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The adhesion of cells is mediated by receptors and ligands anchored in apposing membranes. A central

question is how to characterize the binding affinity of these membrane-anchored molecules. For soluble

molecules, the binding affinity is typically quantified by the binding equilibrium constant K3D in the

linear relation [RL] ¼ K3D[R][L] between the volume concentration [RL] of bound complexes and the

volume concentrations [R] and [L] of unbound molecules. For membrane-anchored molecules, it is

often assumed by analogy that the area concentration of bound complexes [RL] is proportional to the

product [R][L] of the area concentrations for the unbound receptor and ligand molecules. We show here

(i) that this analogy is only valid for two planar membranes immobilized on rigid surfaces, and (ii) that

the thermal roughness of flexible membranes leads to cooperative binding of receptors and ligands. In

the case of flexible membranes, the area concentration [RL] of receptor–ligand bonds is proportional to

[R]2[L]2 for typical lengths and concentrations of receptors and ligands in cell adhesion zones. The

cooperative binding helps to understand why different experimental methods for measuring the binding

affinity of membrane-anchored molecules have led to values differing by several orders of magnitude.
1. Introduction

Cell adhesion processes are essential for the distinction of ‘self’

and ‘foreign’ in immune responses, the formation of tissues, or

the signal transduction across the synaptic cleft of neurons.1 The

adhesion processes are mediated by the specific binding of

receptor and ligand proteins anchored in the cell membranes.

Because of the importance of these processes, the binding of cells

to other cells or to supported lipid membranes with anchored

ligand molecules has been studied intensively with a variety of

experimental methods.2–6 In addition, theoretical models7–16 and

experiments on lipid vesicles with membrane-anchored receptor

and ligand molecules17–19 aim to mimic and capture the specific

membrane binding processes leading to cell adhesion.

A central question is how to characterize and measure the

binding affinity of the membrane-anchored receptor and ligand

molecules that are involved in cell adhesion. The binding affinity

of soluble receptor and ligand molecules can be characterized by

the binding equilibrium constant K3D, defined by

[RL]3D ¼ K3D[R]3D[L]3D (1)

where [RL]3D is the volume concentration of bound receptor–

ligand complexes, and [R]3D and [L]3D are the volume concen-

trations of unbound receptors and unbound ligands in the

solution. The equilibrium constant K3D is determined by the

binding free energy of the complex and can be measured with

standard experimental methods.20–22 An often considered two-
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dimensional analogue for membrane receptors and ligands is the

quantity

K
2D

h
½RL�
½R�½L� (2)

where [RL], [R], and [L] now are the area concentrations of

bound receptor–ligand complexes, unbound receptors, and

unbound ligands.23–25 Since the dimensions of K2D and K3D are

area and volume, respectively, Bell and coworkers7,26 suggested

that K2D can be estimated as K3D lc where lc is a suitably chosen

‘confinement length’, and K3D is the equilibrium constant of

soluble counterparts of the membrane receptors and ligands

obtained by cleaving the membrane anchors. The binding affinity

of membrane-anchored receptors and ligands have also been

directly investigated with fluorescence recovery after photo-

bleaching24,27–30 and with several ‘mechanical methods’24

involving micropipettes,25,31,32 hydrodynamic flow chambers,2,33

the surface force apparatus,34 or the biomembrane force

probe.35,36 However, as pointed out by Dustin and coworkers,24

the K2D values obtained from fluorescence recovery after pho-

tobleaching differ by several orders of magnitude from values

measured with mechanical methods.

Quantifying the affinity of membrane-anchored receptor and

ligand molecules is complicated by the fact that the binding

process depends on the local separation and, thus, the confor-

mations of the two apposing membranes. We consider here

a statistical-mechanical model of membrane adhesion in which

the membranes are described as discretized elastic surfaces and

the adhesion proteins as individual molecules diffusing on these

surfaces. We find that thermal shape fluctuations of the elastic

membranes lead to cooperative binding of receptors and ligands.

The relevant thermal fluctuations occur on length scales up to the

average separation of the receptor–ligand bonds, which is around

100 nm for typical bond concentrations in cell adhesion zones.3

On these length scales, the shape fluctuations are dominated by
This journal is ª The Royal Society of Chemistry 2009



Fig. 1 (a) A membrane with receptor molecules (top) interacting with

ligands embedded in an apposing membrane (bottom). A receptor can

bind a ligand molecule if the local separation of the membranes is close to

the length of the receptor–ligand complex. (b) In our model, the attractive

interactions between the receptor and ligand molecules lead to an effec-

tive single-well adhesion potential Vef of the membranes. The depth Uef of

the effective membrane binding well depends on the concentrations and

binding affinity of receptors and ligands (see eq. (7)). The width lwe of the

binding well is equal to the binding range of the receptor–ligand inter-

action (see eq. (5)).
the bending rigidity of the membranes. In our model, the binding

cooperativity leads to the quadratic dependence

[RL] ¼ c(k/kBT)l2
weK

2
pl[R]2[L]2 (3)

of the bond concentration [RL] on the area concentrations [R]

and [L] of free receptors and ligands. Here, c x 13 is a dimen-

sionless prefactor, k ¼ k1k2/(k1 + k2) is the effective bending

rigidity of the two apposing membranes with rigidities k1 and k2,

kBT is Boltzmann’s constant times temperature, lwe the interac-

tion range of the receptor–ligand bonds, and Kpl is the two-

dimensional equilibrium constant in the case of two apposing

planar, supported membranes within binding separation of the

receptor–ligand bonds. The binding cooperativity results from

the fact that an increase in the bond concentration [RL]

‘smoothens out’ the membranes, which facilitates the binding of

additional receptor and ligand molecules. Eq. (3) holds for

typical concentrations and lengths of receptors and ligands in cell

adhesion zones. The equation implies that K2D defined in eq. (2)

is not constant but depends on the receptor and ligand concen-

tration, which helps to understand why fluorescence recovery

and mechanical methods to measure this quantity can lead to

significantly different results (see section 7).

2. Modeling biomembrane adhesion

2.1 Membrane elasticity

In our model, the membranes are described as discretized elastic

surfaces. Each patch of the discretized membranes has an area a2

and can contain one receptor or one ligand molecule.37 Molecular

models of membranes indicate that the whole spectrum of bending

deformations is captured if the linear patch size a is around 5 nm.38

The elasticity of lipid membranes in general depends on the

bending rigidity k39 and the tension s. An important length scale

is the ‘crossover length’
ffiffiffiffiffiffiffiffi
k=s

p
.40 The membrane tension domi-

nates over the bending energy on length scales larger than
ffiffiffiffiffiffiffiffi
k=s

p
,

while the bending energy dominates on smaller length scales. For

typical values of the bending rigidity k of lipid bilayers around

10�19 J x 25 kBT 41 and tensions of a few mJ/m2,42 the crossover

length
ffiffiffiffiffiffiffiffi
k=s

p
attains values of several hundred nanometers. In

addition, the elasticity of cell membranes is affected by the actin

cytoskeleton on length scales larger than the distance of the

cytoskeletal membrane anchors, which is around 100 nm.1

In cell or membrane adhesion zones, the relevant shape fluc-

tuations occur on length scales up to the average distance of the

receptor–ligand bonds, since the bonds locally constrain the two

membranes. Typical values for the average bond distance in cell

adhesion zones range from 50 to 100 nm,3 which is significantly

smaller than the crossover length
ffiffiffiffiffiffiffiffi
k=s

p
estimated above, and

smaller than or equal to the distance of the cytoskeletal

membrane anchors. The relevant shape fluctuations in the

adhesion zones on length scales up to the average bond distance

are therefore dominated by the bending energy. In our model, the

bending energy has the form37

H
el
flg ¼ k

2a2

X
i

ðDdliÞ2 (4)

where li is the local separation of the apposing membrane patches

i in the adhesion zone, Dd is the discretized Laplacian given in the
This journal is ª The Royal Society of Chemistry 2009
Appendix, and k ¼ k1k2/(k1 + k2) is the effective bending rigidity

of the two membranes with rigidities k1 and k2. If one of the

membranes, e.g. membrane 2, is a planar supported membrane,

the effective bending rigidity k equals the rigidity k1 of the

apposing membrane since k ¼ k1k2/(k1 + k2) z k1 for large k2.
2.2 Receptor–ligand interactions

We consider here a membrane with a single type of receptor

molecules apposing a second membrane with complementary

ligands (see Fig. 1(a)). A receptor can bind to a ligand molecule

in our model (i) if the ligand is located in the membrane patch

apposing the receptor, and (ii) if the membrane separation li is

close to the length lo of the receptor–ligand bond. For simplicity,

we describe the receptor–ligand interaction by the square-well

potential

VðliÞ ¼ �U for lo �
lwe

2
\ li \ lo þ

lwe

2

¼ 0 otherwise

(5)

where U > 0 is the binding energy and lwe the binding range of

a receptor–ligand complex. The binding range is the difference

between the smallest and the largest local membrane separation

at which the molecules can bind. The binding range lwe depends

on the interaction range of the two binding sites on the receptor

and ligand molecules, on the flexibility of these molecules, and on

the flexibility of the membrane anchoring. For the rather rigid

protein receptors and ligands that typically mediate cell adhe-

sion, the binding range may be around 1 nm.
Soft Matter, 2009, 5, 3354–3361 | 3355



Fig. 2 The roughness of the membranes decreases with increasing

concentration of receptor–ligand bonds (top to bottom) since the bonds

constrain membrane shape fluctuations. The fraction Pb of membrane

segments within binding separation of the receptors and ligands therefore

increases with the bond concentration (see eq. (14)), which leads to

binding cooperativity: The binding of receptors and ligands ‘smoothens

out’ the membrane, and thus facilitates the formation of additional

receptor–ligand bonds. For clarity, unbound receptor and ligand mole-

cules are omitted in the cartoons, and the lower membrane is depicted as

a planar, supported membrane.
The interaction energy of the membranes is then described by

H intfl; n;mg ¼
X

i

nimiVðliÞ (6)

Here, ni¼ 1 or 0 indicates whether a receptor is present or absent

in membrane patch i, and mi¼ 1 or 0 indicates whether a ligand is

present or absent in patch i of the apposing membrane. The

configurational energy of the membranes H{l,n,m} ¼ Hel{l} +

Hint{l,n,m} is the sum of the elastic energy (4) and the interaction

energy (6).

3. Effective adhesion potential of the membranes

The equilibrium properties of our model can be derived from the

free energy F ¼ �kBT lnZ, where Z is the partition function, kB

is Boltzmann’s constant, and T is the temperature. The partition

function Z is the sum over all possible membrane configurations,

with each configuration {l,n,m} weighted by the Boltzmann

factor exp[�H{l,n,m}/kBT]. In our model, the partial summation

in Z over all possible distributions m and n of receptors and

ligands can be performed exactly, which leads to an effective

adhesion potential (see appendix). The effective adhesion

potential of the membranes is again a square-well potential of the

form (5), with the same binding range lwe as the receptor–ligand

interaction, but with an effective potential depth Uef that

depends on the concentrations and binding energy U of receptors

and ligands (see Fig. 1(b)). The concentrations of receptors

and ligands in biological or biomimetic membranes are several

orders of magnitude smaller than the maximum concentration

1/a2 x 4 � 104/mm2 in our discretized membranes with patch size

a x 5 nm. For these small concentrations, the effective potential

depth is

Uef z kBT [R][L] a2eU/kBT (7)

as shown in the Appendix. The equilibrium behavior of our

model thus can be determined from considering two lipid

membranes interacting via an effective adhesion potential with

well depth Uef.

4. Membrane fraction within binding range of
receptors and ligands

A receptor molecule can only bind an apposing ligand molecule if

the local membrane separation is comparable to the length of the

receptor–ligand complex. A central quantity in our model

therefore is the fraction Pb of apposing membrane patches i with

a separation li within the binding range lo� lwe/2 of the receptor–

ligand interaction (5). Our goal is to determine the equilibrium

concentration [RL] of receptor–ligand bonds. We find that this

concentration is proportional to Pb, and proportional to the

concentrations [R] and [L] of unbound receptor and ligand

molecules, and given by

[RL] z Pb [R][L] a2eU/kBT (8)

(see appendix). The quantity a2eU/kBT in this equation can be

understood from considering first two planar, parallel

membranes supported on rigid substrates, e.g. two supported

membranes in the surface force apparatus.34,43 If the separation
3356 | Soft Matter, 2009, 5, 3354–3361
of the two membranes is close to the length lo of the receptor–

ligand complex, we have Pb ¼ 1. A comparison with eq. (1) then

indicates that the quantity

Kpl h a2eU/kBT (9)

can be interpreted as the two-dimensional binding equilibrium

constant of the receptors and ligands in the case of planar

membranes with separation lo. If we now use the definition (2) for

K2D, we obtain

K2D ¼ PbKpl (10)

However, thermal shape fluctuations of flexible membranes

not supported on rigid substrates can lead to values of Pb much

smaller than 1. We will show here that Pb depends on the

concentrations of the receptors and ligands, which results in

cooperative binding (see Fig. 2). As an equilibrium quantity, the

area fraction Pb of the membranes within receptor–ligand

binding range is determined by the effective adhesion potential

shown in Fig. 1(b).
This journal is ª The Royal Society of Chemistry 2009



Fig. 4 Area fraction Pb of the membranes within binding range of

receptors and ligands as a function of the rescaled effective potential

depth u for different values of lwe/l1. Here, lwe is the width of the effective

potential well shown in Fig. 1(b), and l1 is the separation of this well from

the ‘hard wall’ at l¼ 0 where the two lipid membranes are in contact. The
5. Long receptor–ligand complexes

We consider first the case in which the length of the receptor–

ligand complexes is larger than the thermal membrane rough-

ness. The fluctuating membranes then do not touch each other,

and the repulsive hard-wall interaction of the lipid membranes

can be neglected. We will show in the next section that this case

applies to biological receptor–ligand complexes with typical

lengths between 15 and 40 nm,44 which are much larger than the

binding range lwe of the receptor and ligand molecules. Scaling

arguments indicate that the central parameter that affects Pb is

the rescaled effective potential depth45

u h Uef kl2
we/(kBT)2 (11)

in the case of long receptor–ligand complexes. The fraction Pb ¼
Pb(u) of membrane patches with a separation within binding

range of the receptors and ligands thus is a function of a single

parameter u in this case.

Monte Carlo data for lwe/l1 ¼ 0 are the data shown in Fig. 3. The full line

interpolating these data is the three-parameter fit function given in the

caption of Fig. 3. The dashed lines are quadratic fits to extrapolate

the data for lwe/l1 ¼ 0.5, 1 and 2 to Pb ¼ 0. From these fits, we obtain

the following estimates for the slope Pb
0 ¼ dPb/du at Pb ¼ 0: 22 � 2 for

lwe/l1 ¼ 0.5, 24 � 2 for lwe/l1 ¼ 1, and 19� 2 for lwe/l1 ¼ 2. From a similar

quadratic fit of the data for lwe/l1¼ 0, we obtain the slope Pb
0(0)¼ 13� 1,

which is our estimate for the parameter c in eq. (12). From the three

values of Pb
0 for lwe/l1¼ 0, 0.5 and 1 at Pb¼ 0, we obtain the estimate d¼

20 � 5 for the parameter d in eqs. (19) and (20).
5.1 Linear regime

For relatively small values of the rescaled effective potential

depth u, the membrane fraction Pb within binding range of the

receptors and ligands is linear in u and behaves as

Pb z cu ¼ ckl2
we Uef/(kBT)2 (12)

The numerical prefactor c ¼ 13 � 1 in this equation can be

determined from Monte Carlo simulations (see Figs. 3 and 4).

With eq. (7), we obtain

Pb z c(k/kBT)l2
weKpl[R][L] (13)
Fig. 3 Area fraction Pb of the membranes within binding range of

receptors and ligands in the case of long receptor–ligand complexes in

which the hard-wall repulsion of the lipid membranes is negligible (see

text). Here, u h Uef k lwe
2/(kBT)2 is the rescaled effective potential depth,

which is the central parameter governing Pb in this case. The Monte

Carlo data points are well fitted by the function Pb x (u + c2u2 + c3u3)/

(c1 + u + c2u2 + c3u3) with the three fit parameters c1 x 0.070, c2 x�0.32,

and c3 x 0.50 (solid line). Inset: For 0 # Pb ( 0.6, the Monte Carlo data

points can be described by Pb x u/(c1 + u) with the single fit parameter

c1 x 0.071. This single-parameter function is also a reasonable approxi-

mation over the whole range of Pb values (dashed line). The linear relation

(12) results from an expansion of this function for small values of u.

This journal is ª The Royal Society of Chemistry 2009
and, thus, a linear dependence of Pb on the concentrations [R]

and [L] of unbound receptors and ligands. Our central result (3)

then follows directly from inserting eq. (13) into eq. (8).

The linear behavior (12) does, in fact, hold for a wide, bio-

logically relevant range of concentrations and bending rigidities.

To see this, we consider the relation

Pbz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðk=kBTÞl2

we½RL�
q

(14)

obtained from eq. (12) and Uef ¼ kBT[RL]/Pb, which follows

from eqs. (7) and (8). The linear relation (12) is valid for small Pb

( 0.2 (see Fig. 3). Typical bond concentrations in cell adhesion

zones are around [RL] ¼ 100/mm2,3 while the binding range of

receptor and ligand proteins can be estimated as lwe ¼ 1 nm.

Typical values for the bending rigidities of lipid bilayers are

around 25 kBT,41 which implies an effective rigidity k of 12.5 kBT

for two apposing membranes (see text below eq. (4)). Because of

its embedded and attached proteins, the bending rigidities of

biological membranes may be larger, e.g. by a factor 2. For the

effective rigidity of lipid bilayers, we obtain the estimate Pb x
0.13 from eq. (14), and for a 2-fold increased effective rigidity, we

obtain Pb x 0.19. Both estimates are within the range of Pb

values for which the linear relation (12) is valid.
5.2 Nonlinear regime

Our model is not limited to the linear regime considered in the

previous section. The full functional dependence of Pb on the

rescaled effective potential depth u defined in eq. (11) can be

determined from Monte Carlo simulations (see Fig. 3). The
Soft Matter, 2009, 5, 3354–3361 | 3357



membrane fraction Pb within receptor–ligand binding range is

linear in u for small values of u, and increases to 1 for large values

of u. We find that the Monte Carlo data can be fitted well by

Pbx
u

c1 þ u
(15)

in the range 0 # Pb ( 0.6 with the single fit parameter c1 ¼ 0.071

� 0.002 (see inset of Fig. 3). In addition, eq. (15) is a reasonable

approximation over the whole range of Pb values (see dashed line

in Fig. 3). Inserting eq. (15) into eq. (8) leads to

½RL�x
k l2

weK
2
pl½R�

2½L�2

c1kBT þ k l2
weKpl½R�½L�

(16)

This equation generalizes eq. (3) beyond the linear approxi-

mation valid for Pb ( 0.2.

6. Short receptor–ligand complexes

Lipid vesicles with anchored receptor molecules are important

biomimetic systems for cell adhesion. In these systems, the

receptors either bind to ligands anchored in other vesicles,18 or to

ligands anchored in supported membranes.17,19 In principle, the

length of the receptor and ligand molecules in these systems can

be varied. For short receptor–ligand complexes, the hard-wall

interaction of the lipid membranes is an important aspect of

adhesion. The hard-wall interaction leads to an entropic, fluc-

tuation-induced repulsion of the membranes,46 and to an

unbinding transition at a finite strength of the attractive inter-

actions between the receptors and ligands.47 In our model, the

strength of these attractive interactions is captured by the depth

Uef of the effective adhesion potential shown in Fig. 1. In the

interplay between entropic repulsion and attractive receptor–

ligand interactions, the membranes will be bound for potential

depths Uef > Uc where Uc is the critical interaction strength of the

binding transition. The membranes are unbound for potential

depths Uef < Uc.

The critical potential depth Uc depends (i) on the width lwe of

the potential well, which is identical with the binding range of the

receptor–ligand interaction (5), and (ii) on the separation l1 of the

potential well from the hard wall (see Fig. 1(b)). For l1 > lwe, we

have previously obtained the relation

Uc ¼
bðk

B
TÞ2

kl1lwe

(17)

from scaling arguments and Monte Carlo simulations, with the

numerical prefactor b ¼ 0.025 � 0.002.45 With increasing l1,

the critical potential depth Uc goes to zero since the effect of the

entropic repulsion decreases.

In the bound state of the membranes with Uef > Uc, the

membrane fraction Pb within binding range of the receptors and

ligands increases with increasing values of Uef (see Fig. 4). As in

the previous section, we consider here first the linear regime for

values of Uef close to Uc. We find that eq. (12), which holds for

large values of l1, can be generalized to

Pb ¼ 0 for Uef\Uc

zckl2
we

�
1þ gðlwe=l1Þ

� Uef �Uc

ðkBTÞ2
forUef .Uc

(18)
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with the same numerical prefactor c ¼ 13 � 1 as eq. (12), and

a function g(lwe/l1) that goes to zero for small lwe/l1. In the limit of

large l1, eq. (18) is then identical with eq. (12). In this limit, the

function g(lwe/l1) can be approximated by

g(lwe/l1) z dlwe/l1 (19)

which can be understood from a Taylor expansion of g(x) around

x¼ 0. From the Monte Carlo data shown in Fig. 4, we obtain the

value d¼ 20� 5 for the numerical prefactor in eq. (19). For Uef >

Uc, which is equivalent to Kpl[R][L] > Uc/kBT, eq. (3) thus

generalizes to

[RL] z c(k/kBT)l2
we(1 + dlwe/l1)Kpl[R][L](Kpl[R][L]�Uc/kBT) (20)

For Kpl[R][L] < Uc/kBT with Uc given in eq. (17), we have [RL]

¼ 0 since the membrane fraction Pb within binding range of the

receptors and ligands vanishes in this case.

The lengths lo of receptor–ligand complexes in cell contact

zones range from 15 to 40 nm.44 For these receptor–ligand

complexes, the separation l1 ¼ lo � lwe/2 of the effective potential

well in Fig. 1(b) from the ‘hard wall’ at l ¼ 0 is much larger than

the width lwe of the well, which can be estimated to be of the

order of 1 nm (see section 2.2). In this case, relation (20) is

practically identical with relation (3), i.e. the two relations are

identical within the numerical errors of the parameters b, c and

d at these values of l1 and lwe, which implies that the hard-wall

interaction is negligible for biological receptor–ligand complexes

with a length between 15 and 40 nm.

This conclusion can be confirmed by considering scaling esti-

mates for the membrane roughness xt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hl2

i i � hlii
2

q
. Here, hlii

and hli2i are statistical averages of the local membrane separation

li and its square li
2. For lwe � l1, the roughness xt is approxi-

mately xtx 0:14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðk½RL Þ�

p
,48 and thus attains the value 4

nm for the typical bond concentration [RL] ¼ 100/mm2 (ref. 3)

and the effective rigidity k ¼ k1k2/(k1 + k2) ¼ 12.5 kBT of two

apposing membranes with the bending rigidities k1 ¼ k2 ¼
25 kBT. This estimate for the roughness is much smaller than the

length of the receptor–ligand complexes. The steric repulsion of

the membranes arising from direct membrane-membrane

contacts therefore is negligible, and the average separation hlii of

the membranes is equal to the length lo of the receptor–ligand

complexes.
7 Discussion and conclusions

We have shown here that a central quantity in cell adhesion is the

fraction of the apposing membranes within binding range of

receptors and ligands. In equilibrium, the average separation of

two membrane segments bound by receptor–ligand complexes is

equal to the length of the complexes, provided that the steric

repulsion of the lipid membranes and other repulsive interac-

tions, e.g. from large glycoproteins, are negligible. The fraction

Pb of membrane patches with a separation within the receptor–

ligand binding range then depends on the thermal roughness of

the membranes, which in turn is affected by the concentrations of

the receptors and ligands. For small concentrations of receptors

and ligands, the fraction Pb of the membranes within binding
This journal is ª The Royal Society of Chemistry 2009



range is proportional to [R][L] (see eq. (13)). Since we have [RL]

¼ Pb[R][L]Kpl according to eq. (8), this proportionality leads to

the quadratic dependence (3) of the bond concentration [RL] on

the concentrations [R] and [L] of free receptors and ligands,

which indicates cooperative binding. The linear relation (13)

between Pb and [R][L] is valid for small Pb ( 0.2. The more

general relation (15), which is a good approximation over the

whole range of Pb values, leads to eq. (16).

Our results may help to understand why experimental values

for K2D defined in eq. (2) obtained with the fluorescence recovery

method are several orders of magnitude larger than the values

obtained with the micropipette method.24 In fluorescence

recovery experiments, K2D is measured in the equilibrated

contact zone of a cell adhering to a supported membrane with

fluorescently labeled ligands. In micropipette experiments, in

contrast, K2D is measured for initial contacts between two cells.

Dustin and coworkers24 have pointed out that the different

orders of magnitude of K2D obtained with these two methods can

be partly understood from different contact areas. In the

micropipette experiments, large membrane protrusions such as

microvilli may lead to an actual contact area Ac that is only a few

percent of the observed contact area. However, even correcting

for a significantly smaller actual contact area Ac in the micro-

pipette experiments still leads to values of K2D that are 3 to 4

orders of magnitude smaller than the K2D values from fluores-

cence recovery experiments (see Fig. 2 in ref. 24).

We suggest that this orders-of-magnitude gap can be further

closed by considering PbAc as the relevant quantity for receptor–

ligand binding, rather than Ac. The quantity PbAc is the fraction

of the actual contact area Ac in which the two membranes are

within binding separation of the receptor–ligand bonds. Since the

number of receptor–ligand bonds is proportional to PbAc,

differences in this quantity in experimental setups translate

directly into differences in K2D (see eq. (10)). There are two

significant differences between the fluorescence recovery and the

micropipette experiments. First, in the equilibrated contact zones

of the fluorescence recovery experiments, the bond concentration

[RL] is enriched, compared to the bond concentration for initial

cell contacts probed in the micropipette experiments. This

enrichment results from a diffusion of free receptor and ligand

molecules into the contact zone, in which the molecules can bind.

According to eq. (14), an increase in [RL] by a factor of 100,

which is not unrealistic,3 leads to an increase in Pb by a factor of

10, and thus explains one order of magnitude in the observed

difference of K2D values from fluorescence recovery and micro-

pipette experiments. Second, the average separation of cell

membrane and supported membrane in the fluorescence recovery

experiments is close to the length of the receptor–ligand

complexes. For the initial cell-cell contacts in the micropipette

experiments, in contrast, the average separation of the

membranes will deviate from the length of the receptor–ligand

complexes, e.g. because of large glycoproteins that eventually

will diffuse out of the contact zone. The effect of this deviation of

the average membrane separation on Pb is more difficult to

assess, but may easily account for an additional 1 or 2 orders of

magnitude difference in PbAc between fluorescence recovery and

micropipette experiments. The membrane fraction Pb within

binding range depends sensitively (i) on the thermal membrane

roughness, and (ii) on the difference between the average
This journal is ª The Royal Society of Chemistry 2009
membrane separation and the length of the receptor–ligand

complexes. Pb is small if the difference between average

membrane separation and complex length exceeds the thermal

membrane roughness, which also leads to small values of K2D

(see eq. (10)).

We have made several simplifying assumptions in our model.

One of these simplifications is the square-well form (5) for the

receptor–ligand interaction. A convenient aspect of the square-

well interaction is that the effective adhesion potential of the

membranes, which results from an integration over the receptor

and ligand degrees of freedom in the partition function, has the

same square-well form, with an effective depth Uef that depends

on the concentrations and on the equilibrium constant Kpl of the

receptors and ligands in the case of planar membranes (see eqs.

(7) and (9)). However, the effective potential can also be calcu-

lated for other functional forms of the receptor–ligand interac-

tion, e.g. for a Gaussian form. In general, two important

parameters of the receptor–ligand interaction are the width lwe

and depth U of the potential well. The width lwe is affected by the

interaction range of the binding sites on the receptors and

ligands, by the flexibility of these molecules, and by the

membrane anchoring, while the depth U is directly related to the

equilibrium constant Kpl for planar membranes (see eq. (9)). We

expect that the square-well potential (5) and other functional

forms of the receptor–ligand interaction lead to rather similar

results for comparable values of the width and depth of the

potential wells.

We have argued in section 2.1 that the elasticity of cell

membranes is dominated by their bending rigidity on the length

scales up to 100 nm relevant here. For typical tensions s of the

membranes, the crossover length
ffiffiffiffiffiffiffiffi
k=s

p
, above which the tension

dominates over the bending energy, is clearly larger (see section

2.1). However, these length scales are only slightly smaller or

comparable to the average separation of the cytoskeletal anchors

in cell membranes. On the one hand, the anchoring to the cyto-

skeleton may suppress thermal fluctuations on length scales

larger than the average separation of the anchors. On the other

hand, active processes within the cytoskeleton may increase

membrane shape fluctuations.49,50 In general, active cell processes

and inhomogeneities may perturb the homogeneous equilibrium

situation considered here. However, our results are still appli-

cable to membrane regions in which the concentrations of bound

and unbound receptors and ligands are locally equilibrated. In

principle, vesicles and supported membranes with anchored

receptors and ligands are excellent model systems to test our

theoretical results without the complications of the cell cyto-

skeleton and of active biological processes.
Appendix

A1. Effective adhesion potential

In this appendix, we derive the effective potential shown in

Fig. 1(b). We perform the calculations in the grand-canonical

ensemble in which the concentrations of receptors and ligands

are adjusted by the chemical potentials mR and mL. The chemical

potentials are free energy differences between a patch of size a2 of

our discretized membranes that contains a receptor or ligand

molecule and a membrane patch without receptor or ligand.
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In the grand-canonical ensemble, the configurational energy of

the membranes is

Hfl; n;mg ¼ Helflg þHintfl; n;mg �
X

i

ðnimR þmimLÞ (21)

with the elastic energy (4) and interaction energy (6). The elastic

energy (4) depends on the mean curvature (Ddli)/a
2 of the sepa-

ration field li, with the discretized Laplacian Ddli ¼ li1 + li2 + li3 +

li4 � 4li. Here li1 to li4 are the membrane separations at the four

nearest-neighbor patches of membrane patch i on the quadratic

array of patches.

The equilibrium properties of our model can be determined

from the free energy F ¼ �kBT ln Z where Z is the partition

function, kB is Boltzmann’s constant, and T is the temperature.

The partition function

Z ¼
�Y

i

ðN

0

dli

�"Y
i

X
ni

#"Y
i

X
mi

#
e�Hfl; n;mg=kBT (22)

is the sum over all possible membrane configurations, with each

configuration {l,n,m} weighted by the Boltzmann factor

exp[�H{l,n,m}/kBT]. In our model, the summations in Z over all

possible distributions m and n of receptors and ligands can be

performed exactly, which leads to8,37

Z ¼
"Y

i

ðN

0

dli

#
e

�
�
Helflg þ a2

X
i

VefðliÞ
�
=kBT

(23)

with the effective adhesion potential

VefðliÞ ¼ �
kBT

a2
ln

"
z0 þ

	
e�VðliÞ=kBT � 1



eðmR þ mLÞ=kBT

#

(24)

and z0 ¼ (1 + emR/kBT)(1 + emL/kBT). For the receptor–ligand inter-

action (5), the effective adhesion potential is a square-well

potential with the same width lwe and the depth

Uef ¼
kBT

a2
ln

�
1þ

�
eU=kBT � 1

�
eðmRþmLÞ=kBT=z0

�
(25)

The total concentrations of receptors and ligands follow from

partial derivatives of the free energy with respect to the chemical

potentials:

½R� þ ½RL� ¼ �1

A

vF
vmR

¼ 1

a2
hnii (26)

½L� þ ½RL� ¼ �1

A

vF
vmL

¼ 1

a2
hmii (27)

Here, A denotes the membrane area. The concentration [RL] of

receptor–ligand bonds is obtained from a partial derivative with

respect to the binding energy U of the bonds:

½RL� ¼ �1

A

vF
vU
¼ 1

a2

�
nimiqðlwe=2� jli � lojÞ

�
(28)

Here, q(x) is the step function with q(x) ¼ 1 for x $ 0 and q(x)

¼ 0 for x < 0.
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These three equations lead to

½R� ¼ 1

a2

��
1� Pb

�
emR=kBT

1þ emR=kBT

þ Pb emR=kBT

1þ emR=kBT þ emL=kBT þ eðUþmRþmLÞ=kBT

�
(29)

½L� ¼ 1

a2

��
1� Pb

�
emL=kBT

1þ emL=kBT

þ Pb emL=kBT

1þ emR=kBT þ emL=kBT þ eðUþmRþmLÞ=kBT

�
(30)

and

½RL� ¼ 1

a2

Pb eðUþmRþmLÞ=kBT

1þ emR=kBT þ emL=kBT þ eðUþmRþmLÞ=kBT
(31)

where Pb ¼ �ð1=AÞðvF=vUefÞ ¼ hqðlwe=2� jli � lojÞi is the

equilibrium fraction of membrane patches with a separation li
within the binding range lo� lwe/2 < li < lo + lwe/2 of the receptor–

ligand interaction (5).

The typical concentrations of receptors and ligands in cell

membranes up to several hundred molecules per square micron

are significantly smaller than the maximum concentration 1/a2 x
4.1 � 104/mm2 in our model. This implies emR/kBT � 1, emL/kBT � 1

and e(U+mR + mL)/kBT� 1 in eqs. (29) to (31). With these relations, we

obtain

½R�z 1

a2
emR=kBT; ½L�z 1

a2
emL=kBT (32)

and


RL
�
z

1

a2
Pb eðUþmRþmLÞ=kBT zPb½R�½L� a2eU=kBT (33)

For typical binding energy U with eU/KBT [ 1, the effective

potential depth (25) then simplifies to

Uef z
kBT

a2
eðUþmRþmLÞ=kBT zkBT ½R�½L� a2eU=kBT (34)

A2. Monte Carlo simulations

The area fraction Pb of the membrane within the well of the

effective potential can be determined with Monte Carlo simula-

tions.8,37,45 It is convenient to use the rescaled separation field

zi ¼ ðli=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðkBTÞ

p
in the simulations. The configurational

energy then has the form H{z}/kBT ¼
P

i[½(Ddzi)
2 + a2Vef(zi)/

kBT] where Vef is the effective potential shown in Fig. 1(b). In the

Monte Carlo simulations, local moves are attempted in which the

rescaled separation zi of the membrane patch i is shifted to a new

value zi + z where z is a random number between �1 and 1.

Following the standard Metropolis criterion,51 a local move is

always accepted if the change DH in conformational energy is

negative, and accepted with the probability exp(�DH/kBT) for

DH > 0. We perform simulations with up to 5 � 107 attempted

local moves per site i and membrane sizes up to N ¼ 160 � 160

patches. The membrane size is always chosen to be much larger

than the lateral correlation length of the membranes. Thermo-

dynamic averages of the fraction Pb of membrane patches bound
This journal is ª The Royal Society of Chemistry 2009



in the potential well then do not depend on the finite system size.

The Monte Carlo data shown in Figs. 3 and 4 are from simula-

tions with the rescaled width zwe ¼ 1 of the potential well.

Further details of our Monte Carlo simulations are described in

ref. 37.
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