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As in the main text, we denote the three protomer (or
subunit) species ATP-actin, ADP/Pi-actin, and ADP-
actin by T, Θ, and D, respectively.

Rates for cooperative ATP cleavage

For cooperative ATP cleavage of a T protomer, we
distinguish the three local neighborhoods TT, TΘ, and
TD and the corresponding ATP cleavage rates ωcT, ωcΘ

and ωcD. In order to eliminate one parameter, we take
ωcΘ = ωcD = ωc and put ωcT = ρcωc, see equation (2) of
the main text.

In principle, an alternative choice seems to be ωcD = ωc

and ωcT = ωcΘ = ρcωc. However, if we then considered
the limiting case of vectorial cleavage with ρc = 0, this
limiting situation would be inconsistent with the hydrol-
ysis process (VR) as observed experimentally in [1]. This
can be understood as follows.

In the vectorial limit with ωcT = ωcΘ = 0, the filament
would exhibit only two protomer patterns: (i) a single Θ
protomer between the T cap and the D core, and (ii) no
Θ protomer between the T cap and the D core. The total
cleavage flux Jc is then given by Jc = ωcωr/(ωc+ωr) with
the Pi release rate ωr for the Θ protomer at the ΘD do-
main boundary. This expression implies the asymptotic
behavior Jc ≈ ωr for ωr � ωc which is inconsistent with
the process (VR). Indeed, process (VR) is characterized
(i) by ωr � ωc, see Table 1 in the main text, and (ii) by
Jc = ωc for actin concentrations CT > CT,c, see Fig. 2 in
the main text.

First protomer at barbed end

We now discuss the steady state probabilities PT(1),
PΘ(1), and PD(1) that the first protomer at the barbed
end is a T, Θ and D protomer, respectively. The func-
tional dependence of these probabilities on the actin con-
centration CT is shown in Fig. 5 for process (RR) con-
sisting of random ATP cleavage followed by random Pi

release with ρc = ρr = 1 as defined in Table 1 of the main
text.

In the absence of any actin monomers in the surround-
ing solution, i.e., for CT = 0, one has PD(1) = 1 and
PT(1) = PΘ(1) = 0 corresponding to a continuously de-
polymerizing filament that consists only of D protomers.
As the concentration CT is increased, the probability
PD(1) for a D end decreases and the probability PT(1)

FIG. 5: Steady state probabilities PT(1), PΘ(1), and PD(1)
that the first protomer at the barbed end is a T, Θ, and D
protomer, respectively, as functions of actin concentration CT

for the process (RR) as defined in the main text, see Table 1.
The three straight lines correspond to the analytical expres-
sions that describe the asymptotic behavior for small CT.

for a T end increases monotonically whereas the prob-
ability PΘ(1) for a Θ end increases for small CT and
decreases for large CT, see Fig. 5. The latter figure also
shows that the large concentration regime is character-
ized by PT(1) ≈ 1 and PD(1) ≈ PΘ(1) ≈ 0 as ex-
pected. For small CT, one has PT(1) ∼ PΘ(1) ∼ CT and
1−PD(1) ∼ CT. It is not difficult to calculate the corre-
sponding expansion coefficients. As shown in Fig. 5, the
resulting expressions are in very good agreement with the
simulation data for small concentration CT.

Flux balance relations for steady states

Next, we express the global fluxes as provided by the
filament growth rate Jg, the total ATP cleavage flux Jc,
and the total Pi release flux Jr in terms of the three
probabilities PT(1), PΘ(1), and PD(1).

In the steady state, the filament growth (or elongation)
rate Jg, which is measured in units of protomers per unit
time, has the general form

Jg = ωon−PT(1)ωoff,T−PΘ(1)ωoff,Θ−PD(1)ωoff,D (1)

with ωon = κon CT as defined in the main text. Likewise,
the total ATP cleavage flux Jc is given by Jc = ωon −
PT(1)ωoff,T and the total Pi release flux Jr by Jr = ωon−
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PT(1)ωoff,T − PΘ(1)ωoff,Θ. A combination of these two
relations leads to

Jr = Jc − PΘ(1)ωoff,Θ (2)

between the total Pi release flux Jr and the total ATP
cleavage flux Jc. This relation implies for the three pro-
cesses (RR), (VR), and (SS) that the two fluxes Jc and
Jr are approximately equal for all actin concentrations
CT as shown in Fig. 2 in the main text. Indeed, the dif-
ference between these two fluxes is equal to PΘ(1)ωoff,Θ,
which represents a small correction since (i) the proba-
bility PΘ(1) vanishes both for small and for large CT, see
Fig. 5, and (ii) the detachment rate ωoff,Θ = 0.2/s for
the processes (RR) and (VR) and ωoff,Θ = 0.1/s for the
process (SS), see Table 1 in the main text.

Fluxes for small and large concentrations

For large concentrations CT, the three barbed end
probabilities behave as PT(1) ≈ 1 and PD(1) ≈ PΘ(1) ≈
0, see Fig. 5. When these expressions are inserted into
relation (1) for the filament growth rate Jg, one obtains
the asymptotic behavior

Jg ≈ κon CT − ωoff,T for large CT . (3)

Likewise, the behavior of the three probabilities PT(1),
PΘ(1), and PD(1) for small CT leads to the asymptotic
behavior

Jg ≈ −ωoff,D +
ωcφ+ ωoff,D

ωc + ωoff,T
κon CT (4)

for small CT with φ ≡ (ωr + ωoff,D)/(ωr + ωoff,Θ). The
asymptotic behavior as given by (3) and (4) is in very
good agreement with the simulation data for Jg, see
Fig. 6. The same agreement is found for the total cleav-
age flux Jc and the total Pi release flux Jr.

Threshold concentration for vectorial ATP cleavage

For vectorial ATP cleavage with cleavage parameter
ρc = 0, a T protomer cannot be cleaved if its nucleotide
binding pocket is close to another T protomer. As a
consequence, all protomer patterns of the filament have
at most one TΘ or one TD domain boundary and the
total ATP cleavage flux Jc cannot exceed the cleavage
rate ωc = ωcΘ = ωcD at such a domain boundary, i.e.,
Jc ≤ ωc.

For any steady state, the excess number of T protomers
added to the filament per unit time is given by

J+T = ωon − PT(1)ωoff,T = κon CT − PT(1)ωoff,T . (5)

For sufficiently small CT, the T protomer at the barbed
end may be cleaved before another T monomer is at-
tached which leads to a temporary protomer pattern with

FIG. 6: Filament growth rate Jg in units of protomers per
second as a function of actin concentration CT for the three
hydrolysis processes (RR), (VR), and (SS) as defined in the
main text, see Table 1. The lines correspond to the asymp-
totic behavior as given by (3) and (4).

no T protomer and, thus, no TΘ and no TD domain
boundary. Since the latter pattern does not contribute
to the total cleavage flux Jc, one has Jc < ωc and a reg-
ular steady state with J+T = Jc.

For sufficiently large CT, on the other hand, the incom-
ing excess flux J+T exceeds the cleavage rate ωc at the
TΘ domain boundary and the system attains a singular
steady state characterized by a continuously growing T
cap and Jc = ωc. In such a state, the first protomer at
the barbed end is always in the T state which implies
PT(1) = 1 and PΘ(1) = PD(1) = 0. The threshold con-
centration CT,c between the small and the large concen-
tration regimes is then determined by the two conditions

J+T = κon CT,c − PT(1)ωoff,T = ωc (6)

and PT(1) = 1 which implies CT,c = (ωc + ωoff,T)/κon,
i.e., equation (4) in the main text. The same threshold
also follows from a simplified model for vectorial cleavage
with only two protomeric species as studied in [1, 2].

Threshold concentration for vectorial Pi release

For vectorial Pi release with ρr = 0, a Θ protomer
cannot release its Pi if the nucleotide binding pocket of
this Θ protomer is close to a T or another Θ protomer.
As a consequence, all protomer patterns of the filament
have at most one ΘD domain boundary and the total Pi

release flux cannot exceed the Pi release rate ωr = ωrD

at this boundary, i.e., Jr ≤ ωr.
For any steady state, the excess number of Θ protomers

added to the filament per unit time is equal to J+Θ =
Jc − PΘ(1)ωoff,Θ or

J+Θ = κon CT − PT(1)ωoff,T − PΘ(1)ωoff,Θ . (7)
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For sufficiently small CT, the Θ protomer may detach
from the filament before its Pi has been released which
leads to a temporary filament pattern with no Θ pro-
tomer and, thus, no ΘD domain boundary. Since the
latter pattern does not contribute to the total Pi release
flux, one has Jr < ωr and a regular steady state with
J+Θ = Jr.

For sufficiently large CT, on the other hand, the incom-
ing excess flux J+Θ exceeds the P release rate ωr at the
ΘD domain boundary and the system attains a singu-
lar steady state characterized by a continuously growing
T/Θ cap and Jr = ωr. In such a state, the first protomer
at the barbed end is either in the T or in the Θ state
which implies PT(1) + PΘ(1) = 1 and PD(1) = 0. The
second threshold concentration CT,r is then determined
by the two conditions

J+Θ = κon CT,r − PT(1)ωoff,T − PΘ(1)ωoff,Θ = ωr (8)

and PT(1) + PΘ(1) = 1 . These two relations are equiva-
lent to the implicit equation

ωr = κon CT,r − PT(1)ωoff,T − (1− PT(1))ωoff,Θ (9)

which is identical with equation (5) of the main text,
where the probability PT(1) is a monotonically increasing
function of CT = CT,r, see Fig. 5.

Since 0 ≤ PT(1) ≤ 1, the implicit equation (9) leads to
the inequalities

min(C1, C2) ≤ CT,r ≤ max(C1, C2) (10)

with C1 ≡ (ωr + ωoff,T)/κon and C2 ≡ (ωr + ωoff,Θ)/κon.
For ωoff,Θ = ωoff,T, one obtains the explicit solution
CT,r = (ωr + ωoff,T)/κon for all values of ρc.

Protomer density profiles

The behavior of the three protomer densities
PT(x), PΘ(x), and PD(x) is displayed in Fig. 7 for the
three processes (RR), (VR), and (SS) at two different
actin concentrations, CT = 0.3 µM and 6 µM. Inspec-
tion of this figure reveals that all three processes (RR),
(VR), and (SS) lead to filaments with three distinct seg-
ments: a T cap, an intermediate Θ segment, and a D
core. Even though these distinct filament segments are
always present, their size is very different for the different
processes.

For process (VR) and actin concentration CT =
0.3 µM, for example, the probability PT(1) ' 0.03 � 1
and the T cap is much shorter than a single protomer, see
Fig. 7(b). Another extreme case is found for process (SS)
and actin concentration CT = 6 µM, see Fig. 7(f), with
a T cap that consists of about 5 × 104 protomers. Long
actin filaments in solution have a typical length of 15 -
20 µm corresponding to 5000 - 7000 protomers. Thus,
from an experimental point of view, one can reach the
steady state for the processes in Fig. 7(a)–(c) and (e)
but not for the processes (RR) and (SS) at concentration
CT = 6 µM as displayed in Fig. 7(d) and (f).

FIG. 7: Densities Pα for α = T, Θ, and D protomers as a
function of the protomer position x. The first protomer at
the barbed end is located at x = 1 with Pα(1) as in Fig. 5.
The densities in the left column (a-c) are obtained for actin
concentration CT = 0.3 µM, those in the right column (d-f)
for CT = 6 µM. The first, second, and third row correspond
to the three processes (RR), (VR), and (SS) with transition
rates as in Table 1. The position x is measured in units of
the projected protomer length equal to 2.75 nm.

Strongly cooperative ATP cleavage

As long as the cleavage parameter ρc > 0, the filament
attains a regular steady state with a stationary protomer
pattern. For such a state, we may decompose the average
number 〈NT〉 of T protomers according to

〈NT〉 = 〈NTT〉+ 〈NTΘ〉+ 〈NTD〉 (11)

where 〈NTT〉, 〈NTΘ〉, and 〈NTD〉 denote the average
numbers of T protomers that have a T, Θ, and D pro-
tomer close to their nucleotide binding pocket, respec-
tively. It is useful to note that 〈NTΘ〉 represents the
number of TΘ domain boundaries while 〈NTD〉 counts
the number of TD domain boundaries. Away from
the barbed end, a TD domain boundary can only be
created by the destruction of a TΘ domain boundary,
a process that does not change the combined number
〈NTX〉 ≡ 〈NTΘ〉+ 〈NTD〉 of TΘ and TD domain bound-
aries.

Using these mutually exclusive subsets of T protomers,
we can also decompose the total ATP cleavage flux as

Jc = 〈NTT〉 ρc ωc + 〈NTX〉ωc (12)

where the first term on the right hand side represents the
rate at which new TΘ domain boundaries are being cre-
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ated. The latter process increases the combined number
〈NTX〉 of TΘ and TD domain boundaries.

For a regular steady state, the flux balance relations
imply that the total ATP cleavage rate Jc is equal to the
incoming excess flux J+T, i.e., Jc = J+T = κon CT −
PT(1)ωoff,T . If this equation is combined with the de-
composition (12) of the total cleavage flux Jc, one obtains
the flux balance relation

〈NTT〉 ρc ωc + 〈NTX〉ωc = J+T . (13)

In the limit of small ρc, the filament develops a di-
verging T cap, which implies 〈NTT〉 � 〈NTX〉 and
〈NT〉 ≈ 〈NTT〉. It is now convenient to define the density

nTX ≡
〈NTX〉
〈NT〉

=
〈NTΘ〉+ 〈NTD〉

〈NT〉
(14)

of the TΘ and TD domain boundaries which behaves
as nTX ≈ 〈NTX〉/〈NTT〉 for small ρc. Using this latter
equation, the flux balance relation (13) can be rewritten
as

nTX ≈
J+T

〈NTT〉ωc
− ρc (15)

which shows explicitly that the density nTX of the do-
main boundaries vanishes as 1/〈NTT〉 for small ρc.

We now use a scaling argument in order to obtain a
second relation between the density nTX and the pro-
tomer number 〈NTT〉 in the limit of small ρc. During a
time interval ∆t, filament growth leads to the addition
of ∆t J+T new T protomers which form a continuous T
cap until this cap is broken up by the cleavage of one T
protomer and, thus, by the creation of an additional TΘ
domain boundary. The scaling argument now consists
of the assumption that the resulting density of TΘ (and
TD) domain boundaries close to the barbed end is pro-
portional to the overall density nTX. It then takes the
time ∆t1 ∼ 1/nTX J+T until the continuous T cap at the
barbed end breaks up by the creation of an additional
TΘ domain boundary. On the other hand, the subset of
all T protomers with a TT neighborhood creates new TΘ
domain boundaries with the rate 〈NTT〉 ρc ωc. Selfconsis-
tency now implies the condition ∆t1 〈NTT〉 ρc ωc ∼ 1 or
〈NTT〉 ρc ωc = cT nTX J+T with a dimensionless propor-
tionality coefficient cT. If this selfconsistency condition
is combined with relation (15), one obtains

〈NTT〉 ≈ bT J+T/ωc
√
ρc (16)

for small ρc with bT ≡
√
cT. This relation is equivalent

to equation (7) in the main text since 〈NT〉 ≈ 〈NTT〉 for
small ρc and J+T ≈ κon CT − ωoff,T for large CT with
PT(1) ≈ 1.

It then follows that the average number 〈NT〉 of T
protomers is dominated by the T protomers within the
T cap, which contribute the term 〈NTT〉 ∼ 1/

√
ρc in the

decomposition (11) of 〈NT〉, whereas the total cleavage
flux Jc is dominated by the cleavage at the TΘ domain
boundaries, which contribute the term proportional to
〈NTX〉 ∼ O(1) in the decomposition (12) of Jc.

The scaling argument just described can be confirmed
in a systematic way by calculating the size distribution
of T domains for a simplified model in which the two
protomeric species Θ and D are combined into a sin-
gle species. This computation, which will be described
elsewhere [3], leads to the value bT =

√
π/2 for the di-

mensionless coefficient, in very good agreement with the
stochastic simulations.

Average number of Θ protomers

For random Pi release after random cleavage, the av-
erage number 〈NΘ〉 of Θ protomers behaves as

〈NΘ〉 ≈ 〈NT〉ωc/ωr (17)

for large actin concentrations. The transition rates in
Table 1 imply 〈NΘ〉 ≈ 100 〈NT〉 for process (RR).

For random Pi release after vectorial cleavage, the av-
erage number of Θ monomers has the steady state value

〈NΘ〉 = ωc/ωr for CT > CT,c . (18)

The transition rates in Table 1 lead to 〈NΘ〉 = 4.5× 103

for process (VR) with CT > 11.0 µM.
Finally, for strongly cooperative Pi release after strongly

cooperative ATP cleavage, a detailed analysis shows that

〈NΘ〉 ≈ 〈NT〉
ωc
√
ρc

ωr
√
ρr

= 〈NT〉
√
ωcD ωcT√
ωrD ωrΘ

(19)

for CT > CT,r. The transition rates in Table 1 imply
〈NΘ〉 ≈ 2.15 〈NT〉 for process (SS).

The asymptotic relations as given by (17) – (19) have
been included in Fig. 3(b) and agree very well with the
results of the stochastic simulations.

∗ www.mpikg.mpg.de/theory/

[1] M.-F. Carlier, D. Pantaloni, and E.D. Korn. J. Biol. Chem.
262, 3052 (1987).

[2] E.B. Stukalin and A. Kolomeisky. Biophys. J. 90, 2673
(2006).

[3] X. Li, R. Lipowsky, and J. Kierfeld. (in preparation).


