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Vesicle membranes with two coexisting fluid phases can exhibit a variety of domain patterns. These

patterns and the associated vesicle shapes are studied theoretically by minimization of energy

functionals that depend on the membrane composition and on the material parameters of the

membrane. The latter parameters are (i) the bending rigidities and (ii) the Gaussian curvature moduli of

the two types of membrane domains as well as (iii) the line tension of the domain boundaries. It is

shown that the interplay between these different parameters leads to stable multi-domain patterns with

more than two domains for a wide range of membrane composition and material parameters. As the

membrane composition or the material parameters are varied, the vesicles can undergo transitions

between different patterns of membrane domains. For fixed vesicle volume, an additional domain-

induced transition is observed, in which the vesicle shape changes even though the domain pattern does

not. The different multi-domain patterns and vesicle shapes are summarized in terms of morphology

diagrams.
1 Introduction

From the theoretical point of view, biomimetic and biological

membranes with several components represent 2-dimensional

liquid mixtures and, thus, should exhibit 2-phase coexistence

regions, in which the membranes undergo phase separation and

form two types of fluid domains.1,2 Even though this view seems

rather plausible, it remained controversial for many years, since

there was no direct experimental evidence for intramembrane

domains. This has changed recently with the introduction of new

optical techniques and fluorescent dyes3–9 which have led to the

direct visualization of fluid domains on lipid vesicles.

The multi-component model membranes as studied in refs.

3–10 consisted of a saturated lipid such as sphingomyelin, an

unsaturated phospholipid, and cholesterol. At appropriate

conditions, the presence of cholesterol leads to a separation of

the lipids into two fluid phases, a liquid-disordered phase, which

is rich in the low-melting point lipid, and a liquid-ordered phase,

enriched with cholesterol and the high-melting point lipid. The

same lipid mixtures were proposed to form small domains, so-

called ‘lipid rafts’, in the plasma membrane of cells.11,12 These

rafts could be relevant for many biological processes, such as cell-

signaling and traffic, but direct imaging of these latter domains

has been difficult, and both the existence and the size of these

domains is still a matter of debate.

The morphology of a vesicle with two coexisting fluid phases

depends on the membrane composition and on the material

properties of the membrane phases, as has been previously

shown both by analytical theories1,2,13 and by computer simula-

tion.14–16 The most important material parameters are the

bending moduli of the two phases, the difference in the Gaussian

moduli, and the line tension of the domain boundaries, the latter
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being first considered in ref. 1. All of these material parameters

provide a contribution to the total energy of the vesicle

membrane. The interplay and competition of the different

energetic contributions gives rise to morphological transitions.

One example is provided by weakly curved membrane domains

that form buds as soon as the domain size is sufficiently

large.1,17,18 This domain-induced budding transition is primarily

caused by the line tension of the domain boundary and facilitated

by a nonzero spontaneous curvature of the membrane domain.

In experiments, a variety of different domain shapes has been

observed. If the membranes were flat, the equilibrium state of the

two coexisting phases should correspond to two large domains.

However, in some experiments, domain patterns with more than

two domains have been found to be relatively stable; see, e.g., ref. 4.

Many of these multi-domain patterns are metastable, but in some

cases, these metastable patterns are rather long-lived, and thus

kinetically trapped.19 So far, the analytically calculated domain

patterns have been restricted to vesicles with only two domains,

beginning with a circular domain in a nearly planar membrane,1

two domains in vesicles with axial symmetry,2,13 and simple

domain shapes in membranes with more complex topology.20

Thus, at present, one cannot decide whether the experimentally

observed domain patterns are long-lived metastable states or if

they represent the true equilibrium states of the vesicle.

In this article, we study vesicles with spherical topology and

address the stability of multi-domain patterns consisting of more

than two domains. We find that such patterns are, in fact, stable

for a wide range of membrane compositions and material

parameters. We focus on membranes with vanishing sponta-

neous curvature for which the multi-domain patterns and vesicle

shapes depend on three dimensionless material parameters. In

addition, as one varies the membrane composition or a material

parameter, the multi-domain patterns undergo transitions from

one pattern to another. These domain pattern transitions are

coupled to shape transitions and are conveniently summarized in

terms of morphology diagrams.
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In the context of lipid monolayers at the air–water interface,

stable multi-domain patterns have been frequently observed,21

which may reflect effective repulsive interactions between the

monolayer domains arising from long-range dipole–dipole

forces.22 It is important to emphasize that the multi-domain

patterns described here do not arise from such long-range

domain–domain interactions but from the competition of

different elastic energies that depend on several elastic parame-

ters such as the bending rigidities of the two membrane domains

and the line tension of the domain boundaries. The latter

competition is also responsible for the stabilization of striped

domain patterns in membranes adhering to corrugated

substrates as observed experimentally in refs. 23–25 and

explained theoretically in ref. 26.

Our article is organized as follows. In Section 2, we describe

the model system of the two-phase vesicle. In particular, the

energy expressions and the material parameters are introduced.

We have numerically determined the minimal energy configura-

tions for vesicles with different material parameters and

constraints. Results are shown in Section 3, where we first discuss

unconstrained vesicles which can adapt their optimum volume.

Volume changes can be strongly restricted by an osmotic pres-

sure, which is induced by molecules inside and outside the vesicle

that cannot penetrate the membrane. Morphologies of vesicles

with a fixed volume are presented in Section 3.4. One focus lies on

configurations with more than two domains, which are shown to

become relevant for small line tensions. Morphological diagrams

for these vesicles are determined as a function of the area frac-

tion, the bending rigidities, and the Gaussian curvature moduli

of the two fluid phases.
2 Theory for multi-domain vesicles

2.1 Elastic continuum theory

In this subsection, we briefly review the elastic continuum theory

for multi-domain vesicles as developed in refs. 1,2 and 13. We

consider large (or giant) unilamellar vesicles bounded by

membranes that contain domains of two coexisting fluid phases,

(a) and (b). The linear size of the vesicles is large compared to the

membrane thickness, and the membrane curvature is small

compared to the inverse membrane thickness. We assume that

the phases are well segregated and form domains that have

a uniform composition. In addition, we focus on situations in

which the domain size is large compared to the thickness of the

domain boundaries. This separation of length scales implies that

spatial variations of the in-plane membrane structure are

restricted to relatively sharp domain boundaries and that we can

describe these boundaries as geometrical lines.1,2 The state of the

membrane is then described by a pattern consisting of (a) and (b)

domains. In general, the membrane can contain several discon-

nected domains of each phase. We will denote the union of all (a)

and (b) domains by the two regions Sa and Sb, respectively. The

surface area A(i) of region Si is independent of membrane

curvature and remains constant under shape changes of the

membrane. The total surface area A of the vesicle is then given by

A ¼ A(a) + A(b).

For a vesicle with an arbitrary pattern of (a) and (b) domains,

the energy can be expressed as2,13
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which depend on the local mean curvature M and the local

Gaussian curvature G of the membrane. The integral

ð
vS

dl in (1)

extends over all domain boundaries between the two types of

domains.

The last three terms in the expression (1) are used to incor-

porate the constraints on the surface areas A(a) and A(b) of the (a)

and (b) domains and on the vesicle volume V. For a given

temperature, both the surface areas A(a) and A(b) and the volume

V attain certain fixed values which are incorporated in the theory

via the Lagrange parameters s(a), s(b), and DP. Alternatively, the

latter parameter may be viewed as the osmotic pressure differ-

ence between the exterior and interior vesicle compartments.

For uniform membranes composed of a single phase, the form

of the bending energy as given by (2) has been introduced by

Helfrich.27 This bending energy represents the leading order

terms of an expansion in powers of the mean and Gaussian

curvatures. The truncation of this expansion after the leading

terms is justified as long as the membrane curvature is small

compared to the inverse membrane thickness. This separation of

length scales applies to the morphology of large vesicles but not

to membrane nanostructures such as fusion pores or necks which

have a size of the order of 10 nm. If one wanted to use an elastic

continuum model for the latter structures, one would have to

include higher order terms of the curvature expansion,28 and thus

introduce additional elastic parameters.
2.2 Material parameters

In general, the energy of multi-domain vesicles as given by (1)

depends on several material parameters: the bending rigidities k(a)

and k(b), the spontaneous curvatures Msp
(a) and Msp

(b), the

Gaussian curvature moduli kG
(a) and kG

(b), and the line tension

l(ab) of the domain boundaries. The three elastic parameters for

uniform membranes were introduced in ref. 27, and the line

tension of the domain boundaries in ref. 1.

The bending rigidity k is the basic energy scale for the bending

energy arising from the local mean curvature M of the

membrane. For phospholipid bilayers, a typical value for k is

around 10�19 J (see Table 1 in ref. 29), which is of the order of 10–

20 T0 at room temperature T0 (here and below, we absorb the

Boltzmann constant kB into the symbol T and measure the

temperature in energy units).

The spontaneous curvature Msp describes the preferred

curvature of the membrane and may originate from any bilayer

asymmetry such as different lipid compositions of the two leaflets

of the bilayer or different aqueous solutions on the two sides of

the membrane. In the following, we will focus on bilayers that

have the same lipid composition in both leaflets and take Msp
(a)¼

Msp
(b) ¼ 0. This also implies that we consider intramembrane

domains that extend across both leaflets of the bilayer.
This journal is ª The Royal Society of Chemistry 2009



The Gaussian curvature modulus kG is difficult to understand

intuitively. If the membrane has uniform composition and van-

ishing spontaneous curvature, the bending energy (2) of two or

more vesicles exceeds the energy of one vesicle if kG/k > �2.

Furthermore, if such a membrane forms a periodic minimal

surface with mean curvature M ¼ 0, the corresponding bending

energy (2) is negative if kG > 0. This indicates that a single vesicle

is stable for �2 < kG/k < 0.30 For monolayers, the stronger

stability criterion �1 < kG/k < 0 has been proposed in ref. 31.

For a multi-domain membrane, the Gaussian curvature leads

to a contribution along the domain boundaries which is

proportional to the difference kG
(a) � kG

(b) of the Gaussian

curvature moduli in the two membrane phases (a) and (b) as first

pointed out in ref. 2. Two groups have compared the experi-

mentally observed shapes of two-domain vesicles with those

calculated from the theory in ref. 2,13 and deduced the values

kG
(a) � kG

(b) x 3.9 � 10�19 J (ref. 6) and kG
(a) � kG

(b) x 3 � 10�19

J (ref. 10) for the difference of the Gaussian curvature moduli.

The third term in (1) represents the line energy of the domain

boundaries vS as introduced in ref. 1 for domains in bilayer

membranes. This energy is proportional to the total length of

these boundaries, and the energy per unit length defines the line

tension l(a,b). For lipid monolayers at the air–water interface,

domain formation has been observed for many years, see, e.g.,

ref. 21, and the line tension has been estimated in various ways;

see, e.g., ref. 32. For lipid bilayers, one must distinguish bilayer

domains from monolayer domains in the bilayer. The boundary

of a bilayer domain represents a cut through the whole bilayer,

which can be viewed as a narrow interfacial segment. The line

tension is then obtained by integrating the corresponding inter-

facial free energy over the width of this interface which is equal to

the thickness of the bilayer membrane at the domain boundary.1

In general, the thickness of the two membrane domains may be

different as observed experimentally for the liquid-ordered and

liquid-disordered phases.33 These thicknesses do not directly

enter the elastic membrane model as given by (1) but are taken

into account via their influence on the bending rigidities, the

Gaussian curvature moduli, and the line tension.

The presence of a line tension l(a,b) leads to domain-induced

budding as predicted theoretically1,2 and observed experimen-

tally for three-component membranes.4,8,6,10 For these latter

membranes, the line tension is found to vary between 10�12 and

10�14 N for different compositions and temperatures. Since the

phase diagram of the three-component membranes contains

critical demixing or consolute points, at which the line tension

must vanish,1 the relatively small values of the line tension are

plausible and indicate that the experimentally chosen composi-

tions are located in the vicinity of these critical points.
2.3 Bilayer versus monolayer domains

In principle, domains in a bilayer membrane can form within

each leaflet separately. As mentioned, we will focus on bilayer

domains that extend across both leaflets of the bilayer. For such

bilayer domains, the lipid composition is the same in each leaflet,

and the assumption of vanishing spontaneous curvature is

reasonable.

Monolayer domains, which extend only across one leaflet of

the bilayer, on the other hand, have a different lipid composition
This journal is ª The Royal Society of Chemistry 2009
in the two leaflets, and will thus exhibit some spontaneous

curvature.34,1 Fluid domains with nonzero spontaneous curva-

ture have an increased tendency to form buds.1 and have been

extensively studied in refs. 2, 13, 14 and 35–39. Furthermore, two

monolayer domains in the two leaflets can overlap partially.

Thus, the corresponding domain pattern involves three different

types of domains: monolayer domains in the inner leaflet (in)

with spontaneous curvature M(in)
sp , monolayer domains in the

outer leaflet (ex) with spontaneous curvature M(ex)
sp , and over-

lapping monolayer domains, say (ov), which are equivalent to

bilayer domains with vanishing spontaneous curvature M(ov)
sp ¼ 0.

Such a domain pattern would involve several types of domain

boundaries and will not be discussed here.

2.4 Dimensionless model parameters

It is useful to reduce the number of model parameters by

choosing the bending rigidity k(b) of the b domains to be the basic

energy scale and the linear size R0h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð4pÞ

p
of the vesicle to be

the basic length scale. The vesicle morphology is then charac-

terized by five dimensionless parameters. Three of these param-

eters depend only on material properties: (i) The ratio of the

bending rigidities in the (a) and (b) phase as defined by

3kh
kðaÞ

kðbÞ
(3)

(ii) the reduced difference in the Gaussian curvature moduli

D3kG h
k
ðaÞ
G � k

ðbÞ
G

kðbÞ
(4)

and (iii) the reduced line tension

lhlða;bÞ
R0

kðbÞ
(5)

The reduced line tension l is proportional to the physical line

tension l(a,b), proportional to the vesicle size R0, and inversely

proportional to the bending rigidity k(b) of the (b) domains.

Therefore, the quantity l is a measure for the relative importance

of line energy and bending energy: For a given vesicle size R0, the

reduced line tension l increases if the physical line tension l(a,b)

increases or if the bending rigidity k(b) decreases. Note that the

dimensionless line tension l can vary over several orders of

magnitude: First, the physical line tension can be as large as 10�11

N and can become arbitrarily small close to a critical demixing

point of the multi-component membrane; second, the elastic

continuum theory used here can be applied to vesicle sizes in the

range 100 nm ( R0 ( 100 mm.

In addition to the three material parameters, the system

studied here involves two geometric parameters, the fraction

cðaÞh
AðaÞ

AðaÞ þ AðbÞ
¼ AðaÞ

A
(6)

of the membrane area that is covered by phase (a) and the

reduced volume

vh
V

4pR3
0=3

(7)
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2.5 Different patterns of membrane domains

In order to determine the equilibrium state of the multi-domain

vesicle, we consider vesicle morphologies with five different

domain patterns, see Fig. 1(a)–(e). These patterns differ in the

number of separate (a) and (b) domains and are labeled by AB

where the large Roman numeral A where the large Roman

numeral 3 ¼ I,II,III corresponds to the number of separate (a)

domains whereas the Arabic subscript B ¼ 1, 2, 3 represents the

number of separate (b) domains.

The vesicle morphology I1 in Fig. 1(a) corresponds to

a membrane with one (a) domain and one (b) domain. These

two-domain vesicles are axi-symmetric and have been previously

studied in refs. 2 and 13. The other multi-domain vesicles as

shown in Fig. 1(b)–(e) contain more than two distinct domains

and have not been considered before. The morphology II1 in

Fig. 1(b) contains two (a) and one (b) domain, the morphology

III1 in Fig. 1(c) three (a) and one (b) domain, etc. For

morphologies III1 and I3, we assume that the three (a) and the

three (b) domains have the same area. If the material parameters

of the (a) phase differ from those of the (b) phase, morphology

II1 is physically different from morphology I2.‡
2.6 Numerical energy minimization

In this study, we determine and compare the stable and meta-

stable vesicle morphologies as functions of the different system

parameters. Vesicle morphologies which are found to have

a higher energy are metastable states. The equilibrium

morphologies are obtained by direct numerical minimization of

a triangulated vesicle surface with the help of the ‘Surface

Evolver’.40 Thereby, the surface of the vesicle is implemented as

a discretized surface, i.e. a union of triangles, which, mathe-

matically, corresponds to a simplicial complex. The surface
Fig. 1 Vesicle morphologies with coexisting fluid phases (a) and (b)

corresponding to the red and white membrane domains, respectively: (a)

Domain pattern I1 with one (a) and one (b) domain; (b) Pattern II1 with

two (a) and one (b) domain; (c) Pattern III1 with three (a) and one (b)

domain; (d) Pattern I2 with one (a) and two (b) domains; and (e) Pattern

I3 with one (a) and three (b) domains.

‡ The vesicle energy as given by (1) is invariant when the names (a) and
(b) are permuted, i.e. when c(a) is transformed into c(b) ¼ 1 � c(a) and the
material parameters k(a), kG

(a), and Msp
(a) are exchanged with the material

parameters k(b), kG
(b), and Msp

(b). Under such a transformation,
morphology I1 remains as I1, whereas morphologies II1 and III1 are
transformed into I2 and I3, respectively.
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evolves towards a minimum energy state via a gradient descent

method. During the minimization procedure, the triangulation of

the surface is adapted, i.e. refined near regions of high curvature.

The estimated numerical accuracy of the obtained energy values

is about one percent. We will report results for vesicles with and

without volume constraints.

As explained in refs. 2 and 13, the first variation of the energy

functional (1) leads to matching conditions at the domain

boundaries that are compatible with any angle between the two

tangent planes of the two membrane domains along these

boundaries. Thus, one has the freedom to impose an additional

boundary condition that determines this angle. For fluid

domains, the most natural condition is provided by the

requirement that the membrane shape is smooth across the

domain boundary, which implies that the two domains have

a common tangent plane.2,13 This boundary condition was used

for all shapes described in the following subsections.
3 Morphological diagrams for multi-domain
patterns

In this section, vesicle morphologies corresponding to minimal

energy are obtained as a function of bending moduli, area frac-

tions, and line tension. In Sections 3.1–3.3, the vesicle volume is

not constrained corresponding to the situation DP ¼ 0. The

influence of the volume constraint is discussed in Section 3.4. The

results are presented in the form of morphology diagrams, in

which the morphologies of lowest energy are shown as a function

of the area fraction c(a) and of another vesicle parameter. For all

cases studied, the morphology I1 has the lowest energy for small

c(a) and for small 1 � c(a), corresponding to a sufficiently small

area of (a) and (b) phase, respectively.
3.1 Influence of bending rigidities

We start with vesicles without volume constraint and first

investigate the influence of different bending rigidities k(a) and k(b)

in the two fluid phases. Without loss of generality, we can assume

that 3k ¼ k(a)/k(b) $ 1. The results for 3k < 1 follow directly from

those for 3k > 1 by permuting the names for the (a) and (b)

phases.

The morphology diagram in Fig. 2(a) shows the multi-domain

vesicles with lowest energy as a function of the area fraction c(a)

and the bending rigidity ratio 3k. For vesicles with 3k close to one,

i.e., for which both (a) and (b) domains have a similar bending

rigidity, morphology with the lowest energy is provided by the

two-domain pattern I1. This is expected because in this state the

length of the domain boundary is minimal. As the bending

rigidity ratio 3k increases, we find transitions to morphologies

with three domains. For 3k ¼ 1.7, pattern II1 and I2 are favored

for 0.2 ( c(a) ( 0.5 and 0.5 ( c(a) ( 0.9, respectively. If 3k is

further increased, the II1 region extends towards larger values of

c(a) and the I2 region shrinks.

In general, the vesicle morphologies with two and three

domains are axially symmetric. Typically, the shapes II1 and I2

are found to have an additional up-down (or top-bottom)

symmetry, such that the domains located at the two vesicle poles

have the same size. Here and below, vesicle morphologies with

and without such a symmetry are called nonpolar and polar,
This journal is ª The Royal Society of Chemistry 2009



Fig. 2 (a) Morphology diagram of multi-domain vesicles without

volume constraint as a function of area fraction c(a) and bending rigidity

ratio 3k; and (b) Shapes of minimal energy for c(a)¼ 0.6 and increasing 3k,

as indicated by the arrow in (a). Both types of domains have the same

Gaussian curvature corresponding to D3kG ¼ 0, and the domain bound-

aries are characterized by reduced line tension l ¼ 0.2. The notation for

the multi-domain morphologies is explained in Fig. 1.
respectively. Nonpolar vesicles are favored by bending energy

but have a somewhat higher line energy than polar vesicles. Close

to the transition between morphology I1 and II1, the energy

difference between polar and nonpolar vesicle morphologies of

type II1 are smaller than the numerical error for relatively small

area fraction c(a). Apart from these regions, where our numerical
Fig. 3 (a) Morphology diagram of multi-domain vesicles without

volume constraint as a function of area fraction c(a) and bending rigidity

ratio 3k. The parameters correspond to those in Fig. 2 except for an

increased line tension l ¼ 0.5; and (b) Shapes of minimal energy for 3k ¼
2.3 and increasing area fraction c(a) as indicated by the arrow in (a). The

notation for the morphologies is explained in Fig. 1.
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accuracy does not permit a definitive conclusion, our numerical

results reveal that all morphologies with three domains have an

up-down symmetry. As a consequence, the transitions shown in

the morphology diagram must be discontinuous.

The morphology diagram in Fig. 2(a) is obtained for reduced

line tension l ¼ 0.2. The overall picture does not change quali-

tatively when the line tension is increased. This is illustrated in

the morphology diagram in Fig. 3 corresponding to l ¼ 0.5. In

general, the transition from morphology I1 to morphologies II1

and I2 occurs at larger values of 3k as the line tension increases.

Our results can be understood by inspection of the vesicle

configurations in Fig. 2(b) and Fig. 3(b). The (a) domains with

the higher bending rigidity avoid conformations with large mean

curvature. For small area fraction c(a), the vesicle morphology I1

has the lowest energy because it exhibits the shortest domain

boundary. For a small domain size, the stiffer (a) can attain

a relatively flat conformation. As the area fraction c(a) increases,

see Fig. 3(b), morphology I1 becomes less favorable because

a single (a) domain at one pole would have to bend more

strongly. In order to avoid this increased mean curvature, the

vesicle undergoes a transition towards the 3-domain pattern II1.

During this transition, the more rigid (a) domain is divided up

into two domains which are bent less and which are located at the

poles of the vesicle. The gain in elastic bending energy compen-

sates for the higher line energy arising from the increased length

of the domain boundary.

For even larger area fraction c(a), morphology II1 is less

optimal than morphology I2, and the vesicle undergoes another

transition from 3-domain pattern II1 to 3-domain pattern I2. This

transition is partly induced by bending energy since morphology

II1, with two large domains of the rigid (a) phase, leads to

a stronger deformation of the rest of the vesicle than morphology

I2 with a single, barrel-like (a) domain. This transition is also

favored by line energy, since the domain boundary of the barrel-

like morphology I2 starts to be shorter than that of morphology

II1 as soon as c(a) T 0.5. This line energy difference also explains

why the I2 region increases with increasing line tension l as follows

from comparison of Fig. 2(a) for l¼ 0.2 with Fig. 3(a) for l¼ 0.5.

If one increases the bending rigidity ratio 3k for fixed area

fraction, the vesicle can undergo a transition from morphology I2

to morphology II1. An example for such a transition is shown in

Fig. 2(b). This transition is governed by the increased bending

rigidity of the more rigid (a) phase which overcompensated the

increase in line energy as one goes from I2 to II1. Note that the

3-domain pattern I2 with a barrel-like (a) domain has a prolate

shape whereas the 3-domain pattern with a belt-like (b) domain

has an oblate shape.

As mentioned in the introduction, it might be tempting to

interpret the multi-domain patterns described here in terms of

effective long-range interactions between the membrane

domains. However, we will now show that such an interpretation

is not meaningful. As an example, let us again consider the

sequence of shapes as shown in Fig. 2(b). As we increase the

bending rigidity ratio 3k, we first encounter the transition from

morphology I1 with one white b domain to morphology I2 with

two b domains. Now, we might interpret this transition by saying

that I2 is characterized by an effective repulsion between the two

b domains and that this repulsion vanishes along the phase

boundary between I2 and I1, compare Fig. 2(a). The location of
Soft Matter, 2009, 5, 3303–3311 | 3307



this phase boundary depends, however, both on the composition

variable ca and on all the other elastic parameters, which are

kept constant in Fig. 2. Therefore, the putative repulsive inter-

action between the domains would also depend on all of these

parameters. In addition, how are we going to interpret the

subsequent transition between I2 and II1, which occurs at larger

values of 3k? Should we now say that the effective repulsion

between the two b domains vanishes again and is simultaneously

replaced by an effective repulsion between the two a domains?

Obviously, we do not obtain any additional insight if we try to

discuss the multi-domain patterns in Fig. 2 in terms of long-range

domain–domain interactions. This remark also applies to all

other multi-domain patterns as discussed in the following

subsections. In fact, our calculation explicitly shows that the

multi-domain patterns described here do not arise from long-

range domain–domain interactions but from the competition of

different elastic energies that depend on several elastic parame-

ters such as the bending rigidities of the two membrane domains

and the line tension of the domain boundaries. In the next

subsection, we will show that these multi-domain patterns are

also determined by the Gaussian curvature moduli.
Fig. 4 (a,b) Morphology diagrams of multi-domain vesicles without

volume constraint as a function of area fraction c(a) and reduced differ-

ence of the Gaussian curvature moduli, D3kG, as defined in (4). The

reduced line tension l ¼ 0.2 and the bending rigidity ratio has the values

3k ¼ 1 in (a) and 3k ¼ 0.8 in (b); and (c) Shapes of minimal energy for D3kG

¼�1, 3k¼ 0.8, and increasing area fraction c(a), as indicated by the arrow

along the x-axis in (b). The notation for the morphologies is explained in

Fig. 1.
3.2 Influence of Gaussian curvature moduli

So far, contributions from the Gaussian curvature moduli of the

two phases have been neglected. For a vesicle with a uniform

membrane and fixed topology, this is justified because the cor-

responding bending energy is constant and independent of the

size or shape of the vesicle. For a multi-domain vesicle, on the

other hand, differences in the Gaussian curvature moduli of

the domains give rise to a shape dependent contribution to the

bending energy.2,13 Using the Gauss-Bonnet theorem for surfaces

with boundaries, see, e.g., ref. 41, the bending energy contribu-

tion that involves the integral over the Gaussian curvature can be

reformulated as an integral over the domain boundaries. This

bending energy contribution is proportional to the difference of

the Gaussian curvature moduli and to the line integral over the

geodesic curvature of the domain boundary. Since this latter

integral is dimensionless, it cannot be proportional to the length

of the domain boundary and, thus, cannot be viewed as an

effective line tension.

For domain-induced budding, the difference in Gaussian

curvature moduli leads to a displacement of the domain

boundary away from the neck. As shown in ref. 13, the domain

boundary is shifted towards the domain with the smaller

Gaussian curvature modulus and the neck is occupied by the

domain with the larger Gaussian curvature modulus. This

implies that the local energy density as given by kG
(i)G decreases

since G < 0 in the neck region. This conclusion is independent of

the sign of the individual Gaussian curvature moduli.

In the following, we investigate how the multi-domain patterns

are affected by a difference in Gaussian curvature moduli cor-

responding to a nonzero value of D3kG as defined in (4). We first

consider a vesicle with (a) and (b) domains that have equal

bending rigidities corresponding to 3k ¼ 1, which implies that the

two membrane phases are identical apart from their Gaussian

curvature moduli. The morphology diagram of such vesicles is

shown in Fig. 4(a) as a function of area fraction c(a) and reduced

Gaussian bending modulus D3kG for reduced line tension l ¼ 0.2.
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More precisely, Fig. 4(a) displays the morphological diagram

only for negative values of D3kG or for kG
(a) < kG

(b), i.e., for the

situation in which the Gaussian bending modulus of the (a)

phase is smaller than the one of the (b) phase. For the case with

k(a)¼ k(b) as considered here, it is straightforward to construct the

remaining part of the morphology diagram for positive values of

D3kG. Indeed, permuting the names of the phases (a) and (b)

shows that a minimal energy morphology II1 for a vesicle with

c(a)¼ x and D3kG¼ y implies a minimal energy morphology I2 for

a vesicle with c(a) ¼ 1 � x and D3kG ¼ �y. Note that this simple

mapping no longer applies if the bending rigidity or any other

material property of the phases (a) and (b) are different.

For equal bending rigidity, 3k ¼ 1, and kG
(a) < kG

(b),

morphology I1 has the smallest energy for all vesicles with |D3kG|

( 0.9. For |D3kG| T 0.9 and 0.2 ( c(a) ( 0.6, the diagram shows

a region where morphology II1 is energetically favored. In this

range, the phase (a), which has the smaller Gaussian curvature

modulus, forms two domain caps located at the poles of the

vesicle.
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Fig. 5 (a) Morphology diagram of multi-domain vesicles without

volume constraint as a function of area fraction c(a) and reduced line

tension l for bending rigidity ratio 3k¼ 4 and reduced ratio D3kG¼�1.5 of

the Gaussian curvature moduli. (b) Shapes of minimal energy for c(a) ¼
0.75 and increasing l, as indicated by the arrow in (a). The notation for
The impact of a different bending rigidity ratio, 3k s 1, can be

seen by inspection of Fig. 4(b). We assume that the membrane in

phase (a) is softer and easier to bend, i.e. 3k < 1. Fig. 4(b) displays

the morphology diagram for 3k ¼ 0.8. Since the two membrane

phases have different bending moduli, the mapping from nega-

tive to positive values of D3kG as discussed for 3k ¼ 1 is no longer

valid. In fact, we find that the 2-domain pattern I1 represents the

minimal energy morphology for all positive values of D3kG, even

though 3-domain and even 4-domain patterns represent minimal

energy morphologies for D3kG < 0, see Fig. 4(b). For D3kG < �0.5,

the 3-domain pattern II1, which contains two (a) domains, is

favored provided the area fraction of the (a) and (b) domains are

sufficiently large. For D3kG ( �0.9, there is a domain pattern

transition towards the 4-domain pattern III1 with three (a)

domains and one (b) domain.

Altogether, we find that if a membrane phase has both

a smaller Gaussian curvature modulus and a smaller bending

rigidity than the other membrane phase, it tends to form several

bulge-like domains, characterized both by a large Gaussian

curvature and by a large mean curvature. On the other hand, if

one phase has a smaller Gaussian curvature modulus but a larger

bending rigidity, the bending energies compete and the formation

of more than two domains is suppressed.
the morphologies is explained in Fig. 1.
3.3 Influence of line tension

Next, we investigate the dependence of the multi-domain

patterns on the reduced line tension l. In order to do so, we will

now focus on the coexistence of liquid-disordered (Ld) and

liquid-ordered (Lo) domains as studied experimentally in three-

component lipid membranes and identify the more rigid Lo

domain with the (a) domain and the more flexible Ld domain

with the (b). The material parameters of these two types of

domains depend on membrane composition and temperature.

As previously mentioned, two experimental groups6,10 have

used the elastic continuum theory developed in refs. 1, 2 and 13

and reviewed in Section 2.1 in order to extract values for these

material parameters. First, Baumgart et al.6 performed a detailed

analysis for a lipid membrane composed of DOPC, egg sphin-

gomyelin, and cholesterol with mole fraction composition 0.135 :

0.615 : 0.25 at 30 �C. For this three-component membrane, they

estimated the bending rigidity ratio 3k ¼ k(Lo)/k(Ld) x 5 and the

reduced difference in Gaussian curvature moduli, D3kG x �3.6.

Second, Semrau et al.10 have studied lipid membranes composed

of DOPC, brain sphingomyelin, and cholesterol with composi-

tion 0.3 : 0.5 : 0.2 at 20 �C. For the latter mixture, they obtained

estimates for the material parameters which lead to 3k x 4 and

D3kG x �1.5.x
As an example, we have chosen the latter parameter values, 3k

¼ 4 and D3kG ¼ �1.5, and calculated the corresponding

morphology diagram as a function of area fraction c(a) and

reduced line tension l, see Fig. 5. We find that the 2-domain

pattern I1 provides the minimal energy morphology for all values

of c(a) provided the reduced line tension exceeds the threshold

value l* x 1.7. For l ( l*, the 2-domain pattern I1 is found for

large and small c(a) while the 3-domain pattern II1 is favored for
x All numerical values for DkG as quoted in Table I of ref. 10 should be
multiplied by �1 (S. Semrau, private communication).
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intermediate values of c(a). In addition, the 3-domain pattern I2

provides the minimal energy morphology in a narrow parameter

region along the boundary of the II1 region for relatively large

values of c(a), see Fig. 5(a).

The reduced line tension l ¼ l(a,b)/R0k(b) as defined in (5)

depends on the physical line tension l(a,b), the bending rigidity k(b)

of the (b) or (Ld) domains, and the vesicle size R0. For given

values of the physical line tension l(a,b) and the bending rigidity

k(b), the threshold value l* for the reduced line tension then

implies a threshold value R0
* for the vesicle size as given by

R0
* ¼ l*k(b)/l(a,b) (8)

Large vesicles with R0 > R0
* exhibit the 2-domain patterns I1.

Small vesicles with R0 < R0
*, on the other hand, can undergo

transitions to 3-domain patterns II1 or I2.

Using the value l* ¼ 1.7 as obtained from the morphological

diagram in Fig. 5(a) as well as the values l(a,b) x 1.2 pN and k(b)

x 2 � 10�19 J as estimated for the three-component membrane

studied in ref. 10 at 20 �C, we obtain the threshold value R0
* x

0.28 mm for the vesicle size. This threshold value is expected to

increase with increasing temperature since the line tension l(a,b)

should then decrease significantly.
3.4 Influence of volume constraint

Finally, we extend our analysis to vesicles which are subject to

a volume constraint. For large vesicles, the volume is usually

determined by the osmotic pressure difference arising from the

osmotically active molecules inside and outside the vesicle. In the

following, we consider the limiting case in which the volume is

fixed to a certain value.
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Fig. 6 (a) Morphology diagram of multi-domain vesicles with fixed

reduced volume v ¼ 0.97 as a function of area fraction c(a) and bending

rigidity ratio 3k; and (b) Shapes of minimal energy for c(a) ¼ 0.6 and

increasing 3k. As in Fig. 2, both types of domains have the same Gaussian

curvature corresponding to D3kG ¼ 0, and the domain boundaries are

characterized by reduced line tension l ¼ 0.2. The notation for the multi-

domain morphologies is explained in Fig. 1.

Fig. 7 (a) Different shapes for the I1 pattern with one (a) and one (b)

domain: axi-symmetric oblate I1,obl, axi-symmetric prolate I1,pro, and

non-axisymmetric pattern I1,non; and (b) Energy E of oblate morphology

I1,obl (full line) and prolate morphology I1,pro (broken line) as a function

of bending rigidity ratio 3k. The two two types of membrane domains

have the same Gaussian curvature modulus; the reduced line tension has

the value l ¼ 0.2, the area fraction ca ¼ 0.3, and the reduced volume v ¼
0.97.
We analyze vesicles with a reduced line tension l ¼ 0.2 and

equal Gaussian bending moduli D3kG ¼ 0 for reduced volume v ¼
0.97, see Fig. 6. The same parameter values have been studied in

Section 3.1 without volume constraint, see Fig. 2. Comparison of

Fig. 2(a) and Fig. 6(a) shows that the volume constraint has

a relatively small effect on the morphology diagram. For fixed

volume, morphologies with more than two domains appear for

slightly smaller values of the bending rigidity ratio 3k. This shift

can be understood by comparing the vesicle shapes in Fig. 2(b)

and Fig. 6(b). Without volume constraint, the muti-domain

pattern I1 prefers an almost spherical shape with v x 0.99

whereas the patterns I2 and II1 lead to prolate and oblate shapes

and, thus, have a smaller reduced volume v.

3.4.1 Domain-induced transitions between prolates and

oblates. The volume constraint leads to additional morphological

transitions of multi-domain vesicles. As a simple example, we will

demonstrate this additional feature for the I1 pattern, for which

we observe a domain-induced transition between prolate and

oblate shapes.

Let us first consider axisymmetric prolate and oblate shapes

with fixed reduced volume v ¼ 0.97 as denoted by I1,pro and I1,obl

in Fig. 7(a). The minimal energies of these two shapes are shown

in Fig. 7(b) as a function of bending rigidity ratio 3k for area

fraction c(a) ¼ 0.3. The other parameters have the same values as

in Fig. 2 and Fig. 6. For 3k < 3k
* x 1.08 and 3k > 3k

*, the prolate

I1,pro and the oblate I1,obl have minimal energy, respectively.

For the reduced volume v ¼ 0.97 considered here, a uniform

vesicle attains a prolate shape. Therefore, for a two-domain

vesicle with 3k ¼ 1 and relatively small line tension, the shape of

minimal energy is provided by the axisymmetric prolate I1, pro

with a ‘cap domain’ on its pole. This domain configuration is
3310 | Soft Matter, 2009, 5, 3303–3311
characterized by a relatively short domain boundary. As the

bending rigidity ratio 3k increases, i.e., as the minority phase (a)

in Fig. 7(a) becomes more rigid, the vesicle undergoes a transition

to an oblate morphology I1,obl. The transition occurs for area

fractions c(a) < 0.5 and bending rigidities slightly above 3k ¼ 1 as

indicated by the dashed transition line in Fig. 6(a).

Far from the prolate–oblate transition line, axisymmetric

shapes are energetically favored, and the (a) domain is located at

one pole of the vesicles. For c(a) ¼ 0.3, the minimal energy of the

vesicle is then given by the lower branches in Fig. 7(b), i.e., by the

energy of the prolate shape I1,pro for 3k < 3k
*� d¼ 1.08� d and by

the energy of the oblate shape I1,obl for 3k > 3k
* + d0 ¼ 1.08 + d0.

The two parameters d $ 0 and d0 $ 0 indicate that, close to the

transition point, the shape of minimal energy may be non-

axisymmetric: one example is provided by the shape I1,non as

shown in Fig. 7(a). The energy difference between axisymmetric

and non-axisymmetric shapes is, however, quite small and was

below the numerical accuracy of our minimization calculations.

Likewise, for small values of c(a), the energy difference between

the axisymmetric prolates I1,pro and oblates I1,obl becomes so

small that we could no longer calculate the transition line

numerically. Thus, the precise location of the domain-induced

transition between prolates and oblates and the order of this

transition remains to be determined.
4 Conclusions

We have studied the minimal energy configurations of vesicles

bounded by membranes that contain two coexisting fluid phases.

The shapes and domain patterns of these vesicles are governed by
This journal is ª The Royal Society of Chemistry 2009



the interplay between line energy and bending energies. For

vanishing spontaneous curvatures as studied here, the shapes and

domain patterns depend on three dimensionless material

parameters, namely the bending rigidity ratio 3k, the reduced

difference D3kG of the Gaussian curvature moduli, and the

reduced line tension l, as defined in (3)–(5) and two geometric

parameters, namely the area fraction ca and the reduced volume

v, as defined in (6) and (7).

We find that vesicles with more than two intramembrane

domains can have minimal energy and represent the equilibrium

morphology for a wide range of parameters, see the different

morphological diagrams in Fig. 2(a)–6(a). These morphological

diagrams exhibit domain pattern transitions that can be induced

by a variation of line tension, ratio of bending rigidities, or

difference in Gaussian curvature moduli. Minimal energy shapes

with more than two domains are especially favored by relatively

low line tension and intermediate area fractions c(a) close to 1/2.

These multi-domain shapes are dominant if the bending ratio 3k

is sufficiently large and the reduced difference D3kG of the

Gaussian curvature moduli is sufficiently negative. For 3k ¼ 0.8,

D3kG x �1, and l ¼ 0.2, the pattern III1 consisting of three (a)

and one (b) domain has been found to be the minimal energy

shape for a certain intermediate range of area fractions, see

Fig. 4(b) and (c). Our estimates at the end of Section 3.3 indicate

that these transitions between different multi-domain patterns on

vesicles should be accessible to experiment.

In order to eliminate one parameter, we first studied vesicles

without a volume constraint; the corresponding morphology

diagrams are displayed in Fig. 2(a)–5(a). However, we have also

shown that a volume constraint does not change the qualitative

features of the morphological diagrams as can be concluded by

comparison of Fig. 6(a) with Fig. 2(a). In fact, the volume

constraint was found to lead to additional morphological tran-

sitions from prolate to oblate shapes, see Fig. 6(a) and Fig. 7(a).

The multi-domain patterns considered here arise from the

competition between different elastic energies of the vesicle

membrane as desribed by the energy functional (1). On the one

hand, the membrane can lower its elastic energy by decreasing the

number of membrane domains since it then reduces the line

energy of the domain boundaries. On the other hand, the

membrane may also lower its elastic energy by increasing the

number of membrane domains if the more flexible and the more

rigid domains can be accommodated in the more strongly curved

and the more weakly curved membrane regions, respectively. The

same type of competition is also responsible for the stabilization

of striped domain patterns in membranes adhering to corrugated

substrates as observed experimentally in ref. 23–25 and explained

theoretically in ref. 26.

In the present study, we have determined the vesicle shapes

and multi-domain patterns by energy minimization. Thus, our

calculations do not include the effects of thermally excited shape

fluctuations. It will be interesting to study the impact of such

fluctuations on the stability of the different morphologies and

domain patterns. Likewise, it will be interesting to include the
This journal is ª The Royal Society of Chemistry 2009
effect of spontaneous curvatures, which should increase the

tendency for the formation of multi-domain patterns with more

than two domains.
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