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Abstract – The mechanical steps of molecular motors that walk processively along filaments
are governed by four distinct dwell time distributions corresponding to the four possible pairs of
subsequent forward and backward steps. These distributions can be calculated from the master
equation for the network of motor states if one extends this network by two absorbing states and
determines the corresponding absorption times. This procedure is illustrated for the kinesin motor
for which the four dwell time distributions are explicitly calculated. The tails of these distributions
are governed by a single decay rate Ω1, which corresponds to the smallest nonzero eigenvalue of
the master equation. For kinesin, this theoretical decay rate is found to be in good agreement with
the experimental rate Ωex as deduced from recent measurements.

Copyright c© EPLA, 2008

Introduction. – Many molecular motors in the living
cell transduce the chemical energy released from ATP
hydrolysis into mechanical work [1]. A prominent example
is provided by conventional kinesin [2,3], a molecular
motor that walks processively along microtubules and is
essential for intracellular transport and pattern formation.
Kinesin has two identical motor heads and walks in a
“hand-over-hand” fashion, i.e., by alternating steps in
which one head moves forward while the other one remains
bound to the filament [4,5]. Each step leads to a motor
displacement of 8 nm corresponding to the lattice constant
of the microtubule. These mechanical steps are rather fast
and completed within 15 microseconds [6].
Kinesin exhibits tight coupling, i.e., it hydrolyzes one

ATP molecule per mechanical step [7]. After ATP has
been hydrolyzed by one of the catalytic motor domains,
the inorganic phosphate is released rather fast, and both
transitions together take of the order of 10 milliseconds to
be completed [8]. ADP is subsequently released from the
catalytic domain, and this release process is also completed
during about 10 milliseconds [9]. When the catalytic
domain of one motor head is occupied by ADP, this head
is only loosely bound to the microtubule [10,11] and most
likely to unbind from it. Various motor properties such as
motor velocity [6,12], bound state diffusion coefficient (or
randomness parameter) [12], ratio of forward to backward

(a)E-mail: valleriani@mpikg.mpg.de

steps [6], and run length [13] were measured as a function
of ATP concentration and load force. Furthermore, the
motor velocity was also determined as a function of P and
ADP concentration [14].
As shown in [15–17], all of these experimentally

observed motor properties can be described quantita-
tively within a recently introduced network model for
the chemomechanical coupling of kinesin. In the present
paper, we will use this model in order to calculate the
dwell time distributions for kinesin’s steps. We will start
from the network of chemical states and “project” the
corresponding network dynamics onto an effective step
dynamics. The latter dynamics is non-Markovian and
based on conditional mechanical steps or co-steps. In
fact, one has four different co-steps that correspond
to forward-after-forward steps, forward-after-backward
steps, backward-after-forward steps, and backward-after-
backward steps. Each of these co-steps is characterized
by its own dwell time distribution. Thus, the effective
step dynamics is governed by four different dwell time
distributions.
Our letter is organized as follows. First, we give a precise

definition for the co-step dynamics which leads to an
extended network with two absorbing states. We then use
the general formalism for continuous-time Markov chains
with absorbing states to calculate the dwell time distribu-
tions for the four distinct co-steps. Finally, we relate these
distributions to the ones observed experimentally in [6].
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Fig. 1: Network representation for the kinesin motor [15,16]
with six chemical states labeled by i= 1, 2, . . . , 6 that are
distinguished by the chemical composition of the two catalytic
motor domains. A transition from state i to state j is denoted
by |ij〉. An edge between two states i and j represents both
the forward transition |ij〉 and the backward transition |ji〉;
a solid and broken edge corresponds to a pair of chemi-
cal and mechanical transitions, respectively. The horizontal
line at the bottom represents the filament which provides a
discrete set of binding sites at the spatial positions x±n� with
n= 0, 1, . . . .

As a result, we find good agreement between theory and
experiment without adjusting any model parameter.

Dynamics of co-steps. – As explained in [16], the
kinesin motor can be described, for small ADP concen-
tration, by the 6-state network shown in fig. 1. In this
figure, we have explicitly included the spatial coordinate
x parallel to the filament by replicating the network in
a periodic manner. The periodicity is provided by the
mechanical step size, �, for the center-of-mass displace-
ment of the motor. A motor is in state ix when its chemical
state is i and its spatial position is x. By convention, the
transition |2x5x+�〉 from state 2x to state 5x+� represents
a forward mechanical transition, whereas the transition,
|5x+�2x〉 represents a backward mechanical transition.
With a forward mechanical transition the motor

completes a forward step, whereas with a backward
mechanical transition the motor completes a backward
step. Indeed, inspection of fig. 1 shows that the motor
attains the chemical state i= 5 immediately after a
forward step and the chemical state i= 2 immediately
after a backward step. It may then undergo an arbitrary
number of chemical transitions before it performs another
mechanical transition in the forward or backward direc-
tion. Thus, if we focus on the step mechanics, we must
distinguish four co-steps, denoted by σff , σfb, σbf , and
σbb, corresponding to i) a forward after a forward, ii) a
backward after a forward, iii) a forward after a backward,
and iv) a backward after a backward step, respectively.
As an example, let us consider a co-step σff . Any such

co-step corresponds to a network walk with the following
properties: i) The walk starts from the initial state 5x
and ends up in the final state 5x+�; and ii) the walk
may contain an arbitrary number of chemical transitions
but must contain only one mechanical transition given by
|2x5x+�〉, which is, in fact, the final transition of this walk.
We will denote such a walk by |5x→ 5x+�〉. Likewise, the
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Fig. 2: Extended (6+2)-state network for kinesin which consists
of the six chemical states as in fig. 1 together with the two
absorbing states 2′ and 5′.

co-steps σfb, σbf , and σbb correspond to walks |5x→ 2x−�〉,
|2x→ 5x+�〉, and |2x→ 2x−�〉, respectively.
All walks that contribute to any of the four co-steps are

distinguished by the property that they leave the chemical
network at x only once, either towards the final state 5x+�
or towards the final state 2x−�. These two final states thus
represent two absorbing states 5′ and 2′ which lead to the
extended (6+2)-state network shown in fig. 2. The four
co-steps are now provided by walks that start in the initial
states i= 2 or i= 5 and end in the final states j = 5′ or
j = 2′ and, thus, are described by

σff = |5→ 5′〉 , σbf = |2→ 5′〉 ,
σfb = |5→ 2′〉 , and σbb = |2→ 2′〉 .

(1)

Furthermore, the dwell times tff , tbf , tfb and tbb for
the different co-steps are now equivalent to the absorp-
tion times of the corresponding walks on the extended
(6+2)-state network in fig. 2.
Each dwell time tα with α=ff, fb,bf or bb is governed

by the probability distribution ρα(t) which determines the
probability

Pr{tα � t} =
∫ t
0

du ρα(u) , (2)

and the average dwell time τα.

Markov chains with absorbing states. – To
compute the probability distributions of the dwell
times, we now introduce some formalism for Markov
chains. Let X(t) with time t� 0 be a continuous-time
Markov chain that can attain N +1 discrete states
i= 0, 1, . . . , n− 1, n, . . . , N , where the first n states
{0, 1, . . . , n− 1} are transient states and the remaining
N +1−n states {n, . . . , N} are absorbing states. The
conditional probabilities that the process dwells in state j
at time t provided it started in the initial state i at time
t= 0, are denoted by

Pij(t) = Pr{X(t) = j|X(0) = i} . (3)

When the process dwells in state i, it undergoes a
transition to state j with transition rate ωij � 0. The time
evolution of the probabilities Pij(t) is then governed by

28011-p2



Dwell times of kinesin’s steps

the master equation

Ṗij ≡ d
dt
Pij =

∑
k �=j
[Pik(t)ωkj −Pij(t)ωjk] (4)

with Pii(0) = 1 and
∑
j Pij(t) = 1. This equation has a

steady-state solution, P stij . Obviously, P
st
ij = 0 for any

transient state j, and
∑N
k=n P

st
ik = 1. Thus, starting in the

initial transient state i with 0� i < n− 1, the probability
that the walk is absorbed in state k with n� k�N is
given by

Aik ≡ P stik =Pr{Xab = k|X(0) = i} . (5)

Here and below, the superscript “ab” stands for “absorp-
tion”. Furthermore, the probability Pij,k(t) that the
process starts in state i, sojourns in state j at time t, and
is eventually absorbed in state k, can be expressed as

Pij,k(t) = Pr{X(t) = j,Xab = k|X(0) = i}
= Pij(t)Ajk .

(6)

On every transient state i, the process will sojourn
for an exponentially distributed random time with rate∑N
j=0 ωij and will then jump to a neighboring state j with

probability ωij/
∑
j ωij . This jump process will continue

until an absorbing state is reached. The absorption time,
tabi � 0, is then defined via

tabi =min {t� 0,X(t) = k� n|X(0) = i} , (7)

i.e., the time required to reach any absorbing state
from the initial state X(0) = i. The probability that the
absorption time tabi � t can be expressed as

Pr
{
tabi � t

}
=

N∑
k=n

Pik(t)≡
∫ t
0

du ρabi (u) , (8)

with the probability distribution

ρabi (t) =

N∑
k=n

Ṗik(t) , (9)

a relation that was also derived recently in [18]. The
average absorption time starting from the transient state
i is now denoted by τabi .

Conditional absorption times. – In the previous
subsection, we considered all possible walks of the Markov
process. Now, we want to focus on the subset of those
walks that are eventually absorbed in a certain state k.
Thus, we now consider the conditional probabilities

Pij|k(t) = Pr
{
X(t) = j|X(0) = i, Xab = k}, (10)

with i� n− 1 and k� n. Since a walk that starts from
state i is absorbed in state k with absorption probability
Aik, see (5), the conditional probability Pij|k is given by

Pij|k(t) = Pij,k(t)/Aik = Pij(t)Ajk/Aik , (11)

where the first equality arises after re-arranging the
terms in the conditional probability (10). The conditional

probabilities Pij|k(t) describe the time evolution on the
restricted Markov chain with n transient states as before
but with only one absorbing state, namely k. The corre-
sponding absorption times tabi|k satisfy

Pr
{
tabi|k � t

}
= Pik|k(t)≡

∫ t
0

du ρabi|k(u), (12)

which defines the probability distribution ρabi|k for the
restricted process. Finally, it follows from the transforma-
tion rule (11) and Akk = 1 that

ρabi|k(t) = Ṗik|k(t) = Ṗik(t)/Aik . (13)

Relation (13) was previously stated in refs. [19,20] for
a generic birth and death process. We will denote the
average absorption time corresponding to the conditional
probability distribution (13) by τabi|k.
Using the general properties of Markov processes with

absorbing states as discussed in the previous sections,
we can now compute the probability distributions for
kinesin’s co-steps σα with α=ff, fb,bf or bb as in (1), see
also fig. 2. Alternatively, both the absorption probabilities
Aik and the average absorption times τ

a
i|k can be computed

via another algebraic approach that is based on the trans-
formation rule (11) and matrix algebra rather than on
integration of the master equation [21]. We have used this
algebraic approach to check some of our results. In addi-
tion, we also performed stochastic simulations based on
the Gillespie algorithm to directly compute the probability
distributions and all other quantities discussed here.

Transition rates for kinesin. – After this general
discussion of Markov processes with absorption, we now
return to our specific Markov process for the molecular-
motor kinesin, which corresponds to the extended
(6+2)-network in fig. 2. In the latter network, the states
i= 5, 6, 1, 2, 3, and 4 are transient, the states k= 5′ and
2′ are absorbing.
For the network shown in fig. 2, the transition rates
ωij depend on several thermodynamic control parameters,
namely the external load force F and the concentrations
[ATP], [ADP], and [P]. These functional dependences have
been determined previously in [16] i) by comparing the
steady-state properties of the chemomechanical network
of motor states with the available experimental data from
single-molecule experiments and ii) by imposing energy
(or steady-state) balance conditions that represent general
thermodynamic constraints on the transition rates. This
matching procedure, the details of which are explained
in [16], leads to the transition rates ωij as given in table 1.
Inspection of this table shows that all rates depend on the
dimensionless force

F ∗ ≡ �F/kBT (14)

with the step size �= 8nm and the thermal energy
kBT = 4× 10−21 J at room temperature. Furthermore, all
transitions that involve the binding of a single molecule
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Table 1: Transition rates ωij for the extended (6+2)-state
network in fig. 2, which depend on the dimensionless load
force F ∗ and the concentrations [ATP], [ADP], and [P]. The
list of transition rates given in this table is complemented
by the symmetry conditions ω23 = ω56, ω34 = ω61, ω45 = ω12,
ω32 = ω65, and ω43 = ω16. The concentrations are in units of
µM, the rate constants in units of 1/s or 1/(s µM).

ω56 = 200/(1+ exp (0.15F
∗))

ω61 = 200/(1+ exp (0.15F
∗))

ω12 = 4 [ATP]/(1+ exp (0.25F
∗))

ω25′ = 2.9× 105exp (−0.65F ∗)
ω65 = 0.1 [ADP]/(1+ exp (0.15F

∗))
ω16 = 0.02 [P]/(1+ exp (0.15F

∗))
ω21 = 200/(1+ exp (0.25F

∗))
ω52′ = 0.24exp (0.35F

∗)
ω54 = 1.37× 10−10/(1+ exp (0.25F ∗))

of ATP, ADP, or P, compare fig. 1, are proportional to
[ATP], [ADP], or [P], respectively.

Statistics of kinesin’s mechanical steps. – As
previously mentioned, each co-step σα with α=ff, fb,bf
or bb, corresponds to a walk that starts in either of the
two initial states i= 5 or 2 and ends in either of the
two absorbing states k= 5′ or 2′. Thus, the absorption
probabilities Aik defined in (5) determine the transition
probabilities Mα via

Mff =A55′ = P
st
55′ ,

Mfb =A52′ = P
st
52′ ,

and
Mbf =A25′ = P

st
25′ ,

Mbb =A22′ = P
st
22′ ,

(15)

with Mff +Mfb = 1 and Mbf +Mbb = 1.
The transition probabilities Mα in (15) define a new

discrete-time Markov chain that represents the random
sequence of forward (f) and backward (b) steps of the
motor. This new process is defined by the recursion
relation

(π′f , π
′
b) = (πf , πb)M (16)

for the probabilities πf and πb = 1−πf to make a forward
and backward step, respectively, with the stochastic
matrix

M≡
(
Mff Mfb
Mbf Mbb

)
. (17)

The steady state with (π′f , π
′
b) = (πf , πb) = (π

st
f , π

st
b ) is

given by

πstf =Mbf/(Mbf +Mfb),

πstb =Mfb/(Mbf +Mfb) = 1−πstf ,
(18)

which implies the forward to backward step ratio

q= πstf /π
st
b =Mbf/Mfb = P

st
25′/P

st
52′ . (19)

The co-steps σα with α=ff, fb,bf or bb represent pairs
of two subsequent events in the random sequence of f and
b steps. It is not difficult to show that the steady-state

frequencies, πstα , of these four events are given by

πstff = π
st
f Mff ,

πstfb = π
st
f Mfb ,

and
πstbf = π

st
b Mbf ,

πstbb = π
st
b Mbb ,

(20)

with the symmetry relation πstbf = π
st
fb as follows

from (18). Furthermore, the relations Mff +Mfb = 1 and
Mbf +Mbb = 1 imply π

st
ff +π

st
bf = π

st
f and π

st
fb+π

st
bb = π

st
b

as well as
πstff −πstbb = πstf −πstb . (21)

Average dwell times for kinesin’s co-steps. –
The average dwell times τα of the four co-steps, which
have been introduced after (2), can be identified with the

average absorption times τabi|k for the restricted processes
that start in the initial states i= 5 or 2 and end up in
the absorbing states k= 5′ or 2′. The latter times have
been defined after (13). In this way, we obtain the average
dwell times

τff = τ
ab
5|5′ ,

τfb = τ
ab
5|2′ ,

and
τbf = τ

ab
2|5′ ,

τbb = τ
ab
2|2′ ,

(22)

for the four different co-steps. By averaging over the four
co-steps, we obtain the average stepping time

〈τ〉=
∑
α

πstα τα , (23)

where the summation runs over α=ff, fb,bf and bb.
The average motor velocity v is then given by

v= (πstf −πstb ) �/〈τ〉= (πstff −πstbb) �/〈τ〉, (24)

where � denotes again the step size and relation (21) has
been used.

Dependence on external load force. – The motor
velocity v changes sign at the stall force F = Fs = 7 pN [6]
which corresponds to the dimensionless stall force F ∗s = 14,
compare (14). The force dependence of the steady-state
probabilities πstα and the average dwell times τα is dis-
played in fig. 3(a) and (b), respectively. Inspection of this
figure shows that the co-steps σff and σbb dominate for
forces F ∗� F ∗s and F ∗� F ∗s , respectively. Close to the
stall force F ∗s , the co-steps σbf and σfb, which do not lead
to a net displacement of the motor, are most probable.
Thus, for small and large load forces, the motor makes

primarily forward-after-forward steps and backward-after-
backward steps, respectively, whereas it typically alter-
nates between forward and backward steps close to the
stall force.
On the other hand, the average dwell times τff and τbb

for the co-steps σff and σbb are found to be equal for all
values of the load force F ∗ as explained further below and
to increase monotonically with increasing load F ∗. This
monotonic increase is consistent with the experimental
observation in [6] that the backward velocity is rather
small and decays to zero in the limit of large load forces.

Dwell time distributions of co-steps. – The proba-
bility distributions ρα of the dwell times tαcan be obtained
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Fig. 3: (a) Steady-state probabilities πstα and (b) average dwell
times τα computed via (20) and (22), respectively, as functions
of the dimensionless load force F ∗ for [ATP] = 10µM and
[ADP] = [P] = 0.5µM. Note the semi-logarithmic scale in (b).
In (a), the curve for πstbf is covered by the curve for π

st
fb. In (b),

the curve for τff is covered by the curve for τbb.

from relation (13) which leads to

ρff(tff) = Ṗ55′(tff)/Mff = Ṗ55′(tff)/P
st
55′ , (25)

ρbf(tbf) = Ṗ25′(tbf)/Mbf = Ṗ25′(tbf)/P
st
25′ , (26)

ρfb(tfb) = Ṗ52′(tfb)/Mfb = Ṗ52′(tfb)/P
st
52′ , (27)

ρbb(tbb) = Ṗ22′(tbb)/Mbb = Ṗ22′(tbb)/P
st
22′ , (28)

where the time derivatives on the right-hand side of these
equations are obtained from the master equation (4) and
the transition probabilitiesMα have been defined in (15).
All four dwell time distributions as given by (25)–

(28) are nonexponential as shown in fig. 4 and, thus,
directly demonstrate the non-Markovian character of the
mechanical stepping process. The dwell time distributions
ρff and ρbb for forward-after-forward and backward-after-
backward steps as shown in fig. 4(a) and (d) decrease
to zero for small dwell times since the motor has to
visit at least two other motor states, namely i= 1, 6 or
i= 3, 4, before he can make the next mechanical step,
see fig. 2. On the other hand, the dwell time distributions
ρfb and ρbf for forward-after-backward and for backward-
after-forward steps as shown fig. 4(b) and (c) exhibit
several characteristic time scales. These latter distribu-
tions always have a boundary maximum at vanishing
dwell times corresponding to two subsequent mechanical
transitions without any intervening chemical transition.
However, with increasing load force, these distributions
also develop a second shoulder at larger dwell times
corresponding to cycles of intervening chemical transitions
that start from state i= 2 or state i= 5 and return to the
same state before making the next mechanical transition.
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Fig. 4: Probability distributions ρα of the dwell times tα for
the four co-steps σα with α= ff, fb, bf, and bb as computed
via (25)–(28). The black solid and broken lines correspond
to vanishing load force F ∗ = 0 and stall force F ∗ = F ∗s = 14,
respectively, with [ATP] = 10µM and [ADP] = [P] = 0.5µM.
The red data points have been obtained by stochastic simu-
lations of the stepping process using the Gillespie algorithm.

Comparison of fig. 4(a) and (d) also reveals that the
two dwell time distributions ρff(t) and ρbb(t) are, in fact,
identical. This equality arises from the symmetry of the
underlying transition rates ωij , see caption of table 1,
which implies that the average sojourn times for the
motor in the states 6 and 1 are equal to those on states 3
and 4, respectively. Similar symmetries have been found
in other models of molecular motors as discussed in [20].
An immediate consequence of the equality ρff(t) = ρbb(t)
for the dwell time distributions is the equality τff = τbb
for the corresponding average dwell times as previously
shown in fig. 3(b).

Comparison with experimental data. – Carter and
Cross [6] have measured the probability distributions for
forward and backward steps of kinesin. A forward step
corresponds either to a co-step σff or to a co-step σbf .
Thus, the dwell time tf of forward steps is governed by
the probability distribution

ρf(tf) = (π
st
ff /π

st
f ) ρff(tf)+ (π

st
bf/π

st
f ) ρbf(tf)

= Ṗ55′(tf)+ (1/q) Ṗ25′(tf) ,
(29)

where q is the forward to backward step ratio defined
in (19). Likewise, the dwell time tb of backward steps is
distributed according to

ρb(tb) = (π
st
fb/π

st
b ) ρfb(tb)+ (π

st
bb/π

st
b ) ρbb(tb)

= q Ṗ52′(tb)+ Ṗ22′(tb) .
(30)

The experimental data for the distributions ρf(tf) and
ρb(tb) as obtained in [6] are restricted to dwell times
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Fig. 5: Decay rates Ωex (data points) and Ω1 (solid curves)
for the tail of the dwell time distribution ρf(tf) as a func-
tion of dimensionless load force F ∗ for two values of ATP
concentration. The theoretical rates Ω1 follow from (29) with
[ADP] = [P] = 0.5µM and correspond to the smallest nonzero
eigenvalue of the master equation (4). The experimental rates
Ωex have been obtained in [6].

that exceed a certain small time cutoff, tmin, which varies
between 0.01 and 0.1 s depending on ATP concentration
and load force. For tf > tmin, the measured distributions
ρf(tf) have been fitted to single exponential functions of
the form ρf(t)∼ exp(−Ωext) which defines the decay rate
Ωex. This experimentally determined rate depends on load
force and ATP concentration as shown in fig. 5.
For comparison, fig. 5 also contains the decay rate Ω1

as obtained from our theory for the tails of the dwell
time distributions ρf(tf) and ρb(tb). The decay rate Ω1
corresponds to the smallest nonzero eigenvalue of the
master equation (4). In general, this latter equation has a
discrete spectrum of nonzero eigenvalues Ωn with n� 1
and Ωn+1 >Ωn, and both the conditional probabilities
Pij and their time derivatives Ṗij can be expressed as
superpositions of the form

∑
n Cn exp(−Ωnt). Therefore,

one has Ṗij(t)∼ exp(−Ω1t) for large t which also implies
ρf(t)∼ ρb(t)∼ exp(−Ω1t) via the relations (29) and (30).
Inspection of fig. 5 shows that the decay rate Ω1 as

obtained from our theory is in good agreement with the
experimentally observed rate Ωex for all values of load
force and ATP concentration. This agreement is quite
remarkable since all transition rates ωij of the extended
(6+2)-network, see table 1, have been obtained in [16]
without any reference to the dwell time distributions.
Thus, the agreement between theory and experiment as
shown in fig. 5 was obtained without any fitting parameter.

Summary. – The mechanical displacement of a mole-
cular motor that walks processively along a filament is
governed by four distinct dwell time distributions ρα(tα)

for the four co-steps σα with α=ff, fb, bf, and bb.
These distributions can be obtained from the general
relation (13) for the probability distribution of condi-
tional adsorption times. When applied to the network
models for kinesin as introduced in [15,16] and displayed
in figs. 1 and 2, one obtains the nonexponential dwell
time distributions plotted in fig. 4. These distributions for
the co-steps determine the dwell time distributions ρf(tf)
and ρb(tb) for forward and backward steps via the rela-
tions (29) and (30). The tails of these latter distributions
are governed by the decay rate Ω1, the smallest nonzero
eigenvalue of the master equation (4), which is found to be
in good agreement with the experimental decay rate Ωex
as obtained in [6], see fig. 5.
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