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Abstract

Vesicle membranes with two coexisting fluid phases can exhibit a vari-
ety of domain patterns. These patterns and the associated vesicle shapes
are studied theoretically by minimization of energy functionals that de-
pend on the membrane composition and on the material parameters of the
membrane. The latter parameters are (i) the bending rigidities and (ii)
the Gaussian curvature moduli of the two types of membrane domains as
well as (iii) the line tension of the domain boundaries. It is shown that the
interplay between these different parameters leads to stable multi-domain
patterns with more than two domains for a wide range of membrane com-
position and material parameters. As the membrane composition or the
material parameters are varied, the vesicles can undergo transitions be-
tween different patterns of membrane domains. For fixed vesicle volume,
an additional domain-induced transition is observed, in which the vesicle
shape changes even though the domain pattern does not. The differ-
ent multi-domain patterns and vesicle shapes are summarized in terms of
morphology diagrams.

1 Introduction

From the theoretical point of view, biomimetic and biological membranes with
several components represent 2-dimensional liquid mixtures and, thus, should
exhibit 2-phase coexistence regions, in which the membranes undergo phase
separation and form two types of fluid domains [1, 2]. Even though this view
seems rather plausible, it remained controversial for many years, since there was
no direct experimental evidence for intramembrane domains. This has changed
recently with the introduction of new optical techniques and fluorescent dyes
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[3, 4, 5, 6, 5, 8, 9] which have led to the direct visualization of fluid domains on
lipid vesicles.

The multi-component model membranes as studied in [3, 4, 5, 6, 5, 8, 9, 10]
consisted of a saturated lipid such as sphingomyelin, an unsaturated phospho-
lipid, and cholesterol. At appropriate conditions, the presence of cholesterol
leads to a separation of the lipids into two fluid phases, a liquid-disordered
phase, which is rich in the low-melting point lipid, and a liquid-ordered phase,
enriched with cholesterol and the high-melting point lipid. The same lipid mix-
tures were proposed to form small domains, so-called ‘lipid rafts’; in the plasma
membrane of cells [11, 12]. These rafts could be relevant for many biological
processes, such as cell-signaling and traffic but direct imaging of these latter
domains has been difficult, and both the existence and the size of these domains
is still a matter of debate.

The morphology of a vesicle with two coexisting fluid phases depends on
the membrane composition and on the material properties of the membrane
phases as has been previously shown both by analytical theories [1, 2, 13] and
by computer simulation [14, 15, 16]. The most important material parameters
are the bending moduli of the two phases, the difference in the Gaussian moduli,
and the line tension of the domain boundaries, the latter being first considered
in [1]. All of these material parameters provide a contribution to the total
energy of the vesicle membrane. The interplay and competition of the different
energetic contributions gives rise to morphological transitions. One example
is provided by weakly curved membrane domains that form buds as soon as
the domain size is sufficiently large. [1, 17, 18] This domain-induced budding
transition is primarily caused by the line tension of the domain boundary and
facilitated by a nonzero spontaneous curvature of the membrane domain.

In experiments, a variety of different domain shapes has been observed. If
the membranes were flat, the equilibrium state of the two coexisting phases
should correspond to two large domains. However, in some experiments, do-
main patterns with more than two domains have been found to be relatively
stable, see, e.g., [4]. Many of these multi-domain patterns are metastable, but
in some cases, these metastable patterns are rather long-lived and, thus, kineti-
cally trapped [19]. So far, the analytically calculated domain patterns have been
restricted to vesicles with only two domains, beginning with a circular domain
in a nearly planar membrane [1], two domains in vesicles with axial symmetry
[2, 13], and simple domain shapes in membranes with more complex topology
[20]. Thus, at present, one cannot decide whether the experimentally observed
domain patterns are long-lived metastable states or if they represent the true
equilibrium states of the vesicle.

In this article, we study vesicles with spherical topology and address the
stability of multi-domain patterns consisting of more than two domains. We
find that such patterns are, in fact, stable for a wide range of membrane com-
positions and material parameters. We focus on membranes with vanishing
spontaneous curvature for which the multi-domain patterns and vesicle shapes
depend on three dimensionless material parameters. In addition, as one varies
the membrane composition or a material parameter, the multi-domain patterns



undergo transitions from one pattern to another. These domain pattern transi-
tions are coupled to shape transitions and are conveniently summarized in terms
of morphology diagrams.

In the context of lipid monolayers at the air-water interface, stable multi-
domain patterns have been frequently observed [21], which may reflect effective
repulsive interactions between the monolayer domains arising from long-ranged
dipole-dipole forces [22]. It is important to emphasize that the multi-domain
patterns described here do not arise from such long-ranged domain-domain in-
teractions but from the competition of different elastic energies that depend on
several elastic parameters such as the bending rigidities of the two membrane
domains and the line tension of the domain boundaries. The latter competition
is also responsible for the stabilization of striped domain patterns in membranes
adhering to corrugated substrates as observed experimentally in [23, 24, 25] and
explained theoretically in [26].

Our article is organized as follows. In Sec. 2, we describe the model system
of the two-phase vesicle. Especially, the energy expressions and the material pa-
rameters are introduced. We have numerically determined the minimum energy
configurations for vesicles with different material parameters and constraints.
Results are shown in Sec. 3, where we first discuss unconstrained vesicles which
can adapt their optimum volume. Volume changes can be strongly restricted
by an osmotic pressure, which is induced by molecules in- and outside the vesi-
cle that cannot penetrate the membrane. Morphologies of vesicles with a fixed
volume are presented in Sec. 3.4. One focus lies on configurations with more
than two domains, which are shown to become relevant for small line tensions.
Morphological diagrams of these vesicles are determined as a function of the
area fraction, the bending rigidities, and the Gaussian curvature moduli of the
two fluid phases.

2 Theory for multi-domain vesicles

2.1 Elastic continuum theory

In this subsection, we briefly review the elastic continuum theory for multi-
domain vesicles as developed in [1, 2, 13]. We consider large (or giant) uni-
lamellar vesicles bounded by membranes that contain domains of two coexist-
ing fluid phases, («) and (3). The linear size of the vesicles is large compared
to the membrane thickness, and the membrane curvature is small compared
to the inverse membrane thickness. We assume that the phases are well seg-
regated and form domains that have a uniform composition. In addition, we
focus on situations in which the domain size is large compared to the thickness
of the domain boundaries. This separation of length scales implies that spatial
variations of the in-plane membrane structure are restricted to relatively sharp
domain boundaries and that we can describe these boundaries as geometrical
lines. [1, 2] The state of the membrane is then described by a pattern con-
sisting of () and () domains. In general, the membrane can contain several



disconnected domains of each phase. We will denote the union of all («) and
(8) domains by the two regions S, and Sg, respectively. The surface area AW
of region S; is independent of membrane curvature and remains constant under
shape changes of the membrane. The total surface area A of the vesicle is then
given by A = A(®) 4 AW,

For a vesicle with an arbitrary pattern of (o) and () domains, the energy
can be expressed as [2, 13]

£= 1 D 4\ / dl+ DA LoD A® L APYV. (1)
oS

with the bending energies

gl = / dA[2kD(M — M)+ k¥G] for i=a,f (2)
which depend on the local mean curvature M and the local Gaussian curva-
ture G of the membrane. The integral fas dl in (1) extends over all domain
boundaries between the two types of domains.

The last three terms in the expression (1) are used to incorporate the con-
straints on the surface areas A(®) and A of the (a) and () domains and on
the vesicle volume V. For a given temperature, both the surface areas A(® and
A®) and the volume V attain certain, fixed values which are incorporated in
the theory via the Lagrange parameters o(®, (%) and AP. Alternatively, the
latter parameter may be viewed as the osmotic pressure difference between the
exterior and interior vesicle compartments.

For uniform membranes composed of a single phase, the form of the bending
energy as given by (2) has been introduced by Helfrich [27]. This bending energy
represents the leading order terms of an expansion in powers of the mean and
Gaussian curvatures. The truncation of this expansion after the leading terms
is justified as long as the membrane curvature is small compared to the inverse
membrane thickness. This separation of length scales applies to the morphology
of large vesicles but not to membrane nanostructures such as fusion pores or
necks which have a size of the order of 10 nm. If one wanted to use an elastic
continuum model for the latter structures, one would have to include higher
order terms of the curvature expansion [28] and, thus, introduce additional
elastic parameters.

2.2 Material parameters

In general, the energy of multi-domain vesicle as given by (1) depends on sev-
eral material parameters: the bending rigidities £(® and k), the spontaneous
curvatures Ms(g ) and Ms(g )| the Gaussian curvature moduli ngf) and fi(cf ), and
the line tension A(®?) of the domain boundaries. The three elastic parameters
for uniform membranes were introduced in [27], the line tension of the domain
boundaries in [1].

The bending rigidity  is the basic energy scale for the bending energy arising
from the local mean curvature M of the membrane. For phospholipid bilayers,



a typical value for x is around 1071%.J, see Table 1 in [29], which is of the order
of 10-20 T, at room temperature Ty (here and below, we absorb the Boltzmann
constant kp into the symbol T and measure the temperature in energy units).

The spontaneous curvature Mg, describes the preferred curvature of the
membrane and may originate from any bilayer asymmetry such as different lipid
compositions of the two leaflets of the bilayer or different aqueous solutions on
the two sides of the membrane. In the following, we will focus on bilayers that
have the same lipid composition in both leaflets and take Ms(g‘ ) = Ms(g ) = 0.
This also implies that we consider intramembrane domains that extend across
both leaflets of the bilayer.

The Gaussian curvature modulus k¢ is difficult to understand intuitively. If
the membrane has uniform composition and vanishing spontaneous curvature,
the bending energy (2) of two or more vesicles exceeds the energy of one vesicle if
kG /k > —2. Furthermore, if such a membrane forms a periodic minimal surface
with mean curvature M = 0, the corresponding bending energy (2) is negative
if kg > 0. This indicates that a single vesicle is stable for —2 < kg/k < 0.
[30] For monolayers, the stronger stability criterion —1 < kg/k < 0 has been
proposed in [31].

For a multi-domain membrane, the Gaussian curvature leads to a contri-
bution along the domain boundaries which is proportional to the difference
mgx ) _ H(Gﬁ ) of the Gaussian curvature moduli in the two membrane phases ()
and (/) as first pointed out in [2]. Two groups have compared the experimen-
tally observed shapes of two-domain vesicles with those calculated from the
theory in [2, 13] and deduced the values mgl) - mg}) ~ 3.9 x 1071 J [6] and

H(C?) — K(GB) ~ 3 x 10719 J [10] for the difference of the Gaussian curvature
moduli.

The third term in (1) represents the line energy of the domain boundaries
0S5 as introduced in [1] for domains in bilayer membranes. This energy is pro-
portional to the total length of these boundaries, and the energy per unit length
defines the line tension A(*#). For lipid monolayers at the air-water interface,
domain formation has been observed for many years, see, e.g., [21], and the line
tension has been estimated in various ways, see, e.g., [32]. For lipid bilayers, one
must distinguish bilayer domains from monolayer domains in the bilayer. The
boundary of a bilayer domain represents a cut through the whole bilayer, which
can be viewed as a narrow interfacial segment. The line tension is then obtained
by integrating the corresponding interfacial free energy over the width of this
interface which is equal to the thickness of the bilayer membrane at the domain
boundary. [1] In general, the thickness of the two membrane domains may be
different as observed experimentally for the liquid-ordered and liquid-disordered
phases [33]. These thicknesses do not directly enter the elastic membrane model
as given by (1) but are taken into account via their influence on the bending
rigidities, the Gaussian curvature moduli, and the line tension.

The presence of a line tension A(®#) leads to domain-induced budding as
predicted theoretically [1, 2] and observed experimentally for three-component
membranes [4, 8, 6, 10]. For these latter membranes, the line tension is found to



vary between 10712 and 10~ '* N for different compositions and temperatures.
Since the phase diagram of the three-component membranes contains critical
demixing or consolute points, at which the line tension must vanish [1], the
relatively small values of the line tension are plausible and indicate that the
experimentally chosen compositions are located in the vicinity of these critical
points.

2.3 Bilayer versus monolayer domains

In principle, domains in a bilayer membrane can form within each leaflet sepa-
rately. As mentioned, we will focus on bilayer domains that extend across both
leaflets of the bilayer. For such bilayer domains, the lipid composition is the
same in each leaflet, and the assumption of vanishing spontaneous curvature is
reasonable.

Monolayer domains, which extend only across one leaflet of the bilayer, on
the other hand, have a different lipid composition in the two leaflets and will,
thus, exhibit some spontaneous curvature [34, 1]. Fluid domains with nonzero
spontaneous curvature have an increased tendency to form buds [1] and have
been extensively studied in Refs. [2, 13, 35, 36, 14, 37, 38, 39], Furthermore, two
monolayer domains in the two leaflets can overlap partially. Thus, the corre-
sponding domain pattern involves three different types of domains: monolayer
domains in the inner leaflet (in) with spontaneous curvature Ms(;)n), monolayer
domains in the outer leaflet (ex) with spontaneous curvature MS(SX), and over-
lapping monolayer domains, say (ov), which are equivalent to bilayer domains
with vanishing spontaneous curvature MS(SV) = 0. Such a domain pattern would
involve several types of domain boundaries and will not be discussed here.

2.4 Dimensionless model parameters

It is useful to reduce the number of model parameters by choosing the bending
rigidity x(®) of the 3 domains to be the basic energy scale and the linear size
Ry = /A/(47) of the vesicle to be the basic length scale. The vesicle mor-
phology is then characterized by five dimensionless parameters. Three of these
parameters depend only on material properties: (i) The ratio of the bending
rigidities in the («) and () phase as defined by

€= —r, (3)

and (iil) the reduced line tension

R
A= NP (5)

[=p}



The reduced line tension \ is proportional to the physical line tension A(®#)
proportional to the vesicle size Ry, and inversely proportional to the bending
rigidity () of the (8) domains. Therefore, the quantity A is a measure for
the relative importance of line energy and bending energy: For a given vesicle
size Ry, the reduced line tension X increases if the physical line tension \(®/)
increases or if the bending rigidity x(?) decreases. Note that the dimensionless
line tension A can vary over several orders of magnitude: First, the physical line
tension can be as large as 107! N and can become arbitrarily small close to a
critical demixing point of the multi-component membrane; second, the elastic
continuum theory used here can be applied to vesicle sizes in the range 100 nm
< Rp <100 pm.

In addition to the three material parameters, the system studied here in-
volves two geometric parameters, the fraction

X = A /(A 4 AB)) = A@) /2 (6)
of the membrane area that is covered by phase («) and the reduced volume

1%
4rR3 /3" 0

v

2.5 Different patterns of membrane domains

In order to determine the equilibrium state of the multi-domain vesicle, we
consider vesicle morphologies with five different domain patterns, see Fig. 1(a)
- (e). These patterns differ in the number of separate () and () domains and
are labeled by Ap where the large Roman numeral A = I, II, IIT corresponds to
the number of separate () domains whereas the Arabic subscript B = 1,2,3
represents the number of separate (3) domains.

The vesicle morphology Iy in Fig. 1(a) corresponds to a membrane with one
(o) domain and one (3) domain. These two-domain vesicles are axi-symmetric
and have been previously studied in [2, 13]. The other multi-domain vesicles as
shown in Fig. 1(b) - (e) contain more than two distinct domains and have not
been considered before. The morphology II; in Fig. 1(b) contains two (a) and
one () domain, the morphology III; in Fig. 1(c) three («) and one () domain,
etc. For morphology III; and I, we assume that the three () and the three
(8) domains have the same area. If the material parameters of the («) phase
differ from those of the () phase, morphology II; is physically different from
morphology I». !

IThe vesicle energy as given by (1) is invariant when the names (a) and (3) are permuted,

i.e. when X("‘) is transformed into X(B) =1- X(o‘> and the material parameters K(a), H(C?),

and Ms(s‘> are exchanged with the material parameters /{(ﬁ), N(C?), and Ms(g). Under such a
transformation, morphology I; remains I, whereas morphologies II; and III; are transformed
into Iz and I3, respectively.



I 11, 111,

12 I'&
(d) (e)

Figure 1: Vesicle morphologies with coexisting fluid phases («) and (3) corre-
sponding to the red and white membrane domains, respectively: (a) Domain
pattern I; with one («) and one () domain; (b) Pattern IT; with two (a) and
one () domain; (¢) Pattern ITI; with three («) and one () domain; (d) Pattern
I with one (a) and two (3) domains; and (e) Pattern I3 with one («) and three
(8) domains.

2.6 Numerical energy minimization

In this study, we determine and compare the stable and metastable vesicle mor-
phologies as functions of the different system parameters. Vesicle morphologies
which are found to have a higher energy are metastable states. The equilibrium
morphologies are obtained by direct numerical minimization of a triangulated
vesicle surface with the help of the ’Surface Evolver’ [40]. Thereby, the surface
of the vesicle is implemented as a discretized surface, i.e. a union of trian-
gles, which, mathematically, corresponds to a simplicial complex. The surface
evolves towards a minimum energy state via a gradient descent method. Dur-
ing the minimization procedure, the triangulation of the surface is adapted, i.e.
refined near regions of high curvature. The estimated numerical accuracy of the
obtained energy values is about one percent. We will report results for vesicles
with and without volume constraints.

As explained in [2, 13], the first variation of the energy functional (1) leads
to matching conditions at the domain boundaries that are compatible with any
angle between the two tangent planes of the two membrane domains along these
boundaries. Thus, one has the freedom to impose an additional boundary con-



dition that determines this angle. For fluid domains, the most natural condition
is provided by the requirement that the membrane shape is smooth across the
domain boundary, which implies that the two domains have a common tangent
plane. [2, 13] This boundary condition was used for all shapes described in the
following subsections.

3 Morphological Diagrams for Multi-Domain Pat-
terns

In this section, vesicle morphologies corresponding to minimal energy are ob-
tained as a function of bending moduli, area fractions, and line tension. In
Secs. 3.1-3.3, the vesicle volume is not constrained corresponding to the situa-
tion AP = 0. The influence of the volume constraint is discussed in Sec. 3.4.
The results are presented in the form of morphology diagrams, in which the
morphologies of lowest energy are shown as a function of the area fraction y()
and of another vesicle parameter. For all cases studied, the morphology I; has
the lowest energy for small x(® and for small 1 — x(®), corresponding to a
sufficiently small area of () and () phase, respectively.

3.1 Influence of bending rigidities

We start with vesicles without volume constraint and first investigate the influ-
ence of different bending rigidities £(® and £(?) in the two fluid phases. Without
loss of generality, we can assume that € = H(a)/li(ﬂ) > 1. The results for €® < 1
follow directly from those for €® > 1 by permuting the names for the («) and
(8) phases.

The morphology diagram in Fig. 2(a) shows the multi-domain vesicles with
lowest energy as a function of the area fraction y(® and the bending rigidity
ratio €. For vesicles with €* close to one, i.e., for which both («) and (5)
domains have a similar bending rigidity, morphology with the lowest energy is
provided by the two-domain pattern Iy. This is expected because in this state
the length of the domain boundary is minimal. As the bending rigidity ratio €
increases, we find transitions to morphologies with three domains. For ¢* = 1.7,
pattern II; and I are favored for 0.2 < x(® < 0.5 and 0.5 < x(® < 0.9,
respectively. If € is further increased , the II; region extends towards larger
values of x(® and the I, region shrinks.

In general, the vesicle morphologies with minimal energy are axially symmet-
ric. Typically, the shapes ITy and Iy are found to have an additional up-down (or
top-bottom) symmetry, such that the domains located at the two vesicle poles
have the same size. Here and below, vesicle morphologies with and without
such a symmetry are called nonpolar and polar, respectively. Nonpolar vesicles
are favored by bending energy but have a somewhat higher line energy than
polar vesicles. Close to the transition between morphology I; and II;, the en-
ergy difference between polar and nonpolar vesicle morphologies of type II; are
smaller than the numerical error for relatively small area fraction y(®). Apart
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Figure 2: (a) Morphology diagram of multi-domain vesicles without volume
constraint as a function of area fraction x(® and bending rigidity ratio €*; and
(b) Shapes of minimal energy for x(®) = 0.6 and increasing €. Both types of
domains have the same Gaussian curvature corresponding to Ae*¢ = 0, and
the domain boundaries are characterized by reduced line tension A = 0.2. The
notation for the multi-domain morphologies is explained in Fig. 1.

from these regions, where our numerical accuracy does not permit a definitive
conclusion, our numerical results reveal, that all morphologies with three do-
mains have an up-down symmetry. As a consequence, the transitions shown in
the morphology diagram must be discontinuous.

The morphology diagram in Fig. 2(a) is obtained for reduced line tension A =
0.2. The overall picture does not change qualitatively when the line tension is
increased. This is illustrated in the morphology diagram in Fig. 3 corresponding
to A = 0.5. In general, the transition from morphology I; to morphologies 1Ty
and I occurs at larger values of € as the line tension increases.

Our results can be understood by inspection of the vesicle configurations
in Fig. 2(b) and Fig. 3(b). The («) domains with the higher bending rigidity
avoid conformations with large mean curvature. For small area fraction y(®),
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Figure 3: (a) Morphology diagram of multi-domain vesicles without volume
constraint as a function of area fraction x(®) and bending rigidity ratio ¢®. The
parameters correspond to those in Fig. 2 except for an increased line tension
A = 0.5; and (b) Shapes of minimal energy for ¢® = 2.3 and increasing area
fraction x(*) as indicated by the arrow in (a). The notation for the morphologies
is explained in Fig. 1.

the vesicle morphology I; has the lowest energy because it exhibits the shortest
domain boundary. For a small domain size, the stiffer (a) can attain a relatively
flat conformation. As the area fraction x(®) increases, see Fig. 3(b), morphology
I; becomes less favorable because a single () domain at one pole would have to
bend more strongly. In order to avoid this increased mean curvature, the vesicle
undergoes a transition towards the 3-domain pattern II;. During this transition,
the more rigid (o) domain is divided up into two domains which are bent less
and which are located at the poles of the vesicle. The gain in elastic bending
energy compensates for the higher line energy arising from the increased length
of the domain boundary.

For even larger area fraction y(«), morphology II; is less optimal than mor-
phology I, and the vesicle undergoes another transition from 3-domain pattern

11



IT; to 3-domain pattern I,. This transition is partly induced by bending energy
since morphology Iy, with two large domains of the rigid («) phase, leads to a
stronger deformation of the rest of the vesicle than morphology I, with a sin-
gle, barrel-like () domain. This transition is also favored by line energy, since
the domain boundary of the barrel-like morphology Iy starts to be shorter than
that of morphology II; as soon as x(a) 2 0.5. This line energy difference also
explains why the Is region increases with increasing line tension A as follows
from comparison of Fig. 2(a) for A = 0.2 with Fig. 3(a) for A = 0.5.

If one increases the bending rigidity ratio € for fixed area fraction, the vesicle
can undergo a transition from morphology Is to morphology II;. An example
for such a transition is shown in Fig. 2(b). This transition is governed by the
increased bending rigidity of the more rigid () phase which overcompensated
the increase in line energy as one goes from Iy to II;. Note that the 3-domain
pattern I with a barrel-like («) domain has a prolate shape whereas the 3-
domain pattern with a belt-like (3) domain has an oblate shape.

As mentioned in the introduction, it might be tempting to interpret the
multi-domain patterns described here in terms of effective long-ranged interac-
tions between the membrane domains. However, we will now show that such
an interpretation is not meaningful. As an example, let us again consider the
sequence of shapes as shown in Fig. 2(b). As we increase the bending rigidity
ratio €, we first encounter the transition from morphology I; with one white
[ domain to morphology Is with two § domains. Now, we might interpret this
transition by saying that Iy is characterized by an effective repulsion between
the two 8 domains and that this repulsion vanishes along the phase boundary
between Iy and I, compare Fig. 2(a). The location of this phase boundary
depends, however, both on the composition variable y, and on all the other
elastic parameters, which are kept constant in Fig. 2. Therefore, the putative
repulsive interaction between the domains would also depend on all of these pa-
rameters. In addition, how are we going to interpret the subsequent transition
between Iy and II;, which occurs at larger values of €7 Should we now say
that the effective repulsion between the two (8 domains vanishes again and is
simultaneously replaced by an effective repulsion between the two o domains?

Obviously, we do not obtain any additional insight if we try to discuss the
multi-domain patterns in Fig. 2 in terms of long-ranged domain-domain interac-
tions. This remark also applies to all other multi-domain patterns as discussed
in the following subsections. In fact, our calculation explicitly shows that the
multi-domain patterns described here do not arise from long-ranged domain-
domain interactions but from the competition of different elastic energies that
depend on several elastic parameters such as the bending rigidities of the two
membrane domains and the line tension of the domain boundaries. In the next
subsection, we will show that these multi-domain patterns are also determined
by the Gaussian curvature moduli.

12
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Figure 4: (a,b) Morphology diagrams of multi-domain vesicles without volume
constraint as a function of area fraction x(® and reduced difference of the
Gaussian curvature moduli, Ae"¢, as defined in (4). The reduced line tension
A = 0.2 and the bending rigidity ratio has the values ¢ = 1in (a) and ¢® = 0.8 in
(b); and (c) Shapes of minimal energy for Ae"¢ = —1, ¢ = 0.8, and increasing
area fraction (%), as indicated by the arrow along the x-axis in (b). The
notation for the morphologies is explained in Fig. 1.

3.2 Influence of Gaussian curvature moduli

So far, contributions from the Gaussian curvature moduli of the two phases have
been neglected. For a vesicle with a uniform membrane and fixed topology, this
is justified because the corresponding bending energy is constant and indepen-
dent of the size or shape of the vesicle. For a multi-domain vesicle, on the
other hand, differences in the Gaussian curvature moduli of the domains give
rise to a shape dependent contribution to the bending energy. [2, 13] Using the
Gauss-Bonnet theorem for surfaces with boundaries, see, e.g., [41], the bend-
ing energy contribution that involves the integral over the Gaussian curvature
can be reformulated as an integral over the domain boundaries. This bending
energy contribution is proportional to the difference of the Gaussian curvature
moduli and to the line integral over the geodesic curvature of the domain bound-
ary. Since this latter integral is dimensionless, it cannot be proportional to the
length of the domain boundary and, thus, cannot be viewed as an effective line
tension.

For domain-induced budding, the difference in Gaussian curvature moduli

13



leads to a displacement of the domain boundary away from the neck. As shown
in [13], the domain boundary is shifted towards the domain with the smaller
Gaussian curvature modulus and the neck is occupied by the domain with the
larger Gaussian curvature modulus. This implies that the local energy density
as given by n(é) G decreases since G < 0 in the neck region. This conclusion is
independent of the sign of the individual Gaussian curvature moduli.

In the following, we investigate how the multi-domain patterns are affected
by a difference in Gaussian curvature moduli corresponding to a nonzero value of
A€ as defined in (4). We first consider a vesicle with (a)) and () domains that
have equal bending rigidities corresponding to €” = 1, which implies that the
two membrane phases are identical apart from their Gaussian curvature moduli.
The morphology diagram of such vesicles is shown in Fig. 4(a) as a function of
area fraction x(*) and reduced Gaussian bending modulus Ae*¢ for reduced line

tension A = 0.2. More precisely, Fig. 4(a) displays the morphological diagram

only for negative values of Ae"¢ or for H(C?) < Ii(GB), i.e., for the situation in which

the Gaussian bending modulus of the (o) phase is smaller than the one of the
(8) phase. For the case with k(@) = k) as considered here, it is straightforward
to construct the remaining part of the morphology diagram for positive values
of Ae"¢. Indeed, permuting the names of the phases («) and (/) shows that
a minimum energy morphology II; for a vesicle with y(®) = z and Aefe =y
implies a minimum energy morphology I for a vesicle with x(® =1 — z and
Ae"¢ = —y. Note that this simple mapping no longer applies if the bending

rigidity or any other material property of the phases () and (3) are different.

For equal bending rigidity, €® = 1, and /i(G?‘ ) < fﬁg ), morphology I; has the

minimum energy for all vesicles with |Ae®¢| < 0.9. For |Ae®¢| 2 0.9 and 0.2 <
x» < 0.6, the diagram shows a region where morphology II; is energetically
favored. In this range, the phase («), which has the smaller Gaussian curvature
modulus, forms two domain caps located at the poles of the vesicle.

The impact of a different bending rigidity ratio, € # 1, can be seen by
inspection of Fig. 4(b). We assume that the membrane in phase («) is softer
and easier to bend, i.e. €% < 1. Fig. 4(b) displays the morphology diagram
for € = 0.8. Since the two membrane phases have different bending moduli,
the mapping from negative to positive values of Ae”¢ as discussed for €” =1
is no longer valid. In fact, we find that the 2-domain pattern I; represents
the minimal energy morphology for all positive values of Ae"¢, even though
3-domain and even 4-domain patterns represent minimal energy morphologies
for Ae®e < 0, see Fig. 4(b). For Ae"¢ < —0.5, the 3-domain pattern II;, which
contains two («) domains, is favored provided the area fraction of the (a) and
(8) domains are sufficiently large. For Ae®¢ < —0.9, there is a domain pattern
transition towards the 4-domain pattern I1I; with three (o) domains and one
domain.

Altogether, we find that if a membrane phase has both a smaller Gaussian
curvature modulus and a smaller bending rigidity than the other membrane
phase, it tends to form several bulge-like domains, characterized both by a large
Gaussian curvature and by a large mean curvature. On the other hand, if one
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Figure 5: (a) Morphology diagram of multi-domain vesicles without volume con-
straint as a function of area fraction y(® and reduced line tension \ for bending
rigidity ratio €® = 4 and reduced ratio Ae"¢ = —1.5 of the Gaussian curvature
moduli. (b) Shapes of minimal energy for x(®) = 0.75 and increasing ), as
indicated by the arrow in (a). The notation for the morphologies is explained
in Fig. 1.

phase has a smaller Gaussian curvature modulus but a larger bending rigidity,
the bending energies compete and the formation of more than two domains is
suppressed.

3.3 Influence of line tension

Next, we investigate the dependence of the multi-domain patterns on the re-
duced line tension A. In order to do so, we will now focus on the coexistence of
liquid-disordered (Lg4) and liquid-orderd (L, ) domains as studied experimentally
in three-component lipid membranes and identify the more rigid L, domain with
the (o) domain and the more flexible Ly domain with the (3). The material
parameters of these two types of domains depend on membrane composition
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and temperature.

As previously mentioned, two experimental groups [6, 10] have used the
elastic continuum theory developed in [1, 2, 13] and reviewed in Sect. 2.1 in
order to extract values for these material parameters. First, Baumgart et al
[6] performed a detailed analysis for a lipid membrane composed of DOPC, egg
sphingomyelin, and cholesterol with mole fraction composition 0.135:0.615:0.25
at 30° C. For this three-component membrane, they estimated the bending
rigidity ratio €® = r(Fe) /k(Fa) ~ 5 and the reduced difference in Gaussian
curvature moduli, Ae"¢ ~ —3.6. Second, Semrau et al [10] have studied lipid
membranes composed of DOPC, brain sphingomyelin, and cholesterol with com-
position 0.3:0.5:02 at 20° C. For the latter mixture, they obtained estimates for
the material parameters which lead to €® ~ 4 and Ae"¢ ~ —1.5. 2

As an example, we have chosen the latter parameter values, € = 4 and
Ae"¢ = —1.5, and calculated the corresponding morphology diagram as a func-
tion of area fraction x(® and reduced line tension ), see Fig. 5. We find that
the 2-domain pattern I; provides the minimal energy morphology for all values
of x(@ provided the reduced line tension exceeds the threshold value A* ~ 1.7.
For A < A\*, the 2-domain pattern I; is found for large and small x(®) while
the 3-domain pattern II; is favored for intermediate values of X(a). In addition,
the 3-domain pattern Iy provides the minimal energy morphology in a narrow
parameter region along the boundary of the II; region for relatively large values
of (), see Fig. 5(a).

The reduced line tension A = A(*#) /Ryx(?) as defined in (5) depends on the
physical line tension () the bending rigidity x®) of the (8) or (L4) domains,
and the vesicle size Ry. For given values of the physical line tension A(®#) and
the bending rigidity x(®, the threshold value \* for the reduced line tension
then implies a threshold value Rf; for the vesicle size as given by

Ry = Nk A @B (8)

Large vesicles with Ry > Rj exhibit the 2-domain patterns I;. Small vesicles
with Ry > R, on the other hand, can undergo transitions to 3-domain patterns
IIl or IQ.

Using the value A* = 1.7 as obtained from the morphological diagram in
Fig. 5(a) as well as the values A(®%) ~ 1.2pN and x(® ~ 2 -10719.J as esti-
mated for the three-component membrane studied in [10] at 20° C, we obtain
the threshold value Rj ~ 0.28 um for the vesicle size. This threshold value is
expected to increase with increasing temperature since the line tension A(®%)
should then decrease significantly.

3.4 Influence of volume constraint

Finally, we extend our analysis to vesicles which are subject to a volume con-
straint. For large vesicles, the volume is usually determined by the osmotic

2All numerical values for Axg as quoted in Table I of Ref. [10] should be multiplied by
(—1) (S. Semrau, private communication).
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pressure difference arising from the osmotically active molecules inside and out-
side the vesicle. In the following, we consider the limiting case in which the
volume is fixed to a certain value.

3
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Figure 6: (a) Morphology diagram of multi-domain vesicles with fixed reduced
volume v = 0.97 as a function of area fraction x(®) and bending rigidity ratio
¢*; and (b) Shapes of minimal energy for x(®) = 0.6 and increasing €®. As in
Fig. 2, both types of domains have the same Gaussian curvature corresponding
to Ae®¢ = 0, and the domain boundaries are characterized by reduced line
tension A = 0.2. The notation for the multi-domain morphologies is explained
in Fig. 1.

We analyze vesicles with a reduced line tension A = 0.2 and equal Gaussian
bending moduli Ae®¢ = 0 for reduced volume v = 0.97, see Fig. 6. The same
parameter values have been studied in Sec. 3.1 without volume constraint, see
Fig. 2. Comparison of Fig. 2(a) and Fig. 6(a) shows that the volume constraint
has a relatively small effect on the morphology diagram. For fixed volume,
morphologies with more than two domains appear for slightly smaller values of
the bending rigidity ratio €. This shift can be understood by comparing the
vesicle shapes in Fig. 2(b) and Fig. 6(b). Without volume constraint, the muti-
domain pattern I; prefers an almost spherical shape with v >~ 0.99 whereas the
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patterns Iy and II; lead to prolate and oblate shapes and, thus, have a smaller
reduced volume v.

3.4.1 Domain-induced transitions between prolates and oblates

The volume constraint leads to additional morphological transitions of multi-
domain vesicles. As a simple example, we will demonstrate this additional
feature for the I; pattern, for which we observe a domain-induced transition
between prolate and oblate shapes.

Let us first consider axisymmetric prolate and oblate shapes with fixed re-
duced volume v = 0.97 as denoted by I v, and I o1 in Fig. 7(a). The minimal
energies of these two shapes are shown in Fig. 7(b) as a function of bending
rigidity ratio €® for area fraction x(®) = 0.3. The other parameters have the
same values as in Fig. 2 and Fig. 6. For €™ < €} ~ 1.08 and € > € , the prolate
Ii pro and the oblate I; 1,1 have minimal energy, respectively.

For the reduced volume v = 0.97 considered here, a uniform vesicle attains
a prolate shape. Therefore, for a two-domain vesicle with €® = 1 and relatively
small line tension, the shape of minimal energy is provided by the axisymmetric
prolate I pro With a ‘cap domain’ on its pole. This domain configuration is
characterized by a relatively short domain boundary. As the bending rigidity
ratio € increases, i.e., as the minority phase («) in Fig. 7(a) becomes more
rigid, the vesicle undergoes a transition to an oblate morphology I op1. The
transition occurs for area fractions x(® < 0.5 and bending rigidities slightly
above €® =1 as indicated by the dashed transition line in Fig. 6(a).

Far from the prolate-oblate transition line, axisymmetric shapes are ener-
getically favored, and the («) domain is located at one pole of the vesicles. For
x(® = 0.3, the minimal energy of the vesicle is then given by the lower branches
in Fig. 7(b), i.e., by the energy of the prolate shape I py, for €® < ef —6 = 1.08—6
and by the energy of the oblate shape Ij o1 for €® > € + § = 1.08 4+ ¢’. The
two parameters 6 > 0 and ¢’ > 0 indicate that, close to the transition point, the
shape of minimal energy may be non-axisymmetric: one example is provided
by the shape Iy non as shown in Fig. 7(a). The energy difference between axi-
and non-axisymmetric shapes is, however, quite small and was below the nu-
merical accuracy of our minimization calculations. Likewise, for small values of
x(@) | the energy difference between the axisymmetric prolates Ii pro and oblates
11 ob1 becomes so small that we could no longer calculate the transition line nu-
merically. Thus, the precise location of the domain-induced transition between
prolates and oblates and the order of this transition remains to be determined.

4 Conclusions

We have studied the minimal energy configurations of vesicles bounded by mem-
branes that contain two coexisting fluid phases. The shapes and domain pat-
terns of these vesicles are governed by the interplay between line energy and
bending energies. For vanishing spontaneous curvatures as studied here, the
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Figure 7: (a) Different shapes for the I; pattern with one () and one (53)
domain: axi-symmetric oblate I o1, axi-symmetric prolate I; ,.,, and non-
axisymmetric pattern I non; and (b) Energy £ of oblate morphology Iy o1 (full
line) and prolate morphology I1 v (broken line) as a function of bending rigid-
ity ratio €. The two two types of membrane domains have the same Gaussian
curvature modulus; the reduced line tension has the value A = 0.2, the area
fraction x* = 0.3, and the reduced volume v = 0.97.

shapes and domain patterns depend on three dimensionless material parame-
ters, namely the bending rigidity ratio €, the reduced difference Ae"¢ of the
Gaussian curvature moduli, and the reduced line tension A, as defined in (3) -
(5) and two geometric parameters, namely the area fraction x® and the reduced
volume v, as defined in (6) and (7).

We find that vesicles with more than two intramembrane domains can have
minimal energy and represent the equilibrium morphology for a wide range
of parameters, see the different morphological diagrams in Fig. 2(a) - 6(a).
These morphological diagrams exhibit domain pattern transitions that can be
induced by a variation of line tension, ratio of bending rigidities, or difference
in Gaussian curvature moduli. Minimal energy shapes with more than two
domains are especially favored by relatively low line tension and intermediate
area fractions x(®) close to 1 /2. These multi-domain shapes are dominant if
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the bending ratio €” is sufficiently large and the reduced difference Ae”< of the
Gaussian curvature moduli is sufficiently negative. For ¢* = 0.8, Ae"¢ ~ —1,
and A\ = 0.2, the pattern III; consisting of three («) and one (3) domain has
been found to be the minimal energy shape for a certain intermediate range
of area fractions, see Fig. 4(b) and (c). Our estimates at the end of section
3.3 indicate that these transitions between different multi-domain patterns on
vesicles should be accessible to experiment.

In order to eliminate one parameter, we first studied vesicles without a
volume constraint; the corresponding morphology diagrams are displayed in
Fig. 2(a) - 5(a). However, we have also shown that a volume constraint does
not change the qualitative features of the morphological diagrams as can be con-
cluded by comparison of Fig. 6(a) with Fig. 2(a). In fact, the volume constraint
was found to lead to additional morphological transitions from prolate to oblate
shapes, see Fig. 6(a) and Fig. 7(a).

The multi-domain patterns considered here arise from the competition be-
tween different elastic energies of the vesicle membrane as desribed by the energy
functional (1). On the one hand, the membrane can lower its elastic energy by
decreasing the number of membrane domains since it then reduces the line energy
of the domain boundaries. On the other hand, the membrane may also lower
its elastic energy by increasing the number of membrane domains if the more
flexible and the more rigid domains can be accommodated in the more strongly
and the more weakly curved membrane regions, respectively. The same type of
competition is also responsible for the stabilization of striped domain patterns
in membranes adhering to corrugated substrates as observed experimentally in
[23, 24, 25] and explained theoretically in [26].

In the present study, we have determined the vesicle shapes and multi-
domain patterns by energy minimization. Thus, our calculations do not include
the effects of thermally excited shape fluctuations. It will be interesting to
study the impact of such fluctuations on the stability of the different morpholo-
gies and domain patterns. Likewise, it will be interesting to include the effect of
spontaneous curvatures, which should increase the tendency for the formation
of multi-domain patterns with more than two domains.
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