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Abstract – The interplay between turnover or degradation and ribosome loading of messenger
RNA (mRNA) is studied theoretically using a stochastic model that is motivated by recent
experimental results. Random mRNA degradation affects the statistics of polysomes, i.e., the
statistics of the number of ribosomes per mRNA as extracted from cells. Since ribosome loading of
newly created mRNA chains requires some time to reach steady state, a fraction of the extracted
mRNA/ribosome complexes does not represent steady state conditions. As a consequence, the
mean ribosome density obtained from the extracted complexes is found to be inversely proportional
to the mRNA length. On the other hand, the ribosome density profile shows an exponential
decrease along the mRNA for prokaryotes and becomes uniform in eukaryotic cells.

Copyright c© EPLA, 2010

Introduction. – In all living cells, the genetic informa-
tion encoded in the DNA is first transcribed into mRNA
and then translated into proteins. The translation process
from mRNA to protein is performed by ribosomes and
involves several subprocesses known as initiation, elonga-
tion, and termination.
The translating machines of the cell, the ribosomes,

consist of two subunits that assemble on the mRNA
at the position of initiation. After a complete ribosome
has passed the start codon, it translates the information
encoded in the nucleotide sequence into a polypeptide
chain. When the ribosome reaches the end of the mRNA
chain, it dissociates from this chain and releases a new
protein into the cell. In the case of premature termina-
tion of translation, the ribosome drops off prematurely
from the mRNA chain, thereby releasing an incomplete
polypeptide chain, which is then degraded [1,2].
The number of ribosomes on the mRNA chains, called

the polysome size, is a stochastic variable that varies from
chain to chain, and over time for the same chain. The
statistics of the polysome size, the spatial distribution of
ribosomes along the mRNA chains, and the ribosome flux
along the mRNAs are key features of protein production
and of regulation at the translational level.

(a)E-mail: valleriani@mpikg.mpg.de

Degradation of mRNA plays also an important role in
the regulation of translation. This process starts when
a mRNA encounters a RNA-degrading protein [3] and
can occur at any stage of the mRNA life cycle [3–6],
irrespective of the time for mRNA synthesis and initia-
tion of the translation [7]. Thus, degradation leads to a
turnover of the mRNA and to the coexistence of young
and old mRNAs.
From a theoretical point of view, modeling of translation

is mostly performed using a class of non-equilibrium
models called exclusion processes. This approach was
introduced several decades ago [8] and has recently been
applied to address several aspects of ribosome traffic
under steady state conditions [9–12]. A slightly different
approach was taken in [13], where the interplay between
degradation and the efficiency of translation is discussed.
From the experimental point of view, newly developed

techniques provide high-quality data that are likely to
revolutionize our view of mRNA translation in the next
years [14–19]. These techniques provide accurate measure-
ments of the polysome statistics that still lack a general
mechanistic explanation.
In this letter, we introduce and study a model that

contributes to a better understanding of the role of
mRNA degradation on the statistics of polysomes. The
key observation behind our model is that the number of
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Fig. 1: (Colour on-line) Young (top) and old (middle) mRNA
chains of the same length, both with ribosomes moving from
left to right. The young chain is loaded with only a few
ribosomes close to the initiation region at the left end of the
chain. The old chain is uniformly loaded with ribosomes and
has reached its steady state. The average number of ribosomes
computed from these two chains is smaller than the steady state
value. The bottom mRNA chain corresponds to a decapped
chain as found in eukaryotes.

ribosomes on a given mRNA varies with time and depends
on the age of this mRNA. This behavior is illustrated in
fig. 1. If one extracts the mRNA/ribosome complexes or
polysomes from a cell, one implicitly performs an average
over the age distribution of the mRNAs.
Thus, our strategy is to derive the mean density and

the density profile of ribosomes by taking into account
the age effect produced by degradation. We first assume
that degradation stops any translation, as described in
E. coli [20]. Later we include the possibility that translo-
cating ribosomes are allowed to complete translation
after the start of degradation, as observed in eukaryotic
cells [21].

Transient and stationary polysome size. – Let us
consider a mRNA molecule in the cytosol, surrounded
by diffusing ribosomes and by diffusing RNA-degrading
proteins. Translation is initiated with the constant on-
rate ωon, ribosomes drop-off prematurely from the mRNA
with rate ωoff , and the turnover time of the mRNA is
governed by the constant degradation rate ωde. We take
all of these rates to be independent of the length and
of the mRNA sequence. In addition, we assume that
the ribosome density is sufficiently low and that the
termination rate is sufficiently large to avoid traffic jams.
These assumptions are compatible with several in vivo
measurements [14–16,18].
The length of a mRNA will be expressed here in terms

of footprints, fp, which is 10 codons [22]. Each footprint
is the size covered by a ribosome when it translates the
mRNA. The typical time scale is of the order of minutes
and the velocity v of a ribosome is expressed in units
of fp/min. For simplicity, we will focus on the coding
region and consider the initiation region as a source of
ribosomes.
Let N(t) be the random number of ribosomes on a chain

of length L and age t. The state space of N is given by

{0, 1, 2, . . . , L}. The quantity

Pn(t) = Pr {N(t) = n|N(0) = 0}, (1)

is the probability that the number of ribosomes is n at
age t, with n= 0, 1, 2 . . . , L, given that it was 0 at age
t= 0. The probabilities Pn(t) are solutions of the Master
equation

dPn
dt
= ωonPn−1+ωoff(n+1)Pn+1− (ωon+ωoffn)Pn,

(2)
for t� tL ≡L/v, where tL is the time needed by the
first ribosome to reach the end of the chain. Obvious
modifications are needed for n= 0, L and the initial
condition is P0(0) = 1. For t > tL instead, the solution is
given by

Pn(t > tL) = Pn(tL), (3)

where Pn(tL) is given by the solution of eq. (2) at time
tL. The expectation value of N(t), denoted here with
M(t), gives the average polysome size over an ensemble
of mRNA of length L and age t. M(t) evolves with time t
according to

dM

dt
= ωon−ωoffM, for t < tL. (4)

For t > tL, we have M(t) =M(tL)≡ML, where ML is the
stationary polysome size on a chain of length L.
The solution of (4), with initial condition M(0) = 0 is

now given by

M(t) =
ωon
ωoff
(1− exp(−ωofft)) , (5)

for t� tL and by the steady state value

M(t) =ML ≡
ωon
ωoff
(1− exp(−ωoffL/v)) . (6)

for t > tL. The average ribosome density as a function of
the length L and of the age t of the mRNA chain is then
given by M(t)/L.

Mean ribosome density and mean density

profile. – In order to find the mean ribosome density
over a large population of mRNA chains of different
ages, we need to determine their age distribution. The
age distribution is determined by the turnover time
distribution.
The turnover time U of any mRNAmolecule is a random

number distributed according to the probability density
φU (t). For a fixed degradation rate ωde, the turnover
probability density is given by

φU (t) = ωde exp (−ωdet) , (7)

where the value of ωde can be computed from the mean
turnover time of mRNA in the cytosol.
The probability density φA(t) of the age of the mRNA

chains can be determined assuming that the total number
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of such chains is constant. This problem is equivalent to a
renewal process, the age distribution of which was derived
in [23]. The general solution is

φA(t) =

∫

∞

t

du
φU (u)

E[U ]
, (8)

for t� 0, where E[U ] is the average turnover time of a
chain. By using (7) in (8) we obtain

φA(t) = ωde exp (−ωdet) , (9)

i.e., φA(t) = φU (t) that reflects the memoryless property
of the exponential distribution.
Finally, on chains of length L, the mean polysome size

is given by a convolution of M(t) with the probability
density φA(t), i.e., by

〈M〉=

∫

∞

0

dtM(t)φA(t). (10)

It now follows from (5), (6), (9) that the mean ribosome
density is

〈M〉

L
=

ωon
(ωde+ωoff)L

[

1− exp

(

−(ωde+ωoff)
L

v

)]

. (11)

This expression implies that the mean density decreases
monotonically with increasing L and decays as 1/L for
large L. It is important to note that this behavior is
achieved even in the limit of vanishing drop-off rate ωoff .
Using parameter values from E. coli, we plot (11) in

fig. 2(a). The length distribution of mRNAs varies from
10 to 2000 codons corresponding to 1 to 200 footprints.
The typical life time of a mRNA chain is between 2 and
5 minutes [24]. We can thus assume that the mean turn-
over time is 3.5 minutes, corresponding to the degrada-
tion rate ωde = 1/3.5min

−1. The velocity of a ribosome
depends on the environmental conditions. Under condi-
tions of slow population growth, the velocity of ribosomes
is estimated to be about 10 codons per second and thus
v= 60 fp/min [25]. The rate ωoff of premature drop-off of
the ribosome from a mRNA has been estimated in [26]
to be of the order of 4 · 10−4 per codon and, taking into
account the velocity of the ribosomes, ωoff = 0.24min

−1.
Finally, the average initiation rate is estimated to be one
ribosome every four seconds [27] but translational atten-
uation in the initiation region [28] may lower this rate.
We thus have set it to one ribosome every six seconds,
which leads to an initiation rate of ωon = 10 rb/min. A
comparison between curves with and without a premature
ribosome drop-off, see black and red lines in fig. 2, respec-
tively, shows that the effect of age is more visible when the
drop-off rate is small. In addition, the steady state lines
lie above the turnover lines indicating that the turnover
has a strong influence on the polysome statistics.
Next, we look at the density profile of an ensemble

of chains of fixed length L. This profile corresponds to
the mean number of ribosomes 〈m(z)〉 per unit length at
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Fig. 2: (Colour on-line) Ribosome densities: (a) Mean density
〈M〉/L of ribosomes as a function of the chain length L as given
by (11); (b) mean density profile as a function of the position
along a mRNA of length L= 200 fp, from (13). The four cases
displayed both in (a) and in (b) correspond to different values
of the drop-off rate ωoff as explained in the inset. The steady
state curves are obtained in the limit of zero ωde.

position z along a mRNA chain of length L taking into
account the age distribution of the mRNA chains. The
profile 〈m(z)〉 determines the mean polysome size 〈M〉 via

〈M〉=

∫ L

0

dz 〈m(z)〉, (12)

where the lhs is (11) multiplied by L. After substituting
(11) into (12), the profile 〈m(z)〉 is obtained by taking
the derivative of both sides of (12) with respect to L and
setting L= z. This leads to

〈m(z)〉=
ωon
v
exp
(

−(ωoff +ωde)
z

v

)

, (13)

which decays exponentially with z even if the drop-off
rate ωoff is vanishingly small. Expression (13) is plotted
in fig. 2(b). Note that for ωoff = 0, the distribution of the
ribosomes on a chain is uniform at steady state conditions.
On the other hand, taking into account the different ages
of the chain, the resulting mean profile density decays
exponentially. This indicates that the mean profile density
measured on mRNA chains loaded with many ribosomes
may show a uniform distribution if the drop-off rate is
negligible.

Polysome size distribution. – The experimental
determination of the polysome statistics allows measure-
ments of the distribution of the number of ribosomes for
a population of mRNA with a fixed sequence. The mRNA
turnover should affect this distribution.
In order to find the distribution of ribosomes, we define

the probability Πn that a chain of length L and any age
has n ribosomes on it. These probabilities are obtained by
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Fig. 3: (Colour on-line) Probability distribution of the number
n of ribosomes on mRNA chains of length 100 fp with drop-off
rate of ωoff = 0.24min

−1 (black lines) and ωoff = 0 (red lines).
The four cases displayed here are identical to those in fig. 2.

averaging Pn(t), which is the solution of (2) and (3), over
the age distribution φA(t) as in (9) thus giving

Πn = 〈Pn(t)〉 =

∫

∞

0

dt Pn(t)φA(t). (14)

It can be readily seen that
∑

n
Πn = 1. The probability

distribution Πn is plotted in fig. 3 for different rate
parameters. One can make a comparison between the
steady state distribution Pn(tL) (black dashed line) and
the distribution Πn that takes the age into account (black
full line). The latter distribution shows a remarkable
plateau at small ribosome number. To understand the
nature of this plateau we can analyze the system when
ωoff = 0 because it can be solved analytically. In fact, for
ωoff = 0 the process can be approximated by a Poisson
process if PL(tL)≪ 1 (this is ensured if ωon is sufficiently
small). In this case, the probabilities are given by

Pn(t) =
(ωont)

n exp(−ωont)

n!
, (15)

for t� tL and for any n= 0, 1, 2, . . .. For t > tL, Pn(t >
tL) = Pn(tL). Plugging this into eq. (14), we can obtain
the distribution of the number of ribosomes for ωoff = 0.
For n= 0 the resulting expression reads

Π0 =
ωde

ωon+ωde
+

ωon
ωon+ωde

exp(−(ωon+ωde)tL), (16)

where we see that for large chains the plateau is small for
either small degradation rate ωde and/or large initiation
rate ωon. A comparison of the distribution Πn and the
steady state distribution for ωoff = 0 is also shown in fig. 3.
Inspection of this plot shows that Π0 as in (16) is identical
to the Π0 computed from (14). Therefore, measurements
of Πn under controlled conditions close to ωoff = 0 provide
an estimate of the degradation rate of mRNA.

The effect of translation after decapping. – In
the previous sections we have assumed that the degraded
mRNA disappears immediately from the cell. This
scenario may be correct for prokaryotes but in eukaryotes
the process of degradation is more complex [21]. Indeed,
in eukaryotes the mRNA is first “decapped” in order
to suppress loading of new ribosomes, and then the
remaining ribosomes complete translation before the
mRNA chain is completely degraded. A cartoon about
this part of the translation process is shown in fig. 1.
We should first notice that the contribution to the

polysome statistics arising from undecapped mRNA
chains is the same as computed above. For the sake
of clarity, we will now slightly change the notation in
order to distinguish between ribosome numbers Mu on
undecapped chains, and ribosome numbers on decapped
chains, Md. Thus, what was previously called M becomes
now Mu. Now, we just need to consider those chains
that have already been decapped. The time at which
decapping takes place will be denoted with τd. This time
is measured after the release of the mRNA in the cytosol
and is distributed according to the probability density
φU . In order to determine how many ribosomes are on
the chain at the decapping time, we should distinguish
between chains that have reached the steady state before
decapping and chains that are not yet at the steady state
at the time of decapping. This information is provided
by the random variable td, whose probability distribution
ΦD(t)≡Pr{td � t} is related to the decapping time τd
through

Pr{td � t < tL}=Pr{τd � t < tL}=

∫ t

0

dτ φU (τ),

Pr{td = tL}=Pr{τd � tL}=

∫

∞

tL

dτ φU (τ),

(17)

so that when td < tL the mRNA has been decapped before
reaching the steady state and for td = tL the mRNA has
been decapped after having reached the steady state.
Therefore, we have

ΦD(td) = φU (td), for td < tL,

ΦD(tL) =

∫

∞

tL

dτ φU (τ), for td = tL,
(18)

where ΦD(tL) is a probability. We start by considering
an ensemble of chains all having the same length L and
the same td. At the decapping time τd, the chains will be
loaded with a certain number of ribosomes Md =M(τd)
given as the solution of (5) and (6) for t= τd. During
the subsequent time, no more ribosomes will initiate
translation but ribosomes will leave the chain either
because they reach the end of the chain or because of
premature drop-off. The average number of ribosomes at
any time ta � 0 after decapping, denoted here withMd(ta),
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is the solution of the following equation:

dMd(ta)

dta
= −

Θ(ta− t0)Md(ta)

tL− t
−ωoffMd(ta), (19)

with boundary conditionMd(0) =Md, where Θ(x) = 1 for
x> 0 and is zero otherwise, and

t0 ≡ tL− td. (20)

The first term on the rhs of (19) indicates that the
more advanced ribosome needs a time t0 to terminate
translation. The solution of (19) reads

Md(ta) =

⎧

⎨

⎩

M(td) exp(−ωoffta), 0� ta < t0,

M(td)
tL− ta
tL− t0

exp(−ωoffta), t0 � ta � tL,

(21)
with t0 given in (20). The time variable ta is the age after
decapping of the decapped chain. Since the life time of
decapped mRNAs of length L is given by tL, the age
distribution is uniform between 0 and tL. Thus, taking
this age distribution into account the mean number of
ribosomes is given by

〈Md〉td =

∫ tL

0

dta
Md(ta)

tL
, (22)

where the subscript on the lhs reminds us that we are still
conditioning in td. Considering now the solution given in
(21) we have

〈Md〉td =
Md
ωofftL

[

1+
e−ωoff tL − e−ωoff t0

ωoff(tL− t0)

]

, (23)

where the dependence on td is both in t0 and inMd. Thus,
the mean number of ribosomes on decapped chains is given
by the convolution of (23) and the probability distribution
of the td defined in (18). This leads to

〈Md〉=

∫

dtd 〈Md〉tdφU (td) + 〈Md〉tL

∫

∞

tL

dτ φU (τ) ,

(24)
which is made of an integral for td < tL plus a contribution
for td = tL.
In order to keep the model simple and analytically

tractable, we make the assumption that the turnover time
distribution is still given by (7) and that the premature
drop-off rate is zero. We set thus hereafter ωoff = 0. Under
this assumption, (23) becomes

〈Md〉td =
ωontd
2

2tL− td
tL

(25)

and inserting this expression in (24) we obtain

〈Md〉=
ωon
ωde

(

ωdetL− 1+ e
−ωdetL

ωdetL

)

, (26)

which has the intuitive property of becoming a constant
for large L, which implies a 1/L behavior of the mean
density for large L.
Now that the mean number of ribosomes after decap-

ping has been found, we need to bring together the contri-
bution from undecapped mRNAs given in (11) and that
from decapped chains given in (26). To do this, we need
to find the weights that have to be applied in the sum
of the two contributions. We make the natural assump-
tion that these weights are proportional to the life times
before decapping and after decapping, respectively. Thus,
the proportion pd of decapped chains of a given length L
is given by

pd =
tL

tL+ω
−1
de

=
ωdeL

ωdeL+ v
, (27)

while pu = 1− pd is the proportion of undecapped mRNA.
This gives the final mean ribosome number

〈M〉 = pu 〈Mu〉+ pd 〈Md〉, (28)

where Mu is given by (11) and leads to

〈M〉

L
=

ωon
ωdeL+ v

, (29)

which behaves as 1/L for large chain length L and shows
that the continuation of translation after decapping does
not change the qualitative behavior of the mean density
as obtained in (11).
Concerning the profile density md(z), we start by

considering a chain of given length L, conditioned on td
and on the age t after decapping, md(z|t, td). The local
density of positions covered with ribosomes is given by
md = ωon/v and the length of the polysome is given by
Ld = vtd. We can then write

md(z|t, td) =

⎧

⎪

⎨

⎪

⎩

md, max

(

0,
z−Ld
v

)

� t �
z

v
,

0, otherwise,

(30)

for 0� z �L. This equation shows that the density is non-
zero only over a piece of the chain and that this piece
moves with time until t= tL. After taking the convolution
with the uniform age distribution of the decapped chains
and then taking the convolution with the distribution
ΦD(td), we finally obtain

〈md(z)〉 =
ωon
ωde

1− exp(−ωdez/v)

L
(31)

which, contrary to the result for the undecapped chains
given in (13), indicates a monotonous increase of the
density along the chain. Finally, the whole profile density
is given by a weighted sum of decapped and undecapped
chains

〈m(z)〉 = pu〈mu(z)〉+ pd〈md(z)〉 , (32)
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where 〈mu(z)〉 is given by (13). Using (27) and setting
ωoff = 0 in (13) leads to

〈m(z)〉 =
ωon

ωdeL+ v
, (33)

which means that in the absence of premature drop-off,
the profile along the mRNA is constant, independent of z.
Taking into account that 〈mu(z)〉 is a decreasing function
of z and that 〈md(z)〉 is increasing in z, the constant
behavior in (33) is due to the choice of pd made in (32).

Conclusions. – In this study, we have taken the effect
of mRNA degradation on the statistics of polysomes into
account.
The model makes a distinction between the polysome

statistics for undecapped and decapped mRNA. When
only undecapped mRNA is considered, the model is
relevant for prokaryotic cells such as E. coli. In E. coli it is
also known that the time scale of translation is close to the
mRNA life time [29,30] and thus the effect of degradation
should be strong. In this case, the mean density decays as
1/L for large chain length L even in the limit of vanishing
drop-off rate. We have also shown that the profile density
has an exponential decay along the mRNA chain and that
such an exponential decay applies also to the case in which
the drop-off rate is zero.
For eukaryotic cells, we have also taken the recent

observation into account that translation may continue
after decapping until the last translocating ribosome has
finished [21]. In addition, we have assumed that premature
drop-off has a negligible effect. Under these conditions,
the mean ribosome density behaves again as 1/L as a
function of the chain length L. This pattern is qualitatively
similar to the one found in [14] for yeast cells and
in [16] for Drosophila and, thus, indicates that mRNA
degradation may be a possible mechanism underlying
these experimental findings. The profile density, on the
other hand, is a weighted sum of a decreasing profile
density from undecapped sequences and an increasing
one from decapped sequences. These two contribution
cancel each other and lead to a constant. This result
is in agreement with the profile density measurements
presented in [15] but disagrees with those presented in [18].
Thus, further experiments are required to disentangle
these two findings and verify the predictions of the
model.
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