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As in the main text, we use dimensionless free energies
and dimensionless volumes defined by

f ≡ F/2πΣαβa2 (1)

vβ ≡ Vβ/(2π/3)a3. (2)

In these dimensionless units a half sphere corresponds to
a volume vβ = 1 and its αβ interface has a surface energy
f = 1.

I. FREE ENERGIES IN SINGLE-DROPLET
REGIMES

In the main text we derived the free energies of single
droplets in regimes I and III,

fI(vβ) =
1
2
(2vβ)2/3(2− 3wγ + w3

γ)1/3 (3)

fIII(vβ) =
1
2
(2vβ)2/3(2− 3wδ + w3

δ)1/3

+
1
2
(wδ − wγ). (4)

For regime II, we obtained the implicit result

fII(cos θ) =
1

1 + cos θ
− 1

2
wγ (5)

vβ =
1
2

2− 3 cos θ + cos3 θ

sin3 θ
. (6)

By solving for cos θ in equation (6), we obtain the explicit
volume dependence fII(vβ):

cos θ(vβ) = −1 +
1

h(4v2
β)

+
h(4v2

β)
1 + 4v2

β

(7)

fII(vβ) =
h(4v2

β)(1 + 4v2
β)

1 + 4v2
β + h2(4v2

β)
− 1

2
wγ , (8)

with a function h(x) ≡ (1+(x(1+x)3)1/2 +x(2+x))1/3.
These are explicit expressions for the free energy of

a single droplet f = f(vβ) through all three wetting
regimes:

f(vβ) =





fI(vβ), vβ < vβ,pin, regime I
fII(vβ), vβ,pin < vβ < vβ,dep, regime II
fIII(vβ), vβ,dep < vβ , regime III

(9)

with vβ,pin and vβ,dep as in eq (11) and (12) in the main
text.

II. STABILITY CRITERION

For two droplets, which can exchange volume we want
to derive the following stability criterion:

States with two droplets can only be stable if
at least one of the droplets is pinned and has a
contact angle θ < π/2.

(10)

A. Laplace pressure

From the expression for the free energy (9) of a single
droplet, the Laplace equation is recovered for each wet-
ting regime by taking the derivative with respect to the
volume:

a

3Σαβ
∆P =

∂f

∂vβ
=

2
3

a

R
. (11)

The first equality is by thermodynamic definition of
the pressure, the second by explicit calculation in each
regime. This gives the Laplace equation

∆P = 2
Σαβ

R
= Pβ − Pα. (12)

Using (11) we can obtain explicit results for the Laplace
pressure (or the mean curvature 2/R) as a function of
the volume. Because of the contact line pinning, the
Laplace pressure becomes a non-monotonic function of
the volume, see Fig. 8.

For a small unpinned droplet in the γ-domain with
vβ < vβ,pin, the Laplace pressure is decreasing with in-
creasing volume. Then the droplet gets pinned and the
curvature and, thus, the Laplace pressure starts to in-
crease for vβ,pin ≤ vβ ≤ 1 up to the volume vβ = 1,
corresponding to a half sphere, and decreases again for
vβ > 1. The Laplace pressure as a function of the volume
assumes the form shown in Fig. 8.
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FIG. 8: Reduced mean curvature, a/R, which is proportional
to the Laplace pressure, as a function of the dimensionless
volume vβ for wγ = 0.6 and wδ = −0.6. The mean curvature
a/R is equal to the reduced Laplace pressure PLa = a/2Σαβ .
For vβ < vβ,pin = 0.4 the Laplace pressure is decreasing, for
vβ,pin ≤ vβ ≤ 1 it is increasing and for vβ > 1 it is again
decreasing with increasing volume. The local maximum of
the mean curvature is attained at vβ = 1 corresponding to a
single droplet with the shape of a half sphere.

B. Laplace pressure and stability

Two droplets (1 and 2) with volumes v
(1)
β and v

(2)
β and

with a fixed total volume, vβ = v
(1)
β + v

(2)
β , have a total

energy

f2d(vβ , v
(1)
β ) = f(v(1)

β ) + f(vβ − v
(1)
β ) (13)

with the free energy f(vβ) of a single droplet as given by
eq (9).

The equilibrium condition ∂f2d/∂v
(1)
β = 0 for two

droplets on two neighboring domains, which can ex-
change volume, implies ∂f/∂v

(1)
β = ∂f/∂(vβ − v

(1)
β ).

Since each of the derivatives in the latter expression cor-
respond to the Laplace pressure or the inverse of the ra-
dius of curvature of each droplet (see Fig. 8), this implies
equal radii of curvature or equal Laplace pressure.

We can show the necessary condition (10) for stabil-
ity by considering an equilibrium of two droplets which
violate the condition and, thus, have both Laplace pres-
sures, which are a decreasing function of their volume. If
one of the droplets shrinks by a perturbative volume ex-
change, its Laplace pressure is raised whereas the other
droplet grows and, consequently, its Laplace pressure is
lowered. The resulting pressure difference with higher
Laplace pressure in the shrinking droplet leads to further
volume transfer from the shrinking droplet to the grow-
ing droplet and, thus, this type of equilibrium is always
unstable.

III. FREE ENERGIES IN TWO-DROPLET
REGIMES

In this appendix, we derive the expressions for the
free energies and volumes in each possible (meta)stable
regime involving two droplets. We do this in terms of
the total volume vβ and the corresponding wettabilities
wγ and wδ. We only assume that the domain is more
lyophilic than the substrate, i.e., wγ > wδ, and that the
domain is lyophilic, i.e., wγ > 0.

A. Regime 2S

In regime 2S, both droplets are pinned and have equal
volumes v

(1)
β = v

(2)
β = vβ/2, and, thus, the total free

energy is given by

f2S(vβ) = 2fII(vβ/2)

f2S(cos θ(1)) =
2

1 + cos θ(1)
− wγ (14)

with fII from (8).
For droplet volumes and contact angles the corre-

sponding formula (6) from regime II for droplet volume
v
(i)
β = vβ/2 apply:

vβ =
(2 + cos θ(1))(1− cos θ(1))1/2

(1 + cos θ(1))3/2
(15)

B. Regime 2C

In regime 2C, both droplets are pinned and have com-
plementary volumes (say droplet 1 is smaller than droplet
2), i.e., their contac angles satisfy cos θ(1) = − cos θ(2) >
0 and sin θ(1) = sin θ(2). According to eq (6), the volumes
are given by

v
(1,2)
β =

1
2 sin3 θ(1)

(2± cos θ(1))(1∓ cos θ(1))2, (16)

and the total volume can therefore be written as

vβ = v
(1)
β + v

(2)
β =

2
sin3 θ(1)

. (17)

Using all of these formulas and the expression (5) for
the free energy of each droplet in regime II, we obtain a
closed expression for the free energy in regime 2C as a
function of the total volume vβ ,

f2C = fII(v
(1)
β ) + fII(vβ − v

(1)
β )

f2C(cos θ(1)) =
2

sin2 θ(1)
− wγ

f2C(vβ) = 2(vβ/2)2/3 − wγ (18)

From (17), it is clear that regime 2C is only accessible
for vβ ≥ 2.
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C. Regime 5

In regime 5, the larger droplet (say 2) is unpinned and
wetting the δ-substrate with cos θ(2) = wδ, whereas the
smaller droplet is pinned with wδ ≤ cos θ(1) ≤ wγ . i.e.,
it has a smaller contact angle θ(1) < θ(2). Because both
droplets have equal radii of curvature, the pinned droplet
must have a contact angle θ(1) < π/2 and cos θ(1) >
− cos θ(2). Therefore, regime 5 can only be realized for
wettabilities with wγ > −wδ.

The condition that both droplets have the same radii
of curvature in equilibrium leads to

1
sin2 θ(1)

=
(

R(1)

a

)2

=
(

R(2)

a

)2

= (2v
(2)
β )2/3(1− wδ)−4/3(2 + wδ)−2/3

v
(2)
β =

(1− wδ)2(2 + wδ)
2(1− cos2 θ(1))3/2

(19)

i.e., a relation between the volume v
(2)
β of the unpinned

droplet and the free contact angle θ(1) of the pinned
droplet. For the volume v

(1)
β of the pinned droplet we

have

v
(1)
β =

1
2

(2 + cos θ(1))(1− cos θ(1))1/2

(1 + cos θ(1))3/2
(20)

and the resulting total volume as a function of cos θ(1) is:

vβ(cos θ(1)) = v
(1)
β + v

(2)
β

=
(1− wδ)2(2 + wδ)
2(1− cos2 θ(1))3/2

×
[
1 +

(1− cos θ(1))2(2 + cos θ(1))
(1− wδ)2(2 + wδ)

]
. (21)

The free energy in regime 5 is

f5(cos θ(1)) =fIII(v
(2)
β ) + fII(v

(1)
β )

=
1
2

(1− wδ)2(2 + wδ)
1− cos2 θ(1)

+

1
1 + cos θ(1)

+
1
2
(wδ − 2wγ), (22)

which gives together with eq (21) a parametric represen-
tation of f = f(vβ) in terms of the parameter cos θ(1).

D. Regime 4

In regime 4, the larger droplet (say 1) is pinned with
wδ ≤ cos θ(1) ≤ wγ . The smaller droplet is unpinned and
on the γ-domain, with cos θ(2) = wγ . Following stability
arguments as in section II A, morphologies in regime 4
can only be stable if the pinned droplet has a contact
angle θ(1) < π/2, i.e., for v

(1)
β < 1 and vβ < 2.

The formulae for volumes and free energies are analo-
gous to regime 5. As in regime 5 we can only obtain a
parametric representation of f = f(vβ) in terms of the
parameter cos θ(1). For the volume v

(2)
β of the unpinned

droplet and the free contact angle cos θ(2) of the pinned
droplet one obtains

v
(2)
β =

(1− wγ)2(2 + wγ)
2(1− cos2 θ(1))3/2

(23)

For the volume v
(1)
β of the pinned droplet and the total

volume we find

v
(1)
β =

1
2

(2 + cos θ(1))(1− cos θ(1))1/2

(1 + cos θ(1))3/2

vβ(cos θ(1)) =
(1− wγ)2(2 + wγ)
2(1− cos2 θ(1))3/2

×
[
1 +

(1− cos θ(1))2(2 + cos θ(1))
(1− wγ)2(2 + wγ)

]
. (24)

The free energy in regime 4 is

f4(cos θ(1)) =fI(v
(2)
β ) + fII(v

(1)
β )

=
1
2

(1− wγ)2(2 + wγ)
1− cos2 θ(1)

+

1
1 + cos θ(1)

− 1
2
wγ , (25)

which gives together with eq (24) the parametric repre-
sentation of f = f(vβ) in terms of the parameter cos θ(1).

In discussing the transition lines between regimes 2S
and 4 below we will show that morphologies in regime 4
never represent a global free energy minimum, i.e., they
are at most metastable.

IV. TRANSITION AND INSTABILITY LINES

In this section we will derive expressions for all tran-
sition and instability lines, which are shown in the mor-
phology diagrams in Figs. 3 and 4 and the stability dia-
grams in Fig. 5 in the main text.

A. Transition lines between single-droplet regimes
I, II, and III

At small total total volumes vβ ≤ vβ,pin there is
only one single droplet in regime I, i.e., within the γ-
domain. Upon increasing the volume, pinning to the do-
main boundary occurs, and the droplet enters regime II.
The transition from morphology I to morphology II is a
pinning transition and takes place at

vβ,I−II = vβ,pin =
1
2

(2 + wγ)(1− wγ)1/2

(1 + wγ)3/2

continuous pinning transition I-II. (26)
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This transition depends only on wγ and is continuous.
(as long as we ignore additional line tension effects, see
Ref. [2]).

In regime II, the single droplet is pinned and depins
from the domain upon further increasing the volume to
vβ ≥ vβ,dep. Then it starts to wet the δ-domain and
enters regime III. The transition between morphologies
II and III is a depinning transition and takes place at

vβ,II−III = vβ,dep =
1
2

(2 + wδ)(1− wδ)1/2

(1 + wδ)3/2

continuous depinning transition II-III. (27)

This transition depends only on wδ and is also continu-
ous.

B. Bifurcation analysis for transition lines between
two-droplet regimes 2S, 2C, 4, and 5

Transitions between two different two-droplet mor-
phologies are either symmetry breaking transitions
(SBTs), where the permutation symmetry of the two
spherical caps is lost or depinning transitions, where a
pinned droplet spreads onto the δ-substrate (2S/2C-5)
or retracts onto the γ-domain (2S-4), or combinations of
both types.

Morphological transitions between different two-
droplet states can be analyzed by studying bifurcations
of the branches f2S(vβ), f2C(vβ), f4(vβ), f5(vβ). The bi-
furcation analysis of the free energies is difficult because
we have only parametric representations of f4(vβ) and
f5(vβ) in terms of the parameter cos θ(1) (where θ(1) is
the contact angle of the pinned droplet). Therefore, it is
more convenient to consider the total volume vβ of both
droplets as a function of cos θ(1) instead, where θ(1) is
the contact angle of the droplet which remains pinned
with θ(1) < π/2. Such a droplet must exist according to
our above criterion (10). Each (meta)stable stationary
droplet morphology with volume vβ has to give a solu-
tion θ(1) of the equation

vβ = vβ(cos θ(1))

with 0, wδ ≤ cos θ(1) ≤ wγ (28)

where 0 < cos θ(1) holds because of θ(1) < π/2 (this
restriction also lifts the permutation symmetry between
droplets) and wδ ≤ cos θ(1) and cos θ(1) ≤ wγ hold be-
cause otherwise the pinned droplet will depin and the
configuration becomes unstable according to our above
stability criterion because no pinned droplet is left. In
regimes 5 and 2C we have additional conditions: In
regime 5, cos θ(1) > −wδ assures that the larger unpinned
droplet wets the δ-substrate. Analogously, in regime 2C,
cos θ(1) < −wδ assures that the larger droplet does not
wet the δ-substrate. The function vβ(cos θ(1)) on the
r.h.s. of eq (28) is given by eq (17) in regime 2C, eq (15)
in regime 2S, eq (21) in regime 5, and eq (24) in regime 4.

The four branches of the function vβ(cos θ(1)) give four
possible branches of solutions of (28) corresponding to
the two-droplet morphologies 2S, 2C, 4, and 5.

At a morphological transition or an instability of the
two-droplet morphologies 2S, 2C, 4, and 5, the corre-
sponding free energy branches f(vβ) either terminate
(instability), intersect (discontinuous transition), or join
smoothly (continuous transition). Right at the transi-
tion or in the presence of metastable states and unstable
free energy maxima we find several free energy branches
for the same volume vβ . Therefore, we will also find sev-
eral solutions to eq (28) in the parametric representation.
Instead of studying the bifurcations of the free energy
branches f(vβ), we can therefore study the correspond-
ing bifurcations of the solutions of eq (28). Morpholog-
ical transitions correspond to intersection points of two
branches vβ(cos θ(1)). If no solution exists for all four
branches, the two-droplet morphologies have become un-
stable with respect to one of the single-droplet morpholo-
gies. If a bifurcation from a single solution of eq (28) to
three solutions on two different branches occurs, a dis-
continuous morphological transition takes place between
the corresponding shapes (which involves an additional
metastable free energy minimum and an additional un-
stable maximum). If the total number of solutions of eq
(28) is unchanged the corresponding morphological tran-
sition is continuous. Using this method we can obtain
all instability lines associated with discontinuous transi-
tions and all continuous transition lines. In order to ob-
tain the discontinuous transition lines it is not sufficient
to consider vβ(cos θ(1)) but we also have to compare the
free energies f(cos θ(1)) in order to find the intersection
points of different branches f(vβ).

C. Symmetry breaking transition 2S-2C

The symmetry breaking transition (SBT) between mor-
phologies 2S and 2C takes place at

vβ,SBT = 2 (29)
continuous SBT 2S-2C

independent of the wettabilities [1].
The SBT corresponds to a bifurcation of the solutions

of (28) at cos θ(1) = 0, and there is one solution for each
of the two branches given by eq (17) in regime 2C and
eq (15) in regime 2S within 0 < cos θ(1) ≤ wγ , see Fig. 9.
Therefore, the SBT is continuous.

The SBT line ends in a critical endpoint on the first
order transition line between regimes 2S/2C and regime
5 for wδ = wδ,c, see Fig. 3 in the main text. For wδ >
wδ,c the SBT line continues as transition line between
metastable states. It terminates at wδ = 0, where it
meets the instability line of the 2S regime. For wδ > 0, no
transition between 2S and 2C is possible because the 2S
morphology becomes unstable with respect to depinning
and spreading onto the δ-substrate before the contact
angle θ = π/2 for the SBT can be reached.
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FIG. 9: Bifurcation of solutions to eq. (28) for the SBT be-
tween morphologies 2S and 2C for wγ = 0.8. The SBT is
continuous. The dotted line corresponds to the transition
volume vβ,SBT = 2, see eq. (29).

D. Depinning transitions 2S/2C-5

The depinning transition from morphologies 2S or 2C
to morphology 5 takes place if the larger droplet wets
the δ-substrate. It only depends on the wettability wδ

and the volume vβ . For wδ < wδ,c, we find a depinning
transition from 2C to 5, for wδ > wδ,c we find a transition
from morphology 2S to 5, which is then also a symmetry
breaking transition. The point wδ = wδ,c with

wδ,c =
6−√51

10
' −0.114 (30)

separating these two regimes is the critical endpoint of the
continuous SBT line vβ,SBT = 2. The depinning transi-
tion from 2C or 2S to 5 is discontinuous for a range of
wettabilities wδ,c− < wδ < wδ,c+, which is given by two
tricritical points wδ,c− and wδ,c+ with

wδ,c− ' −0.225,

wδ,c+ = −1 +
√

2 ' 0.414. (31)

For wettabilities wδ > wδ,c+ or wδ < wδ,c− the depinning
transitions from morphologies 2C or 2S to 5 are contin-
uous.

These results are obtained from the bifurcation anal-
ysis of the solutions to eq (28). The curves vβ(cos θ(1))
for regimes 2S/2C and 5 intersect for cos θ(1) = ±wδ cor-
responding to the situation cos θ(2) = wδ that the larger
droplet starts to wet the δ-substrate.

The bifurcation behavior is qualitatively different de-
pending on whether the curve vβ(cos θ(1)) for regime 5
according to eq (21) is an increasing function of cos θ(1)

at the intersection point, see Figs. 10 (a) and (c), which
leads to continuous depinning transitions or a decreas-
ing function of cos θ(1) at the intersection point, see Figs.
10 (b) and (d), which leads to discontinuous depinning
transitions according to our above discussion of eq (28).

For a discontinuous depinning transition with a
monotonously decreasing function vβ(cos θ(1)) at the in-
tersection points, see Figs. 10 (b) and (d), the intersec-
tion points correspond to instabilities of morphologies 2C
and 2S with respect to a depinning into morphology 5,

vβ,ins 2Ca = 2(1− w2
δ)−3/2 (32)

depinning instability 2C (wδ,c− < wδ < 0)

vβ,ins 2Sa =
(2 + wδ)(1− w2

δ)1/2

(1 + wδ)3/2
= 2vβ,dep (33)

depinning instability 2S (0 < wδ < wδ,c+)

The instability lines vβ,ins 2Sa and vβ,ins 2Ca meet at
wδ = 0 and vβ = vβ,SBT = 2, where also the SBT line
terminates in the metastable regime. These instability
lines are shown as dashed green lines to the right of the
solid green transition line in Fig. 3 in the main text.

The corresponding pinning instability lines of regime
5 are given by the smallest volume, for which a solution
of eq (28) for the volume (21) in regime 5 exists. This
volume is obtained as the minimal value that the volume
given by eq (21) attains for |wδ| < cos θ(1) ≤ wγ ,

vβ,ins 5a = min
|wδ|<cos θ(1)≤wγ

{
(1− wδ)2(2 + wδ)
2(1− cos2 θ(1))3/2

×
[
1 +

(1− cos θ(1))2(2 + cos θ(1))
(1− wδ)2(2 + wδ)

]}
(34)

pinning instability 5 (wδ,c− < wδ < wδ,c+)

The minimum is attained for a value cos θ(1) = cos θ
(1)
5 ,

which solves the quadratic equation

0 = 1 + (cos θ
(1)
5 )2 − cos θ

(1)
5

(
4− 3wδ + w3

δ

)
(35)

resulting in a closed, but lengthy expression for the insta-
bility line vβ,ins 5a = vβ,ins 5a(wδ) according to (34). The
resulting pinning instability lines of regime 5 are shown
as dashed green lines to the left of the solid green tran-
sition line in Fig. 3 in the main text.

The instability lines vβ,ins 2S/2Ca and vβ,ins 5a meet if
the minimum is attained for cos θ

(1)
5 = |wδ|, where the

transition between morphologies 2S/2C and morphology
5 becomes continuous. This is also the condition that
the function vβ(cos θ(1)) has a vanishing derivative at
the intersection points and, hence, changes its monotony
behavior. This leads to the two tricritical points at
wδ = wδ,c±, which are given by the condition

0 = 1 + w2
δ,c± ∓ wδ,c±

(
4− 3wδ,c± + w3

δ,c±
)

(36)

The solutions of these quartic equations give the above
results (31).

For wδ > wδ,c+ and wδ < wδ,c− the function
vβ(cos θ(1)) becomes monotonously increasing at the in-
tersection point, see Figs. 10 (a) and (c), and the depin-
ning transition between morphologies 2S or 2C and 5 is
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continuous. The corresponding transition lines are given
by the same equations as the instability lines (32) and
(33),

vβ,2C−5 = 2(1− w2
δ)−3/2 (37)

cont. depinning transition 2C-5 (wδ < wδ,c−)

vβ,2S−5 =
(2 + wδ)(1− w2

δ)1/2

(1 + wδ)3/2
= 2vβ,dep (38)

cont. depinning transition 2S-5 (wδ > wδ,c+)

and are shown as solid black lines in Fig. 3 in the main
text.

For wδ,c− < wδ < wδ,c+ the depinning transition be-
tween morphologies 2S/2C and 5 is discontinuous and we
have derived already all instability lines. At the transi-
tion lines of the discontinuous transition the free energies
f5 (22) and f2C (18) or f2S (14) corresponding to the so-
lutions of (28) are equal. Therefore, in order to find the
transition lines of the discontinuous depinning transition
between regimes 2S/2C and 5, we have to find simulta-
neous solutions of the two equations

vβ,2S/2C(cos θ
(1)
1 ) = vβ,5(cos θ

(1)
2 )

f2S/2C(cos θ
(1)
1 ) = f2S/2C(cos θ

(1)
2 ). (39)

for the two contact angles θ
(1)
1 and θ

(1)
2 , which coexist

at the discontinuous transition. This can only be done
numerically and gives transition lines vβ,2S−5 and vβ,2C−5

between the corresponding instability lines, vβ,ins 5a <
vβ,2S/2C−5 < vβ,ins 2S/2Ca, which are shown as solid green
lines in Fig. 3 in the main text.

If in addition to eqs (39) the condition cos θ(1) = 0
or vβ = 2 is fulfilled the discontinuous transition 2C-
5 becomes a discontinuous transition 2S-5, which de-
fines the critical endpoint wδ,c of the SBT line, where
wδ,2S−5 = wδ,2C−5 = wδ,c. Solving eqs (39) simultane-
ously with cos θ(1) = 0 we find the analytical result eq
(30) for the critical endpoint.

E. Metastable depinning transition 2S-4

The depinning transition from morphology 2S to mor-
phology 4 takes place if the smaller droplet retracts to the
γ-domain. This depinning transition is also a symmetry
breaking transition. It depends only on the wettability
wγ and the volume vβ . A transition from morphology 2S
to 4 is possible for sufficiently lyophilic domains γ, i.e.,
for wγ > wγ,c, where wγ,c is a critical point with

wγ,c = −1 +
√

2. (40)

The depinning and symmetry breaking transition exists
for wγ > wγ,c and is continuous for this range of wet-
tabilities. For wγ < wγ,c, there is no transition from
morphology 2S to morphology 4 but a direct dewetting

instability of morphology 2S with respect to the single-
droplet morphology II (we consider wγ > 0 only). At
wγ = wγ,c, the continuous transition line terminates in
the instability line of the 2S state. Because morphologies
in regime 4 are at most metastable, the transition from
morphology 2S to morphology 4 is a transition between
two metastable states, while the stable configuration is
the single-droplet morphology II.

These results are obtained from the bifurcation anal-
ysis of the solutions to eq (28). The curves vβ(cos θ(1))
for regimes 2S and 4 intersect for cos θ(1) = wγ . This
condition corresponds to the situation that one droplet
starts to retract into the γ-domain.

The bifurcation behavior is qualitatively different de-
pending on whether the curve vβ(cos θ(1)) for regime 4,
see eq (24), is an increasing function of cos θ(1) at the in-
tersection point, see Figs. 11 (a), or a decreasing function
of cos θ(1) at the intersection point, see Figs. 11 (b). For
a monotonously increasing function vβ(cos θ(1)) at the
intersection point, the intersection point corresponds to
a continuous depinning transition between morphologies
2S and 4. The transition line is given by cos θ(1) = wγ ,
which gives according to eq (15)

vβ,2S−4 =
(2 + wγ)(1− wγ)1/2

(1 + wγ)3/2
(41)

cont. transition 2S-4 (metastable, wγ > wγ,c)

Using cos θ(1) = wγ , we find a free energy f2S =
2/(1 + wγ) − wγ at the transitions. Comparing with
fII(vβ,2S−4(wγ)) as given by eqs (8) and (41) we can
check that f2S > fII at the transition lines between
regimes 2S and 4. Therefore, morphology 4 is only
metastable and the continuous depinning transition be-
tween morphologies 2S and 4 is a transition between
metastable states. Therefore, the transition line (41) ap-
pears only in the stability diagrams in Fig. 5 of the main
text as solid black line.

Upon further decreasing the volume below vβ,2S−4 the
solutions of eq (28) are found in regime 4 until a min-
imal value that the volume given by (24) attains for
0 < cos θ(1) ≤ wγ is reached. This minimum determines
the instability lines of regime 4,

vβ,ins 4 = min
|wδ|<cos θ(1)≤wγ

{
(1− wγ)2(2 + wγ)
2(1− cos2 θ(1))3/2

×
[
1 +

(1− cos θ(1))2(2 + cos θ(1))
(1− wγ)2(2 + wγ)

]}
(42)

dewetting instability 4 (wγ > wγ,c)

because there is no solution of eq (28) possible for smaller
total volumes. This instability of morphology 4 is an
instability with respect to dewetting into a single-droplet
morphology II or III because there is no solution branch
of eq (28) for any of the two-droplet regimes left for vβ <

vβ,ins 4. The minimum is attained for a value cos θ(1) =
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FIG. 10: Bifurcation of solutions to eq. (28) for the transition between morphologies 2C and 5 for wγ = 0.8 and wδ = −0.4
(a) and wδ = −0.15 (b) and for the transition between morphologies 2S and 5 for wγ = 0.8 and wδ = 0.6 (c) and wδ = 0.2
(d). The transition 2C-5 is continuous for wδ < wδ,c− ' −0.225 (a) and discontinuous for wδ,c− < wδ < wδ,c ' −0.114 (b).
The dotted line on the left side shows the transition volume vβ,2C−5 ' 2.60, see eq. (37) The dotted lines on the right side
show the instability lines vβ,ins 2Ca ' 2.07, see eq. (32) and vβ,ins 5a ' 2.04, see eq. (34). The transition 2S-5 is continuous
for wδ > wδ,c+ = −1 +

√
2 (c) and discontinuous for wδ,c+ > wδ > wδ,c ' −0.114 (d). The dotted line on the left shows the

transition volume vβ,2S−5 ' 0.81, see eq. (38). The dotted lines on the right side show the instability lines vβ,ins 2Sa ' 1.63, see
eq. (33) and vβ,ins 5a ' 1.72, see eq. (34).

cos θ
(1)
4 , which solves the quadratic equation

0 = 1 + (cos θ
(1)
4 )2 − cos θ

(1)
4

(
4− 3wγ + w3

γ

)
(43)

resulting in a closed, but lengthy expression for the insta-
bility line vβ,ins 4 = vβ,ins 4(wγ) according to (42). This
instability line is shown as dashed dark green line in Fig.
5 in the main text.

The instability line vβ,ins 4 and the transition line
vβ,2S−4 meet if the minimum is attained for cos θ

(1)
4 = wγ .

Then the transition line between regimes 2S and 4 ends
in a critical point. This is also the condition that the
function vβ(cos θ(1)) has a vanishing derivative at the in-
tersection points and, hence, changes its monotony be-
havior. The critical point wγ = wγ,c is given by the
condition

0 = 1 + w2
γ,c − wγ,c

(
4− 3wγ,c + w3

γ,c

)
(44)

The solutions of these quartic equations give the above
result wγ,c = −1 +

√
2, see eq (40).

For wγ < wγ,c, the function vβ(cos θ(1)) becomes
monotonously decreasing at the intersection point and
there is no transition from morphology 2S to morphol-
ogy 4 possible. Instead there are no solutions of eq (28)
possible for volumes smaller than the corresponding in-
stability line of regime 2S, which is given by the same
equation as the transition line (41),

vβ,ins 2Sb =
(2 + wγ)(1− wγ)1/2

(1 + wγ)3/2
(45)

dewetting instability 2S (no trans. 2S-4, wγ < wγ,c)

Note that as for the instability line of regime 4, this in-
stability of morphology 2S is an instability with respect
to dewetting into a single-droplet morphology II or III
because there is no solution branch of eq (28) for any
of the two-droplet regimes left for vβ < vβ,ins 2Sb. For
wγ < wγ,c, the depinning of one droplet leads to a direct
instability of morphology 2S. The instability line (45) is
shown as dashed black line in Fig. 5 in the main text.
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Finally, we can exclude the possibility of a transition
between morphologies 2C and 4 because in such a de-
pinning transition the larger pinned droplet would have
a contact angle θ(1) > π/2 and morphology 4 would be
unstable.

F. Dewetting transition lines between single- and
two-droplet regimes

In terms of the total free energy f2d(vβ , v
(1)
β ) tran-

sitions between single- and two-droplet morphologies
represent transitions between a boundary minimum at
v
(1)
β = 0 (or v

(1)
β = vβ) corresponding to a single droplet

and some state with two droplets corresponding to a lo-
cal minimum with v

(1)
β > 0 (or the complementary min-

imum at vβ − v
(1)
β ). As such, all of these transitions are

discontinuous, i.e., associated with a jump ∆v
(1)
β in the

equilibrium volume of the droplet.
This is not possible if the single droplet is in regime

I within the γ-domain because then only two smaller
droplets within the γ-domain could occur which are un-
stable as shown before in the instability discussion based
on the Laplace pressure. So there are no transitions from
morphology I to any two-droplet morphology. Therefore,
all transitions between single- and two-droplet morpholo-
gies can only involve the single-droplet morphologies II
or III.

1. Transition lines between regimes 2S,2C, or 5 and regime
II

For vβ < vβ,SBT = 2 and vβ < vβ,dep, there can be a
dewetting transition from morphology 2S into morphol-
ogy II. From the condition

fII(vβ) = f2S(vβ) = 2fII(vβ/2) (46)

[with f2S from (14) and fII from (8)] we obtain

wγ,II−2S(vβ) =
4

1 + cos θ(vβ/2)
− 2

1 + cos θ(vβ)
(47)

discont. dewetting transition II-2S

where cos θ(vβ) is given by (7). This result is independent
of wδ. The dewetting transition line (47) is shown as
solid black line in the morphology diagrams in Fig. 4 in
the main text.

The dewetting transition line wγ,II−2S(vβ) has a min-
imum as a function of vβ . Along the transition line,
the free energies of regimes II and 2S are equal, and a
Clausius-Clapeyron-like equation holds,

(
w′γ(vβ)

∂

∂wγ
+

∂

∂vβ

)
fII(wγ(vβ), vβ) =

(
w′γ(vβ)

∂

∂wγ
+

∂

∂vβ

)
f2S(wγ(vβ), vβ) (48)

At the minimum of the transitions line, we have w′γ(vβ) =
0 and find the additional condition ∂vβ

fII(vβ) =
∂vβ

f2S(vβ) = ∂vβ
fII(vβ/2). This means that the 2S

and II states at both sides of the transition line must
have equal Laplace pressures, i.e., the contact angles
θII in regime II and θ2S in regime 2S fulfill cos θII =
− cos θ2S or vβ(− cos θ2S) = 2vβ(cos θ2S) with the func-
tion vβ(cos θ) given by eq. (6). This gives a cubic equa-
tion for cos θ∗2S , the contact angle of morphology 2S in
the minimum of the transition line wγ,II−2S(vβ),

0 = −2 + 9 cos θ∗2S − 3(cos θ∗2S)3 (49)
cos θ∗2S ' 0.226 (50)

[3] The corresponding universal values for volume and
wettability in the minimum of the the transition line
wγ,II−2S(vβ) are

v∗β = 2vβ(cos θ∗2S) ' 1.443 (51)

w∗γ = wγ,II−2S(v∗β) ' 0.678 (52)

θ∗γ ' 47.3◦ (53)

For domain wettabilities wγ ≥ w∗γ or contact angles θγ ≤
θ∗γ , one of the domains always dewets, independent of the
total volume.

The results (51 and (52) apply as long as v∗β ≤ vβ,dep

or − cos θ∗2S > wδ. For wδ > −0.226 the depinning tran-
sition from the state II to state III of a single droplet
happens at smaller volumes, before the minimum w∗γ is
attained. Then the minimum w∗γ of the transition curve
between the single- and two-droplet regimes is obtained
from the dewetting transition line wγ,III−2S(vβ), which is
derived below. This minimum is no longer independent
of wδ.

The dewetting transition between 2S and II is possible
for vβ ≤ vβ,SBT = 2, where wγ,II−2S(vβ,SBT) ' 0.712 ac-
cording to (47). At the SBT transition the two symmet-
ric droplets become unstable, and for vβ > 2 we have to
search for a dewetting transition between the morphology
2C with two complementary droplets and morphology II
(or III). Note that v∗β < 2, such that the minimum of the
transition line between single- and two-droplet regimes
is always attained for transitions II-2S (or III-2S, see be-
low).

For 2 < vβ < vβ,dep, there can be a dewetting transi-
tion from morphology 2C into morphology II. From the
condition

fII(vβ) = f2C(vβ) (54)

[with f2C from (18) and fII from (5)] we obtain

wγ,II−2C = 4(vβ/2)2/3 − 2
1 + cos θ(vβ)

(55)

discont. dewetting transition II-2C

where cos θ(vβ) is given by (7). This result is also inde-
pendent of wδ.
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FIG. 11: Bifurcation of solutions to eq. (28) for the transition between morphologies 2S and 4 for wγ = 0.8 (a) and for a
direct instability of morphology 2S for wγ = 0.2 (b). There exists a continuous transition 2S-4 for wγ > wγ,c = −1 +

√
2

(a). The dotted lines on the left side correspond to the transition volume vβ,2S−4 ' 0.52, see eq. (41) and the instability line
vβ,ins 4 ' 0.49, see eq. (42). For wγ < wγ,c there is no transition but a direct instability of morphology 2S. The dotted line on
the right side corresponds to the instability line vβ,ins 2Sb ' 1.46, see eq. (45).

It is not possible to have a transition between a two-
droplet morphology 5 and a single-droplet morphology II.
In regime 5, the unpinned droplet has a volume v

(2)
β >

vβ,dep. Thus, we also have vβ > v
(2)
β > vβ,dep in regime

5, and a transition to morphology II with vβ < vβ,dep is
not possible.

2. Transition lines between regimes 2S,2C, or 5 and regime
III

For vβ,dep < vβ < 2, there can be a dewetting tran-
sition from morphology 2S to morphology III. From the
condition

fIII(vβ) = f2S(vβ) = 2fII(vβ/2) (56)

[with f2S from (14) and fIII from (4)] we obtain

wγ,III−2S =
4

1 + cos θ(vβ/2)

− (2vβ)2/3(1− wδ)2/3(2 + wδ)1/3 − wδ

discont. dewetting transition III-2S (57)

which depends also on wδ. The dewetting transition line
(57) is shown as solid black line in the morphology dia-
grams in Fig. 4 in the main text.

For v∗β ≥ vβ,dep with v∗β from eq (51), the dewetting
transition line wγ,III−2S(vβ) attains a minimum. Again,
a Clausius-Clapeyron relation holds at this minimum
value, from which it follows that the coexisting 2S and III
morphologies at both sides of the transition curve must
have equal Laplace pressures, i.e., the same radii of cur-
vature in regime III and in regime 2S. It follows that at

the minimum

vβ,III =
1
2

(
R

a

)3

(2 + wδ)(1− wδ)2

=
1
2

(2 + wδ)(1− wδ)2

(sin θ2S)3

= 2vβ,II =
(2 + cos θ2S)(1− cos θ2S)2

(sin θ2S)3
(58)

This gives a cubic equation for cos θ∗2S , the contact an-
gle that each of the droplets in regime 2S attains at the
minimum of the transition line wγ,III−2S(vβ),

(2 + cos θ∗2S)(1− cos θ∗2S)2 =
1
2
(2 + wδ)(1− wδ)2. (59)

The corresponding volume and wettability in the mini-
mum, v∗β = 2vβ(cos θ∗2S) and w∗γ = wγ,III−2S(v∗β) become
increasing functions of wδ for the transition line to regime
III.

For 2 < vβ,dep < vβ < vβ,2C−5, there can be a dewet-
ting transition from morphology 2C into morphology III.
From the condition

fIII(vβ) = f2C(vβ) = 2(vβ/2)2/3 − wγ (60)

[with f2C from (18) and fIII from (4)] we obtain the tran-
sition line

wγ,III−2C = (4vβ)2/3

[
1− (1− wδ)2/3(2 + wδ)1/3

22/3

]
− wδ

vβ,III−2C =
(

wγ + wδ

24/3 − 22/3(1− wδ)2/3(2 + wδ)1/3

)3/2

discont. dewetting transition III-2C (61)

where cos θ(vβ) is given by (7) and which depends on both
wγ and wδ. The dewetting transition line (61) appears
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as solid red line in the morphology diagrams in Fig. 4 (b)
and (c) in the main text.

For vβ > vβ,2C−5, vβ,2S−5, there is a dewetting transi-
tion from morphology 5 into morphology III, which can
be calculated from the condition

fIII(vβ) = f5(vβ) (62)

[with f5 from (22) and fIII from (4)]. Because there is
no closed analytic expression for f5(vβ) as a function of
vβ this condition has to be solved numerically. to obtain
wγ,III−5. The result depends on wδ and is shown in Fig.
4 as solid green lines.

G. Instability lines

We determined all lines of discontinuous dewetting
transitions between two- and single-droplet regimes, i.e.,
between regimes II-2S, II-2C, III-2S, III-2C, and III-5.
The transition lines wγ,II−2S (eq (47)), wγ,II−2C (eq (55)),
vβ,III−2X (eq (57)), vβ,III−2C (eq (61)), and wγ,III−5 join
smoothly to give a single line of discontinuous dewetting
transitions between two- and single-droplet regimes. At
these discontinuous transitions two branches of local min-
ima of the free energy f(vβ) = min

v
(1)
β

[f2d(vβ , v
(1)
β )] in-

tersect and we find hysteresis, i.e., the energetically unfa-
vorable state remains metastable up to an instability line
(or spinodal). At the instability line the corresponding
metastable minimum becomes an unstable saddle point
such that ∂f2d/∂v

(1)
β = 0 and ∂2f2d/(∂v

(1)
β )2 = 0.

We first consider the instability of the single-droplet
morphologies II and III with respect to wetting, i.e., a
two-droplet morphology. As shown above there is no
transition between the single-droplet morphology I and
and any two-droplet morphology. Therefore, regime I has
no instability line and we only have to discuss the insta-
bility lines of regimes II and III. The single-droplet states
are boundary minima of f2d(vβ , v

(1)
β ) at v

(1)
β = 0 or v

(1)
β =

vβ . It can be easily shown that ∂f2d/∂v
(1)
β |

v
(1)
β

> 0 for all

wγ < 1 (because of the ((1 − wγ)v(1)
β )2/3-dependence of

the free energy fI). Therefore, the single-droplet states
II and III remain metastable for all domain wettabili-
ties such that the instability line for the single-droplet
regimes II and III is the line

wγ,insII,III = 1 wetting instability II,III (63)

The continuous depinning transition between morpholo-
gies II and III at vβ,II−III (see eq (27)) continues to ex-

ist in the metastable regime, i.e., above the discontinu-
ous transition line between the single- and two-droplet
regimes.

Next, we consider the instability lines of the two-
droplet regimes with respect to dewetting into a single-
droplet regime. There are additional instability lines for
the instabilities with respect a depinning into other two-
droplet regimes, which we have already discussed above.
We have already discussed the instability lines of regime
2S in our discussion of depinning transitions between dif-
ferent two-droplet regimes: For wγ > wγ,c = −1 +

√
2,

morphology 2S first undergoes a depinning transition
into morphology 4 at vβ,2S−4, see (41) while it is only
a metastable state, before morphology 4 becomes unsta-
ble at vβ,ins 4, see eq. (42), with respect to dewetting. For
wγ < wγ,c, on the other hand, there is a direct dewet-
ting instability of morphology 2S without a transition
into morphology 4 at vβ,ins 2Sb, see eq. (45). This is a
dewetting instability with respect to morphology II for
vβ < vβ,dep and an instability with respect to morphol-
ogy III for vβ > vβ,dep.

We also discussed already one depinning instability
line for regime 2C, the instability line (32), where the
larger droplet depins and starts to wet the δ-substrate
for cos θ(2) = wδ. Another dewetting instability is en-
countered if the smaller droplet starts to depin and re-
tract onto the γ-domain for cos θ(1) = wγ . This leads to
a second instability line

vβ,ins2Cb = 2(1− w2
γ)−3/2 (64)

dewetting instability 2C

This is a dewetting instability with respect to a single-
droplet morphology because an intermediate transition
into morphology 4 is not possible as discussed above. The
instability line (64 is shown as dashed red line in Fig. 5
in the main text. The lines vβ,ins 2Cb and vβ,ins 2Sb meet
and terminate at wγ = 0 and vβ = vβ,SBT = 2.

Similarly, morphology 5 will become unstable with re-
spect to dewetting if the smaller droplet starts to depin
and retract onto the γ-domain for cos θ(1) = wγ .

vβ,ins5b =
1
2

(1− wγ)2(2 + wγ) + (1− wδ)2(2 + wδ)
(1− w2

γ)3/2

dewetting instability 5 (65)

This instability line is shown as dashed light green line
in Fig. 5 in the main text.
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