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Abstract – Intracellular transport by molecular motors proceeds in two steps: long-range
transport along microtubules and local delivery via actin filaments. A recent in vitro experiment
has revealed that the actin-based motor myosin V can diffuse along microtubules and can enhance
the processivity of cargos pulled by the microtubule-based motor kinesin-1 (Ali M. Y. et al.,
Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 4691). Here we present a stochastic model for cargo
transport by a directional motor (kinesin) and a diffusing motor (myosin). By using a subset of
the experimental data of Ali et al. to adjust our model parameters, we are able to describe all
experimental results. In our model, the myosins do not influence kinesin’s motion and only act as
tethers which allow the kinesin to rebind. Furthermore we find that the run length of the cargo
increases exponentially with the number of myosins.

Copyright c© EPLA, 2009

Introduction. – The complex internal structure of
cells depends, to a large extent, on active transport
by molecular motors [1]. These proteins can be viewed
as “nano-trucks” that transport cellular cargo along
“roads” formed by cytoskeletal filaments. These filaments
are polar with a plus and a minus end, which can be
recognized by the motors so that a single motor can
walk along the filament in a directed way. Since motors
constantly undergo thermal collisions with surrounding
molecules, they unbind from their track after a finite run
length, which is of the order of µm for typical processive
motors [2].
There are two types of filaments: microtubules, which

form long highways from the cell center to the cell
periphery, and shorter actin filaments, which act as a
dense meshwork of side roads mainly in the cell periphery.
Cellular transport is based on both types of filaments
and accomplished in two steps: long-range transport is
mediated by the microtubule-based kinesin and dynein
motors, while local delivery is the task of the actin-based
myosin motors [3–5].
During this “dual transport”, cargos must be able to

switch from the microtubule to the actin track, as has
indeed been observed for various cellular cargos such
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Fig. 1: (Colour online) (a) A cargo particle is attached to
a microtubule by Nk = 1 kinesin and Nm = 1 myosin motor;
(b) a typical simulated trajectory of a cargo particle trans-
ported by one kinesin and one myosin.

as mitochondria, pigment granules and synaptic vesicles,
reviewed in [4,5]. These cargos are attached to both
myosin and kinesin motors, as depicted in fig. 1(a). The
simplest scenario for such cargo transport is that, during
microtubule-based motion, myosin is not bound to the
microtubule but is simply riding piggyback on the cargo
pulled by kinesin, and vice versa for kinesin during actin-
based motion. However, recent in vitro experiments by
Ali et al. [6,7] suggest that there might be a more useful
role for the non-active motor: They have shown that
myosin V binds to microtubules and diffuses randomly on
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them, and that kinesin-1 weakly binds to actin filaments.
Furthermore, they demonstrated that cargos transported
by myosin and kinesin simultaneously exhibit longer run
lengths before unbinding from the filament [7]. They
explain their findings with the intuitive idea that the
diffusing motor tethers the cargo to the filament even
when the active motor unbinds, so that the active motor
has a chance to rebind to the filament and continue
cargo transport [7]. However, the precise coordination
mechanism of the two motors remains to be elucidated.
In this paper, we present a stochastic model for the

transport of a single cargo by actively pulling and passively
tethering motors. We apply this general model to the
case of transport by one myosin and one kinesin along
a microtubule, as considered in the in vitro experiment
in ref. [7]. Each motor stochastically binds to and unbinds
from the filament. When bound, the kinesin actively walks
into one direction, while myosin diffuses randomly along
the filament. We deduce the rates for these stochastic
events from a subset of the experimental data, and then
use our model to describe all experimentally measured
quantities, finding good quantitative agreement. We also
investigate the effect of several myosins on a cargo pulled
by a single kinesin, which leads to an exponential increase
of the cargo’s run length.
Our model uses the same theoretical framework as

previous models for cargo transport by several molecular
motors of one species [8] and of two species walking into
opposite directions [9,10]. These models describe cargo
transport by a few motors on the length scale of a few
to tens of µm, taking into account the fluctuations of
the number of bound motors, as is appropriate for intra-
cellular transport as well as for the in vitro experiment
considered here. They are therefore useful on length scales
intermediate between single-motor walks of a few µm,
and effective random walks of the cargo on cellular length
scales [11–13].

Theoretical model. – In our model, a cargo is
attached to a fixed number ofNk kinesins andNm myosins,
see fig. 1(a). In the experiment of ref. [7], only one
kinesin was bound to the cargo particle, a 10 nm sized
quantum dot. The precise number of attached myosins was
unknown; however, the small size of the cargo suggests
that only a single myosin was attached to it. Therefore,
we first focus on the case of Nk =Nm = 1, and discuss the
general case of Nm > 1 at the end of this article.
Since the motors stochastically bind to and unbind from

the filament, a cargo transported by one kinesin and one
myosin can be in one of four possible states (nm, nk)
characterized by the numbers nm and nk of bound myosins
and kinesins, respectively, see fig. 2(a). In state (1, 0)
only myosin is bound and in state (0, 1) only kinesin.
Both motors are bound to the filament in state (1, 1).
The state (0, 0) refers to the case when both motors
are unbound. Stochastic motor binding and unbinding
events correspond to transitions between the four states,

(0, 0)

(0, 1)

(1, 0)

(1, 1)

k

m

m̂

π̂m

k̂ π̂k

(a)

(0, 1)

(1, 0)

(1, 1)

w k
m k̂

(1 − wk) m

m̂

π̂m

1(
− w k

) k

π̂k

wk k

(b)

Fig. 2: (a) State space of a cargo particle transported by one
kinesin and one myosin. The particle can be bound to the
microtubule by kinesin only (state (0, 1)), myosin only (state
(1, 0)), or both motors (state (1, 1)), or be in the unbound
state (0, 0). Stochastic motor unbinding and binding transitions
with rates εk, εm, etc., lead to a random walk on this space
of four cargo states; (b) closed network obtained from (a)
by redirecting all arrows that lead into the absorbing state
(0, 0) back into the states (0, 1) and (1, 0), weighted with the
respective probabilities wk and (1−wk).

Table 1: Single-motor parameters for kinesin-1 (kin.) and
myosin V (myo.) of the model defined in fig. 2(a). Values with
asterisk were determined from the experiments in ref. [7]. The
other values were deduced from our model as described in the
text.

kin. parameter sym. value
binding rate bound myo. π̂k 0.20/s
unbinding rate no myo. εk 0.52/s∗

unbinding rate bound myo. ε̂k 0.52/s
velocity vk 0.88µm/s∗

myo. parameter sym. value
binding rate bound kin. π̂m 0.25/s
unbinding rate no kin. εm 0.020/s∗

unbinding rate bound kin. ε̂m 0.12/s
diff. constant no kin. Dm 0.18µm2/s∗

as indicated by arrows in fig. 2(a). The rates associated
with these transitions are listed in table 1.
In state (0, 1) with only kinesin bound, the cargo is

pulled with the kinesin velocity vk, which equals 0.88µm/s
in the experiment of ref. [7]. Since single myosins diffuse
randomly on microtubules, a cargo in state (1, 0) moves
on average with zero velocity. The myosin diffusion
constant Dm � 0.18µm2/s [7] corresponds to a friction
coefficient γm = kBT/Dm � 0.02 pNs/µm for motion of
myosin on microtubules. When kinesin and myosin are
both bound the moving kinesin experiences a rather small
friction coefficient. It can easily drag the myosin along
when moving with its velocity vk � 0.88µm/s, since the
myosin friction force γmvk is only about 0.02 pN and
thus negligible for kinesin with a stall force of about
6–7 pN [14,15]. Therefore we assume that a cargo in state
(1, 1) moves with velocity vk.
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In the experiments of ref. [7], cargos were monitored
starting immediately after they bind to the microtubule
and ending when they unbound from it. Since it is unlikely
that both motors bind to the filament at the same time
when the cargo binds to the filament from the surrounding
solution, the cargo starts its run on the microtubule either
in the state (nm, nk) = (0, 1) with only kinesin bound, or
in the state (1, 0) with only myosin bound. We expect
that the probability for a “kinesin start” in state (0, 1),
which we denote as wk, is much higher than the probability
(1−wk) for a “myosin start” in (1, 0) since the affinity of
kinesin for microtubules is much higher than that of the
actin motor myosin. Cargo unbinding corresponds to the
transitions to the unbound state (0, 0). Since the cargo
then performs diffusive motion away from the filament,
the state (0, 0) is an absorbing state of the network in
fig. 2(a).
In total, a cargo with one myosin and one kinesin

stochastically switches between the four states displayed in
fig. 2(a). The cargo trajectory in physical space consists of
alternating sequences of directed motion with the kinesin
velocity vk when the cargo is in the kinesin states (0, 1)
and (1, 1), and random diffusive motion when the cargo
is in the myosin state (1, 0). Similar to the experimental
trajectories, our model trajectory in fig. 1(b) exhibits
alternating “stepping events”, in which the cargo moves
with kinesin velocity vk � 0.88µm/s and “diffusive events”
in which the cargo diffuses along the filament.

Specification of model parameters. – To specify
the parameters of our model from the experimental data,
we derive analytical expressions for averaged quantities
measured in the experiments, such as the average run
length or the average duration of stepping events.
In order to calculate such quantities, we use a gener-

alization of a method proposed by Hill [16,17]. We will
explain this method for the calculation of the average run
time 〈∆tca〉, which is the average time to absorption in
state (0, 0). The time 〈∆tca〉 can be determined by aver-
aging the run times of an ensemble of trajectories, each
of which starts at time t= 0 in state (0, 1) with proba-
bility wk and in state (1, 0) with probability (1−wk). If
one concatenates these trajectories, one obtains a single
trajectory which, upon reaching the absorbing state (0, 0),
immediately continues at state (0, 1) with probability wk,
or at state (1, 0) with probability (1−wk). The network
that describes such a trajectory is shown in fig. 2(b),
which is constructed by “closing” the network of fig. 2(a),
i.e. by eliminating the absorbing state (0, 0) and redirect-
ing all arrows that ended in (0, 0) to the starting states.
For example, the arrow from state (0, 1) to state (0, 0)
with rate εk is redirected to state (0, 1) with the probabil-
ity weight wk and to state (1, 0) with probability weight
(1−wk). The stationary probabilities P (nm, nk) of the
closed network can be calculated by matrix methods [18]
or using a diagrammatic method [19,20], which leads to

P (0, 1)≡ [ε̂mπ̂k+ εmwk(ε̂k+ ε̂m)] /Ω, (1)

P (1, 0)≡ [ε̂kπ̂m+(1−wk)εk(ε̂k+ ε̂m)] /Ω, (2)

P (1, 1)≡ [(1−wk)εkπ̂k+ π̂m(π̂k+ εmwk)] /Ω, (3)

where Ω is determined by the normalization condition
P (0, 1)+P (1, 0)+P (1, 1) = 1. In the steady state the
average rate of arrivals at state (0, 0) is given by the prob-
ability current J ≡ εmP (1, 0)+ εkP (0, 1), see fig. 2(b). For
the open network in fig. 2(a), this arrival rate corresponds
to the average rate of absorptions in (0, 0). Thus, the
average time between absorptions is given by

〈∆tca〉 ≡ 1/J = 1/ [εmP (1, 0)+ εkP (0, 1)] . (4)

This average absorption time can also be calculated for
the open network in fig. 2(a) using the general theory
of Markov processes. The latter calculation confirms the
expression (4) and provides a nontrivial check of our
approach.
The probability P (nm, nk) gives the average fraction of

time spent in state (nm, nk) per run [16]. Since there is no
cargo displacement in the state (1, 0), the cargo moves only
in the kinesin-bound states (0, 1) and (1, 1), i.e. during the
time [P (0, 1)+P (1, 1)]〈∆tca〉. Since it moves with velocity
vk in these states, the average run length is

〈∆xca〉 ≡ vk[P (0, 1)+P (1, 1)]〈∆tca〉=

vk
π̂k(εk+ ε̂m+ π̂m)+wk(εm(ε̂k+ ε̂m+ π̂m)− εkπ̂k)

εkε̂m(εm+ π̂k)+ εmε̂k(εk+ π̂m)
. (5)

Next, we calculate the average time 〈∆tse〉 of a stepping
event, i.e. the average time spent continuously in the
stepping states (0, 1) and (1, 1). In the open network
in fig. 2(a), a stepping event can start from (0, 1) or
from (1, 1). We first determine the probability p1,1 for a
stepping event to start in state (1, 1). The average number
of transitions from (1, 0) to (1, 1) per unit time in the
network of fig. 2(b) is given by the probability current
Jk(1, 1)≡ π̂kP (1, 0). Since a stepping event which starts
in state (0, 1) can only occur at the begining of a run, the
average number of these latter events per unit time in the
network of fig. 2(b) corresponds to the probability current
Jk(0, 1)≡wkεkP (0, 1)+wkεmP (1, 0) from (0, 1) and (1, 0)
to (0, 1). This is exactly the sum of the redirected currents
which represent a new run starting in state (0, 1). Hence
the probability for a stepping event to start in state (1, 1)
has the form

p1,1 ≡ Jk(1, 1)

Jk(1, 1)+Jk(0, 1)
. (6)

A stepping event is finished when the diffusive state (1, 0)
or the unbound state (0, 0) in the network of fig. 2(a)
is reached. We therefore promote the state (1, 0) to an
absorbing state, so that we now have the two absorbing
states (0, 0) and (1, 0), see fig. 3(a). By redirecting all
arrows from the absorbing states (0, 0) and (1, 0) to the
starting states (1, 1) and (0, 1), we obtain the network in
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Fig. 3: (a) Network modified from fig. 2(a) with absorbing
states (0, 0) and (1, 0); (b) closed network obtained from (a)
by redirecting the arrows into the absorbing states (0, 0) and
(1, 0). The transitions are weighted with the probability p1,1
to start in state (1, 1) and 1− p1,1 to start in state (0, 1).

fig. 3(b). Using the stationary probabilities for the latter
network, as given by

Q(0, 1)≡ ε̂m+ ε̂k(1− p1,1)
ε̂k(1− p1,1)+ p1,1εk+ π̂m+ ε̂m , (7)

Q(1, 1)≡ 1−Q(0, 1), (8)

and the probability p1,1 as in eq. (6), the average time of
a stepping event is

〈∆tse〉 ≡ 1

εkQ(0, 1)+ ε̂kQ(1, 1)
=
A+B

εkA+ ε̂kB
(9)

with A≡wkεmε̂k+wkεmε̂m+ π̂kε̂m and B ≡wkεmπ̂m+
π̂kπ̂m+(1−wk)π̂kεk, in analogy with eq. (4).
Another quantity of interest is the fraction φnde of

runs with no diffusive events. All of these runs start in
state (0, 1), and leave the network of fig. 2(a) with the
transition to state (0, 0) without ever visiting state (1, 0).
Equivalently, we may ask for the probability of starting in
state (0, 1) in the network of fig. 3(a) and being absorbed
in state (0, 0) rather than in state (1, 0). This splitting
probability q0,0 is given by the ratio of the probability
current from state (0, 1) to (0, 0) and the total probability
current out of the network [17,19],

q0,0 ≡ εkQ(0, 1)/[εkQ(0, 1)+ ε̂kQ(1, 1)]. (10)

Since we now consider only runs that start in state (0, 1),
we use the relations (7) and (8) with p1,1 = 0. Finally, we
have to take into account that only the fraction wk of runs
in the original network in fig. 2(a) can contribute to runs
without diffusive events. Therefore, the fraction of these
latter runs is found to be

φnde =wkq0,0 =wk
εk(ε̂k+ ε̂m)

εk(ε̂k+ ε̂m)+ ε̂kπ̂m
. (11)

Finally, we calculate the average time 〈∆tde〉 of a
diffusive event. Since only (1, 0) is a diffusive state, the
average waiting time 〈∆tde〉 in this state is given by

〈∆tde〉= 1/ (εm+ π̂k). (12)

We have now obtained analytical expressions for the
average run length 〈∆xca〉, the average time 〈∆tse〉 of
stepping events, the average time 〈∆tde〉 of diffusive
events, and the fraction φnde of runs without diffusive
events.
Combining these analytical results with the experimen-

tal data of ref. [7], we determine all six rates of our model
in fig. 2(a). From different single-molecule experiments
with (Nm, Nk) = (0, 1) and (Nm, Nk) = (1, 0), the unbind-
ing rates of myosin εm and kinesin εk can directly be
derived as the inverse of the average binding time 1.93 s of
kinesin and 50 s of myosin on microtubules [7]. From the
measured average time 4.5 s of a diffusive event we obtain
with eq. (12) the binding rate π̂k � 0.2/s. In the exper-
iments the average time 〈∆tse〉 of a stepping event has
the same value for (Nm, Nk) = (0, 1) and (Nm, Nk) = (1, 1)
and is equal to the time 1/εk. Therefore, we deduce from
eq. (9) that the unbinding rate ε̂k is equal to the unbind-
ing rate εk so that kinesin unbinding is not affected by the
presence of myosin.
Since we expect that the microtubule binding affinity

for kinesin is much larger than for myosin, we assume,
for the moment, that all runs start in the state (0, 1) with
kinesin bound, i.e. wk = 1. With the measured average run
length of 3.7µm and the fact that 72% of the runs did not
show diffusive events, we obtain from eq. (5) and (11) with
wk = 1 the rates π̂m � 0.25/s and ε̂m � 0.12/s. Note that
the myosin unbinding rate ε̂m in the presence of bound
kinesin is larger than the unbinding rate εm � 0.02/s of
myosin alone. Thus, kinesin acts to detach the myosin from
the microtubule.

Comparison with experiments. – We have now
determined all parameters needed in our model by using
a subset of the experimental data of ref. [7]. These
parameters are listed in table 1. We now use our model
to describe all results measured in ref. [7]. In order to
do so, we simulate the system depicted in fig. 2(a) with a
discrete time algorithm. In state (0, 1), the cargo performs
a discrete time continuous space random walk with the
myosin diffusion constant Dm. In states (1, 0) and (1, 1),
the cargo moves with a velocity chosen according to a
Gaussian distribution with average value vk � 0.88µm/s
and standard deviation 0.2µm/s, as determined in the
experiment ref. [7]. A sample trajectory of our simulation
is shown in fig. 1(b); it exhibits alternating sequences of
diffusive and stepping events, and is remarkably similar to
the experimental trajectories, shown in ref. [7].
First, these simulations reproduce the experimental

values that we used to determine the model parameters,
namely the run length 〈∆xca〉 � 3.7µm, the stepping
time 〈∆tse〉 � 1.93 s, the fraction of runs without diffusive
events φnde � 0.72 and the diffusive time 〈∆tde〉 � 4.5 s
in agreement with (5), (9), (11), (12). Second, we find
i) that the average length of runs which exhibit at least
one diffusive event is 9.83µm, which is comparable to the
experimental value of 7.1± 1.7µm, and ii) that the average
velocities of all runs and of runs with diffusive events in
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Fig. 4: State space of a cargo particle with one kinesin and Nm myosins.

the simulation are 0.74µm/s and 0.36µm/s, of similar
magnitude as the experimental results 0.73± 0.3µm/s and
0.55± 0.15µm/s, respectively.
So far, we have assumed that all cargos bind to the

microtubule with kinesin first, i.e. that the probability wk
for starting a run in the kinesin state (0, 1) equals 1. This is
reasonable since on one hand we expect that kinesin has
a much higher microtubule affinity than the actin-based
motor myosin, and on the other hand in the experiments
only 28% of all trajectories exhibited diffusive events at
all. The latter observation means that wk must be larger
than 0.72. In order to test the influence of whether kinesin
or myosin bind first, we repeat our analysis by using the
smallest possible value wk = 0.72. In our procedure, the
only rates, ε̂m and π̂m, depending on wk are changed
to ε̂m � 0.053 /s and π̂m � 0/s. Simulations with these
new parameters lead to the average velocity 0.70µm/s of
all runs, and to the average length 8.8µm and velocity
0.25µm/s of runs with diffusive events. These values are
rather similar to those obtained for wk = 1.

Generalization to several myosins. – We now
generalize our model to the case of cargo transport by
one kinesin and Nm myosins, which extends the network
in fig. 2(a) to the network in fig. 4. In the latter figure,
the unbinding and binding rates for a single myosin in
the cargo state (nm, nk) with nm bound myosins and nk
bound kinesins are denoted as εm(nm, nk) and πm(nm, nk),
respectively. As we have seen before, the kinesin unbinding
rate is not influenced by the presence of a single myosin,
i.e. ε̂k = εk. We argued that this equality reflects the
very low friction of myosin motion on the microtubule.
Therefore, we assume that the kinesin unbinding rate
remains equal to εk even if several myosins are bound.
Since an unbound motor is under no force, we take

the binding rate of a single motor to be equal to its
single-motor binding rate, compare ref. [8]. This assump-
tion implies that the binding rate of kinesin is πk ≡ π̂k,
independent of the number of bound myosins, and that
the rate for binding of one of the (Nm−nm) unbound
myosins in state (nm, nk) is πm(nm, nk)≡ (Nm−nm)πm,
with πm ≡ π̂m. Likewise, the unbinding rate of one of the
nm bound myosins in state (nm, 0) without bound kinesin
is εm(nm, 0) = nmεm.

We have seen above that the unbinding rate of myosin
changes from the single-motor unbinding rate εm to ε̂m >
εm when one kinesin is bound to the microtubule. To
model this effect we consider the motion of a myosin
head pulled along by kinesin as diffusion in a moving
potential generated by the walking kinesin. Since the
myosin and kinesin head are connected via the two motor
tails and a rigid cargo, we can approximate this potential
by a harmonic spring potential with spring constant K.
Because the two motor tails are in series, 1/K ≡ 1/Km+
1/Kk, where Km and Kk are the spring constants for
the myosin and the kinesin tail, respectively, which are
both of the order of 0.3 pN/nm [21–23]. We can thus
consider the motion of the myosin head as diffusion in
a harmonic potential with friction coefficient γm, which is
reminiscent of the motion of a single motor in an optical
trap. This leads to a Gaussian distribution of the spring
extension l with average 〈l〉= vkγm/K, as required by
mechanical equilibrium, and variance var[l] = kBT/K [24].
Hence, the average force K〈l〉 � 0.02 pN is negligible, but
the force fluctuations K

√
var[l]� 0.8 pN are comparably

large. Note that a force of 0.8 pN is a small force for kinesin
with a stall force of 6–7 pN [14,15], but a large force for
myosin with a stall force of 2 pN [25] (on actin). If myosin
feels the force F , its unbinding rate is εmexp(F/Fd,m) [26],
which defines its detachment force Fd,m. Averaging this
rate over the Gaussian force distribution, we obtain

εm(1, 1) = 〈εm exp[F/Fd,m]〉= εm〈exp[Kl/Fd,m]〉=
εm exp

[
(KkBT +2Fd,mγmvk)/2F

2
d,m

]
. (13)

Using the experimentally determined values for vk, εm
and εm(1, 1) = ε̂m as given in table 1, K = 0.15 pN/nm,
and γm = 0.02 pNs/nm, we obtain the detachment force
Fd,m � 0.4 pN of myosin on a microtubule.
If there are nm bound myosins pulled along by one

kinesin, we can consider the myosins as nm springs in
parallel, so that the effective spring constant of the
system is given via 1/K[nm] = 1/(nmKm)+ 1/Kk, and the
unbinding rate for one myosin is

εm(nm, 1) = nmεm exp

[
(K(nm)kBT +2Fd,mγmvk)

2F 2d,m

]
.

(14)
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We simulated a cargo transported by one kinesin and
Nm myosins with the rates listed in table 1. One quantity
of interest is the cargo run length, which increases with
the number Nm of myosins. For large Nm, the run
length obtained from the simulations can be fitted by an
exponential function. This exponential increase leads to
run lengths of the order of 100µm, already for 2 or 3
myosins, which is large compared to the single-motor run
length of a few µm.
We also studied a non-cooperative model with unbind-

ing rates εm(nm, 1) = nmε̂m, which also predicts an expo-
nential increase of the run length. Therefore, such an expo-
nential increase seems to be independent of the precise
model for the unbinding rates.

Conclusion. – We present a stochastic model for coop-
erative cargo transport by actively moving and passively
diffusing molecular motors. This model is able to describe
the results of recent in vitro experiments on cargo trans-
port along a microtubule by one active kinesin-1 and one
passive myosin V motor [7]. Our model reproduces the
observed increase of the cargo’s run length. In our model,
the kinesin motion is not influenced by the presence of
myosin. In contrast, the unbinding rate of a myosin that
is dragged along by kinesin is increased by a factor of 6. We
interpret the latter observation within a spring model for
the motors: kinesin generates a moving harmonic poten-
tial for the myosin, which pulls the myosin along and off
the filament.
The generalization of our model to several myosins

leads to an exponential increase of the run length, with
run lengths of tens of µm for 2 or 3 myosins. Such an
exponential increase has previously been found for cargo
transport by active motors only [8].
The fact that kinesin remains unimpressed by the pres-

ence of myosin while myosin reacts strongly to kinesin’s
presence is consistent with the general observation that
kinesin is a robust microtubule motor [27]. Myosin V is
similarly a robust motor on actin filaments, but, compared
to kinesin, is only weakly bound to microtubules, and
thus can easily be influenced on this filament. This feature
is certainly useful for intracellular transport: the passive
motor can be easily dragged along without hindering the
active motor.
In a very recent in vitro experiment [28] the nonproces-

sive actin motor Myo2p was able to transport a cargo
processively on an actin filament, if the kinesin-related
protein Smy1p was present on the same cargo. Similar to
myosin V in kinesin transport, Smy1p acts as a tether
for the nonprocessive motor Myo2p. The latter transport
process can be understood by an appropriate modification
of our model, as will be described elsewhere.
Although the model that we have presented is for a

simple in vitro system, it may also provide new insight
into the complex traffic in vivo. It is certainly tempting to

think that, by attaching both actin and microtubule based
motors to a cargo, the cell could kill two birds with one
stone: the cargo is able to switch between both kinds of
tracks, and has an increased run length which prevents it
from falling off either of its tracks.
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