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S1 The chemomechanical cycle F
In this section, we outline the considerations that lead to the chemomechanical step cycle F .
Because of the high binding affinity of ATP to myosin (1), the motor heads are, for saturating concen-
trations of ATP, very likely to attain the T state before binding to the filament. As the motor is strongly
bound to the filament both in the E and D states but only weakly bound in the T state (1), and ATP
hydrolysis is fast compared to ADP release, the motor will end up in the states DE, ED, or DD when
binding to the filament to start its processive run.
Experiments indicate that the molecule dwells in the DD state for most of the time between two succesive
steps (2, 3). Starting from this state, the release of ADP can lead to two states, ED or DE. For two-
headed myosin constructs, the rate of ADP release in the myosin motor has been investigated extensively
and is thought to differ for the rear and the leading head of the motor (4, 5). The different experiments
present highly diverse data, but agree that the rate of ADP release for the front head is much slower than
for the rear head. This observation is taken into account by omitting the state DE from the network.
In the state ED, both heads are strongly bound to the filament. The binding of an ATP molecule to
the rear head leads to the TD state, which, through weakening of the actomyosin bond, is followed by a
mechanical step. This results in an interchange of the two heads and in the state DT, and subsequent
hydrolysis leads to the state DD and the completion of the forward stepping cycle F .

S2 Cyclic fluxes and balance conditions

The entropy that is produced during the revolution of a cycle can be readily connected to the work
performed by the motor. For each dicycle Cdν , the average entropy ∆S produced during one dicycle
completion is given by (6–8)

∆S(Cdν ) = kB ln
ν,d∏
|ij〉

(
ωij
ωji

)
. (S.1)

In the steady state, the internal energy, which arises from the chemical reaction and mechanical work
during the processive motion of the motor, does not change on a cycle Cdν of the network,

∆U(Cdν ) = 0. (S.2)

The first law of thermodynamics together with the heat ∆Q(Cdν ) = T∆S(Cdν ) released by the motor during
one completion of the dicycle Cdν leads to a balance condition for this dicycle as given by

kBT ln
ν,d∏
|ij〉

(
ωij
ωji

)
= Ech(Cdν )−Wme(Cdν ) (S.3)
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where Ech(Cdν ) and Wme(Cdν ) are the chemical energy supplied to the motor and the mechanical work
performed by the motor, respectively, during one completion of dicycle Cdν . The chemical energy Ech(Cdν )
can be expressed in terms of the reaction free enthalpy ∆µ that arises from addition of one ATP molecule
to the system and the subsequent release of one ADP and phosphate, which is, for dilute solutions, given
by

∆µ = kBT ln
(
Keq

[ATP]
[ADP][P]

)
, (S.4)

with Keq ' 4.9× 1011µM being the equilibrium constant of the reaction. Thus, if the dicycle Cdν contains
nh(Cdν ) ATP hydrolysis and ns(Cdν ) ATP synthesis transitions, the chemical energy has the form

Ech(Cdν ) =
(
nh(Cdν )− ns(Cdν )

)
∆µ . (S.5)

Now, consider all transitions |ij〉 of the dicycle Cdν and denote the corresponding mechanical displacements
by `ij . The total mechanical displacement after the completion of Cdν is then given by

`(Cdν ) =
ν,d∑
|ij〉

`ij . (S.6)

If the dicycle Cdν contains more than one transition |ij〉 with `ij 6= 0, the total mechanical step of size `(Cdν )
consists of several substeps. Furthermore, if the motor moves against the resisting force F , it performs
the mechanical work (7)

Wme(Cdν ) = F `(Cdν ) = F

ν,d∑
|ij〉

`ij (S.7)

during one completion of dicycle Cdν .
Using the decomposition ωij = ωij,0 Φ(F ) of the transition rates as given by Eq. (3) in the main text,

the balance condition (S.3) can be decomposed into two conditions, which have the general form (6, 7)

kBT ln
ν,d∏
|ij〉

(
ωij,0
ωji,0

)
= Ech(Cdν ) =

(
nh(Cdν )− ns(Cdν )

)
∆µ (S.8)

and

kBT ln
ν,d∏
|ij〉

(
Φij

Φji

)
= −Wme(Cdν ) = −F `(Cdν ) . (S.9)

Such a decomposition is always possible since the reaction free enthalpy ∆µ and the load force F are two
independent control parameters. We use the convention that negative values of F correspond to assisting
forces, which act in the preferred direction of forward stepping, i. e., towards the plus-end of the actin
filament, while resisting forces are described by positive values of F .

We now apply the general balance conditions (S.8) and (S.9) to the chemomechanical network for
myosin V as studied here, see Fig. 2 in the main text. In the absence of a load force, i.e., for F = 0,
the transition rates ωij = ωij,0 have the form ωij,0 = κ̂ij [X] for X-binding during the transition |ij〉 and
ωij,0 = κij for X-release during |ij〉, see Eq. (4) of the main text. For the cycles F and E , the zero-force
balance condition (S.8) is then equivalent to

Keq =
κ12κ̂23κ34′κ41

κ̂21κ32κ4′3κ̂14
=
κ25κ̂56κ62

κ̂52κ65κ̂26
for F = 0 . (S.10)



Chemomechanical coupling and motor cycles of myosin V 3

Since the ratchet or mechanical slip cycle M does not contain any chemical transition, we also have

κ55′ = κ5′5 for F = 0 , (S.11)

which reflects the fact that there is a priori no preferred direction for the motor to perform a forward or
a backward step in the state EE.

In the presence of a load force, i.e., for F 6= 0, the force-dependent balance condition (S.9) leads to

Φ12Φ23Φ34′Φ41

Φ21Φ32Φ4′3Φ14
= exp

(
− `

kBT
F

)
for dicycle F+ (S.12)

with ` ≡ `(F+) and to

Φ25Φ56Φ62

Φ52Φ65Φ26
= 1 for dicycle E+ (S.13)

as follows from Wme(E+) = 0 since the enzymatic cycle E does not contain any mechanical transition |ij〉
with `ij 6= 0.

The balance condition (S.12) for F+ can be further simplified if the transition rates for the mechanical
transitions |34′〉 and |4′3〉 are taken to have the form as given by Eqs. (7) and (8) in the main text. This
form implies

Φ34′(F )
Φ4′3(F )

= exp
(
− `

kBT
F

)
. (S.14)

When this relation is combined with the balance condition (S.12), we obtain

Φ12Φ23Φ41

Φ21Φ32Φ14
= 1 . (S.15)

As shown in Ref. (7), the relation (S.14) can also be derived from a local form of the balance condition
if one assumes that the change in free energy arising from the force F is independent of the motor state.
The latter assumption is valid in the limit of small F but need not apply to arbitrary values of F . For
the mechanical slip cycle M, on the other hand, the balance condition (S.12) is equivalent to

Φ55′(F )
Φ5′5(F )

= exp
(
− `

kBT
F

)
(S.16)

as confirmed by the explicit calculation in the next subsection S3.

S3 Functional form of mechanical stepping rates

To obtain stepping rates valid for a large range of load forces, we use, as discussed in (9), a coarse
graining approach that is based on the discretization of the continuous Fokker-Planck-equation. The
stepping rates calculated in this way automatically fulfill the correct balance condition. A different
method based on calculations of the mean first passage time can be found in (10, 11). We start from a
Fokker-Planck-equation for the diffusion of a particle over a potential V (x) along a continuous variable x.
For simplicity, we take a sawtooth potential U(x) with period `, height Uba, and slope Uba/`, and impose
periodic boundary conditions on the potential. The simplest discretization of the continuous equation
consists in assigning lattice sites to the potential in two successive minima, i. e., at locations xn = n`
and xn+1 = (n+ 1)` for integer n, as indicated in Fig. S1. U(x) is then given by

U(x) = −Uba

`
(x− n`) for n` ≤ x < (n+ 1)` (S.17)
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The transition rates between two neighbouring sites xn and xn+1 are calculated as

ωn, n+1 =
e(xn, xn+1)
E(xn, nk+1)`Ω

, (S.18)

ωn+1, n =
1

E(xn, xn+1)`Ω
, (S.19)

as given in Eq. 3.9 of (9), with

e(x, y) = exp
(

1
kBT

(x− y)F
)

(S.20)

and

E(x, y) = 1/D
∫ y

x
dz exp(V (z)− V (y)), (S.21)

where D is a diffusion constant, `Ω a localization and V (x) = 1
kBT

(U(x) + Fx) is the forced potential,
with F > 0 being a backward force. Note that E(x, y) holds for x < y, with both x and y being from
one interval of the potential. For the sawtooth potential as given by S.17, the forward and the backward
transitions have the form

ωn, n+1 =
D

kBT
· F`− Uba

`2
·

exp
[
− `
kBT

F
]

1− exp
[

1
kBT

(Uba − F`)
] , (S.22)

ωn+1, n =
D

kBT
· F`− Uba

`2
· 1

1− exp
[

1
kBT

(Uba − F`)
] (S.23)

(S.24)

where we have set `Ω = `. The rates automatically obey the requirement that ωn, n+1

ωn+1, n
= exp(− `

kBT
F ).

In this way, a backward step in the ratchet has the rate ω55′ = ωn, n+1 and a forward step is given by
ω5′5 = ωn+1, n. By definition, we then have κ55′ = ω55′(F = 0) and κ5′5 = ω5′5(F = 0), respectively.

x x+lx−l

Uba

Figure S 1: Periodic sawtooth potential with slope −Uba/`, barrier height Uba and periodicity `.
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S4 Balance condition for phosphate binding

For the chemomechanical cycle F , the zero-force balance condition (S.10) leads to

κ̂14 =
κ̂23κ34′κ41κ12

κ̂21κ4′3κ32Keq
, (S.25)

whereas it implies

κ̂26 =
κ25κ̂56κ62

κ̂52κ65Keq
. (S.26)

for the enzymatic slip cycle E . It follows directly from these conditions that κ̂14 6= κ̂26. The latter
inequality reflects the differences in the chemical transitions |14〉 and |26〉. First, the phosphate is
released from the leading head during |14〉 but from the trailing head during |26〉. Second, the second
head is in the D state during |14〉 but in the E state during |26〉. Inspection of Eq. (S.25) and (S.26)
shows that the rates of phosphate binding in the cycles F and E , κ̂14 and κ̂26, are proportional to each
other and satisfy the relation

κ̂14 = κ̂26
κ34′

κ4′3
. (S.27)
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S5 Table of parameters for force-dependence

Force dependence Transition rate ωij Parameter Value
Fueled stepping ω34′ , ω4′3 θ 0.65
Forced stepping ω55′ , ω5′5 Uba 20 kBT

D 4.7 · 102 nm2/s
ATP binding and release, F ω23, ω32 χ23, χ32 0
ATP binding, E ω56 χ56, F

′ 4, 1.6 pN
ATP release, E ω65 χ65 0
ADP binding and release, F ω12, ω21 χ12, χ21 0
ADP binding, E ω52 χ52, F

′ 4, 1.6 pN
ADP release, E ω25 χ25 0
P binding and release, F and E ω14, ω26, ω41, ω62 χ14, χ26, χ41, χ62 0

Table S 1: Parameters for the force depencence of the mechanical transitions and the ATP binding and
release rate. The corresponding functions are specified in the main article.
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S6 Velocity as a function of [ATP] for high assisting and resisting loads
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Figure S 2: Ratcheting behaviour as measured in (13) (symbols) compared to the theoretical results
(lines). The figure shows the absolute value of the motor velocity |v|, as a function of [ATP] for superstall
forces F = ±5 and ±10 pN. The blue symbols and lines correspond to assisting loads, and the green
ones to backward loads. The circles are for F = ±5pN, diamonds for F = ±10 pN. For backward
loads, our theory leads to velocities that do not depend on [ATP]. For 5 pN backward load, the velocity
(green dashed line) is in good agreement with the data, while for 10 pN pull, the theoretical velocity
is lower than the experimental one. In the case of forward forces, the theoretical velocity matches the
data qualitatively. Note that the blue dashed and the solid line are identical. For very low values of
[ATP], the calculated velocity is underestimated, which might be due to the fact that (13) report, even in
the absence of an external load, considerably higher stepping velocities at low [ATP] compared to other
groups (12, 14).
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