniques is therefore required that each captures
some of the key stages in the signaling process. Figure 4 illustrates the division of
a generic cellular signaling process into three spatio-temporal regions: the plasma
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Fig. 4. Illustration of one possible division of a cellular signaling pathway model into three
regimes suitable for modeling using different simulation methods. The numbers 1–6 in bold type
refer to distinct transduction mechanisms relevant to the pathway as described in the text. Region 1
has length and time scales of ∼ 100 nm and a few microseconds and can be modeled using a coarse-
grained Molecular Dynamics or Dissipative Particle Dynamics method. This regime captures the
diffusion of ligands or other extracellular messengers (represented by small crosses) to the plasma
membrane and their binding to transmembrane receptors (solid cylinders). Region 2 has a length

scale of approximately the size of the cell (5–10 microns) and the transport of secondary messengers
or transport vesicles through this region could be simulated using Brownian Dynamics or a similar,
solvent-free method. Region 3 represents the process of control of gene expression resulting from
the receipt of the signal at the nucleus. Modeling of this stage is still speculative, but analytic
models could provide useful insight.

membrane (Region 1), the cytoplasmic space (Region 2) and the near-nuclear space
(Region 3). Within these regions, we identify distinct space-time envelopes for the
propagation of the signal (represented by the symbols ∆x ∆t, and labelled 1 to 3 in
Fig. 4), each of which provides opportunities for therapeutic intervention that can
be explored by appropriate simulation techniques. First, a signal is carried from the
extra-cellular space to the cell by diffusion of ligands to membrane-bound receptors
(1) In this stage hydrodynamic forces may be important as the (possibly bulky)
ligands approach and bind to, and/or occlude, the receptors. Second, the signal
is transduced across the plasma membrane (2) A variety of membrane-associated
processes influence this stage. For example, receptors may cluster in the plasma
membrane so as to magnify the initial ligand-induced signal, followed by endocyto-
sis of the activated receptors. The fluid character of the membrane, and the inplane
diffusion of the receptors are key properties here. Next a network of protein-protein
interactions integrates the signal and propagates it through the cytoplasm (3) to its
destination organelle(s). For many signals this is the nucleus, where the cell’s pat-
tern of gene expression is modified (4) in response to the signal. The cytoskeleton



March 15, 2007 16:13 WSPC/204-BRL 00042

52 J. Shillcock & R. Lipowsky

of the cell may be closely involved in this stage of signal propagation.104,105 Finally,
the response of the cell to the signal occurs, possibly involving new protein creation
and transportation (5) and up- or down regulation of existing transmembrane pro-
teins (6).

Each stage of this signaling process may be captured in a distinct simulation
type. Region 1 occupies perhaps a 100 nm space around the plasma membrane,
and is suitable for simulating using DPD or coarse-grained MD which can reach the
required microsecond time-scale. The cytoplasmic space, Region 2, is too large for
current explicit-solvent models with near-molecular detail, but may be adequately
represented using Brownian Dynamics or spatially-inhomogeneous stochastic dif-
ferential equations. Region 3 includes the modification of the cell’s gene expression,
and its representation and coupling to the other transmission processes will prob-
ably also involve a coupled set of stochastic differential equations. Each region
provides distinct opportunities for exploring, and then optimizing, modifications
to the signaling machinery. Drug molecules or artificial nanoparticles may interfere
with the initial ligand binding;3 the signaling cascades may be changed by mod-
ifying the proteins composing them;106 and protein-protein interactions may be
made visible by use of self-illuminating Quantum Dots.107 The ability to simulate
on realistic length and time scales key biophysical processes such as vesicle fusion,
artificial drug delivery vehicles, and the interaction of rigid nanoparticles with fluid
membranes, opens the way to systematically constructing models of cellular sig-
naling processes. These models will assist in optimizing the interactions between
artificial materials and the cellular machinery that is the target of therapeutic
intervention.

We believe that mesoscopic simulations provide a natural complement to the
experimental task of rationally constructing biomimetic materials, and that simu-
lations can act as a lingua franca between experimental groups using very different
techniques. The results of thousands of experiments can be efficiently represented in
simulation models, and communicated accurately between groups, thereby expand-
ing the usefulness of such models from computational biology to the larger fields of
biophysics and clinical biology.
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