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Self-assembling structures are studied in a binary system of long a

spherocylinders have an adhesive site on both ends with which th

spherocylinders. In this way, they act as crosslinkers that may in

the help of Monte Carlo simulations, the structure of crosslinker

as a function of rod and crosslinker concentrations, and of the a

Though the system is rather simple compared to networks of cros

it shows a complex phase behaviour, including the formation of

a transition to a three-dimensional, low-density network. These b

and non-percolated systems. In a certain range of rod and crossli

of bundling rods is a non-monotonic function of the adhesive str

has been determined and the dependence of bundle formation on

studied systematically.

1. Introduction

Systems of rigid rods show a large variety of self-organized

structures. Most analytical and numerical studies of rigid rod

systems are based on hard spherocylinders. For monodisperse

systems of hard spherocylinders the full phase diagram is known

and includes an isotropic, a nematic (N), and a smectic A (SmA)

phase.1 More complex structures are formed in binary systems of

hard spherocylinders. The phase diagrams of binary rod systems

exhibit additional phase coexistence regions, which involve

a partial demixing of the rods. Systems of spherocylinders with

the same length but different diameters have been studied

extensively by analytical methods and simulations.2–6 In these

studies, I–I, I–N, and N–N phase coexistence regions were

observed. As shown with extended Onsager theory, I–I coexis-

tence is excluded for binary systems of hard spherocylinders with

the same diameters but different lengths.7 Cinacchi et al. have

used density functional theory to calculate a detailed phase

diagram for systems of hard spherocylinders with different

lengths.8 It comprises various smecticA2 phases, in which the two

rod components form subpatterns in the smectic layers. An

overview over the phase behavior of binary hard rod systems is

given in.9

More complex structures occur in systems of hard rods with

attractive interactions. These latter systems have hardly been

investigated so far. Thermodynamic properties of systems of
short hard spherocylinders with dipoles or quadrupoles have

55
been studied in Monte Carlo simulations by Jane�cek and
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uctures in systems of rods
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short spherocylinders. The short

can bind to the long

onnect a pair of long rods. With

diated rod assemblies is studied

sive strength between the two.

ked filaments in the cytoskeleton,

dles of parallel rods and

dles occur both in percolated

er concentrations, the amount

th. The percolation boundary

e system parameters has been

Boublı́k.10 McGrother and coworkers have investigated the

phase behavior of hard spherocylinders with an attractive

potential at one end that leads to the formation of dimers.11

Recently, we have presented simulation results for a system of

hard spherocylinders with adhesive ends.12 The system shows

spontaneous formation of a scaffold-like network, in which,

locally, the rods form tetragonal structures. Self-assembling

networks of rods are of great relevance for various nano-tech-

nological applications for which self-organized colloidal rods can

be used to build nano-circuits, transistors or biosensors.13–15

In this article, we investigate a binary system that consists of

long and short spherocylinders. The short spherocylinders have

an adhesion site at each end, with which they can bind to the long

spherocylinders. In the following, the short spherocylinders are

denoted as ‘crosslinkers’ while the long ones are named ‘rods’.

Since a crosslinker can bind to two rods, a network of inter-

connected rods can form.

Our model system is inspired by the cytoskeleton of living cells,

where long actin filaments (F-actin) and microtubule (MT) fila-
Crosslinking proteins such as a-actinin and myosin-II adhere to

F-actin and MTs and assemble them into various intracellular

structures. Mechanical properties, such as elastic shear moduli,

vary strongly with the concentration of actin and crosslinking

proteins.17–22 The structure of filament assembly ranges from

dilute networks of isotropically oriented filaments to dense

bundles, in which filaments are closely packed and nearly parallel

to each other.16,23 It has been shown that proteins in the spectrin

superfamily, such as a-actinin, assemble the F-actin filaments

into both bundles and networks, depending on their concentra-

tion and their affinity towards F-actin.21,24 With a dilute

concentration of crosslinkers, the filaments are assembled into

a dilute isotropic network. When the a-actinin concentration is

increased, the filaments form bundles.21,22,24
8580C

Soft Matter, 2009, xx, 1–11 | 1



1

5

10

15

20

25

30

35

40

45

50

55

1

5

Several previous investigations have addressed model systems

that mimic certain aspects of cytoskeletal networks. The inter-

actions mediated between the crosslinkers lead to effective fila-

ment–filament interactions that depend, in general, both on the

filament separation and on their orientation.25 Using such

effective interactions together with modified Onsager theory,

Borukhov et al. have studied an equilibrium model system of F-

actin and crosslinking proteins.26 Zilman and Safran27 have

analyzed the influence of branching and capping proteins on the
assembling of actin monomers. Other theoretical studies are

dedicated to dynamic aspects, like non-equilibrium pattern

formation in a system of MTs and molecular motors,28–32 or the

growth kinetics of actin filaments.33,34

In this article, we investigate a binary system of crosslinkers

and rods and study how the assembly of bundles and network-

like structures depends on the rod volume fraction, the cross-

linker–rod ratio, and the adhesion strength of the crosslinker–

rod interaction. The comparatively simple model system is

inspired by crosslinked actin filaments but differs in many

respects from the complex properties of actin networks: The long

rods in our system are rigid and have a constant, unique length

that is 15 times the rod diameter. Actin filaments are semi-

flexible35 and have a broad length distribution which is typically

exponential but is qualitatively different for filaments in cross-

linked bundles.36,37 Many properties, like the percolation

threshold, depend on the length distribution,38,39 while other

aspects such as the critical behavior at the percolation point

should be widely independent of the rod lengths, or may change

only quantitatively. Our model system is restricted to hard

repulsions and short-range attractive potentials, while coun-

terion-induced long-range interactions are neglected.40,41 The

crosslinkers are rigid rods rather than flexible proteins, no

directed walks of active motors are considered, and the rods have

no polarity. In this paper we show which system properties can

be found in a simple system of long rods and crosslinkers. The

system shows a comparably rich phase diagram of low-density

three-dimensional structures that include a percolation transition

towards a spanning network and the formation of bundles. The

observed structures can uniquely be ascribed to steric interac-

tions and the crosslinking mechanism.

The obtained phase diagrams reveal the dependence of

network and bundle structures on the rod and crosslinker

concentration and the adhesive strength. To the best of our

knowledge, these are the first computer simulations of a rod

network model in which crosslinkers are explicitly included.

The article is organized as follows: In Section 2, the model

system is introduced. The percolation transition of the rod

networks is investigated in Section 3. The formation of bundles is

analyzed in Section 4. Simulation results are collected in the

phase diagrams, presented in Section 5. A summary is given in

Section 6.

2. Model and simulation methods

The model system consists of two types of spherocylinders, which

represent the rods (r) and the crosslinking proteins (l). The

spherocylinders consist of a cylinder of diameter D capped at

both ends by a hemisphere of the same diameter. The configu-

ration of a spherocylinder j is determined by its position of the

ART � B80
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20
center of mass rj and the unit vector uj parallel to the cylinder

axis. The cylinder axis, which points from r j �
LðjÞ
2

uj to

r j þ
LðjÞ
2

uj has a length L(j)¼ Lr, if j represents a rod, and L(j)¼
Ll, if it represents a crosslinker. Each pair of spherocylinders

interact via a repulsive hard-core potential

Uhc

�
lij
�
h

�
0 if lij $ d

N if lij\d
(1)

where lij is the shortest distance between the spherocylinder axes,

which is

lijh min
�1#si#1

�1#sj#1

�����
�
r j þ

s jLðjÞ
2

u j

�
�
�
ri þ

siLðiÞ
2

ui

������ (2)

In addition, a rod i and the rod-adhering sites of a crosslinker j

interact through an attractive site–site potential. The attractive

interaction is realized by a square-well potential, which is defined

as a function of the shortest distance sij, between the adhesive

sites and the rod axis

� � �
�3 if sij\a
Usw sij h
0 if sij $ a

(3)

25

30

35
The two ends of the crosslinkers are distinguished by the two

labels + and �. The shortest distances s+
ij and s�

ij between the

adhering sites of the crosslinker and the axis of the rod are given

by

s�
ijh min

�1#si#1

�����q�j �
�
ri þ

siLr

2
ui

������ (4)

with the adhering sites located at q�j h rj � duj. Here, d is the

distance between the center of the crosslinker and the rod

adhering sites, which are located symmetrically on both ends of

the spherocylinder axis of the crosslinker.���� sjLðjÞ
� �

siLðiÞ
����
lijh min
�1#si#1
�1#sj#1

�� rj þ
2

uj � ri þ
2

ui �� (5)

The total interaction potential between a rod and a crosslinker is

given by

Url
ij ¼ Uhc(lij) + Usw(s

+
ij) + Usw(s

�
ij) (6)

In our simulations, the rods have length Lr ¼ 15D while the

crosslinker length is Ll ¼ 2D. The square-well diameter a, which

defines the range of the rod-adhering potential of the crosslinker,

is set to a ¼ 0.7D. The square-well potentials were placed

symmetrically along the cylindrical axes, at a distance d ¼ 1.35D

from the center of mass of the crosslinker. Since the range a of the

attractive sites is smaller than the diameter D of the spherocy-

linders, one rod cannot adhere to both attractive sites of

a crosslinker. Furthermore, due to the location and the range of

the attractive sites, the angle qlr between a rod and an adhering

crosslinker is typically close to p/2. In general, attractive inter-

action between a rod and a crosslinker requires qlr T p/3.

8580C
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Simulations are performed for systems of Nr rods and Nl

crosslinkers. The systems can be characterized by the following

three parameters,

(i) the adhesive strength 3,
(ii) the number nlr of crosslinkers per rod, with nlrhNl/Nr, and

Fig. 2 Distribution P of lifetimes t for the crosslinker–rod contacts in

units of Monte Carlo sweeps at adhesive strengths 3 ¼ 2.5T and 3 ¼ 10T.
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(iii) the volume fraction f of the rods, with f h Nfvr/V. Here,

vr is the volume of the spherocylindrical rod, which is equal to

vrh
1

6
pD3 þ pD2Lr, and V is the total volume of the system.

Fig. 1 (a) Binary system of spherocylinders inspired by the cytoskeleton:

The rods are approximated by hard spherocylinders of length Lr and the

crosslinkers by spherocylinders of length Ll with a rod-adhering site on

each end. Rods and crosslinkers are taken to have the same diameter D.

(b) Schematic representation of a crosslinker: The crosslinker has a center

of mass ri and a cylinder axis parallel to the unit vector ui. On the cylinder

axis, two adhesive sites are located symmetrically at points q+i and q�i with

a distance d to the center of mass. The adhesion sites interact with rods via

square-well potentials of range a, while sij is the distance between the rod

axis and the nearest adhesion site.
ART � B80
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The values of f and nlr were determined by choosing suitable

values of Nr, Nl and V which were kept fixed during the simu-
lr

rods sets a lower limit to the simulation box size, and the side

length V1/3 is always set to be greater than 2Lr. In the Monte

Carlo simulations, new configurations are generated by trans-

lational and rotational moves of the rods and crosslinkers. For

a system ofNr rods andNl crosslinkers, 2(Nr +Nl) attempts of an

orientational or translational move are made every sweep.

Starting from a lattice configuration, an isotropic state is

achieved by equilibrating the system in the absence of attractive

interactions, i.e. for 3¼ 0, using a constant volume (NVT)Monte

Carlo simulation. After 2 � 105 sweeps, the adhesive square-well

potential is switched on. For various values of f and nlr, simu-

lations are performed with a set of different adhesion strengths 3.

Additionally, for each choice of f and nlr, simulations were

performed for systems with different numbers of rodsNr in order

to examine finite-size effects. The number of sweeps required to

equilibrate the system ranges from 4 � 106 to 2 � 107, depending

on the rod volume fraction and the crosslinker concentration.

After the system was equilibrated, averages were taken, using the

same number of sweeps as for equilibration.

2.1 Lifetime distribution of crosslinker contact

In simulations of cluster-forming systems, it is important to

ensure that the configuration space is adequately sampled. For

this purpose, we have investigated the lifetime distribution of

rod–crosslinker contacts. The Monte Carlo sweeps between

attachment and detachment of any crosslinker–rod pair are

counted, and registered in a histogram. The normalized histo-

gram gives the lifetime distribution P(t). The lifetime distribu-

tions of the system are compared in Fig. 2 for 3 ¼ 2.5T and 3 ¼
10T (here and below the Boltzmann constant is absorbed into the

symbol T, i.e., temperature is measured in energy units). For

both adhesive strengths, the distribution is well described by an

exponential form exp(– at) with a x 0.21 and a x 0.13 for 3 ¼
8580C
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2.5T and 3¼ 10T, respectively. Summing the lifetime distribution

up to t¼ 20 reveals that more than ninety percent of the contacts

detach within 20 Monte Carlo sweeps. For both adhesion

strengths shown in Fig. 2, P(t) is essentially zero for t T 40.

3. Percolating clusters

Using Monte Carlo simulations, the system is analyzed for

various parameter values. In the absence of attractive interac-

tions, i.e. for 3 ¼ 0, the rods and crosslinkers form an isotropic

fluid. With increasing 3, the number of crosslinkers adhering to

rods increases. Each crosslinker can bind up to two rods, one at

each rod adhering site. In the following, two rods are called

‘connected’ if they bind to the same crosslinker. A pair of rods

can be connected by one or several crosslinkers. A rod can be

connected to several other rods. For a given configuration the

rods are divided into groups called clusters. A rod is part of

a cluster, if it is connected to, at least, one rod belonging to the

cluster. The size of a cluster is taken to be the number of rods in

the cluster. Choosing values of f T 0.02 and nlr T 1, we find

a threshold value of 3 above which the clusters percolate and

form a space-filling network. Previous studies have shown that

the percolated phase of an actin-linker system is of the generic

sol-gel type.22,27 Sol-gel transitions have been successfully studied

with percolation theory.42–44 In the following, we use methods of

percolation theory to investigate the structure of our model

system.

In percolation theory, one considers an infinite system in

which clusters of different sizes may form. A percolation tran-

sition is marked by the formation of an infinitely large cluster,

which spans the entire system. In a finite system, the divergence

of the size of one cluster is replaced by a strong growth of one

cluster while the other clusters shrink. The fraction of monomers

belonging to the largest cluster can be used as an order param-

The exponent ofM2 is determined by two parameters, the Fisher

exponent t and another critical exponent s.

3.1 Simulation results

At very low 3, the rods and crosslinkers are in an isotropic fluid

state. As 3 is increased, a growing fraction of crosslinkers is

attached to rods. Increasing 3 also leads to an increasing number

of connected rods, which causes the formation of clusters. For

moderate 3, the clusters are of comparable size. The average

cluster size increases with 3. Let us assume that the percolation

threshold of an infinite system occurs at ~3(f,nlr). In the simula-

tions, the second moment of the cluster size distribution M2 has

been measured by counting the number of rods in each cluster. It

shows a continuous increase with 3 until 3 x ~3(f,nlr), where one

large cluster emerges in the system, whose size is distinctly larger

than that of all the other clusters. If 3 is increased further,

a growing number of rods are incorporated into the spanning

cluster. As a consequence, the value of M2, which includes all

clusters apart from the largest one, decreases again.

With increasing system size, the location 3 ¼ 3max of the

maximum of M2(3) converges to the percolation threshold

~3(f,nlr) of an infinite system.45–47 In Fig. 3, we show plots ofM2 as

a function of 3 for f ¼ 0.03, nlr ¼ 2, and different system sizes.

For the tested system sizes, the obtained value of 3 at which M2

attains its maximum does not change significantly.

Another measurable quantity which indicates a percolation

transition is the average fraction of rods that belong to the largest

cluster, hsmaxi, which is also treated as an extensive order

parameter.47,48 For a sufficiently large cluster the percolation

transition occurs at the value of 3 at which hsmaxi ¼ 0.5. As shown

in Fig. 4(b) and Fig. 5(b), hsmaxi increases continuously from 0 to

1, as a spanning cluster forms in the system. The maximum ofM2

coincides well with the value of 3 at which the largest cluster

consists of approximately 50% of the rods. The system has been

analyzed for a fixed rod volume fraction f and different values of

the crosslinker–rod ratio nlr, by varying the adhesive strength 3.

Fig. 4(a) and Fig. 4(b) show results ofM2 and hsmaxi, respectively,
as a function of 3 for f¼ 0.03. As nlr is increased from 1.3 to 6, the

maximumM2 is shifted gradually to lower values of 3. As shown in

Fig. 4(b), the criterion hsmaxi ¼ 0.5 provides transition values for 3

that are quite similar to the ones obtained from themaxima ofM2.
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eter. Let ns be the probability that an arbitrary cluster in an

infinitely large system has the size s. Based on scaling arguments,

the cluster size distribution ns has the general form,43,44

ns f s�tf[(p – pc)s
s]. (7)

where p is the probability that a pair of rods is connected. Note

that the cluster size distribution differs from the bundle size

distribution which is based on the number of almost parallely

oriented rods that form a bundle. The bundling behavior of the

system is investigated in Sec. 4.

At the critical attachment probability pc, ns is predicted to have

a power law decay,43,44

ns(pc) f s�t (8)

where t is called the Fisher exponent.43,44 A useful quantity is the

second moment of ns, which is defined as

M 2h
Xsm�1

s¼1

s 2ns (9)

where the sum goes over all cluster sizes which are smaller than

the size of the largest cluster sm. For p z pc, M2 scales like
43,44

M2 f |p � pc|
(t � 3)/s. (10)
ART � B80
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Fig. 3 The second moment of the cluster size distribution, M2, as

a function of the adhesive strength 3 for various rod numbersNr at a fixed

rod volume fraction f ¼ 0.03 and a crosslinker–rod ratio nlr ¼ 2. Lines

are intended to guide the eye.
8580C
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Fig. 5(a) and Fig. 5(b) show average values ofM2 and smax for

systems with crosslinker–rod ratio nlr ¼ 2 and different rod

volume fraction f as a function of the adhesive strength 3. For f

( 0.01, the value ofM2 increases with 3, but a maximum has not

been reached within the observed range of 3. For large 3, hsmaxi
appears to saturate to a value distinctly lower than one. For

larger f, Fig. 5(a) shows a peak for M2. With increasing rod

volume fraction f, the peak ofM2 is shifted towards lower values

of 3, indicating that a spanning cluster forms a3 t lower 3, already.

In Table 1, the threshold values of 3 obtained with the two

criteria are compared for nlr ¼ 2 and nlr ¼ 6 at different values of

the rod volume fraction f. For infinitely large systems, both 3

values are predicted to coincide with the percolation threshold ~3.

The data obtained for the different system sizes indicate that the

obtained threshold values depend only weakly on system size.

Fig. 4 (a) The second moment of the cluster size distribution, M2, for

a rod volume fraction f ¼ 0.03, as a function of the adhesive strength 3.

Different symbols represent different values of the crosslinker–rod ratio

nlr. (b) The average fraction of rods hsmaxi that are part of the largest

cluster as a function of the adhesive strength 3 for a rod volume fraction f

¼ 0.03. The horizontal dotted line denotes hsmaxi ¼ 0.5. Different symbols

represent different values of the crosslinker–rod ratio nlr. Lines are

intended to guide the eye.
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According to Eq. 8, the cluster size distribution ns should fit to

a power-law decay, close to the transition point. In Fig. 6(a),

double logarithmic plots of p(s) for a system with f ¼ 0.03, nlr ¼
2, and 3 ¼ 9T are shown together with the best power-law fit.

Since the largest cluster size is limited by the system size, p(s)

deviates from power-law behavior at large s, where it shows

a peak, close to Ns, the total number of rods in the system. The

peak region of the cluster size distribution is excluded from the

power-law fit, which then gives a Fisher exponent, t x 2.5 for f

¼ 0.03 and nlr ¼ 2.
ART � B80
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Recently, the percolation of carbon nanotubes in polymeric

and colloidal media has been studied analytically.38 The study

shows that the percolation threshold depends sensitively on the

length distribution and the attractive interactions between the

nanotubes. Similar results have been found in Monte Carlo

simulations of spherocylinders with an effective adhesion

induced by depletion forces.39 No such information exists about

the Fisher exponent which, to the best of our knowledge, has not

been calculated so far.

For the similar problem of randomly branching polymers two

universality classes have been found, for which a universal Fisher

exponent can be found (see ref. 49). For polymerization

processes of small multifunctional monomers, the Fisher

Fig. 5 (a) The second moment of the cluster size distribution, M2, as

a function of the adhesive strength 3 for a crosslinker–rod ratio nlr ¼ 2

and different values of the rod volume fraction f. (b) The fraction of rods

included in the largest cluster hsmaxi for crosslinker–rod ratio nlr ¼ 2 and

various values of the rod volume fraction f. The horizontal dotted line

denotes hsmaxi ¼ 0.5. Lines are intended to guide the eye.

Table 1 Values of the reduced adhesion strength 3/T obtained at the
maximum of M2(3) and at hsmaxi(3) x 0.5 for different values of the rod
volume fraction f and crosslinker–rod ratio nlr. For large systems, both 3
values approach the percolation threshold ~3

nlr f 3/T at maximum of M2 3/T at hsmaxi x 0.5

2 0.02 11 10.5
2 0.03 9 9.25
2 0.05 8.25 8.5
6 0.02 8.5 8.5
6 0.03 7.5 7.5
6 0.04 7.0 7.25
6 0.05 6.75 6.75
8580C
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phenomenon is similar to the bundling of intra-cellular filaments

in the presence of interconnecting proteins.16 Tempel et al.22 have

proposed a phase diagram of a system of actin filaments and a-

actinin linkers, in which the bundling phenomenon appears for

high linker density regions. In the region of lower a-actinin

densities, they propose a transition of the sol-gel type, where the

transition line denotes the threshold of the crosslinker concen-

tration below which the presence of the crosslinkers has no

influence on the structure of the filament system. Pelletier et al.55

reported on the formation of 3D networks of bundles in a system

of F-actin and a-actinin, based on small-angle X-ray scattering

and laser scanning confocal microscopy. A crosslinker induced

bundling of filaments is also predicted by an analytical model,

based on the Onsager theory.26 The unbinding of filament

bundles was also studied by Kierfeld et al.56 For a system of actin

filaments and crosslinkers, the formation of bundles may be

affected by several phenomena that are not included in our

model system. The size of filament bundles may be influenced by

the growth dynamics of actin filaments,57 by the presence of

counterion-induced long-range interactions40,41 or by a chiral

conformation of filaments in a bundle.58 Our model system

considers uncharged rigid filaments of fixed length, so that the

degree of bundling reflects the interplay between the crosslinker-

mediated filament–filament interactions and entropic effects.

With the help of Monte Carlo simulations, we have studied the

occurrence of rod bundling in our model system. The formation

of bundles depends on all three system parameters, f, nlr, and 3.

Bundling is found in dilute systems as well as in percolating

networks. The typical structure of bundles in a system with a low

rod volume fraction is presented in Fig. 7(a). It shows small

clusters of aligned rods, which are strongly interconnected by

crosslinkers. A typical configuration of a spanning network with

pronounced bundling is shown in Fig. 7(b).

In our simulations, bundling is detected by measuring the

mutual alignment of connected rods. We define two connected

rods i and j to be in the same bundle if they are aligned almost

parallel to each other. More precisely, the angle between the rod

axes qij must satisfy the condition |cos qij| $ 0.95. The fraction

hnbi of rods involved in any bundle is used to indicate the extent

of bundling within the system.

Fig. 6 (a) Distribution P(s) of the cluster size s for a rod volume fraction

f ¼ 0.03 and an adhesive strength 3 ¼ 9T. Different symbols represent

different system sizes. The line represents a fit corresponding to a power

law decay as in Eq. 8 with exponent t ¼ 2.5 � 0.03. (b) Cluster size

distribution P(s) for a rod volume fraction f ¼ 0.03, a crosslinker–rod

ratio nlr ¼ 2 and a number of rods Nr ¼ 492. Different symbols stand for
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exponent can be obtained from percolation theory and has

a value of tx 2.2. Systems with long chain segments between the

branching points belong to the vulcanization class50 and behave

like a system of long linear polymers that are crosslinked by short

agents. For this class, the width of the critical percolation region

is almost zero and, close to the percolation threshold, the cluster

size distribution is described by the Flory-Stockmayer theory,51–

53 which predicts a Fisher exponent of t ¼ 2.5.54 Both exponents

are universal in the limit of long and short polymer segments

between branch points. For a polymer system that lies in the

different values 3. The line is identical to that in Fig. 6(a).
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crossover regime of the two classes, an intermediate value of tx
2.35 has been measured.42,54 With a Fisher exponent of t ¼ 2.5

our system appears to belong to the vulcanization class, but one

has to keep in mind that the approach by de Gennes considers

a randomly curved polymers and does not consider parallel

alignment of multiply connected polymers or rods.

The cluster size distribution ns is compared for systems with

three different 3 in Fig. 6(b). The best power-law behavior is

found for 3 ¼ 9T. For 3 ¼ 8.5T and 9.5T, the distribution ns
shows a larger deviation at higher cluster sizes. This indicates

that the threshold value is approximately ~3(f ¼ 0.03, nlr ¼ 2) �
9T, which is in good agreement with the value found with the

other two criteria, as listed in Table 1.

4. Bundles

If two rods are interconnected by more than two crosslinkers, the

rod axes have to be fairly parallel. Therefore, bundles of

approximately parallel rods may occur in the system. This
580C

This journal is ª The Royal Society of Chemistry 2009



between the centers of mass. Numerically, the delta function is

realized by selecting small, finite intervals [r � D/2, r + D/2) of

width D. For structures with pronounced bundling, g2(r) shows

distinct oscillations, which decrease with increasing r. These

oscillations result from the ordered packing of almost parallel

rods. In Fig. 8, examples of g2(r) are presented. For nlr ¼ 6 and

f ¼ 0.003, oscillations in g2(r) are more pronounced than for nlr
¼ 2 and f ¼ 0.01, where bundling effects are weaker. For

a system with nlr ¼ 2 and f ¼ 0.05, the fraction hnbi of rods that
form bundles is low and g2(r) has only one distinct maximum.

We have systematically studied the fraction hnbi of rods

involved in bundles as a function of the system parameters. As

one would assume, hnbi increases with increasing crosslinker–rod

ratio. The dependence of hnbi on f and 3 is, however, less intu-

itive. This is demonstrated in Fig. 9, where hnbi is shown as

a function of 3 for nlr ¼ 2 and various rod volume fraction values

f. For high 3, the bundling effect is generally weakened if the rod

volume fraction f is increased. This effect can be explained by

recalling that it is energetically favorable if both ends of the
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Bundling has also been studied with the help of the orienta-

tional pair correlation function

g2ðrÞh
*P

isj P2

�
cosqij

�
d
�
r� rij

�
P

isj d
�
r� rij

�
+

(11)

where

P2

�
cosqij

�
¼ 3

2
cos2qij �

1

2
(12)

is the second Legendre polynomial and the delta function

restricts the sampling to pairs of rods i and jwith a distance rij¼ r

Fig. 7 (a) A typical configuration for a system with volume fraction f ¼
0.003, crosslinker–rod ratio nlr ¼ 6, and adhesive strength 3 ¼ 10T. The

rods do not form a spanning cluster. The majority of rods form cross-

linker-induced bundles. (b) A typical configuration of a percolating

network that includes bundles of parallel rods. The figure shows a system

with a rod volume fraction f ¼ 0.03, a crosslinker–rod ratio nlr ¼ 9, and

an adhesive strength 3 ¼ 10T.
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Fig. 8 The orientational correlation function g2(r) as a function of the

rod distance r for an adhesive strength 3 ¼ 10T. Results are shown for

different values of the rod volume fraction f and the crosslinker–rod

ratio nlr. Strong oscillations of g2(r) are correlated with pronounced

bundling. Lines are intended to guide the eye.

Fig. 9 The fraction of rods forming bundles hnbi for a fixed crosslinker–

rod ratio nlr ¼ 2, measured as a function of the adhesive strength 3.

Different symbols represent different values of rod volume fractions f.

Bundling diminishes with increasing rod volume fraction f. For f¼ 0.02,

hnbi is a non-monotonic function of 3. Lines are intended to guide the eye.
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crosslinkers bind to rods. At low rod concentrations, small iso-

lated rod bundles are required to create adhesion on both ends of

the crosslinkers. With increasing f the network of rods gets more

dense so that a sufficient number of crosslinks may form between

non-aligned rods. For f ¼ 0.003 the fraction of bundling rods

increases monotonically with 3 while for f ¼ 0.05, bundling is

basically absent. A particularly interesting system behavior is

found for f ¼ 0.02. Here, rods form a spanning network at 3 �
10.5T. For 3( 8.5T, the system is in an isotropic fluid state, and

the fraction of bundling rods is very low. With increasing 3, hnbi
increases and reaches a maximum hnbi x 0.33 at 3 x 10.5T,

above which it decreases distinctly. The maximum of hnbi
corresponds well with the percolation threshold for the given

values of f and nlr. Apparently, the bundling is diminished by the

formation of a spanning network, in which many non-aligned

rods can be crosslinked.

5. Phase diagrams

In this section, an overview of the structural properties of the

system is given in terms of ‘‘phase diagrams’’. The system has

been analyzed for values of f ranging from 0.003 to 0.05, for nlr
in the range of 0.5 to 6, and for 3 values ranging from 6T to 15T.

In order to analyze the influence of the system parameters on

the bundling behavior, we define a criterion for ‘‘substantial

bundling’’ in a system. Generally, one finds that the orientational

correlation function g2(r) shows distinct oscillations for systems

with hnbi $ 0.2, in which more than 20% of rods form bundles.

For hnbi � 0.2, the orientational correlation function has basi-

cally one peak. In the following, a system with hnbi > 0.2 is said to

belong to a bundling region in the parameter space spanned by f,

nlr, and 3.

The properties of the system depend on the three independent

control parameters, f, nlr, and 3, and it is useful to draw more

Fig. 10 Phase diagram as a function of adhesive strength 3 and cross-

linkers per rod nlr for rod volume fraction f¼ 0.03. The diagram contains

two different boundary lines. First, the percolation threshold (solid line)

separates the isotropic phase from the percolating network phase

(shaded). Second, the threshold of substantial bundling (dashed line)

separates configurations with many bundles (grey) from those for which

bundles are rare. Outside the grey shaded region, less then 20% of the

rods are involved in a bundle.
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than one phase diagram, in order to summarize the results

obtained for different parameter values. The phase diagram in

Fig. 10 has been constructed by fixing the rod volume fraction

f ¼ 0.03 and shows the dependence of the rod assembling

structure on the crosslinker–rod ratio nlr and the adhesive

strength of the crosslinkers 3. Fig. 11 shows a phase diagram of f

and 3, for a fixed crosslinker–rod ratio nlr ¼ 2.

5.1 Constant rod volume fraction f

For volume fractions f ¼ 0.03, the system has been analyzed for

values of nlr ranging from 0.5 to 6.0 and 3 ranging from 0 to 15T.

The results are summarized in Fig. 10, where the shaded

(hatched) area denotes the region of percolated states and the

percolation transition line is indicated by the solid line.

Substantial bundling is found within the grey region, which is

bounded by the dashed line. For nlr < 1.5, the rods do not form

networks or bundles within the analyzed range of 3. A percolated

network is found for nlr T 1.5, if 3 is sufficiently large. As nlr is

increased, the percolation boundary is shifted to lower values of

3. As indicated by the dashed line in Fig. 10, substantial bundling

sets in for 3 values below the percolation threshold. For large

crosslinker–rod ratios nlr T 2, percolated networks include

a substantial amount of bundles over the whole range of 3,

observed. In contrast, for nlr ¼ 2, bundling is maximal at 3 x
8.0T and less than 20% of the rods form bundles for 3 T 10.5T.

An explanation for this non-monotonic behavior of the fraction

hnbi ¼ hnbi(3) has been given in the last section.

5.2 Fixed crosslinker concentration

For a fixed value of the crosslinker–rod ratio nlr ¼ 2, the system

has been analyzed for rod volume fractions f ranging from 0.003

to 0.05 and various adhesive strengths 3. The properties are

summarized in Fig. 11. Within the observed range of 3, spanning

networks are not observed for f ( 0.01. However, bundles are

formed by rods at these values of f, when 3 is sufficiently high.

Space-filling networks are observed in systems with f T 0.02 at

Fig. 11 Phase diagram as a function of adhesive strength 3 and volume

fraction f for crosslinker–rod ratio nlr ¼ 2. The rods form bundles (grey

region) and spanning clusters (shaded region) for certain parameter

regions. As in Fig. 10, the percolation threshold is indicated by the solid

line and the threshold of substantial bundling by the dashed one.
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sufficiently large values of 3. As f is increased, the percolation

boundary is shifted to lower values of 3. In the range 0.025 ( f

( 0.03, the amount of rods included in bundles is a non-

monotonic function of 3with a maximum close to the percolation

boundary. Substantial bundling is suppressed for f T 0.035.

Within an intermediate region, with 0.02( f( 0.03, substantial
bundling is found in a space-filling network.

6. Summary

With the help of Monte Carlo simulations, we have analyzed

a simple model system of rods and crosslinkers. Our simulation

study reveals a complex dependence of the properties of the

system on rod volume fraction, crosslinker concentration and the

affinity of the crosslinkers.

The rods form a space-filling network if the rod volume frac-

tion f, the crosslinker–rod ratio nlr, and the adhesion strength 3

are sufficiently large.

The fraction hnbi of rods that are part of an aligned bundle

increases with increasing crosslinker–rod ratio nlr, but decreases

with increasing rod volume fraction f. This behaviour agrees

qualitatively with the phase diagram in ref. 26, which was

obtained for the case of an effective crosslinking potential that

does not depend on the rod alignment. In a certain parameter

range of nlr and f, the fraction hnbi of bundling rods is a non-

monotonic function of the adhesion strength 3 and has

a maximum close to the percolation boundary.

Percolation and substantial bundling can be found in all

combinations. For low crosslinker–rod ratios and adhesion

strengths the system is in an isotropic, fluid state. For sufficiently

low rod volume fractions, isolated bundles of aligned rods are

found. Furthermore, the investigated system forms percolated

states with and without substantial bundling.

The bundling behavior can be understood in the following

way. For sufficiently large adhesion strength, crosslinkers tend to

bind rods on both ends. In a dense percolated system, resulting

from large f and 3, each rod has a comparatively large number of

different neighboring rods. As a consequence, crosslinkers that

bind to the same rod typically do not share the same rod on the

other end. Since sharing several crosslinkers is the underlying

mechanism for the formation of bundles, bundling in dense

percolated systems is reduced.

The simulations described here have been restricted to one

crosslinker length. As shown in ref. 17, the length of the cross-

linkers has a strong influence on the structural and mechanical

properties of an actin network. It would be interesting to inves-

tigate these effects in future simulation studies.

Finally, we would like to mention that the gel-like network

state is different from an isotropic fluid state in terms of

mechanical properties. An interesting task for future investiga-

tions would be to study system properties such as the elastic

modulus and to determine whether there are thermodynamic

phase transitions between the different structures formed by the

system.
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