
J Stat Phys (2010) 141: 1–16
DOI 10.1007/s10955-010-0050-5

Impact of Slip Cycles on the Operation Modes
and Efficiency of Molecular Motors

Steffen Liepelt · Reinhard Lipowsky

Published online: 26 August 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Kinesin is a motor molecule that moves processively on microtubule tracks and
is involved in active intracellular transport processes. For small loads, it is powered by the
hydrolysis of one ATP molecule per step. Here we extent our previously introduced network
theory in order to study the possibility of two different mechanical stepping transitions and
the general behavior of the motor’s efficiency. Our theory shows explicitly how chemical
and mechanical slip cycles emerge that weaken the coupling between ATP hydrolysis and
mechanical stepping. Near chemomechanical equilibrium, the motor efficiency η may vary
between η = 1 for tight coupling and η = 0 for loose coupling, depending on the relevance
of the slip cycles. Far from chemomechanical equilibrium, on the other hand, the motor
efficiency is found to decay as 1/�μ with increasing �μ irrespective of the presence of slip
cycles, where �μ represents the reaction free enthalpy or chemical potential difference per
ATP hydrolysis.

Keywords Chemomechanical coupling · Operation modes · Motor efficiency

1 Introduction

Molecular motors convert chemical energy into mechanical work. More precisely, these
motors act as enzymes that increase the rate of certain chemical reactions such as ATP hy-
drolysis, undergo a specific sequence of conformational transitions, and move in a directed
manner even though they experience relatively strong thermal noise. Different theoretical
approaches have been used to describe this interplay of chemistry and mechanics. Roughly
speaking, one may distinguish two different types of motor descriptions starting from ‘me-
chanical ratchets’ and ‘chemical networks’, respectively.
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The ratchet approach focuses on the motor’s mechanical movement and views the motor
as a small particle that is subject to an asymmetric force potential. Presumably, the first
theoretical description of this kind was used by Smoluchowski [1], who showed that an
asymmetric force potential cannot lead to directed motion of the particle as long as this
particle is in equilibrium with its surroundings. In order to obtain directed motion, the motor
particle has to be coupled to a switching mechanism that effectively leads to two or several
motor states. The switching enables the particle to rectify the thermal fluctuations. Such a
mechanism was proposed in the classical sliding model of Huxley [2] for the interaction
of myosin and actin. For the stepping motor kinesin, a similar approach was introduced
by Peskin and Oster [3]. In fact, a rather large number of ratchet models has been studied
theoretically as reviewed in [4] and [5].

The network approach, on the other hand, starts from the enzymatic activity of the mo-
tor which implies a certain network of discrete chemical states and chemical transitions
between these states. These chemical transitions are uniquely and unambiguously defined
by the underlying chemical reaction. The network approach has its roots in transition state
[6, 7] and reaction rate [8] theories as well as in enzyme kinetics [9, 10]. We have recently
extended this latter approach by adding mechanical transitions to these chemical networks
which leads to rather concise theoretical representations for the chemomechanical coupling
of the motors [11–13].

Within the ratchet models, the spatial displacement of the motor is described by a contin-
uous coordinate. If one discretizes this coordinate, one obtains discrete, sequential stochastic
models as studied in Refs. [14–16]. These latter models correspond to networks with a single
motor cycle. As explained elsewhere, [12] such uni-cycle models are inadequate to describe
stepping motors such as kinesin that are able to undergo processive backstepping in the
presence of a resisting load and in the absence of the hydrolysis products.

One important distinction between the ratchet and the network approach arises from the
different time scales involved in the chemical and mechanical transitions. The ratchet ap-
proach assumes that the mechanical motion is slow compared to the chemical kinetics. This
is intuitively appealing since the mechanical stepping involves tens of nanometers whereas
the chemical reactions are confined to the nucleotide binding pocket with a size of the order
of 1.5 nm. However, recent experiments have shown that the separation of time scales does
not follow the separation of length scales. Indeed, in the absence of load, the mechanical
transitions of stepping motors are completed within microseconds [17] whereas the hydrol-
ysis reactions take many milliseconds. Such a counterintuitive separation of time scales can
be easily incorporated in the network approach, in which the chemical and mechanical tran-
sitions are treated on equal footing.

Another advantage of the network approach is that it allows us to classify the different
types of motor cycles [13]. Furthermore, it is straightforward to assign fluxes to each cycle
of a network representation, which makes the discussion of the motor dynamics particularly
transparent [10–13, 18].

In general a network of conformational states of a dimeric motor, such as kinesin, in-
cludes a large number of cycles, see Fig. 1(a). Of course, not all of these cycles are equally
relevant for the observed motor dynamics. An interesting and important theoretical chal-
lenge is to identify the most relevant cycles, to explore their competitive dynamics, and to
relate this dynamics to observable phenomena. In order to achieve these objectives, it is very
useful to classify the different motor cycles according to their energy transduction ability.
Chemomechanical cycles couple the consumption of substrate molecules such as ATP to
mechanical displacements. On the other hand, chemical or enzymatic slip cycles correspond
to substrate consumption not coupled to mechanical transitions, whereas mechanical slip cy-
cles describe motor displacements that are not coupled to any chemical turnover. Obviously,
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Fig. 1 Chemomechanical network of kinesin: (a) Nucleotide state space of kinesin with two possible me-
chanical transitions (broken lines) as described in [29]; (b) Forward chemomechanical cycle (orange) with
mechanical stepping from motor state DT to motor state TD induced by ATP binding, as in e.g. [23–25]; and
(c) Forward chemomechanical cycle (orange) with mechanical stepping from motor state DE to motor state
ED induced by P release, as in e.g. [26–28]

to obtain an efficient and tightly coupled motor that does not waste substrate molecules, one
would like to reduce the role of slip cycles. However, for kinesin [11] as well as for myosin
under different external conditions, experimental observations imply that different chemo-
mechanical cycles are used. The network of the different chemomechanical cycles involves,
in general, enzymatic and/or mechanical slip cycles as well.

In this article, we show how the operation mode boundaries and the motor efficiency are
affected by the emergence of chemical and mechanical slip cycles. In the regime close to
equilibrium, we are able to obtain explicit relations between the fluxes on slip cycles and the
chemomechanical coupling parameters, that determine the operation mode boundaries and
the motor efficiency. Furthermore, we also show that, far away from equilibrium, the motor
efficiency may exhibit a maximum as a function of the reaction free enthalpy �μ, which
arises from the presence of slip cycles, but always decays as 1/�μ in the limit of large �μ

irrespective of the presence of such cycles.

1.1 Motor Properties of Kinesin: A Brief Review

In this study, conventional kinesin serves as a paradigmatic example to analyze the different
operation modes for the energy transduction by molecular motors.

Kinesin is a dimeric motor with two identical motor heads that catalyze the hydrolysis of
ATP and, at the same time, generate the directional movement along microtubules. At small
load forces, the kinesin motor exhibits tight chemomechanical coupling, i.e. it hydrolyzes
one ATP molecule per mechanical step [19]. To achieve the remarkably high processivity of
about 100 steps the two identical heads are coordinated in such a way that at least one of
them is always bound to the microtubule [20]. As a result, the motor walks hand-over-hand
with its two heads alternating as leading and trailing heads [21]. Kinesin moves via fast
stepping events of 8 nm within less than 15 µs, interrupted by comparably long dwell times
that are on average longer than 10 ms [17]. These dwell times are limited by the catalysis of
ATP and include processes of ATP binding, ATP cleavage with rapid subsequent P release,
and ADP release. The corresponding chemical state space of the dimeric kinesin molecule
involves nine nucleotide states and is depicted in Fig. 1(a). It is generally agreed that kinesin
under low load is governed by a dominant forward cycle but the precise nature of this cycle,
in particular the incorporation of the step transition, is not known.

Since both the empty (rigor) head and the ATP head bind strongly to microtubules com-
pared to the ADP head [22], one identifies two candidates for the dominant fast stepping
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transition during processive motion. The weakly bound ADP head might move in front
of a strongly bound ATP head corresponding to a transition from the DT state to the TD
state, as in Fig. 1(b). Alternatively, the ADP head might move in front of a strongly bound
empty head. Then a motor step corresponds to the transition from state DE to state ED, see
Fig. 1(c). Inspection of Fig. 1 shows that the two proposals in Fig. 1(b) and Fig. 1(c) can
also be distinguished by the temporal ordering of ATP binding and mechanical stepping: in
Fig. 1(b), ATP is bound before mechanical stepping whereas it is bound after stepping in
Fig. 1(c). In the literature, one finds both proposals corresponding to Fig. 1(b) and (c) for
the dominant chemomechanical cycle in the small load regime. Motor cycles that involve
stepping triggered by ATP binding on the leading head as in Fig. 1(b) have been proposed
in Refs. [23–25]. On the other hand, stepping triggered by the release of phosphate on the
trailing head have been discussed in [26–28].

We have previously introduced a network representation for the processively moving
kinesin motor [12, 29] to establish a thermodynamically consistent description that incor-
porates the experimental observation of processive backward stepping for super-stall loads
[17, 30]. Since backward stepping of kinesin was faster for larger ATP concentrations and
furthermore appeared under conditions of negligible ADP and P concentrations, it could
not be explained by simply reversing the dominant chemomechanical cycle for small load
forces. Furthermore, the inhibition of the kinesin motor velocity by ADP and P has been
shown to be competitive with ATP binding in both cases, [26]. This observation cannot
be reproduced by single cycle models [15] that have a well defined sequence of P release,
ADP release and ATP binding. All of these experimental observations imply that one has to
consider more than one chemomechanical motor cycle, and that the dynamics of kinesin is
governed by the interplay and competition of several motor cycles [12, 29, 31].

In our previous analysis of kinesin’s motor cycles, we focused on the reduced network as
shown in Fig. 2, where we introduce our short-hand notation for the motor states: the states
are labeled by index i with i = 1, . . . ,7. The chemical or mechanical transitions from state i

to state j will be denoted by |ij 〉, whereas an edge, representing both the forward transition
|ij〉 and the backward transition |ji〉, will be denoted by 〈ij〉. We also argued in [12, 29],
that mechanical stepping from DE to ED is unlikely since this transition competes with
the ATP binding transition from DE to DT and, thus, should lead to a motor velocity that
decreases with increasing ATP concentration. Since such a decrease of the velocity is not
observed experimentally, we focused on the mechanical transition |25〉 from DT to TD. As
a result, we obtained rather good agreement with several sets of data for the motor velocity
as a function of load force F , substrate concentration [ATP] and product concentrations
[ADP] and [P], as obtained in single molecule experiments. These latter experiments have
been performed far from chemical equilibrium and over a limited range of load forces. Thus,
in this experimentally explored regime, one may discard the mechanical transition |14〉 from
motor state DE to motor state ED.

However, for large assisting loads the stepping transition |14〉 might become more im-
portant. Indeed, in motor state 1, the trailing D head is only weakly bound and, thus, will be
moved forward by a sufficiently strong assisting load. Likewise, if the motor experiences a
sufficiently large resisting load, it is likely to undergo the reverse transition |41〉 from state
ED to state DE as recently pointed out in [31]. In the latter study it has been argued, that
backsteps from TD to DT are less likely than backsteps from ED to DE, because the trailing
T head in the TD state may have a docked neck linker, which has to unzip in order to allow
for a backstep. At present, the experimental data for the high load regimes are rather limited
and do not allow to decide between the different mechanical transitions in a definite manner.
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Fig. 2 (a) Reduced network representation for the processive walk of kinesin corresponding to a subnetwork
of the complete description in Fig. 1. The network consists of seven motor states i = 1,2, . . . ,7 as indicated
by the encircled numbers. (b) Chemomechanical forward stepping cycles. Dashed arrows indicate mechanical
transitions towards the plus end of the microtubule. (c) Chemomechanical backward stepping cycles. Dashed
arrows indicate mechanical transitions towards the minus end of the microtubule

Since we will study the properties of our kinesin network representation for arbitrary
external conditions, including the regime close to chemical equilibrium, we incorporate both
mechanical steps 〈14〉 and 〈25〉 in order to keep a certain level of generality.

1.2 Cycle Representation

It is instructive to discuss the motor dynamics of the kinetic network representation in terms
of cycles and directed cycles. A cycle corresponds to a set of network states that can be
connected by a closed path for which all vertices and edges occur only once. A directed
cycle or dicycle is then a sequence of states in one of the two possible directions of the
corresponding cycle.

The chemomechanical network shown in Fig. 2 contains two mechanical transitions cor-
responding to the edges 〈25〉 and 〈14〉. If we included only one mechanical transition as
described previously in [29], the reduced network would have six different cycles. The ad-
dition of the second mechanical transition involves only two additional transition rates but
increases the number of cycles from six to 12. These twelve cycles are listed in Appendix A.
For each dicycle C+

ν , we denote the numbers of forward and backward mechanical transi-
tions contained in this dicycle by mf(C+

ν ) and mb(C+
ν ), respectively. Likewise, we denote

the numbers of ATP hydrolysis and synthesis transitions within this dicycle by nh(C+
ν ) and

ns(C+
ν ). As shown in the following, the quantities that enter the physically relevant fluxes

are the differences

m+
ν ≡ mf

(
C+

ν

) − mb

(
C+

ν

)
(1)

and

n+
ν ≡ nh

(
C+

ν

) − ns

(
C+

ν

)
. (2)

For each motor cycle, the average heat Q̄ ≡ Q/(kBT ) that is released to the heat bath during
cycle completion is given by [11, 32]

Q̄
(

C+
ν

) = n+
ν �μ̄ − m+

ν F̄ , (3)
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where

�μ̄ = log

(
Keq[ATP]
[ADP][P]

)
(4)

is the chemical potential difference of ATP hydrolysis in units of kBT , and

F̄ = �F/(kBT ) (5)

is the work per mechanical step of length � performed by the motor molecule against the
resisting load F in units of kBT . We use the convention that resisting and assisting forces
correspond to F > 0 and F < 0, respectively.

The different catalytic cycles of a kinetic network are characterized as (i) chemomechan-
ical forward stepping cycles F with n+

ν > 0 and m+
ν > 0, chemomechanical backward step-

ping cycles B with n+
ν > 0 and m+

ν < 0, enzymatic slip cycles E with n+
ν > 0 and m+

ν = 0,
and mechanical slip cycles M with n+

ν = 0 and m+
ν > 0, Appendix A.

Whereas thermodynamics determines the heat dissipation of cycle completion, kinetics
determines the rate of cycle completion. The number of cycle completions per second is
given by

J
(

C+
ν

) =
( C+

ν∏
ωij

)
ϒ(Cν)

�
> 0, (6)

which is a function of the individual transition rates ωij between the states of the kinetic
network representation. The statistical weight ϒ(Cν)/� describes the flux onto the cycle Cν

from the rest of the kinetic network [18].
A direct link between thermodynamics and kinetics is provided by the ratio of the number

of cycle completions in one direction and the number of cycle completions in the reverse
direction, which is related to the dissipated heat Q̄ for the corresponding cycle and given by
[13]

J (C+
ν )

J (C−
ν )

=
C+

ν∏ ωij

ωji

= eQ̄(C+
ν ). (7)

The excess flux �J(C+
ν ) of a directed cycle C+

ν in a kinetic network is defined by the
difference between J (C+

ν ) and J (C−
ν ). Using the relation (7), the reduction of the excess

flux on a cycle by the reverse process can also be expressed by a factor that depends on the
dissipated heat Q(C+

ν ) of the cyclic forward process, which leads to [29]

�J
(

C+
ν

) = J
(

C+
ν

) − J
(

C−
ν

) = J
(

C+
ν

)(
1 − e−Q̄(C+

ν )
)
. (8)

Equation (8) quantitatively connects the irreversibility of a catalytic process and its heat
dissipation. The heat release and the flux on a catalytic cycle vanish simultaneously, i.e.
�J(C+

ν ) = 0 if and only if Q̄(C+
ν ) = 0. If the latter is true for all cycles of the kinetic net-

work, the motor is in equilibrium. In a non-equilibrium situation, the flux on an isothermal
cycle will always proceed in the direction of heat release. Indeed the statement “An isother-
mal cycle cannot convert heat into work” represents one of the many formulations of the
second law of thermodynamics [33].

With a positive Q̄(C+
ν ) in (8), also the flux �J(C+

ν ) is positive, which implies that the
system evolves on the cycle Cν in the plus direction. On the other hand, if Q̄(C+

ν ) is negative,
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the flux �J(C+
ν ) is negative as well. Then the system evolves on the cycle Cν in the minus

direction and dissipates the heat Q̄(C−
ν ) = −Q̄(C+

ν ). Thus, the flux on the cycle Cν appears
always in the direction, in which the corresponding heat release Q̄(C+

ν ) or Q̄(C−
ν ), is positive.

In this sense, (8) incorporates the second law of thermodynamics on the level of motor
cycles.

2 Operation Mode Diagram

For a molecular motor with constant step length �, the velocity v is in general given by

v/� =
∑

ν

m+
ν �J

(
C+

ν

) =
∑

ν

m+
ν J

(
C+

ν

)(
1 − e−n+

ν �μ̄+m+
ν F̄

)
. (9)

Here (3) and (8) have been used. In the same way in which the motor velocity describes the
mechanical performance of a molecular motor, the ATP hydrolysis rate h characterizes the
motors chemical performance. The latter rate is given by

h =
∑

ν

n+
ν �J

(
C+

ν

) =
∑

ν

n+
ν J

(
C+

ν

)(
1 − e−n+

ν �μ̄+m+
ν F̄

)
. (10)

The condition v(F̄s) = 0 defines the stall force F̄s, which can be calculated via (9). Equiv-
alently, one can define a balancing chemical potential �μ̄b for the zeros of the hydrolysis
rate h(�μ̄b) = 0 via (10).

In a network representation with only ATP binding triggered stepping, 〈25〉 in Fig. 2,
and a negligible P release triggered stepping transition, 〈14〉 in Fig. 2, both mechanical and
chemical slip cycles where found to be negligible as well. For this tightly coupled system
explicit relations for the stall force as a function of the chemical potential difference �μ̄

and the balancing chemical potential as a function of the load force F̄ have been presented
in [29, 32], see Fig. 3.

Fig. 3 Operation diagram depending on chemical potential difference �μ and load force F . The stall
force Fs = Fs(�μ) and the balancing chemical potential �μb = �μb(F ) are defined via v(Fs) = 0 and
h(�μb) = 0, respectively. The (hf ) region corresponds to ATP hydrolysis coupled to forward stepping, the
(sb) region to ATP synthesis coupled to backward stepping, and the (hb) region to ATP hydrolysis coupled
to backward stepping. Dashed lines are for the tightly coupled model studied in [29]. Solid lines are for the
loosely coupled model with transition rates as in Table 1. The latter model involves significant contributions
from a mechanical slip cycle. As a result the (hb) region exhibits a substantial width even close to the origin,
which separates the (hf ) and the (sb) regions
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2.1 Linear Response Near Chemomechanical Equilibrium

Here we want to focus on the linear response regime. Using a series expansion of (9) and
(10) the motor velocity v and the ATP hydrolysis rate h are given by

v/� ≈ −
(∑

ν

m+
ν

2
J0

(
C+

ν

)
)

F̄ +
(∑

ν

m+
ν n+

ν J0

(
C+

ν

)
)

�μ̄ (11)

and

h ≈ −
(∑

ν

m+
ν n+

ν J0

(
C+

ν

))
F̄ +

(∑

ν

n+
ν

2
J0

(
C+

ν

))
�μ̄ (12)

to leading order, where J0(C+
ν ) ≡ J (C+

ν )|F̄=0,�μ̄=0. Note that (11) and (12) satisfy On-
sager’s reciprocity relations as expected [4]. In general the dicycle fluxes J (C+

ν ) depend
on the load force F and on the concentrations [ATP], [ADP] and [P], separately. Since
[ATP] = [ADP][P] exp (�μ̄)/Keq, they can be written as functions of the load force F ,
the chemical potential �μ, and the product concentrations [ADP] and [P]. Consequently,
the dicycle fluxes at chemomechanical equilibrium J0(C+

ν ) remain functions of the product
concentrations [ADP] and [P]. The dicycle excess fluxes �J(C+

ν ) vanish at equilibrium, be-
cause the corresponding dissipated heat is zero Q(C+

ν ) = 0 (3), which leads to J0(C−
ν ) =

J0(C+
ν ) (8).

Equations (11) and (12) lead to the following functions of the stall force and the balancing
chemical potential, near the equilibrium (F̄ ,�μ̄) = (0,0),

F̄s(�μ̄) =
∑

ν m+
ν n+

ν J0(C+
ν )

∑
ν m+

ν
2J0(C+

ν )
�μ̄ = ζ1�μ̄ (13)

and

�μ̄b(F̄ ) =
∑

ν m+
ν n+

ν J0(C+
ν )

∑
ν n+

ν
2J0(C+

ν )
F̄ = ζ2F̄ . (14)

From these results one finds 0 ≤ ζ1ζ2 ≤ 1. The sum in the numerator of (13) and (14) in-
cludes only fluxes of chemomechanical cycles and no slip cycle fluxes, because for the latter
one finds either m+

ν = 0 or n+
ν = 0. On the other hand, the denominator in (13) includes

fluxes of all chemomechanical cycles and all mechanical slip cycles, while the denominator
in (14) includes fluxes of all chemomechanical cycles and all chemical slip cycles. Con-
sequently, the coupling ratio ζ1ζ2 is identical to one for models that exhibit tight coupling
between stepping and ATP hydrolysis close to equilibrium. As the fluxes of chemical or
mechanical slip cycles increase, the coupling ratio ζ1ζ2 decreases.

In [29] it has been shown that −|�μ̄| ≤ F̄s(�μ̄) ≤ |�μ̄|, and −|F̄ | ≤ �μ̄b(F̄ ) ≤ |F̄ |,
i.e. the stall force F̄s and the balancing chemical potential difference �μ̄b lie in the upper
and lower, and in the left and right quadrant of the (F̄ -�μ̄)-plane, respectively. Additionally,
the relations (13) and (14) quantify the particular influences of chemomechanical forward
stepping, chemomechanical backward stepping, mechanical slip and enzymatic slip cycles
on the operation mode diagram near equilibrium.

For the network in Fig. 2, the stall force and the balancing chemical potential in the linear
response regime, (13) and (14), are governed by

ζ1 = J0(F +) − J0(B+)

J0(F +) + J0(B+) + 4J0(M+)
, (15)
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and

ζ2 = J0(F +) − J0(B+)

J0(F +) + J0(B+) + 4J0(E +)
, (16)

where J0(F +) = ∑
γ J0(F +

γ ), J0(B+) = ∑
γ J0(B+

γ ), J0(M+) = ∑
γ J0(M+

γ ) and J0(E +) =∑
γ J0(E +

γ ), see Appendix A for the list of cycles. Inspection of Fig. 3 shows that ζ1 < 1
and ζ2 � 1. Using these relations in (15) and (16), one can directly conclude that the rel-
evant pathways close to chemomechanical equilibrium are the chemomechanical forward
stepping cycles and the mechanical slip cycles. First, it follows from (16), with ζ2 � 1 that
J0(E +) � J0(F +) and J0(B+) � J0(F +). Second, using the latter inequality in (15) to-
gether with ζ1 < 1, one concludes that J0(M+) must be comparable to or even larger than
J0(F +). In this way, one finds from ζ1 < 1 and ζ2 � 1 together with the relations (15) and
(16), that the only relevant fluxes are J0(F +) and J0(M+). These results also explain the
different operation mode diagrams as obtained in our previous study [29] that ignored me-
chanical slip cycles, and in another study [34] that is based on ratchet systems and implicitly
incorporates mechanical slips.

As illustrated in Fig. 3, the slower increase of the stall force for a system with mechanical
slip leads to a gap between the operation modes of ATP hydrolysis driven forward stepping
(hf ) and mechanical force driven ATP synthesis (sb). It is interesting that this gap can
be explained by linear response considerations although it extends up to a region far from
equilibrium.

2.2 Operation Mode Boundaries Far from Chemomechanical Equilibrium

Far from chemomechanical equilibrium one deals with four different operation mode bound-
aries. The stall force for large chemical driving due to ATP hydrolysis Fs(�μ → ∞), the
balancing chemical potential difference for large resisting forces �μb(F → ∞), both shown
in Fig. 3 for a specific system, the stall force for large chemical driving due to ATP synthesis
Fs(�μ → −∞), and finally the balancing chemical potential difference for large assisting
forces �μb(F → −∞) [29].

Each of these operation mode boundaries far from chemomechanical equilibrium arises
from the competition between the dominant motor cycles corresponding to the four opera-
tion modes. E.g. for large �μ̄, the motor velocity (9) is found to have the form

v/� ≈
NF∑

γ=1

m+
γ J

(
F +

γ

) +
NB∑

γ=1

m+
γ J

(
B+

γ

) +
NM∑

γ=1

m+
γ J

(
M+

γ

)(
1 − em+

γ F̄
)
. (17)

It is evident from (17) that a finite stall force v(Fs) = 0 can only be found in the far from
chemical equilibrium regime for network representations that include in addition to chemo-
mechanical forward stepping cycles, chemomechanical backward stepping cycles and/or
mechanical slip cycles.

3 Motor Efficiency

For a molecular motor, that moves with velocity v against a load force F powered by ATP
hydrolysis with rate h the efficiency has the form

η = Fv

�μh
= F̄ (v/�)

�μ̄h
, for 0 ≤ F ≤ Fs, �μ ≥ 0, (18)
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Fig. 4 (a) Motor efficiency η as a function of load force F for different values of the chemical potential
difference �μ increasing from left to right: (I) �μ = 5kBT , (II) 10kBT , (III) 20kBT and (IV) 40kBT . The
efficiency η vanishes for F = 0 and F = Fs, and exhibits a maximum at F = F ∗ with 0 < F ∗ < Fs. (b) Ratio
of motor velocity v to ATP hydrolysis rate h, corresponding to the same values of �μ as in (a). The plots
for (III) �μ = 20kBT and (IV) �μ = 40kBT are indistinguishable, indicating a saturation of both motor
velocity v and ATP hydrolysis rate h. Below the stall force, this ratio gives the average distance over which
the motor moves per hydrolyzed ATP molecule. (c) Maximal efficiency η∗ = η(F ∗) as a function of the
chemical potential difference �μ, see (18). (d) Fraction of load of maximal efficiency F ∗ and stall force Fs.
In all figures, dashed lines correspond to the tightly coupled model and solid lines to the loosely coupled
model, see also Fig. 3

where the chemical potential difference �μ̄ has been defined in (4). Note that the stall force
Fs depends on the ATP, ADP and P concentrations, and consequently on �μ.

Figure 4(a) shows the load dependence of the efficiency explicitly for different chemical
potential differences. For F = 0 and F = Fs the efficiency vanishes. In between it attains
a maximal value at F ∗. The efficiency as defined in (18) is the ratio of the load force F

and the chemical potential difference �μ times the step length per hydrolyzed ATP mole-
cule, which is given by v/h. The latter value is plotted in Fig. 4(b) and illustrates the loss
of the tight coupling with increasing loads. For small loads the kinesin motor needs ex-
actly one ATP molecule per step, which is consistent with experimental observations, [19].
With increasing loads, however, the distance per ATP molecule decreases and reaches zero
at stall force Fs. In other words, the number of ATP molecules per step increases with in-
creasing loads. As one moves further away from chemical equilibrium by increasing the
chemical potential difference, not only the stall force increases but also the load regime of
tight coupling, compare the plateau in Fig. 4(b), for which the ratio v/h is essentially con-
stant and close to v/h = 8 nm. Far away from equilibrium with �μ � 20kBT , the form
of v/h as a function of F becomes independent of �μ, and assumes a certain limiting
form.

The maximal efficiency η∗ = η(F ∗) as a function of the chemical potential difference,
Fig. 4(c), exhibits three regimes. Close to chemical equilibrium, the maximal efficiency is
independent of �μ. Far from equilibrium the maximal efficiency decreases with 1/�μ. In
between these two cases one finds an intermediate regime in which η∗ may reach a maxi-
mum.
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3.1 Motor Efficiency Close to Chemomechanical Equilibrium

Using (11) and (12) for the motor velocity and the ATP hydrolysis rate in the linear response
regime, the efficiency (18) becomes

η ≈ −F̄ 2/ζ1 + �μ̄F̄

�μ̄2/ζ2 − �μ̄F̄
, (19)

for small values of F̄ and �μ̄. It then follows from ∂η/∂F = 0 that the load of maxi-
mal efficiency increases linearly with the chemical potential difference as F ∗ ≈ (1/ζ2)(1 −√

1 − ζ1ζ2 )�μ̄, and that the maximal efficiency near equilibrium becomes independent of
�μ̄, see Fig. 4(c),

η∗ = η(F ∗) ≈ 2

ζ1ζ2
(1 − √

1 − ζ1ζ2 ) − 1. (20)

It is interesting to note that a relation similar to (20) has been previously obtained by Hill for
a filament sliding model of filament contraction, see (169) in [35], as well as in Refs. [4, 36],
where the product ζ1ζ2 was denoted by �. However, as far as we know, our relations (13)
and (14) that express the coupling constants ζ1 and ζ2 in terms of the dicycle fluxes J0(C+

ν )

have not been derived before. The relation (20) has the asymptotic behavior η∗ ≈ 1 for tight
coupling with ζ1ζ2 = 1, and η∗ ≈ ζ1ζ2/4 for loose coupling, i.e. ζ1ζ2 � 1, which arises from
the appearance of chemical or mechanical slip cycles.

Thus, the degree of coupling between ATP hydrolysis and stepping at chemomechani-
cal equilibrium determines also the intermediate regime of the efficiency, see Fig. 4(c). For
sufficiently tight coupling, η∗ reaches its maximum for small �μ. However for loose cou-
pling at chemomechanical equilibrium η∗ increases with increasing the chemical potential
difference and reaches its maximal value at finite �μ.

3.2 Motor Efficiency Far from Chemomechanical Equilibrium

A motor molecule is driven far from chemical equilibrium as long as the substrate concen-
trations are much larger than the product concentrations. Commonly, single molecule assays
of processively walking molecular motors are performed at negligible small ADP and P con-
centrations. In this situation the motor is driven far from chemical equilibrium, since �μ̄ as
given in (4) is relatively large, even for small (rate limiting) ATP concentrations.

In the limit of large �μ, the dicycle fluxes remain functions of the load force and the
product concentrations. Hence, far from chemical equilibrium, the stall force, the force of
maximal efficiency and the maximal efficiency itself depend on the product concentrations.
However, for the network representation of the kinesin motor in Fig. 2 this dependence turns
out to be relatively weak, [29].

Since far from chemical equilibrium, with large �μ, both the motor velocity and the ATP
hydrolysis rate become independent of the chemical potential difference �μ, the efficiency
as given by (18) decreases as η ∼ 1/�μ. This non-equilibrium regime is characterized by a
constant stall force Fs and constant force of maximal efficiency F ∗, Fig. 4(d).

4 Summary

The energy transduction of molecular motors is determined by the interplay between al-
ternative and competitive motor cycles. In addition to chemomechanical cycles that couple
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energetically favorable processes of fuel consumption to the performance of useful work,
chemical or mechanical slip cycles also play a role in the motor kinetics [12, 32]. In this
article, we studied the relation between the fluxes on different motor cycles and the dynam-
ics of the kinesin motor. For given thermodynamic conditions, as provided by the substrate
concentration [ATP], the product concentrations [ADP] and [P], and the load force F , the
kinesin motor hydrolyzes ATP with a constant rate h and moves with constant velocity v.

For a large chemical potential difference �μ for ATP hydrolysis and small load force F ,
the hydrolysis of ATP drives the kinesin motor to step forward against the load force, see
mode (hf ) in Fig. 3. For small �μ and large load forces, the kinesin motor is pulled back-
wards to induce the synthesis of ATP, see mode (sb) in Fig. 3. Finally for large �μ and
large F corresponding to mode (hb) in Fig. 3, the ATP hydrolysis driven by a large value
of �μ and the backward stepping induced by a large load force F may be regarded as two
uncoupled processes. The operation mode boundaries are given by the stall force Fs and the
balancing chemical potential difference �μb, which are functions of the chemical potential
difference �μ and the load force F , respectively.

The stall force increases linearly with �μ for small �μ but saturates for large �μ. We
showed that the slope of the linear increase can be expressed in terms of the different dicycle
fluxes at equilibrium, see (13) and (15): This slope depends on the fluxes of the chemome-
chanical cycles and mechanical slip cycles but is independent of the fluxes on chemical
or enzymatic slip cycles. It turns out, that the increase of the stall force is Fs = �μ/� for
tightly coupled models, i.e. when the fluxes of the mechanical slip cycles at equilibrium
are negligible. On the other hand, models that exhibit a relevant flux on a mechanical slip
cycle at chemomechanical equilibrium lead to a smaller increase of the stall force with �μ.
As a result one finds a gap between the mode of ATP hydrolysis driven forward stepping
and the mode of backward stepping driven ATP synthesis, see Fig. 3. Since the linear re-
sponse regime is limited to �μ � kBT (see Fig. 4(c, d)) it is surprising that this gap, which
is a prominent feature of the whole operation mode diagram, can be explained by linear
response analysis. For the motors considered here, the gap, that opens up in the linear re-
sponse regime, persists into the nonlinear regime, see Fig. 3. It remains to be seen if this is
a universal feature that applies to other motors as well.

The linear response regime of the operation mode boundaries and the motor efficiency
have also been discussed in [4, 36] in the context of ratchet models, but these models did
not incorporate the different nucleotide states of the dimeric motors and, thus, cannot dis-
tinguish between the different motor cycles. In contrast, our approach has the advantage of
directly characterizing the different motor cycles and their free energy transduction ability.
Furthermore, this network representation of the motor dynamics allowed us to relate the
linear response coefficients with the fluxes on different classes of motor cycles, see (11)
and (12).

Since the investigation of the motor dynamics close to chemical equilibrium requires
very small substrate concentrations and consequently leads to very small turnover rates,
experimental studies of the operation mode boundaries are difficult in this regime. For the
kinetic model studied here, the motor velocity is about 0.5 nm/s for [ADP] = [P] = 10 mM,
[ATP] = 5 µM, corresponding to �μ = 10kBT , and F = 0. Such a small velocity can hardly
be determined in single molecule experiments. However, in cooperative transport by several
motors [37], a significant increase of the observation time can be achieved, which might also
be used in future studies to determine the operation modes close to equilibrium. One should
then be able to distinguish motors with and without mechanical slip cycles: in the absence
of such a cycle, the stall force Fs would be equal to �μ/� for small �μ, whereas this force
would be significantly smaller than �μ/� in the presence of a mechanical slip cycle, see
Fig. 3.

 Author's personal copy 



Impact of Slip Cycles on the Operation Modes 13

The chemomechanical coupling not only determines the different operation modes of the
molecular motor, but also the efficiency of the corresponding energy transduction processes.
In the present article we focused on the efficiency of ATP hydrolysis driven forward step-
ping, since this is the only regime which has been systematically studied so far.

For the kinesin network representation one finds a linear increase for the efficiency η

with increasing load forces F for small F and constant �μ. The efficiency increases in this
regime simply because the supplied chemical energy can be used to perform mechanical
work and need not be wasted in terms of heat. A further increase of the load force leads to
an increase of the fluxes on chemical and mechanical slip cycles as well. Consequently the
coupling between ATP hydrolysis and stepping becomes looser, and the efficiency of energy
transduction decreases, see Fig. 4. Thus, between F = 0 and F = Fs the efficiency attains
the maximum value η = η∗ at F = F ∗.

In the limit of negligible chemical driving corresponding to small �μ, the maximal ef-
ficiency η∗ reaches a value that depends on the relevance of the chemical and mechanical
slip cycles at equilibrium. For tight coupling, i.e., when the fluxes of the slip cycles are
negligible, η∗ reaches its maximum of η∗ = 1 close to chemomechanical equilibrium with
�μ = 0, see (20). On the other hand, if chemical and/or mechanical slip cycles have larger
fluxes than the chemomechanical cycles, one finds η∗ � 1, as shown by the solid lines in
Fig. 4. The latter situation corresponds to loose chemomechanical coupling.

For large �μ, both the motor velocity v and the ATP hydrolysis rate h saturate. For ki-
nesin, such a saturation is attained for �μ > 10kBT as shown in Fig. 4. From the definition
(18) of the efficiency, it then follows that η∗ decreases with increasing chemical potential
difference as 1/�μ. This behavior is universal and does not depend on the absence or pres-
ence of slip cycles.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Catalytic Cycles of the Reduced Network Representation

The reduced network representation for the processive kinesin walk in Fig. 2 includes 12
different catalytic cycles, which are listed in the following.

(i) chemomechanical forward stepping cycles:

F1 = 〈12561〉,
F2 = 〈14561〉,
F3 = 〈12571〉,
F4 = 〈14571〉;

(21)

(ii) chemomechanical backward stepping cycles:

B1 = 〈45234〉,
B2 = 〈41234〉; (22)
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(iii) mechanical slip cycles:

M1 = 〈1432561〉,
M2 = 〈1432571〉; (23)

(iv) enzymatic slip cycles:

E1 = 〈1234561〉,
E2 = 〈1234571〉. (24)

In addition one finds the two thermal slip cycles |14521〉 and |16571〉 that do not con-
tribute to energy transduction and carry no net flux.

Appendix B: Rate Constants

The dynamics of the kinetic network representation is assumed to be Markovian, with tran-
sition rates

ωij = κij�ij [Xij ], (25)

Table 1 Rate constants, (25) of the network model in Fig. 1 to reproduce the observed motor properties
of [17, 26]. Values of ATP binding and release, ADP release and P release are consistent with experimental
knowledge, see e.g. [38] for review

|ij〉 κij /s

(D,E) → (E,D) |14〉 0.01�

(E,D) → (D,E) |41〉 100�

(D,T) → (T,D) |25〉 4.1 × 104

(T,D) → (D,T) |52〉 0.27

(D,E) → (D,T) |12〉 2/µM

(D,T) → (D,E) |21〉 100

(T,D) → (T,E) |56〉 110

(T,E) → (T,D) |65〉 0.06/µM

(T,E) → (D,E) |61〉 110

(D,E) → (T,E) |16〉 0.01/µM

(T,D) → (D,D) |57〉 110

(D,D) → (T,D) |75〉 2 × 10−4/µM

(D,D) → (D,E) |71〉 110

(D,E) → (D,D) |17〉 3.1/µM

(E,D) → (T,D) |45〉 2/µM

(T,D) → (E,D) |54〉 7 × 10−9

(D,T) → (E,T) |23〉 110

(E,T) → (D,T) |32〉 4 × 10−4/µM

(E,T) → (E,D) |34〉 110

(E,D) → (E,T) |43〉 0.01/µM

 Author's personal copy 



Impact of Slip Cycles on the Operation Modes 15

Table 2 Parameters of the load dependent factors of the chemical transition rates, (25) and (26), in the
network model in Fig. 1 to reproduce the observed motor properties of [17]. The load distribution factors of
the mechanical transition rates are found to be θ14 = θ25 = 0.55

〈ij〉 χij

(D,E)↔(D,T) 〈12〉 0.4

(T,D)↔(T,E) 〈56〉 0

(T,E)↔(D,E) 〈61〉 0.3

(T,D)↔(D,D) 〈57〉 0.3

(D,D)↔(D,E) 〈71〉 0

(E,D)↔(T,D) 〈45〉 0.4

(D,T)↔(E,T) 〈23〉 0

(E,T)↔(E,D) 〈34〉 0.3

that are given by a rate constant κij , a load dependent factor �ij , and the activity of species
X that binds during transition |ij 〉.

For the chemical transitions, the load dependent factors are

�ij = �ji = 2

1 + exp (χij �F/(kBT ))
. (26)

The mechanical transitions, on the other hand, have load dependencies of �ij = exp(−θij �×
F/(kBT )) for the forward stepping direction and �ji = exp((1 − θij )�F/(kBT )) for the
corresponding reverse transition.

The rate constants and the load dependencies used to calculate the operation mode dia-
gram and the efficiency are summarized in Tables 1 and 2, respectively.
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