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The velocity and the adenosine triphosphate �ATP� hydrolysis rate of the molecular motor kinesin are studied
using a general network representation for the motor, which incorporates both the energetics of ATP hydrolysis
and the experimentally observed separation of time scales between chemical and mechanical transitions. Both
the motor velocity and its hydrolysis rate can be expressed as superpositions of excess fluxes for the directed
cycles �or dicycles� of the network. The sign of these dicycle excess fluxes depends only on two thermody-
namic control parameters as provided by the load force F and the chemical energy �� released during the
hydrolysis of a single ATP molecule. In contrast, both the motor velocity and its hydrolysis rate depend, in
general, on the load force F as well as on the three concentrations of ATP, adenosine diphosphate �ADP�, and
inorganic phosphate �P�, separately. Thus, in order to represent the different operation modes of the motor in
the �F ,��� plane, one has to specify two concentrations such as the product concentrations �ADP� and �P�. As
a result, we find four different operation modes corresponding to the four possible combinations of ATP
hydrolysis or synthesis with forward or backward mechanical steps. Our operation diagram implies in particu-
lar that backward steps are coupled to ATP hydrolysis for sufficiently large ATP concentrations, but to ATP
synthesis for sufficiently large ADP and/or P concentrations.
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I. INTRODUCTION

The performance of molecular motors is intimately re-
lated to their enzymatic activity. Chemical reactions, which
change the chemical composition of the enzyme-ligand com-
pound, are coupled to conformational changes of the motor
molecule �1–3�. One example is provided by the kinesin
molecule, which generates force and directed motion against
an opposing load using the energy gained by catalyzing the
hydrolysis of adenosine-triphosphate �ATP� to adenosine-
diphosphate �ADP� and an inorganic phosphate group �P�. In
the present article, we address this energy transduction by the
kinesin motor using a network representation first introduced
in �4,5�.

Kinesin is a motor molecule that consists of two identical
amino acid chains dimerized in a coiled coil; see, e.g., re-
view in �6�. One end of the protein dimer binds to cell or-
ganelles, such as small vesicles or mitochondria, while at the
other end, each of the two chains forms a globular head-
domain, which is able to bind to microtubules, which repre-
sent rather rigid and polar cytoskeletal filaments �7,8�. These
motor heads do not only mediate the binding of kinesin to
the microtubule track, but also contain a binding pocket for
ATP, which is also the catalytic site for ATP hydrolysis
�9,10�. The content of the nucleotide binding pocket affects
the microtubule binding affinity of the motor head �11,12�,
which turns out to be crucial for the coordination of the two
motor heads leading to a remarkable high processivity of
about 100 successive unidirectional steps �13�. Each indi-
vidual motor step of kinesin is coupled to the hydrolysis of
exactly one ATP molecule �14� and displaces the center of
mass by 8 nm. During this displacement, the trailing head
moves twice this length—i.e., 16 nm—towards the microtu-

bule plus end to become the new leading head �14–16�. Mo-
lecular details of the gating mechanism that enables commu-
nication between the two heads are still a matter of debate
�17–21�. Since the catalytic reactions of molecular motors
are directly coupled to mechanical displacement, its kinetics
can be observed at the single molecule level. For the kinesin
motor, e.g., the mean velocity, randomness, run length, and
fraction of forward to backward steps have been measured
�22–25�. These observations of the motor dynamics comple-
ment biochemical measurements of nucleotide binding and
release rates �26–29�.

The coupling to unbalanced ATP hydrolysis keeps the mo-
tor molecule out of equilibrium. In the following, we will
consider nonequilibrium steady states, which apply as long
as the environment of the motor changes slowly compared to
its run time. In fact, the environment can be characterized by
a fixed set of constant thermodynamic variables that consists
of the temperature, the load force acting on the motor mol-
ecule, and the concentrations of ATP, ADP, and P in the so-
lution as described previously in �30�.

Therefore, the dynamics of the kinesin motor depends, for
fixed temperature, on four thermodynamic control param-
eters: the load force and the three concentrations of ATP,
ADP, and P. The latter concentration dependence is clearly
demonstrated by the experimental observations in Ref. �23�.
As explained in Ref. �30�, all previous theoretical studies of
kinesin were limited to certain subspaces of this four-
dimensional parameter space. In addition, previous models
were also restricted to unicycle models—i.e., to models with
a single motor cycle; see, e.g., �23,27,29�. Unicycle models
are, however, not capable of explaining the experimental re-
sults obtained in Refs. �24,25� on backward stepping.

Indeed, for a motor with a single cycle, backward step-
ping is always coupled to ATP synthesis, in which ADP and
P are combined into ATP. However, for the bead assays used
in �24,25�, the ADP and P concentrations were rather low
and, thus, were not able to reverse ATP hydrolysis as already*www.mpikg.mpg.de/theory/
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pointed out in Ref. �4�. This argument is rather general and
directly shows, without any further assumptions, that the ex-
perimental observations on kinesin cannot be adequately de-
scribed by unicycle models.

In �4�, we introduced a six-state network to explain the
possibility of backward stepping without the need to reverse
ATP hydrolysis. The six-state network involves two distinct
chemomechanical pathways, corresponding to forward and
backward stepping, respectively, both of which are coupled
to ATP hydrolysis. For small loads, the forward-stepping
cycle carries a larger probability flux than the backward-
stepping cycle. Consequently, the kinesin motor will effec-
tively move forward. This changes, if the load force is in-
creased, which does, however, not lead to a simple reversal
of the forward-stepping cycle. Instead, the dominant reaction
pathway changes and now becomes the backward-stepping
cycle.

We found this six-state network model to be appropriate
for describing the motor velocity and the fraction of ob-
served forward to backward steps as well as the randomness
parameter as a function of load force and ATP concentration,
as long as we considered small concentrations of ADP and P.
Comparison of the calculated inhibition of the motor velocity
by ADP with experimental observations made it necessary to
extend the network by one additional motor state �4�. The
resulting network representation of the kinesin motor in-
volves seven motor states and describes all experimentally
observed properties of kinesin’s processive motion and their
dependences on the load force and the three concentrations
of ATP, ADP, and P.

Since catalytic processes correspond to closed-state space
trajectories of the corresponding enzyme, the cycles of the
state space network play an essential role for the discussion
of the motor dynamics �5,30�. This aspect has been worked
out in great detail by Hill �31� for biochemical processes that
do not involve mechanical work. In the present context, the
decomposition of the local fluxes in form of nonlocal cyclic
fluxes allows us to relate the motor kinetics to the thermo-
dynamics of the energy transduction process. In our previous
work, we established cyclic energy balance conditions for
the transition rates, which follow from the requirements of
thermodynamic consistency �5,30�. This energy balance en-
sures that the dynamics follows, on average, all chemome-
chanical cycles in the direction of heat release, in agreement
with the second law of thermodynamics. Furthermore, the
amount of released heat can be used to quantify the degree of
irreversibility for the corresponding cycle. For reaction path-
ways that are not closed, the energy transduction process is
incomplete and the heat release cannot be defined without
the explicit knowledge of the intramolecular energy storag-
e.The cyclic energy balance as derived in our previous stud-
ies also provides a connection to recent studies of entropy
production in stochastic dynamics �32,33�.

In the present article, the cyclic energy balance is used to
determine the different operation modes of kinesin. These
operation modes are defined with respect to two essential
motor properties: the velocity and the hydrolysis rate of the
motor. As shown below, both quantities can be expressed as
superpositions of excess fluxes for the directed cycles �or
dicycles� of the network. The sign of these dicycle excess

fluxes depends only on the load force F and the chemical
energy �� released during the hydrolysis of a single ATP
molecule. In contrast, both the motor velocity and its hy-
drolysis rate depend, in general, on the load force F as well
as on the three concentrations of ATP, ADP, and P, separately.
Thus, in order to represent the different operation modes of
the motor in the �F ,��� plane, one has to specify two con-
centrations such as the product concentrations �ADP� and
�P�. As a result, we find four different operation modes cor-
responding to the four possible combinations of ATP hy-
drolysis or synthesis with forward or backward mechanical
steps. Our operation diagram implies in particular that back-
ward steps are coupled to ATP hydrolysis for sufficiently
large ATP concentrations, but to ATP synthesis for suffi-
ciently large ADP and P concentrations.

Our article is organized as follows. In Sec. II we define
the state space and the network representation of the kinesin
motor molecule. In Sec. III the network kinetics is described
in terms of excess probability fluxes on dicycles. One impor-
tant property of these dicycle excess fluxes is that their sign
is completely determined by the released heat and, thus, by
thermodynamics. Finally we show in Sec. IV how the inter-
play of the dicycle excess fluxes determines the operation
modes of the kinesin motor. The main results of this article
are explicit expressions for the stall force and the balancing
chemical potential difference, which separate forward-
backward stepping and ATP hydrolyzing-synthesizing
modes, respectively. This analysis explicitly illustrates the
dependence of the motor dynamics on both thermodynamic
variables and kinetic model parameters.

II. NETWORK REPRESENTATIONS OF THE KINESIN
MOTOR

A. Motor states connected by chemical and mechanical
transitions

An individual catalytic reaction of ATP hydrolysis on a
kinesin motor head involves the binding of the substrate ATP,
the chemical cleavage, and finally the release of the products
P and ADP. Since P is released very quickly after the decay
�28�, a motor head will be found in an empty �E�, a bound
ATP �T�, or a bound ADP �D� conformation. The different
states of the motor head have different binding affinities to
the microtubule: namely, strongly bound E and T heads and
weakly bound D heads �11,12�. Single-molecule experiments
�16,24� indicated that the 16-nm translation of the trailing
head in the hand-over-hand stepping is fast compared to the
overall catalytic turnover of ATP hydrolysis. Because of this
separation of time scales, we will ignore conformational
states of the kinesin molecule, which do not have a
8-nm-separated leading and trailing head. As a result, the
conformational state space for the dimeric kinesin molecule
includes nine states, as shown in Fig. 1.

We distinguish two types of transitions between these
states. Chemical transitions correspond to changes in the
composition of the motor heads. During these transitions,
ATP, ADP, or P molecules are exchanged between motor and
particle reservoirs of constant concentration. Note that in the
kinesin network considered here, we have combined the
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cleavage of bound ATP to bound ADP+P with the subse-
quent P release �4�. Mechanical transitions represent dis-
placements of the motor molecule, which performs mechani-
cal work whenever an external load force acts against this
directed motor movement. The process of an 8-nm step of
the center of mass is identified with the 16-nm displacement
of the trailing head, consistent with the hand-over-hand
mechanism of processive kinesin. In the state space network
of dimeric kinesin, a stepping transition �dashed lines in Fig.
1� has the effect of interchanging the position of the leading
and the trailing head.

The high processivity of kinesin indicates that stepping
originates from a state in which the leading and trailing
heads are strongly and weakly bound, respectively �4�. This
asymmetry is particularly pronounced for the inner “out-of-
phase” cycle in Fig. 1�b�, corresponding to the closed chemi-
cal pathway, in which the two motor heads do not appear
with identical composition. For this closed chemical path-
way, one can consider, in principle, two different mechanical
transitions: �i� from state DE to state ED and �ii� from state
DT to state TD. Since the stepping transition from state DE
to state ED competes with the ATP binding from DE to DT,
such a mechanical transition should lead to a reduction in the
motor velocity for large ATP concentrations, which has not
been observed experimentally. Thus, we take the stepping
transition from DT to TD to be the dominating one.

For simplicity, we first focused on the six-state model,
provided by the out-of-phase cycle of chemical transitions
and the DT to TD stepping transition �4�. However, the
strong reduction of the motor velocity by an increase of the
ADP concentration makes it necessary to include the state
DD into the network description. In this way, we arrive at the
seven-state network shown in Fig. 2 �4�. This seven-state
network has six cycles, which describe four processes: �i�

two dicycles F1
+= �12561� and F2

+= �12571� couple ATP hy-
drolysis to forward stepping, �ii� one dicycle B+= �45234�
couples ATP hydrolysis to backward stepping, �iii� two di-
cycles D1

+= �1234561� and D2
+= �1234571� represent futile

ATP hydrolysis without any stepping, and �iv� one dicycle
S+= �71657� contains neither net hydrolysis nor stepping.
While the cycles in �i� and �ii� are chemomechanical cycles
that couple chemical and mechanical processes in one cata-
lytic cycle, �iii� and �iv� can be classified as dissipative and
thermal slip cycles, respectively �30�.

B. Motor dynamics and transition rates

The dynamics of the motor molecule will be described by
a continuous time Markovian jump process on the seven-
state network. This process is characterized by exponentially
distributed dwell times �i with average values ��i� for each
state and jump probabilities �ij for each transition, with
� j�ij =1. Together, these quantities define the transition rates
�ij =�ij / ��i�. Each individual transition carries a local excess
flux as given by

�Jij = Pi�ij − Pj� ji, �1�

where Pi is the occupation probability of state i=1,2 , . . . ,7.
At steady state, the probabilities Pi satisfy seven linear equa-
tions that represent the flux balance in each state, � j�Jij =0.
The transition rates �ij depend on the load force F acting on
the motor molecule and on the ATP, ADP, and P concentra-
tions in the solution. In general, each transition rate can be
written as

�ij = �ij,0�ij�F� with �ij�0� = 1, �2�

where �ij,0 is the rate in the load free case and �ij�F� the
force-dependent factor �5�. Here and below, the load force F
represents the force component tangential to the filament. In
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FIG. 1. �Color� �a�+ �b� Two different representations of the
nine-state network for dimeric kinesin, as defined via the composi-
tion of the two catalytic motor domains. A head with bound ATP or
ADP is labeled T or D, respectively. Empty heads are denoted by E.
Both the E and T states are strongly bound to the microtubule,
whereas the D state is only relatively weakly attached as indicated
by the small gap between the D heads and the filament segments.
All transitions between states are bidirectional; the direction of ATP
hydrolysis, which consists of substrate �ATP� binding and product
�ADP+P� release, is indicated by arrows. The two possible me-
chanical transitions are shown as dashed lines. Considering the right
and left heads as being the leading and trailing heads, respectively,
the open arrows at the mechanical transitions point in the direction
of forward stepping.
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FIG. 2. �Color� Seven-state network for kinesin, which is con-
sistent with all observations of its processive motion �4,30�. The
arrows indicate the direction of ATP hydrolysis and forward
stepping.
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general, the transition rates �ij may also depend on the force
component perpendicular to the filament as discussed in �30�,
but the motor does not perform work against these perpen-
dicular components.

If the transition �ij� involves binding of species X �=ATP,
ADP, or P�, we take the binding rate to be proportional to the
concentration of X—i.e., �ij,0=�ij�X�. The reverse transition
�ji� corresponds to the release of X. Both the mechanical
stepping transitions and the release transitions do not depend
on �ATP�, �ADP�, or �P� and are simply given by the rate
constant �ij,0=�ij. In �4,37�, we determined the transition
rate constants �ij and load factors �ij systematically from the
experimental data in �22–25�.

The environmental variables as given by load force F and
concentrations �ATP�, �ADP�, and �P� determine the dynam-
ics of the motor—i.e., its velocity and hydrolysis rate via the
F-dependent factors �ij and the concentration-dependent
zero-load rates �ij,0. The second ingredient for the descrip-
tion of the motor dynamics is the topology of the underlying
seven-state network, which can be characterized in terms of
the different motor cycles as explained in the next section.

III. DICYCLE EXCESS FLUXES

A. Flux decomposition

As emphasized by Hill �31�, the kinetics of enzymatic
networks for nonequilibrium steady states can be described
in terms of probability fluxes assigned to directed cycles or
dicycles of the network. At steady state, each cycle C� carries
two opposing dicycle fluxes J�C�

d�, which count the average
number of times this cycle will be completed per second in a
given direction, d= “ +” or d= “−.” These dicycle fluxes
have the general form �5,31�

J�C�
d� = 	��C�

d�

�C��

�
, �3�

where

	��C�
d� 	 


�ij�

C�
d

�ij �4�

denotes the transition rate product along a directed cycle. In
�3� the influent factor 
�C�� represents a statistical weight of
the cycle C�, which measures the flux onto the cycle from the
rest of the network, while � is a normalization factor. Both
terms consist of multilinear polynomials of the transition
rates �ij and are strictly positive, although they depend on
the control parameters �ATP�, �ADP�, �P�, and F in a non-
trivial way. The dicycle excess fluxes in a given direction are
defined by the difference

�J�C�
+� = J�C�

+� − J�C�
−� , �5�

with �J�C�
−�=−�J�C�

+�.1 The local excess fluxes �1� can be
decomposed into nonlocal dicycle excess fluxes via �5,31�

�Jij = �
�

�ij,��J�C�
+� , �6�

where �ij,�= 
1, if the directed edge �ij� is an element of the
directed cycle C�


, and �ij,�=0, if the edge �ij� is not con-
tained in the cycle C�. Thus, the sum in �6� includes all
dicycle excess fluxes of the network that contribute to the
transition �ij�.

B. Dicycle energy balance

As indicated in Fig. 3, the motor is in thermal equilibrium
with a heat bath of temperature T. In the following, we con-
sider room temperature with T=300 K and define the res-
caled load force and the rescaled chemical potential differ-
ence for the hydrolysis of one ATP molecule via

F̄ 	
�F

kBT
=

W

kBT
, ��̄ 	

��

kBT
= ln�Keq�ATP�

�ADP��P�� , �7�

with the Boltzmann constant kB, the mechanical step size �,
and the work W performed by the motor during one me-
chanical step. In dilute solutions the potential difference
��=�T−�D−�P can be expressed in terms of the concen-
trations for ATP, ADP, and P and the equilibrium constant for
ATP hydrolysis Keq �30�. The value of the equilibrium con-
stant

Keq = ��ADP��P�/�ATP��eq 
 4.9 � 1011 �M �8�

is obtained from the ATP, ADP, and P concentrations in
chemical equilibrium—i.e., when ATP hydrolysis and ATP
synthesis balance �23,34�.

Because Keq is large, the equilibrium of ATP hydrolysis
corresponds to very small substrate concentrations �ATP�
� �ADP��P�. An increase of �ATP� for constant product con-

1The fluxes �J�C�
d� were previously denoted by J�C��; see Eq. �8�

of �5�.

FIG. 3. Energy flux diagram for molecular motors driven by
ATP hydrolysis. Binding of ATP to the motor implies an internal
energy gain �T, while the release of ADP and P changes the internal
energy of the motor molecule by −�D and −�P, respectively �30�.
The chemical potential difference ��=�T−�D−�P for the hy-
drolysis of one ATP molecule can be expressed in terms of the
nucleotide concentrations, while the mechanical work per step, W
=�F as in �7�, depends on the applied load force F and on the
mechanical step size �. The dissipated heat Q then follows from the
conservation of energy, as in �10�.
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centrations induces excess hydrolysis. The catalytic action of
the kinesin molecule channels the hydrolysis reaction path-
way to extract mechanical work from the released chemical
energy ��; see Fig. 3. Since the motor operates isothermally,
this energy transduction process also involves heat release.

Based on the dynamical properties of the steady state, we
derived in �5,30� dicycle energy balance relations between
the heat release for completing a cycle C�

d in the state space
network and the transition rates �ij of the dynamics. This
energy balance links the product of transition rates of the
cycle C�

d to the corresponding numbers of hydrolyzed and
synthesized ATP molecules and of forward and backward
steps. If a catalytic cycle C�

+ involves the hydrolysis of nh and
the synthesis of ns ATP molecules, as well as mf forward and
mb backward mechanical steps each of size �, the dicycle
balance relations have the general form �5,30�

ln
	��C�

+�

	��C�
−�

= �nh�C�
+� − ns�C�

+����̄ − �mf�C�
+� − mb�C�

+��F̄

�9�

=�Q̄�C�
+� , �10�

where �Q̄�C�
+� represents the heat released during comple-

tion of the dicycle C�
+ in units of kBT. For the seven-state

network in Fig. 2, the heat release of the six different cycles
is given by

�Q̄�F1
+� = �Q̄�F2

+� = ��̄ − F̄ , �11�

�Q̄�B+� = ��̄ + F̄ , �12�

�Q̄�D1
+� = �Q̄�D2

+� = 2��̄ , �13�

�Q̄�S+� = 0. �14�

Comparing �10�–�14� with �2� and �7�, one immediately gets
for the transition rate constants the balance condition

�12�25�56�61

�21�52�65�16
=

�12�25�57�71

�21�52�75�17
=

�45�52�23�34

�54�25�32�43
= Keq.

�15�

Furthermore, if one assumes that the internal energies of the
motor states are independent of the load force, a local form
of the balance conditions as derived in �30� implies that the
load dependences of the stepping transition must fulfill the
condition

�25�F̄�

�52�F̄�
= e−F̄, �16�

which is assured by the simple parametrization �25�F̄�
=e−�F̄ and �52�F̄�=e�1−��F̄ as used in �4�. The balance condi-
tion �9� also imposes constraints on the load dependences of
the chemical transitions as given by

�12�56�61

�21�65�16
=

�12�57�71

�21�75�17
=

�45�23�34

�54�32�43
= 1. �17�

The local form of the balance condition leads to the stronger
constraint �30�

�ij�F̄�

� ji�F̄�
= 1 for �ij� � �25� , �18�

which we have incorporated in �4� by the explicit form �ij

=2 / �1+e�ijF̄� with dimensionless coefficients �ij =� ji.

In general, the load-dependent factors �ij�F̄� must fulfill
several general constraints which follow directly from the

definition of �ij�F̄� in �2�: �i� Since transition rates �ij can-

not be negative, one has �ij�F̄��0 for all load forces F̄; �ii�
likewise, transition rates cannot become arbitrarily large,

which implies �ij�F̄��� for all F̄; and �iii� for vanishing

load, �ij�F̄=0�=1 as in �2�.
In addition, we have imposed the condition �iv� that the

derivative ��ij�F̄� /��F̄� at F̄=0 be consistent with the de-
rivative of the motor velocity v with respect to the load force
F as measured experimentally for small and large ATP con-
centrations. For small �ATP�, the velocity v is proportional to
the transition rate �12 since the rate limiting transition is
provided by ATP binding. For large �ATP�, on the other hand,
the velocity is proportional to the transition rate product
�56�61 since the ADP release transition �56� and the P release
transition �61� are rate limiting in this case. Therefore, one
has

�v/�F � ��12/�F̄ for small �ATP� �19�

and

�v/�F � ���56�61�/�F̄ for large �ATP� . �20�

Our parametrization �ij�F̄�=2 / �1+e�ijF̄� fulfills the three
constraints �i�–�iii� and introduces only one additional pa-
rameter, namely �ij. The latter parameter satisfies

�ij = − 2��ij/�F̄ at F̄ = 0 �21�

and, thus, can be directly determined, via �19� and �20�, from
the derivative �v /�F at F=0 as measured experimentally. In

order to go beyond our parametrization of �ij�F̄�, one would
need direct experimental information about the force depen-
dence of the chemical transition rates. The latter information
is, however, not available at present.

C. Factorization of dicycle excess fluxes

Using the relations �9� and �10�, one can factorize the
dicycle excess fluxes as given by �5� in the form

�J�C�
d� = �1 − e−�Q̄�C�

d��	��C�
d�


�C��
�

. �22�

The first factor on the right-hand side of �22� accounts for the
irreversibility of the pathway C�

d and is entirely determined
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by the energetics of this cycle; see, e.g., �11�–�14�. Increasing
the irreversibility of a closed pathway increases the excess
probability flux on this cycle. In chemical and mechanical

equilibrium with �Q̄�C�
d�=0, the dicycle excess flux �J�C�

d�
vanishes, which is equivalent to full reversibility described
by J�C�

d�=J�C�
−d�. Far from equilibrium, on the other hand,

the dicycle excess flux has the asymptotic behavior

�J�C�
d� � J�C�

d� for large �Q̄�C�
d� . �23�

The second factor 	� in �22� is a measure for the speed of a
cycle completion in the direction of C�

d. Even cycles with a
very large irreversibility may carry a small excess probability
flux if the transitions in the corresponding direction are slow.
Finally, the third factor 
 /� is a topological term that de-
scribes the connection of the cycle C� to the remaining net-
work structure. Cycles that can be reached easily from the
whole state space network obviously have larger probability
fluxes than cycles that are only weakly connected to the rest
of the network. In summary, the relevance of a closed path-
way or cycle in a chemomechanical network is given by �i�
its irreversibility, �ii� the speed in the direction determined by
�i�, and �iii� its connection to the rest of the state space
network.

D. Sign of dicycle excess fluxes

All factors in the expression �22� for the dicycle excess
flux are strictly positive apart from the first one. This implies
that the sign of the dicycle excess flux �J�C�

d� is equal to the

sign of the corresponding released heat �Q̄�C�
d� or

sgn��J�C�
d�� = sgn��Q̄�C�

d�� , �24�

�J�C�
d� = 0 iff Q̄�C�

d� = 0. �25�

For the seven-state model considered here, the heat release of
the different cycles is given by �11�–�13�. It then follows that
the dicycle excess fluxes of the two forward-stepping di-
cycles satisfy

�J�F+� � 0 for ��̄ � F̄

=0 for ��̄ = F̄

�0 for ��̄ � F̄ , �26�

with �J�F+�	�J�F1
+�+�J�F2

+�. Note that the same relation
holds for the sign of the individual dicycle fluxes—i.e.,
sgn��J�F1

+��=sgn��J�F2
+��=sgn��J�F+��. In contrast, for

the excess flux on the backward-stepping dicycle, one ob-
tains

�J�B+� � 0 for ��̄ � − F̄

=0 for ��̄ = − F̄

�0 for ��̄ � − F̄ . �27�

Finally, the sign of the dissipative dicycle excess fluxes is
determined by the chemical potential difference ��̄ alone
and is given by

�J�D+� � 0 for ��̄ � 0

=0 for ��̄ = 0

�0 for ��̄ � 0, �28�

with �J�D+�	�J�D1
+�+�J�D2

+� and sgn��J�D1
+��

=sgn��J�D2
+��=sgn��J�D+��. Relations �26�–�28� are illus-

trated in Fig. 4�a�. Note that the factorization in �22� together
with the energy balance in �14� immediately implies that the
dicycle excess flux on the thermal cycle vanishes, �J�S+�
=0.

IV. MODES OF MOTOR OPERATION

A. Motor velocity and ATP hydrolysis rate

The motor velocity v is given by

v = ��J25, �29�

i.e., by the step length � times the excess probability flux
�J25 along the stepping transition; see Fig. 2. It then follows
from �6� that

v = ���J�F1
+� + �J�F2

+� − �J�B+�� �30�
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(a)

v<0

A

∆J(D+)>0∆J(B+)>0

A

A

(b) (c)

A

v>0

h>0

h<0

FIG. 4. �a� Sign of the dicycle excess fluxes �J�C�
+� as functions

of the chemical potential difference ��̄ and the applied load F̄.
Gray dashed regions correspond to positive excess fluxes as in
�26�–�28�. �b� The regions in �a� determine two quarters Av�0 and

Av�0 in the ���̄ , F̄� plane with positive and negative motor velocity
v, respectively. The stall force, at which the velocity vanishes, de-
fines a transition line that lies within the complementary, white
regions and depends, in general, on the detailed kinetics of the
different excess dicycle fluxes. �c� The signs of the dicycle excess
fluxes in �a� also determine two regions of positive and negative
ATP hydrolysis rate, Ah�0 and Ah�0, respectively. The line h=0 is
located in the white regions.
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=���J�F+� − �J�B+�� . �31�

Similarly, the ATP hydrolysis rate of the kinesin network
model in Fig. 2 is given by

h = �J61 + �J57 + �J34 �32�

or

h = �J�F1
+� + �J�F2

+� + �J�B+� + 2�J�D1
+� + 2�J�D2

+�

�33�

=�J�F+� + �J�B+� + 2�J�D+� , �34�

According to �31�, �34�, and �5�, the motor velocity and the
hydrolysis rate depend on the dicycle excess fluxes and, thus,
on the transition rates �ij of the network model. Further-
more, as stated in connection with �2�, the transition rates
depend on the control parameters provided by load force F
as well as substrate and product concentrations �ATP�,
�ADP�, and �P�. The model parameters are the transition rate
constants �ij and the F-dependent factors �ij.

Comparing the motor velocity with single-molecule data
on processively moving kinesin motors as obtained in
�22–25�, we could determine the model parameters for the
forward-stepping cycles �4,37�. In the absence of any experi-
mental data about the rates of the backward-stepping cycle
B, the simplest assumption about the transition rates of this
cycle is to choose these rates to be identical with the corre-
sponding ones of the forward-stepping cycle F1 apart from
one such rate which was taken to be �54 in �4� as reviewed in
Appendix A 2.

B. Sign of motor velocity and stall force

When expression �31� for the motor velocity is combined
with the two relations �26� and �27� for the sign of the two
dicycle excess fluxes �J�F+� and �J�B+�, one concludes that
v is positive in region Av�0 and negative in region Av�0
where these two regions represent tilted quarters of the

�F̄ ,��̄� plane as defined by

Av�0 	 �F̄ � 0,F̄ � ��̄ � − F̄� ,

Av�0 	 �F̄ � 0,− F̄ � ��̄ � F̄� . �35�

These two quarters lie opposite to each other and are sepa-
rated by the two complementary quarters of this plane; see
Fig. 4�b�. Note that the two regions Av�0 and Av�0 include

their boundary lines with ��̄= F̄�0 and ��̄=−F̄�0 and,

thus, are closed subsets of the �F̄ ,��̄� plane apart from the

origin �F̄ ,��̄�= �0,0�.
It now follows from �35� that the zeros of the motor ve-

locity must lie in the two complementary quarters which

represent open subsets of the �F̄ ,��̄� plane corresponding to
the unshaded areas in Fig. 4�b�. For given substrate and
product concentrations �ATP�, �ADP�, and �P�, the zeros of
the velocity determine the stall force of the motor—i.e.,

v�F̄,�ATP�,�ADP�,�P�� = 0 for F̄ = F̄s. �36�

In the following, we will study the stall force equation �36�
for the seven-state network model as shown in Fig. 2. Since
the motor velocity v is proportional to the excess flux �J25 as
in �29�, this stall force equation is equivalent to mechanical
equilibrium between the motor states i=2 and i=5. Using the
decomposition �30�, the velocity will be expressed in terms
of dicycle excess fluxes, which depend on all transition rates
�ij including the rates for the binding of ATP, ADP, and P,
which are proportional to �ATP�, �ADP�, and �P�. It will then

become apparent that the stall force F̄s depends, in general,
on all three concentrations �ATP�, �ADP�, and �P�. However,
we will also show that one can define a small concentration
limit in which the stall force becomes a function of the
chemical potential difference ��̄ only.

In terms of dicycle excess fluxes, the stall condition reads
�J�F+�=�J�B+�, which implies, using �11�, �12�, and �22�,

1 − e−��̄−F̄

1 − e−��̄+F̄
Z1 = 1 + Z2 for F̄ = F̄s �37�

�see �A6� and �A8��, with

Z1 	
	��B+�

	��F1
+�


�B�

�F1�

�38�

and

Z2 	
	��F2

+�

	��F1
+�


�F2�

�F1�

. �39�

For both Z1 and Z2, the first fraction involving the transition
rate products 	� does not depend on any concentration,
whereas the second fraction involving the influent factors 

depends on all three concentrations �ADP�, �P�, and �ATP�
�exp�−��̄� as follows from the explicit expressions for
these latter factors as given by �A2�.

In the limit of vanishing product concentrations �ADP�
= �P�=0, the chemical potential difference ��̄ as given by
�7� diverges and the stall force relation �37� reduces to the
simple expression

�52�23

�25�56
= 1 +

�57

�56
for F̄ = F̄�, �40�

which defines the limiting stall force F̄s= F̄�. For the “sym-
metric” model, which implies �A14� and the equality �23
=�56 for the ADP release transition rates of the trailing and
leading heads, relations �16� and �40� lead to

�25

�52
=

eF̄�

1 + ��57/�56�F̄�

, �41�

where �16� has been used. The ratio �57 /�56 measures the
competition between the two alternative pathways of �i� ATP
hydrolysis at the trailing head during the transition �57� fol-
lowed by ADP release at the leading head and �ii� ADP re-
lease at the leading head during the transition �56� and sub-
sequent cleavage of the bound ATP at the trailing head;
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compare Fig. 2. Since the load dependences of the ADP re-
lease transition �56� and the hydrolysis transition �57� are not
known, we make the simplifying assumption �56=�57,
which cancels the load dependence and leads to �57 /�56
=�57 /�56. This implies the limiting stall force

F̄� = ln��25

�52
�1 +

�57

�56
�� . �42�

Comparison of the model dynamics with the observed be-
havior of the kinesin motor velocity then leads to �57 /�56

0.5 �4,37�. With the mechanical step size �
8 nm �14,15�,
stall force F�
7 pN �22,24�, and thermal energy kBT

4 pN nm �room temperature�, we find from �41� that the
ratio �25 /�52�e14�106�1.

For the symmetric model as defined by �A4� and �A5�, the
implicit equation �37� for the stall force simplifies, since the
terms Z1 and Z2 then have the explicit form

Z1 =
�52

�25
�1 +

��61 + �65��17�75

��71 + �75���12�65 + �12�61 + �16�65�
�
�43�

and

Z2 =
��61 + �65��57�71

��71 + �75��56�61
; �44�

see �A10� and �A11�.
We now define the one-dimensional concentration coordi-

nate K via

K 	
�ADP��P�

�ATP�
, �45�

which implies

e−��̄ =
K

Keq , �46�

and consider the limit in which all three concentrations
�ATP�, �ADP�, and �P� become small, but with constant pa-
rameter K and, thus, constant ��̄. In this limit, the stall force
condition �37� becomes

1 − e−��̄−F̄s

1 − e−��̄+F̄s

eF̄s−F̄� � 1, �47�

with the explicit solution

F̄s � ln� eF̄� + e−��̄

eF̄�−��̄ + 1
� 	 F̄s���̄� . �48�

Thus, in this small-concentration limit with fixed chemical

potential difference ��̄, the stall force F̄s depends only on
this chemical potential difference and no longer on the three
activities or concentrations separately. Expression �48� has
the asymptotic behavior

F̄s � F̄� for large ��̄ �49�

and

F̄s �
eF̄� − 1

eF̄� + 1
��̄ for small ��̄ . �50�

In Fig. 5, we have plotted the stall force F̄s as a function
of ��̄ for the product concentrations �ADP�= �P�=0.5 �M
and �ADP�= �P�=5 mM as obtained by solving the implicit
equation �37� for the symmetric model with �43� and �44�
numerically. In addition, we also plotted expression �48� for
the stall force as obtained in the small-concentration limit
with constant ��̄. In Fig. 5, the stall force obtained from
�48� is indistinguishable from the numerical solution of �37�
for �ADP�= �P�=0.5 �M and provides a rather good ap-
proximation to the numerical solution even for �ADP�= �P�
=5 mM.

C. Sign of hydrolysis rate and balanced potential

Using the same line of reasoning as in the previous sub-
section, we find from the general expression �34� for the
hydrolysis rate h together with the inequalities �26�–�28� for
the dicycle excess fluxes that h is positive in Ah�0 and nega-
tive in Ah�0, where these two regions also represent tilted

quarters of the �F̄ ,��̄� plane as defined by

FIG. 5. �Color� Operation diagram for kinesin: the �F̄ ,��̄�
plane is divided up into four different regions denoted by �hf�, �hb�,
�sb�, and �sf� corresponding to four different operation modes of the
motor. The regions �hf� and �hb� represent ATP hydrolysis coupled
to forward and backward stepping, whereas the regions �sb� and �sf�
correspond to ATP synthesis coupled to backward and forward step-
ping. The boundaries between these four regions are provided by

the stall force lines �blue� as given by F̄s= F̄s���̄� and by the bal-

anced potential lines �red� as described by ��̄b=��̄b�F̄�. The solid
and dashed lines have been obtained by solving the implicit equa-
tions �37� and �53� with �43�, �44�, and �56� numerically for product
concentrations �ADP�= �P�=0.5 �M and 5 mM, respectively. In ad-
dition, expressions �48� and �58� have also been plotted, but the
resulting lines are indistinguishable from the solid lines as obtained
via the numerical solution.
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Ah�0 	 ���̄ � 0,− ��̄ � F̄ � ��̄� ,

Ah�0 	 ���̄ � 0,��̄ � F̄ � − ��̄�; �51�

see Fig. 4�c�. It follows from �51� that the zeros of the hy-
drolysis rate h must lie within the white regions in Fig. 4�c�,
which are complementary to both Ah�0 and Ah�0.

Just as the zeros of the motor velocity define the stall
force, the zeros of the hydrolysis rate h define the balanced
activities or concentrations of the motor—i.e.,

h�F̄,�ATP�,�ADP�,�P�� = 0. �52�

More precisely, this relation defines, for fixed load force F̄, a
two-dimensional subspace in the three-dimensional activity
space spanned by �ATP�, �ADP�, and �P�, and one may then
express one activity as a function of the two other activities
and of the load force. Furthermore, using the definition �7� of
the chemical potential difference ��̄, one may express the
concentration �ATP� in terms of ��̄, �ADP�, and �P�. The
solution of �52� then leads to a balanced potential ��̄b that

depends on the load force F̄ as well as on the two product
concentrations �ADP� and �P�.

In the following, we will study relation �52� for the seven-
state network model as shown in Fig. 2. Using the decom-
position �33�, the hydrolysis rate will be expressed in terms
of dicycle excess fluxes, which again depend on all three
activities or concentrations �ATP�, �ADP�, and �P�. As in the
case of the stall force, we will also consider the small-
concentration limit with fixed chemical potential difference
��̄, which leads to a balanced potential ��̄b that depends

only on the load force F̄.
When the hydrolysis rate h is expressed in terms of the

dicycle excess fluxes via �33�, the balanced activities are
determined by the condition �J�F+�+�J�B+�+2�J�D+�=0,
which is equivalent to

1 − e−��̄−F̄s

1 − e−��̄+F̄s

Z1 = − �1 + Z2� � �1 + 2
1 − e−2��̄

1 − e−��̄+F̄
Z3�

�53�

�compare �A6�–�A9��, with Z1 and Z2 as defined by �38� and
�39� and the additional term

Z3 	
	��D1

+�

	��F1
+�


�D1�

�F1�

. �54�

In order to derive relation �53�, we also used the fact that the
term Z2 as defined by �39� satisfies the additional equality

Z2 =
	��D2

+�
�D2�

	��D1
+�
�D1�

. �55�

For the symmetric model as defined in Appendix A 2, the
term Z3 as given by �54� has the explicit form

Z3 =
�12�56�61

�25��12�65 + �12�61 + �16�65�
�56�

in terms of the transition rates �ij. Performing now the limit
of small concentrations for ATP, ADP, and P for fixed chemi-
cal potential difference as introduced in �45� and �46�, the
transition rate polynomials in �43�, �44�, and �56� simplify
and lead to the condition

1 − e−��̄b−F̄

1 − e−��̄b+F̄
eF̄−F̄� � − �1 + 2

�23

�25

1 − e−2��̄b

1 − e−��̄b+F̄� �57�

for the balanced activities where relations �A13�–�A15� have
been used.

The transition rate ratio �23 /�25 depends explicitly on the

load force F̄ and measures the competition between �i� for-
ward movement of the ADP containing and loosely bound
trailing head towards the next binding site via the transition
�25� and �ii� ADP release from the trailing head and subse-
quent tight binding of this head via �23�; see Fig. 2. Thus, the
motor is more likely to undergo the futile hydrolysis cycles
D1

+ and D2
+ for larger values of �23 /�25. However, for the

transition rates as obtained from the experimental data, we
found that the ratio �23 /�25�1 for the relevant range of load
forces �4,37�; i.e., futile hydrolysis is strongly suppressed.
Neglecting the term proportional to �23 /�25 in �57�, we ob-
tain the explicit expression

��̄b � ln� eF̄� + e−F̄

eF̄�−F̄ + 1
� 	 ��̄b�F̄� �58�

for the balanced potential ��̄b with the limiting stall force

F̄� as given by �42�. Expression �58� has the asymptotic
behavior

��̄b � ��̄� = F̄� for large F̄ �59�

and

��̄b �
eF̄� − 1

eF̄� + 1
F̄ for small F̄ . �60�

Thus, in the small-concentration limit with fixed ��̄, the
hydrolysis rate h vanishes for the balanced potential ��̄b as

given by �58�, which depends only on the load force F̄.
In general, the balanced potential ��̄b follows from the

implicit equation �52� or �53� for the balanced activities as
mentioned previously. When �ATP� is expressed in terms of
��̄, �ADP�, and �P�, the general solution of �52� or �53�
leads to a balanced potential ��̄b that depends on the load

force F̄ as well as on the two product concentrations �ADP�
and �P�.

In Fig. 5, we have plotted the balanced potential ��̄b as a

function of F̄ for the product concentrations �ADP�= �P�
=0.5 �M and �ADP�= �P�=5 mM as obtained by a numeri-
cal solution of the implicit equation �53� for the symmetric
model with �43�, �44�, and �56�. In addition, we also plotted
expression �58� for the balanced potential as obtained in the
small-concentration limit with constant ��̄. Inspection of
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Fig. 5 shows that the balanced potential as obtained from
�58� is indistinguishable from the numerical solution of �53�
for �ADP�= �P�=0.5 �M and provides a rather good ap-
proximation to the numerical solution even for �ADP�= �P�
=5 mM.

D. Operation diagram

As shown in Fig. 5, the conditions of vanishing motor
velocity and vanishing hydrolysis rate as discussed in the

previous subsections divide the thermodynamic �F̄ ,��̄�
plane into four different regions denoted by �hf�, �hb�, �sb�,
and �sf�. These regions correspond to different operation
modes of the motor: �i� In operation mode �hf�, the motor
couples ATP hydrolysis to forward mechanical steps. De-
pending on the ADP concentration, this mode is governed by
the chemomechanical dicycles F1

+ and/or F2
+—i.e., by the

chemomechanical cycles F1 and F2, which the motor
traverses in the d=+ direction. �ii� In mode �hb�, ATP hy-
drolysis is coupled to backward mechanical steps. This mode
is dominated by the chemomechanical dicycle B+. �iii� In the
operation mode �sb�, the motor couples ATP synthesis to
backward steps and is then governed by the chemomechani-
cal dicycles F1

− and/or F2
−. �iv� In the mode �sf�, ATP synthe-

sis is coupled to forward steps since the motor follows pri-
marily the dicycle B−—i.e., the chemomechanical cycle B in
the d=− direction.

The boundaries between these four operation regions or

modes are provided by �i� the stall force F̄s as a function of
the chemical potential difference ��̄ and �ii� the balanced

potential ��̄b as a function of the load force F̄, where both
functions can be obtained, in general, for fixed product con-
centrations �ADP� and �P�. In addition, we have defined a
small concentration limit with constant ��̄, which leads to
the explicit expressions �48� and �58� for these two func-

tions. In Fig. 5, the functions F̄s= F̄s���̄� and ��̄b

=��̄b�F̄� are shown as blue and red lines, respectively.
In the framework of ratchet models, an operation diagram

with four different modes has also been obtained recently
from a model that describes the interplay between a stepping
pathway coupled to ATP hydrolysis and a diffusive stepping
pathway. Compared to our diagram, the boundaries of these
regions are, however, quite different. In particular, the opera-
tion diagram obtained in �35� exhibits no symmetry with

respect to the line ��̄=−F̄ and the region “sf” extends close

to the line F̄=0.

At mechanical and chemical equilibrium F̄=��̄=0, the

two functions F̄s���̄� and ��̄b�F̄� intersect. Close to this

chemomechanical equilibrium point, the stall force F̄s

= F̄s���̄� and the balancing potential ��̄b=��̄b�F̄� approach

the straight line F̄=��̄ as obtained from linear response
theory �36�. Far from equilibrium, both functions saturate

and attain constant values as given by F̄�=��̄�
14,
�22,24,25�.

For F̄s�0, the reduced stall force F̄s=�Fs /kBT can be
interpreted as a measure for the maximal work that the motor

can perform during one mechanical step against an external
load, while ��̄ represents the maximal amount of chemical
energy the motor may use per hydrolyzed ATP molecule; see
�7�. Starting from chemical equilibrium ��̄=0 an initial in-
crease in the chemical energy supply leads to a linear in-

crease of the maximal work per step and F̄s���̄ with a
proportionality coefficient that is very close to 1; see �50�. A
further increase of the supplied chemical energy brings the
motor far away from equilibrium and leads to a saturation of

the maximal work as estimated by F̄= F̄�.

V. SUMMARY

We have continued to study the seven-state network for
the molecular motor kinesin �see Fig. 2�, which we intro-
duced in �4�. As shown in our previous work, this network
provides a unified description for all experimental observa-
tions on the processive motion of kinesin. In contrast to con-
ventional unicycle models, the seven-state network involves
alternative and competing chemomechanical pathways or
motor cycles. As shown in the present article, this network
description also leads to four different operation modes of
the motor as summarized in the operation diagram of Fig. 5.
These four modes correspond to forward and backward me-
chanical steps coupled to ATP hydrolysis and synthesis. Me-
chanical slip cycles as discussed in �35� that lead to mechani-
cal steps without ATP hydrolysis �or synthesis� are not
considered here.

The different chemomechanical pathways contribute to
the observable motor dynamics with different statistical
weights, which depend on the external control parameters
provided by the applied load force F and the concentrations
�ATP�, �ADP�, and �P�. The latter quantities define the
chemical potential difference ��, which together with the
applied load F determines the thermodynamic state of the

motor. The �F̄ ,��̄� plane is divided into four regions corre-
sponding to the four operation modes; see Fig. 5. The bound-
aries between the four operation modes are obtained from the

implicit equations �36� and �37� for the stall force F̄s and
from the implicit equations �52� and �53� for the balanced

potential ��̄b. In general, these boundaries in the �F̄ ,��̄�
plane depend on the product concentrations �ADP� and �P�.
In the small-concentration limit in which the concentration
coordinate K as defined in �45� remains constant, the bound-

aries can be described by functions F̄s= F̄s���̄� and ��̄b

=��̄b�F̄� for which we have obtained the analytic expres-
sions �48� and �58�. These latter expressions also apply to
small product concentrations �ADP� and �P� as illustrated in
the operation diagram of Fig. 5 for �ADP�= �P�=0.5 �M. In

fact, the dependence of the stall force F̄s and the balanced
potential ��̄b on the product concentrations �ADP� and �P�
turns out to be rather weak over the entire range of experi-
mentally relevant scales: Increasing the product concentra-
tions from �ADP�= �P�=0.5 �M to �ADP�= �P�=5 mM
leads only to a slightly larger value for the stall force; see
Fig. 5.

Our study shows that one has to distinguish mechanical
equilibrium of a molecular motor, which occurs along the
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stall force line F̄s= F̄s���̄�, from its chemical equilibrium,
which occurs along the balanced potential line ��̄b

=��̄b�F̄�. In the thermodynamic parameter space spanned by

F̄ and ��̄, chemomechanical equilibrium is only present at

the origin F̄=��̄=0.
Close to chemical equilibrium, the stall force Fs increases

linearly with the chemical potential difference �� as de-
scribed by �50�. Far away from chemical equilibrium—i.e.,
for large chemical potential differences—the reduced stall

force attains the constant value F̄s= F̄�
14 as given by �42�,
which corresponds to Fs=F�
7 pN. An energy supply of
��̄�14 or ���14kBT does not increase the strength of the
motor in terms of its stall force, but may lead to a higher
motor velocity with the cost of additional heat dissipation.

In our model, the balanced potential ��̄b also saturates far
from mechanical equilibrium—i.e., for large applied load

forces F̄. As a consequence, ATP synthesis against a positive
chemical potential difference �� can only be induced by
pulling the kinesin motor into the backward direction if

�� does not exceed the limiting value ��̄�= F̄� as given
by �59�, which corresponds to ���
14kBT in physical
units.

So far, two regimes of the operation diagram have been
explored experimentally. First, most experimental studies in
motility assays were performed for high ATP concentrations
and relatively low ADP and P concentrations, which implies
������. In this regime, increasing the load force F leads
to a transition from the �hf� mode to the �hb� mode—i.e.,
from forward steps coupled to ATP hydrolysis to backward
steps again coupled to ATP hydrolysis. Second, Hackney
�28� studied ATP synthesis by kinesin motors using high
ADP and P concentrations and relatively low ATP concentra-
tions, which implies ���0. In these latter experiments the
influence of an applied load has not been investigated. Our
operation diagram in Fig. 5 predicts that the kinesin motor
exhibits four operation modes and transitions between these
modes. In particular, it is predicted that the motor undergoes
a transition from the �hf� mode to the �sb� mode for small
positive �� and increasing load; see Fig. 5. This transition as
well as all other transitions in the operation diagram of Fig. 5
should be accessible to single-molecule experiments in
which one varies both the load force F and the chemical
potential difference �� by controlling all three concentra-
tions �ATP�, �ADP�, and �P� simultaneously.

APPENDIX A: DETAILED DESCRIPTION OF THE
SEVEN-STATE NETWORK FOR KINESIN

1. Transition rate polynomials determining the dicycle excess
fluxes

In this subsection, we will provide explicit expressions for
the different factors that enter the dicycle excess fluxes as
given by �22�. First, the products 	� of transition rates along
the different dicycles of the seven-state network in Fig. 2
have the explicit form

	��F1
+� = �12�25�56�61,

	��F2
+� = �12�25�57�71,

	��B+� = �45�52�23�34,

	��D1
+� = �12�23�34�45�56�61,

	��D2
+� = �12�23�34�45�57�71. �A1�

Second, the influent factors 
 of the dicycles are given by


�F1� = ��71 + �75���32�45 + �32�43 + �34�45� ,


�F2� = ��61 + �65���32�45 + �32�43 + �34�45� ,


�B� = ��71 + �75���12�65 + �12�61 + �16�65� + ��61

+ �65��17�75,


�D1� = �71 + �75,


�D2� = �61 + �65. �A2�

For small �ADP� and �P�, expressions �A2� simplify and be-
come


�F1� � �71�34�45,


�F1� � �61�34�45,


�B� � �71�12�61,


�D1� � �71,


�D2� � �61. �A3�

2. Symmetric forward- and backward-stepping model

By comparing the model dynamics of the seven-state net-
work representation with observed properties of the proces-
sive kinesin walk from Refs. �22–27�, we could only identify
the rates of the forward-stepping cycles uniquely �4,37�, be-
cause experiments addressed mainly this highly processive
mode of operation for the kinesin motor. We therefore iden-
tified the rate constants of the chemical transitions on the
cycle B with the corresponding ones on F1. The difference
between these transitions are the relative positions of the two
kinesin heads. For example, the transitions �12� and �45� de-
scribe ATP binding on the leading and trailing heads, respec-
tively, whereas the other head contains ADP. However, be-
cause of thermodynamic constraints leading to �15�, this
identification is not possible for all transitions. As a conse-
quence, we used

�23 = �56, �32 = �65,

�34 = �61, �43 = �16,
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�45 = �12, �54 = �21��52/�25�2. �A4�

In addition, we also assume the same load dependences for
the chemical transitions of the leading and trailing heads,
which implies

�23�F� = �56�F� = �71�F� ,

�34�F� = �61�F� = �57�F� ,

�45�F� = �12�F� . �A5�

3. Dicycle flux ratios

In the derivation of the implicit equations �37� and �53�
for the stall force F̄s and the balanced potential ��̄b, one
encounters ratios of different dicycle excess fluxes, which
will be discussed in this subsection. It follows from the gen-
eral form of the dicycle excess fluxes as given by �22� that
the ratios of these fluxes lead, in general, to a product of
three fractions, that involve the irreversibility factors 1

−e−�Q̄, the transition rate products 	�, and the influent fac-
tors 
. For the chemomechanical cycles and the dissipative
slip cycles, one finds

�J�F2
+�

�J�F1
+�

=
	��F2

+�
�F2�

	��F1
+�
�F1�

, �A6�

�J�D2
+�

�J�D1�
=

	��D2
+�
�D2�

	��D1
+�
�D1�

, �A7�

�J�B+�

�J�F1
+�

=
�1 − e−��̄−F̄�

�1 − e−��̄+F̄�

	��B+�
�B�

	��F1
+�
�F1�

, �A8�

�J�D1
+�

�J�F1
+�

=
�1 − e−2��̄�

�1 − e−��̄+F̄�

	��D1
+�
�D1�

	��F1
+�
�F1�

. �A9�

From �A1� and �A2� it follows directly that the flux ratios
�A6� and �A7� for the two alternative forward stepping di-

cycles F1
+ and F2

+ and for the two dissipative slip dicycles D1
+

and D2
+ satisfy the simple relation

	��F2
+�
�F2�

	��F1
+�
�F1�

=
	��D2

+�
�D2�

	��D1
+�
�D1�

=
�57�71

�56�61

��61 + �65�
��71 + �75�

.

�A10�

In general, the other two flux ratios �A8� and �A9� between
the backward-stepping, dissipative slip, and forward-
stepping dicycles B+, D1

+, and F1
+ are lengthy and not very

illuminating. However, for the symmetric model with the
transition rate constants �A4� and the force-dependent factors
�A5�, one finds

	��B+�
�B�

	��F1
+�
�F1�

=
�52

�25
� �1 +

��61 + �65��17�75

��71 + �75���12�65 + �12�61 + �16�65�
�

�A11�

and

	��D1
+�
�D1�

	��F1
+�
�F1�

=
�12�56�61

�25��12�65 + �12�61 + �16�65�
.

�A12�

Furthermore, for small product concentrations �ADP� and
�P�, one obtains the simplified relations

	��F2
+�
�F2�

	��F1
+�
�F1�

=
	��D2

+�
�D2�

	��D1
+�
�D1�

�
�57

�56
, �A13�

	��B+�
�B�

	��F1
+�
�F1�

�
�52

�25
, �A14�

	��D1
+�
�D1�

	��F1
+�
�F1�

�
�56

�25
. �A15�
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