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Vesicles with two types of intramembrane domains, both of which are in the fluid state, are studied

theoretically using free energy minimization and Monte Carlo simulations. Specific examples are

provided by liquid-ordered and liquid-disorderd domains, which are formed by phase separation within

multi-component membranes. Multi-domain morphologies, which arise from the interplay between the

bending energies of the domains and the line energy of the domain boundaries, are found for a wide

range of these elastic parameters and can be further stabilized by the constraint of constant volume, by

spontaneous curvatures, and/or by a difference in the Gaussian curvature moduli of the two types of

domains. In the latter case, the vesicles attain stable multi-domain morphologies with up to six liquid-

disordered domains. Morphologies with three and four such domains have also been observed

experimentally, in qualitative agreement with our simulations. For sufficiently small line tension, ‘‘lipid

rafts’’ with multiple liquid-ordered domains are also found to be stable if the liquid-ordered domains

have a positive spontaneous curvature. The vesicles are found to undergo a variety of transitions

between different multi-domain morphologies. Presumably the simplest way to explore these

morphological transitions experimentally is by changing the vesicle volume via osmotic deflation.
1 Introduction

In the context of liquid droplets, the tension of the contact line,

which was already considered by Gibbs, represents a relatively

small correction term to the interfacial free energies.1 Therefore,

this line tension hardly affects the morphology of micrometer-

sized droplets. In contrast, the line tension associated with

intramembrane domains, which was introduced and first dis-

cussed in ref. 2, has a rather strong effect on the shape of

membranes and vesicles. Indeed, the line tension can deform the

membrane shape as predicted theoretically2,3 and confirmed

experimentally by optical microscopy of giant vesicles.4–8 The

vesicle membranes studied in these experiments contained three

components, a saturated lipid such as sphingomyelin, an unsat-

urated phospholipid, and cholesterol, corresponding to ‘‘raft’’

mixtures that have been postulated to lead to lipid domains in

biological membranes.9 For certain lipid compositions, these

membranes undergo phase separation via the formation of

liquid-ordered (Lo) and liquid-disordered (Ld) domains.

During the initial stage of such a phase separation process,

many small domains are formed which then grow and merge into

larger domains, a process that can be studied by computer

simulations of small vesicles10 and by optical microscopy of large

vesicles.11 Na€ıvely, one would expect that this coarsening process
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leads to a final state with only two large domains. It has been

recently found, however, that domain patterns with more than

two domains may also represent stable equilibrium states of such

a vesicle.12 The latter results were obtained by minimization of

the vesicle’s configurational energy, a method that neglects all

fluctuations of the membrane shape and of the intramembrane

domains. In the present paper, we will include all of these fluc-

tuations by studying the vesicle’s morphology via Monte Carlo

simulations.

The results of our simulations are illustrated in Fig. 1, which

displays vesicle morphologies with three and four flexible Ld

domains within a single Lo domain. In this figure, both

morphologies, as obtained in our simulations, are compared with

those observed experimentally in ref. 11 and 13. The simulated

morphologies exhibit both fluctuations of the vesicle shape and

fluctuations of the domain boundaries as visible in Fig. 1(a) and 1

(c) but the overall domain patterns were very stable. Close

inspection of the two morphologies reveals that this stability

arises from the arrangement of the more flexible Ld domains,

which occupy the more strongly curved regions of the vesicle

shape and allow the more rigid Lo domains to bend only weakly.

We will determine the dependence of the vesicle morphologies

and domain patterns both on the elastic membrane parameters

and on certain experimentally accessible control parameters. The

most important elastic parameters are the bending rigidities of

the two intramembrane domains and the line tension of the

domain boundaries. In addition, we will also study the influence

of the Gaussian curvature moduli and the spontaneous (or

preferred) curvatures of the membrane domains. Important
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Comparison of vesicle morphologies as obtained from ourMonte

Carlo simulations and observed by optical microscopy.11,13 In all four

subfigures, the majority phase corresponds to the more rigid Lo phase,

also denoted by a, which forms a single, multiply-connected domain,

whereas the more flexible minority phase Ld or b phase forms three or

four disconnected domains. In theMonte Carlo snapshots (a) and (c), the

more flexible Ld domains are shown in red, the more rigid Lo domain in

light grey. (a) Monte Carlo snapshot for membrane composition c(a) ¼
0.6, bending rigidity ratio k(a)/k(b) ¼ 6.0 and reduced volume v ¼ 0.94; (b)

fluorescence microscopy image for ESM/trans-DOPC/cis-DOPC/choles-

terol, adopted from ref. 13 (ESM ¼ egg sphingomyelin, DOPC ¼ dio-

leoyl-phosphaditylcholine, DMPC ¼ dimyristoyl-phosphatidylcholine);

(c)Monte Carlo snapshot for c(a) ¼ 0.7, k(a)/k(b) ¼ 6.0 and v¼ 0.92; and (d)

phase contrast microscopy image from ref. 11 for 1 : 1 DOPC/DMPC +

30% cholesterol.

D
ow

nl
oa

de
d 

by
 M

ax
 P

la
nc

k 
In

st
itu

t f
ur

 K
ol

lo
id

 o
n 

16
 A

ug
us

t 2
01

1
Pu

bl
is

he
d 

on
 2

7 
M

ay
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
01

50
0H

View Online
control parameters are provided by the membrane composition,

the membrane surface area, and the vesicle volume. The varia-

tion of these parameters leads to morphological transitions, at

which certain patterns of intramembrane domains are trans-

formed into completely different patterns. These transitions are

only possible since both types of domains are fluid. Indeed, solid-

like domains have a frozen shape and a certain pattern of such

domains cannot be transformed into another pattern without

first melting these domains.

Our article is organized as follows. In Sec. 2, the continuum

description for multicomponent vesicles is briefly reviewed and

then mapped onto a discretized description that can be studied

by simulations. In contrast to previous simulation studies, we

include the Gaussian curvature terms in the discretized bending

energy. The flat configurations of the discretized membrane are

equivalent to the Ising model on a honeycomb lattice, for which

we use the exact result for the line tension in order to relate the

results of the Monte Carlo simulations and those of the numer-

ical energy minimization. In Sec. 3, we first describe the

competition between this line tension and the two bending

rigidities of the two types of membrane domains. We construct

the morphology diagrams of the vesicles as a function of

membrane composition and other system parameters including

the reduced vesicle volume. Two types of novel domain patterns
This journal is ª The Royal Society of Chemistry 2011
are found. First, several of the more rigid Lo domains can form

a stable pattern within a single Ld domain when the Lo domains

have a positive spontaneous curvature. Furthermore, a differ-

ence in the Gaussian curvature modulus is shown to induce stable

morphologies with up to six of the more flexible Ld domains

within a single Lo domain.
2 Theoretical description and methods

2.1 Continuum theory of multicomponent vesicles

First, we briefly review the continuum theory of multicomponent

vesicles developed by J€ulicher and Lipowsky in ref. 3 and 14, in

which the membrane is treated as an elastic sheet. In this theory,

one simply starts from a multicomponent vesicle with two well-

separated fluid phases. As mentioned in the introduction, one

example is provided by the liquid-ordered (Lo) and the liquid-

disordered (Ld) phase. In order to emphasize that our theory is

completely general, we will also use the generic notation a and

b for Lo and Ld, respectively. Within the a and b phases, the

compositions are assumed to be homogeneous. Taking the mass

conservation of lipid molecules constituting the two phases into

account as well as the experimental findings that the

energetic cost to change the area per lipid molecules is as high as

50–100 T nm�2,15 where T denotes the thermal energy at room

temperature, the total domain areas A(a) and A(b) can be

considered to be essentially fixed. The total energy of the vesicle

can then be expressed as3,14

E ¼ E(a)
be + E(b)

be + l(a,b)
Ð
vSdl + S(a)A(a) + S(b)A(b) + PV (1)

with the bending energy16

E(i)
be h

Ð
idA[2k

(i)(M � m(i))2 + k(i)GG]. (2)

The superscript i refers to the a or b membrane patches, the

symbols M and G denote the mean curvature and the Gaussian

curvature on the membrane surface. For homogeneous domains,

the bending modulus k(i), and the Gaussian modulus k(i)G as well as

the spontaneous curvatures m(i) are constants. If we take k(a)G ¼
k(b)G , the contribution from the Gaussian curvature in eqn (2)

would be 4pk(a)G according to the Gauss–Bonnet theorem in

differential geometry.17 Thus, the Gaussian curvature does not

affect the vesicle morphology when both phases have the same

Gaussian curvature modulus.

In eqn (1), the third term arising from the line tension l(a,b)

involves the integral along the domain boundaries vS. The

Lagrange multiplies S(a) and S(b) are introduced to enforce the

area constraints as stated above. P is the osmotic pressure for the

enclosed volume V of the vesicle due to the concentration

difference of osmotically active molecules between the inside and

the outside of the vesicle.

The theory provides a framework within which the shape

equation can be numerically solved for axisymmetric shapes as

produced by multicomponent vesicles with two well-separated

domains. For vesicles with more than two domains, the vesicle

shapes and morphologies are, in general, non-axisymmetric and

have to be studied by numerical minimization and simulation

methods. In fact, for more than two domains, energy minimi-

zation methods are somewhat limited since they require an
Soft Matter, 2011, 7, 6092–6102 | 6093
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educated guess about the number of the domains and their

relative sizes. In contrast, the Monte Carlo method as described

in the next section determines both the number and the relative

sizes of the domains without any ‘‘prejudice’’.
2.2 Monte Carlo simulation

In Monte Carlo (MC) simulations, the vesicle is discretized into

a triangulated surface with two different types of triangles, a and

b, corresponding to the rigid and flexible membrane patches.

Simulations with molecular models of membranes indicate that

the whole spectrum of bending deformations is captured if the

linear patch size is around 5 nm.18 The vesicle configurations are

changed using three MC moves: (i) the vertices of the triangles

are randomly translated to mimic the thermally-excited shape

fluctuation; (ii) the edges of adjacent triangles are flipped to

describe the fluidity within the membrane; and (iii) a and

b triangles are exchanged to facilitate domain formation and

coarsening. In the original implementation of the dynamic MC

scheme,10 only nearest neighboring pairs of a and b triangles

were swapped in order to study the phase separation dynamics.

Since we are primarily interested in the thermodynamical

stability of different phase structures, we allow global exchange

of different triangles but ensure detailed balance at each

exchange step.

In order to preserve the connectivity of the whole surface, any

two vertices shared by one common edge interact through

a tether potential with a tether length of
ffiffiffi
3

p
lhc,

19 where lhc
denotes the hard-core diameter. For this potential, tether lengths

between lhc and
ffiffiffi
3

p
lhc have the same energy, while other lengths

would have an infinite energy and are, thus, suppressed in the

simulations. In canonical ensemble MC, the probability distri-

bution for the configuration is given by the Boltzmann factor

e�H eff=T , where T is the temperature in energy units and the

configurational energy or effective ‘‘Hamiltonian’’ H eff has the

form

Heff ¼ Hte þHbe þHin (3)

corresponding to the tether potentials, the bending energies and

the mutual interactions between neighboring membrane patches.

2.2.1 Bending energy of membrane shape. For the triangu-

lated surface, the bending energy Hbe is a sum over the contri-

bution of each triangle I. For each triangle I, the integrated mean

curvature (AM)I over its area AI is given by10,20

ðAMÞI¼
1

4

X
J

lIJqIJ (4)

which sums the contribution from I’s three nearest neighboring

triangles. The parameter lIJ is the length of the edge shared by I

and its neighbor J, and the tilt angle qIJ describes the angle

between the normal vectors of triangles I and J.z Thus, a large tilt
angle qIJ between the triangles I and J implies a large mean

curvature. We also define the discretized spontaneous curvature
z In ref. 10, the angle qIJwas expressed as arccos(êI$êJ) where êI and êJ are
the normal vectors of triangle I and J, respectively. This expression
should be complemented by a sign check.

6094 | Soft Matter, 2011, 7, 6092–6102
(Am)I as the integral of the spontaneous curvature in eqn (2) over

the triangle area AI which leads to the expression

(Am)I h m(I)AI (5)

with m(I) being either m(a) or m(b). It now follows from the Gauss–

Bonnet theorem, when applied to the discrete triangulated

surface, that the integral of the Gaussian curvature G over the

whole surface is given by21,22ð 
dAG ¼

X
i

 
2p�

X
I

fI

!
; (6)

where the sum runs over all the vertices i and fI is the angle of the

adjacent triangle I at the vertex i. (2p �PIfI) in eqn (6) is often

called the ‘‘angle deflection’’22 or ‘‘angle deficit’’23 in computa-

tional geometry. We note that eqn (6) is consistent with Des-

cartes’ theorem on the total angle deficit of a polyhedron which

states that the sum of angle deflections is 4p for any polyhedron

with the topology of a sphere.23 Indeed, the integral on the left-

hand side of eqn (6) is also equal to 4p for any shape that has the

topology of a sphere. A detailed derivation of Descartes’ theorem

can be found in ref. 22. The local Gaussian curvature (AG)i
associated with vertex i is then defined via

ðAGÞi h

ð
Ai

dAG

¼ 2p�P
I

fI ;
(7)

where the areaAi associated with vertex i is related to the areas of

the adjacent triangles by

Aih
1

3

X
I

AI : (8)

The factor of 1/3 takes into account that three vertices share one

triangle. Using eqn (7) and eqn (8), we define the integrated

Gaussian curvature (AG)I for each triangle I as

ðAGÞI¼
AI

3

X
i

ðAGÞi=Ai: (9)

Here the sum runs over the three vertices i of triangle I. Note that

eqn (9) ensures
P

I(AG)I ¼ P
i(AG)i, i.e., the sums of the

Gaussian curvature terms over all triangles and over all vertices

are equal, satisfying the Gauss–Bonnet theorem in eqn (6).

To summarize, the discrete bending energy is taken to be

Hbe ¼
X
I

n
2kðIÞ

�ðAMÞI�ðAmÞI
�2
=AI þ k

ðIÞ
G ðAGÞI

o
(10)

with the bending modulus k(I) and the Gaussian modulus k(I)G for

triangle I.

2.2.2 Interaction energy of membrane patches. The interac-

tion energy is given by

Hin ¼
X
hIJi

UIJ (11)

where the sum runs over all nearest neighbor pairs IJ and UIJ

denotes the corresponding interaction energy for each IJ pair.

Eqn (11) can be rewritten as
This journal is ª The Royal Society of Chemistry 2011
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H in ¼ NaaUaa þNbbUbb þNabUab (12)

where Naa denotes the number of edges between two a triangles,

etc. For a given vesicle, the total numbers of a and b triangles,

N(a)
t and N(b)

t , satisfy

3N(a)
t ¼ 2Naa + Nab (13)

and

3N(b)
t ¼ 2Nbb + Nab, (14)

respectively. The coordination number 3 again takes into

account that each triangle has three nearest neighbor triangles,

which are either a or b. Using eqn (13) and eqn (14), the inter-

action energy in eqn (12) now becomes

Hin ¼ Nab

�
Uab � 1

2
ðUaa þUbbÞ

�
þ 3

2

h
N

ðaÞ
t Uaa þN

ðbÞ
t Ubb

i
:

(15)

The last term on the right-hand side of eqn (15) represents

a constant energy term independent of the domain pattern on

a vesicle with fixed composition and, thus, does not affect the

vesicle morphology. Therefore, we define the interaction

parameter U as

UhUab � 1

2

�
Uaa þUbb

�
; (16)

and use positive values of U to describe effectively repulsive

interactions between the a and b patches. The interaction energy

now has the rather simple form

Hin ¼ NabU (17)

which is proportional to the number of edges Nab between two

different types of triangles, i.e., one a and one b triangle.

The flat configuration of the discretized surface is equivalent to

the Ising model on a honeycomb lattice with coordination

number z¼ 3. If k(a) ¼ k(b), the configurations will be independent

of the bending moduli because the bending curvature energies are

then invariant under ab exchange. Through the transformation

from the Ising model to the binary mixture model, the interaction

parameter U used for MC simulations is given by U ¼ 2J, where

J is the well-known spin–spin interaction parameter in the Ising

model. The exact solution for the Ising model on a honeycomb

lattice with coordination number z ¼ 3 gives the critical value24

Jc=T ¼ 0:5 ln
�
2þ

ffiffiffi
3

p �
which implies the critical value

Uc ¼ T ln
	
2þ

ffiffiffi
3

p 

(18)

for the interaction parameter U. This value provides a rough

estimate for the critical point of the multicomponent vesicle

discretized as a triangulated surface. Theoretical calculations25

and MC simulations26 indicate that the critical value is not

shifted by membrane shape fluctuations, since local fluctuations

in mean curvature are not correlated for unbound membranes.

In practice, one can also decide about the presence or absence

of phase separation for a multicomponent vesicle with given

material parameters and compositions by visual inspection of the

morphological evolution in the MC simulations. For all simu-

lations described below, we used interaction parameters U > Uc,
This journal is ª The Royal Society of Chemistry 2011
for which the two-component membrane undergoes phase

separation.

2.2.3 Constraints on membrane area and volume. To compare

with real vesicles, one also needs to consider area conservation of

the a and b domains. We use the additional harmonic energy

term27

Harea ¼ K ðaÞ
h
1� AðaÞ=AðaÞ

0

i2
þK ðbÞ

h
1� AðbÞ=AðbÞ

0

i2
(19)

to constrain the total areas for both a and b triangles. Here, the

total triangle areas A(a) and A(b) are defined by

AðaÞ ¼
X
I

ðaÞAI (20)

and

AðbÞ ¼
X
I

ðbÞAI ; (21)

where the sums run over all the a and b triangles, respectively. In

eqn (19), the areas A(a)
0 and A(b)

0 represent the preset values of the

constrained areas A(a) and A(b). The parameters K(a) and K(b) are

analogous to the area compression moduli and affect the MC

simulations via the Boltzmann factor e�H =T in the reduced and

dimensionless form K(a)/T and K(b)/T. In practise, the values of

these dimensionless parameters were chosen to be of the order

106 in order to ensure that the relative area changes for the

equilibrated vesicles are less than 0.1%, i.e., |A(i) � A(i)
0 |/A

(i)
0 < 10�3

for i ¼ a, b.

As mentioned before, the osmotic pressure also imposes

a volume constraint on the vesicle which leads to the osmotic

energy term28,29

Eos z
TrexVos

2

�
V � Vos

Vos

�2

(22)

for small deviations (V � Vos)/Vos. The density rex is the particle

number per unit volume of the osmotically active molecules

outside the vesicle, Vos h Nin/rex is the volume, at which the

osmotic pressure vanishes, and Nin is the number of the active

molecules enclosed by the vesicle volume V. In the MC simula-

tions, we use the energy form

Hvol ¼ Kosð1� V=VosÞ2 (23)

to account for the harmonic constraint on the vesicle volume.

The Botzmann factor and, thus, the MC configurations depend

only on the reduced parameter Kos/T, which was chosen to be

Kos/T ¼ 2 � 105 in order to ensure that the volume fluctuations

|1 � V/Vos| around the preset volume Vos are smaller than 0.5%

for the equilibrated vesicle. The absence of the volume

constraint, on the other hand, corresponds to the choice Kos ¼ 0.

In the MC simulations described below, we will use the

effective Hamiltonian H eff as in eqn (3) together with the

harmonic constraints given by eqn (19) and eqn (23).
2.3 Numerical energy minimization

In our MC simulations, the number and arrangement of the

intramembrane domains arise from the relaxation of the vesicle

towards equilibrium. Because a and b patches are continuously
Soft Matter, 2011, 7, 6092–6102 | 6095
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exchanged during the simulations, a given domain may break up

into two separate ones and two domains may coalesce into

a single one. As a consequence, we do not have to start the

simulations from a certain initial domain pattern, even though

we can reduce the equilibration time if this initial pattern is close

to the one in equilibrium. In contrast, in order to minimize the

vesicle energy numerically, we need to (i) choose a certain

number of minority phase domains and (ii) allocate a certain

membrane area to each of these domains. The vesicle energy is

then minimized in the morphology subspace that is characterized

by a fixed number of minority phase domains and fixed areas of

these domains.

In theMC simulations, the domain boundaries undergo strong

shape fluctuations. In contrast, when the vesicle energy is

numerically minimized, we have to consider the average shape of

the domain boundaries, which are then governed by the line

tension l(a,b). In order to obtain a relation between this line

tension and the interaction parameter U of the membrane

patches in the MC simulations, we use the exact solution of the

Ising model on the honeycomb lattice as given by eqn (15) in ref.

30. As a result, the line tension l(a,b) is given by

lða;bÞ ¼ 2T

le

 
u� ln

"
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s2 þ 1
p

2s

#!
(24)

with the average length le of the edges forming the phase

boundaries and the dimensionless parameters

u h U/2T and s h sinh(U/2T). (25)

The numerical energy minimization is done as in ref. 12 with

the help of the public domain software ‘‘Surface Evolver’’.31 The

initial triangulated surface is minimized via gradient descent

iterations. To validate our numerical scheme, we take the

following steps to check whether we get minimal energy: (i)

perturb the already minimized vesicle by, e.g., a bending rigidity

change; (ii) minimize the perturbed surface until the relative

energy change is smaller than a small threshold value, say 1%;

(iii) release the perturbation and minimize the surface again. All

the numerical minimization calculations reported in this paper

were characterized by a relative energy change 2|E1 � E2|/(E1 +

E2) < 1% and a relative volume change 2|V1�V2|/(V1 +V2) < 1%

for vesicles without volume constraint, where the subscripts 1

and 2 denote the states before and after the perturbation,

respectively.
x The coloring for the two types of phases as used here are, however,
different from the one used in ref. 12
2.4 Dimensionless parameters

The overall vesicle geometry can be characterized by its average

area A0 and its average volume Vos. It will be convenient to

measure all length scales in units of the vesicle size

R0h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0=4p

p
(26)

and to introduce the reduced volume

vh
Vos

ð4p=3ÞR3
0

� 1: (27)

The size R0 represents the radius of a sphere with area A0 cor-

responding to the limiting value v ¼ 1 for the reduced volume.
6096 | Soft Matter, 2011, 7, 6092–6102
For a phase separated membrane, the total membrane area A0

can be divided up into the area A(a) of all a domains and the area

A(b) of all b domains with A0 ¼ A(a) + A(b). The molecular

composition of the membrane can then be characterized by the

area fraction c(a) of the a domains as defined by

cðaÞh
A

ðaÞ
0

A
ðaÞ
0 þ A

ðbÞ
0

: (28)

The configurational energy or effective ‘‘Hamiltonian’’ of the

vesicle depends on the bending rigidities k(a) and k(b), on the

difference or contrast

DkG h k(a)G � k(b)G (29)

of the Gaussian curvature moduli k(a)G and k(b)G , on the sponta-

neous curvatures m(a) and m(b), and on the line tension l(a,b). In

order to reduce the number of parameters, we will take k(b) as the

basic energy scale and describe the elastic properties in terms of

the dimensionless bending rigidities k(a)/k(b) as well as the

dimensionless difference DkG/k
(b) of the Gaussian curvature

moduli.

Likewise, we will use the basic length scale R0 and the basic

energy scale k(b) to define the dimensionless spontaneous curva-

tures m(a)R0 and m(b)R0 as well as the dimensionless line tension

lh
lða;bÞR0

kðbÞ
: (30)

In the MC simulations, the Boltzmann factor e�H =T depends on

the dimensionless parameters k(i)/T, k(i)G /T, and U/T with the

interaction parameter U as given by eqn (16). In all our simula-

tions, the bending rigidity of the b phase was taken to have the

fixed value k(b) ¼ 10T, as appropriate for a flexible phospholipid

membrane at room temperature, whereas the bending rigidity k(a)

¼ (k(a)/k(b))10T and the contrast DkG ¼ (DkG/k
(b))10T were varied

over a certain range by changing the ratios k(a)/k(b) and DkG/k
(b),

respectively.

The dimensionless interaction parameter U/T determines the

line tension l(a,b) as described by eqn (24) and (25). Most of our

simulations were performed for U ¼ 2Uc. In addition, we also

explored the range 1.2Uc�U� 2Uc. All of theseU-values exceed

the critical value Uc and, thus, correspond to phase separated

membranes.
3 Results and discussion

We follow the notation AB as introduced in ref. 12 to describe

the domain patterns of the phase separated vesicle. The Roman

numeral A ¼ I, II, III,. corresponds to the number of the

relatively rigid a or liquid-orderd (Lo) domains, and the Arabic

subscript B ¼ 1, 2, 3,. denotes the number of the relatively

flexible b or liquid-disordered (Ld) domains.x
3.1 Multiple Ld domains stabilized by bending energy

The simplest case corresponds to vesicles that can freely adapt

their volume and are characterized by vanishing spontaneous
This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c0sm01500h


D
ow

nl
oa

de
d 

by
 M

ax
 P

la
nc

k 
In

st
itu

t f
ur

 K
ol

lo
id

 o
n 

16
 A

ug
us

t 2
01

1
Pu

bl
is

he
d 

on
 2

7 
M

ay
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
01

50
0H

View Online
curvatures as well as by identical Gaussian curvature moduli for

the two types of domains. In this case, the vesicle morphologies

depend only on the area fraction c(a) of the a or liquid-ordered

domains, the bending rigidities k(a) and k(b), as well as on the line

tension l(a,b). The corresponding morphology diagram is shown

in Fig. 2(a) as a function of area fraction c(a) and bending rigidity

ratio k(a)/k(b) for dimensionless line tension l ¼ 1.67. The latter

value of l corresponds to the interaction parameter U ¼ 2Uc as

follows from eqn (24) and eqn (30) with the critical value Uc as

given by eqn (18).

The different morphologies shown in Fig. 2 arise from the

competition between bending rigidities and line tension. For

relatively small values k(a)/k(b) ( 3, the vesicle attains the I1
morphology to minimize the dominant line tension energy

between the two phases. For larger values k(a)/k(b) T 7, one

encounters either the I1 or the II1 morphologies, for which the

rigid a domains are fairly planar to minimize the dominant

bending energy, see the II1 morphology in Fig. 2(b). For inter-

mediate values of k(a)/k(b), vesicles with c(a) < 0.5, for which the

a or liquid-ordered phase corresponds to the minority phase, are

found to attain either I1 or II1 morphologies. Vesicles with c(a) >
Fig. 2 (a) Morphology diagram as a function of membrane composition

c(a) and bending rigidity ratio k(a)/k(b), obtained from Monte Carlo

simulations of vesicles that can freely adapt their volumes. The liquid-

ordered a phase is more rigid than the liquid-disordered b phase. Both the

a and the b domains have vanishing spontaneous curvature, and both

domain types have equal Gaussian curvature moduli. The interaction

parameter isU¼ 2Uc corresponding to the dimensionless line tension l¼
1.67, see eqn (24) and eqn (30). The open circles in the morphology

diagram represent the parameter values for which simulations have been

performed. The transition lines, which separate different morphologies

indicated by different colors, are rough estimates and include those

parameter values for which two stable morphologies have been observed.

The vertical dashed line is related to Fig. 3. The notation for the

morphologies is explained in the text. (b) Snapshots from the Monte

Carlo simulations in (a). The liquid-ordered a phase is shown in light grey

and the liquid-disordered b phase in red.

This journal is ª The Royal Society of Chemistry 2011
0.5, on the other hand, exhibit morphologies with multiple b or

liquid-disordered domains, see the I2, I3 and I4 morphologies in

Fig. 2(b). Very similar morphology diagrams are also found for

smaller line tensions as shown in Figs. S1 and S2y.
For area fraction c(a) < 1/2 and large rigidity k(a) of the more

rigid a phase, the vesicle undergoes a morphological transition

from the I1 morphology with one a domain to the II1 morphol-

ogies with two a domains, see Fig. 2(a). The existence of this

morphological transition can be intuitively understood as

follows. For a very rigid a phase, i.e., for large k(a), the a domain

attains a planar shape. If the area A(a)
0 of the a phase is small

compared to the area A(b)
0 of the b phase, i.e., in the limit of small

c(a), the a phase will form a single, planar domain in order to

minimize the line energy of the ab domain boundary, and the

b phase will form a large, near-spherical cap with a small planar

base provided by the a domain, corresponding to the I1
morphology. The latter morphology will persist as we start to

increase the area A(a)
0 of the planar a domain, but it can do so

only up toA(a)
0 ¼ A(b)

0 or c(a) ¼ 1/2. In the latter case, the b domain

becomes planar as well. For c(a) > 1/2, the I1 morphology is no

longer possible, and the a phase has to form two planar

a domains in order to accommodate the minority b phase. As

a consequence, the vesicle attains the II1 morphology for a very

rigid a phase and c(a) > 1/2. Therefore, the vesicle must undergo

a morphological transition from I1 to II1 as we increase the area

fraction c(a) from c(a) ¼ 0 to c(a) ¼ 1/2. The actual transition point

c(a)
* depends on the line tension l and attains the asymptotic value

c(a)
* z 1/2 in the limit of large l.

The stability of vesicle morphologies with multiple b or liquid-

disordered domains, as displayed in Fig. 3(a), can also be

understood from the competition between the bending rigidities

of the two domains and the line tension of the domain bound-

aries. When the number of the flexible b domains is increased, e.

g., from I1 to I4, the rigid a or liquid-ordered domain can attain

a weakly curved state and lower its bending energy. The

morphology II1 has the largest line tension energy but the

smallest bending energy because of the weakly curved a domains.

As long as the increase in line tension energy arising from an

increased number of b domains does not exceed the decrease of

bending energy, the morphologies with multiple b domains will

be stable. For very large k(a)/k(b), the morphology II1 is most

favorable as mentioned before. The energy minimization in

Fig. 3(b) shows qualitative agreement with the MC morpholog-

ical transition I1 / I2 / I3 / I4 / II1 as increasing bending

rigidity ratio k(a)/k(b). Our explanation for the stability of the

multi-domain morphologies based on the domain geometry is

further confirmed by the energy decomposition in Fig. S3y,
which shows that an increase in the number of b domains

increases the line tension energy and reduces the bending energy,

revealing that the morphologies with multiple b domains are

stabilized by the reduction of bending energy.

For morphologies with multiple b or liquid-disordered

domains such as I3 and I4 in Fig. 3(a), the flexible b domains can

be strongly curved to shorten the length of the domain bound-

aries without leading to a large increase in the bending energy.

For vesicles with small area fraction c(a), for which the rigid a or

liquid-ordered phase represents the minority phase, we do not

observe morphologies with more than two a domains. Indeed, let

us consider a vesicle with three or four a domains. Since these
Soft Matter, 2011, 7, 6092–6102 | 6097
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Fig. 3 (a) Monte Carlo snapshots of vesicles for different bending rigidity ratios k(a)/k(b) corresponding to the vertical dashed line in Fig. 2(a). The

interaction parameter has the valueU¼ 2Uc corresponding to the dimensionless line tension l¼ 1.67, the area fraction c(a) ¼ 0.8, and the vesicle volume

is allowed to adapt freely. The Lo or a phase is shown in light grey and the Ld or b phase in red. (b) Reduced total energy E/8pk(b) for vesicles with

different morphologies as a function of k(a)/k(b) as obtained from energyminimization. The parameters are the same as in (a). Solid lines in different colors

are least-square fits of data points for different morphologies as indicated by the symbol legend. The inset shows the total energies for I3, I4 and II1 as

a function of k(a)/k(b); the morphology I4 is the lowest-energy state for 4.35( k(a)/k(b) ( 4.55 with a maximal energy gap of DEx 0.2k(b) indicated by the

vertical line PQ. The ground states denoted by I1, I2, I3, I4 and II1 are separated by the vertical dashed lines, corresponding to the transition lines between

these morphologies.
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relatively rigid domains cannot bend easily to shorten the

domain boundaries, the increase in line tension energy cannot be

overcompensated by a reduction in bending energy. One might

expect that the bending energy of the majority b phase could be

reduced by having more a domains, but this reduction in

b bending energy is not sufficient in the absence of spontaneous

curvature. In Sec. 3.3, we will show that the introduction of

spontaneous curvature can stabilize such morphologies with

multiple a domains.
3.2 Effect of volume constraint

The volume of lipid vesicles is determined by osmotically active

particles in the aqueous solution. Indeed, these vesicles adapt

their volumes in such a way that the osmotic pressure inside the

vesicles is balanced by the osmotic pressure in the exterior

solution. In Fig. 4(a) and 4(b), we display morphology diagrams

of vesicles with relatively large bending rigidity ratios as a func-

tion of membrane composition and reduced volume v as defined

in eqn (27).
6098 | Soft Matter, 2011, 7, 6092–6102
For v ¼ 1, the vesicles attain spherical shapes and exhibit the

morphology I1, which minimizes the line tension energy. The

reduced volume v represents a useful control parameter since it

can be easily changed by osmotic deflation or inflation of the

vesicles. If one starts with a spherical vesicle and decreases the

reduced volume v for small values of the composition variable

c(a), the vesicle undergoes the morphological transition I1 / II1,

see Fig. 4(a) and 4(b). During this transition, both the rigid

a domain and the flexible b domain change their topologies: the

large a domain splits up into two smaller a domains, which form

two weakly curved caps, whereas the flexible b domain changes

its topology from a cap to a narrow belt along the ‘‘equator’’ of

the vesicle, see Fig. 3(a). For larger values of the composition

variable c(a), the vesicle attains additional morphologies such as

I3 and I4 with more than two flexible b domains. It is interesting

to note that, in the absence of a volume constraint, the corre-

sponding parameter regions of the morphology diagram are

mainly occupied by II1, compare Fig. 2(a).

The multi-domain morphologies I3 and I4 have already been

observed for lipid vesicles, see Fig. 1(b) and 1(d). Gudheti et al.13
This journal is ª The Royal Society of Chemistry 2011
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Fig. 4 Morphology diagrams as a function of membrane composition

c(a) and reduced volume v for interaction parameter U ¼ 2Uc, corre-

sponding to the dimensionless line tension l ¼ 1.67, and bending rigidity

ratio (a) k(a)/k(b) ¼ 5.0 or (b) k(a)/k(b) ¼ 6.0. The open circles, the

morphologies In and II1, as well as the transition lines separating different

morphologies have the same meaning as in Fig. 2.

Fig. 5 Morphology diagram as a function of dimensionless spontaneous

curvature m(b)R0 for the more flexible b phase and of bending rigidity

ratio k(a)/k(b) for vesicles with membrane composition c(a) ¼ 0.8, interac-

tion parameterU¼ 2Uc corresponding to line tension l¼ 1.67, vanishing

spontaneous curvaturem(a) ¼ 0 of the more rigid a phase, and no volume

constraint. The open circles, the morphologies In and II1, as well as the

transition lines separating different morphologies have the same meaning

as in Fig. 2.
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reported the I3 morphology for vesicles consisting of ESM/trans-

DOPC/cis-DOPC/cholesterol for membrane composition

cðLoÞ ¼ 0:57� 0:09 and bending rigidity ratio

kðLoÞ=kðLdÞ z 5� 1:56.6 Veatch et al.11 reported the I4
morphology for the vesicle of 1 : 1 DOPC/DMPC + 30%

cholesterol, where the bending moduli of DOPC and DMPC +

30% cholesterol are 23.1 � 3.5T32 and �100 � 20T,27 respec-

tively. Even though we do not know the exact membrane

composition, the experimental observations agree quite well with

our simulations for vesicles with volume constraint as shown in

Fig. 1(a) and 1(c).

In addition to the parameter values shown in Fig. 4, we have

also performed simulations of vesicles, for which the a or liquid-

ordered phase represented the minority phase and/or which were
This journal is ª The Royal Society of Chemistry 2011
characterized by smaller line tension such as U ¼ 1.2Uc, smaller

bending rigidity ratios 3 � k(a)/k(b) � 4 and different reduced

volumes. We did not observe morphologies such as III1 with

more than two rigid a domains.

3.3 Multi-domain morphologies induced by spontaneous

curvature

In this subsection, we describe the effects of the spontaneous

curvature of the different membrane domains on the multi-

domain morphologies. In order to eliminate one parameter, no

volume constraint will be taken into account here.

A spontaneous curvature of the more flexible b domains alone

leads to the morphology diagram as shown in Fig. 5. For

dimensionless spontaneous curvature m(b)R0 ¼ 0, the morphol-

ogies in this figure are the same as those corresponding to the

vertical dashed line in Fig. 2(a). For more negative spontaneous

curvature, the vesicle exhibits morphologies with a smaller

number of b domains; one example is provided by m(b)R0 ¼ �1.0

and k(a)/k(b) ¼ 5 in Fig. 5, where the vesicle attains the I2 state with

two b domains rather than the I3 state with three such domains.

As the number of b domains is reduced from I4 to I1, these

domains become more weakly curved as previously shown in

Fig. 3(a). In this way, the b domains are able to reduce their

bending energy which would otherwise be increased by the

negative value of the spontaneous curvature m(b)R0.

As one decreases the spontaneous curvature m(b)R0 of the

b domains towards negative values for large rigidity ratio k(a)/k(b),

the vesicle undergoes a morphological transition from the II1
state with a single b domain to the I4 state with four b domains.

In the II1 state, the flexible b phase forms one strongly curved

domain around the ‘‘equator’’ sandwiched in between the two

a domains, see Fig. 3(a). As the spontaneous curvature of the
Soft Matter, 2011, 7, 6092–6102 | 6099
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b domains is decreased towards negative values, this strongly

curved b domain breaks up into four more weakly curved

domains.

We also simulated vesicles, for which the more rigid a domains

had a nonzero spontaneous curvature. For m(a) < 0, the state II1
is most favorable for vesicles with a relatively large rigidity ratio

k(a)/k(b) because the two a domains can then attain weakly curved

shapes. For intermediate bending rigidity ratio, negative m(a) can

also facilitate the formation of morphologies with more

b domains since such a pattern reduces the curvature of the

a domain as shown in Fig. 3(a). For the vesicle with positivem(a),

the multi-domain morphology is not stable because the vesicle

prefers I1 to minimize both the bending energy of the a domain

and the line tension energy.

For vesicles with minority a or liquid-ordered phase, it is

interesting to check whether the spontaneous curvature can

stabilize those morphologies with multiple a domains. Fig. 6

shows the spontaneous curvature effect on the morphology of

a vesicle with minority a phase for different values of the inter-

action parameterU. As illustrated in Fig. 6(b), form(a)R0¼�1.0,

the vesicle assumes the oblate II1 morphology, where the two
Fig. 6 (a) Morphology diagram as a function of dimensionless inter-

action parameter U/Uc and dimensionless spontaneous curvature m(a)R0.

The liquid-ordered a phase represents the minority phase. The vesicle

membrane has composition c(a) ¼ 0.2, bending rigidity ratio k(a)/k(b) ¼ 4.0,

m(b)R0 ¼ 0 and experiences no volume constraint. The open circles and

the transition lines separating different morphologies have the same

meaning as in Fig. 2. For (m(a)R0, U/Uc) ¼ (2.0, 1.2), the vesicle adopts

both II1 and III1 as stable morphologies with the average reduced

volumes 0.86� 0.01 and 0.87� 0.01, respectively. The spacings on the x-

and y-axes are nonuniform. (b) Monte Carlo snapshots for vesicles

simulated along the horizontal dash line in (a) with U ¼ 1.2Uc. The

liquid-disordered b phase is shown in red and the liquid-ordered a phase

in light grey. For the oblate shape II1,oblate and the prolate shape II1,

prolate, the two rigid a domains curve towards the vesicle interior and

exterior, respectively.

6100 | Soft Matter, 2011, 7, 6092–6102
separate a domains curve towards the interior compartment in

order to minimize the bending energy. For m(a)R0 ¼ 1.0, the

a phase prefers to curve towards the exterior compartment and

therefore I1 is most favorable both with respect to the bending

energy and to the line energy. For relatively small line tensions

corresponding to interaction parameters such as U ¼ 1.2Uc, the

vesicle can form the prolate morphology II1 and even III1 with up

to three a domains when increasingm(a). Thus, the increase in line

energy arising from an increased number of domains can be

compensated by the decrease in the bending energy arising from

a decreased difference between the actual curvature and the

spontaneous curvature of the a domains. ForU¼ 1.5Uc andU¼
2Uc, the larger line tensions disfavor the formation of the II1 and

III1 morphologies unless the spontaneous curvature m(a) is

sufficiently large. If the absolute value of m(a) exceeds |m(a)| ¼
1/R0, the rigid a domains will start to bud off from the majority

b phase.
3.4 Multiple Ld domains stabilized by Gaussian curvature

Finally, we address the dependence of the vesicle morphologies

on the Gaussian curvature moduli k(a)G and k(b)G . Because of the

Gauss–Bonnet theorem, these morphologies depend only on the

difference or contrast DkG ¼ k(a)G � k(b)G as defined in eqn (29).

Furthermore, we will again use the bending rigidity k(b) as the

basic energy scale and compare different values for the dimen-

sionless contrast DkG/k
(b).

In Fig. 7(a), we display the morphology diagram of vesicles

with composition c(a) > 1/2 and contrast DkG/k
(b) ¼ 0.8. The

corresponding morphology diagram for vanishing DkG is shown

in Fig. 7(b) for comparison. It is evident here that the
Fig. 7 Morphology diagrams depending on membrane composition c(a)

and bending rigidity ratio k(a)/k(b) for (a) DkG/k
(b) ¼ 0.8 and (b) DkG/k

(b) ¼
0. The vesicles can freely adapt their volumes. The interaction parameter

is U ¼ 2Uc corresponding to the dimensionless line tension l ¼ 1.67. The

notation I5/I6 for (c(a),DkG/k
(b)) ¼ (0.8,6) in (a) indicates that the two

morphologies I5 and I6 are both (meta)stable for the same vesicle. (c)

Monte Carlo snapshots of the morphologies I5 and I6 in (a). The flexible

liquid-disordered b domains are red, the rigid liquid-ordered a domain is

made transparent. The average reduced volumes for the morphologies I5
and I6 are v ¼ 0.90 � 0.01 and v ¼ 0.89 � 0.01, respectively.

This journal is ª The Royal Society of Chemistry 2011
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introduction of positive DkG promotes the formation of

morphologies with multiple b or liquid-disordered domains.

For example, the vesicle adopts I2 for DkG/k
(b) ¼ 0 and I3 for

DkG/k
(b) ¼ 0.8 with c(a) ¼ 0.6, k(a)/k(b) ¼ 4. For the vesicle with

c(a) ¼ 0.8, one can even have I5 and I6 morphologies for k(a)/k(b) ¼
6 and k(a)/k(b) ¼ 7, as in the snapshots of Fig. 7(c). As shown in

Fig. 7(c) as well as Fig. 3(a), the flexible b domains are more

strongly curved than the rigid a or liquid-ordered domains. This

implies that the Gaussian curvature of the b domains is more

positive than the one of the a domains since the b domains curve

outwards. Therefore, such morphologies with multiple

b domains are stabilized by more negative k(b)G . In other words,

the decrease in bending energy of the vesicle by having DkG >

0 can help the vesicle develop even more b domains.

By analogy, one might expect that morphologies with multiple

rigid a or liquid-ordered domains could also be stabilized for

membrane composition c(a) < 1/2 if the Gaussian curvature

modulus of the rigid a phase attains a more negative value. We

simulated such vesicles for different line tensions but did not

observe such a stabilization and, thus, were not able to stabilize

the morphology III1, compare to Fig. 6(b), by only increasing the

contrast of the Gaussian curvature moduli.
4 Conclusion

We have studied the morphologies of thermally fluctuating

vesicles with coexisting a and b or liquid-ordered and liquid-

disordered domains by extensive Monte Carlo simulations. In

order to understand how the competition between the bending

energies of the domains and the line tension energy of the domain

boundaries determines the domain patterns, we constructed the

morphology diagrams of the vesicles as a function of membrane

composition c(a) as defined by eqn (28) and of bending rigidity

ratio k(a)/k(b), as shown in Fig. 2.

If the majority phase was provided by the a or liquid-ordered

phase, we found stable morphologies of vesicles consisting of

a single a domain with three or four b or liquid-disordered

domains, see the MC snapshots in Fig. 1(a) and 1(c). Multi-

domain morphologies with three and four liquid-disordered

domains have also been observed experimentally by optical

microscopy,11,13 the corresponding images agree quite well with

our simulation snapshots, see Fig. 1(b) and 1(d). For these

morphologies, the more flexible liquid-disordered domains have

a relatively large curvature which allows the more rigid liquid-

ordered domain to bend only weakly in order to lower the

bending energy. At the same time, the length of the domain

boundaries does not increase substantially to destabilize such

multi-domain patterns. Energy minimization as in Fig. 3(b) also

shows that the vesicles can have stable morphologies with

multiple liquid-disordered domains as one increases the bending

rigidity ratio k(a)/k(b), which is consistent with the MC findings

shown in Fig. 3(a). The energy decomposition displayed in

Fig. S3y further supports our explanation for the stability of the

multi-domain morphologies.

In addition to the bending rigidities of the membrane domains

and the line tension of the domain boundaries, other system

parameters such as spontaneous curvatures, constraints on the

vesicle volume, and differences in the Gaussian curvature moduli

can facilitate the formation of such morphologies with multiple
This journal is ª The Royal Society of Chemistry 2011
b or liquid-disordered domains as demonstrated in Secs. 3.2–3.4.

In particular, novel morphologies with a stable pattern of up to

six b domains were found if the two domains had different

Gaussian curvature moduli, see Fig. 7(c). One important

conclusion from our study is that these morphologies are even

stable in the presence of thermally-excited fluctuations that

perturb both the vesicle shapes and the domain patterns.

If the majority phase was provided by the b or liquid-disor-

dered phase, we also observed morphologies with multiple rigid

a of liquid-ordered domains for small line tensions and relatively

large spontaneous curvatures of the liquid-ordered phase, see the

II1 and III1 morphologies in Fig. 6(b). One open question

regarding these morphologies with multiple liquid-ordered

domains or ‘‘lipid rafts’’ is to what extent these morphologies

may represent stable equilibrium states. Our simulations indicate

that such patterns of liquid-ordered domains can be stable for

relatively large spontaneous curvatures of these domains and

relatively small line tensions of the domain boundaries.

In our simulations, the material parameters of the membranes,

such as the bending rigidities of the membrane domains and the

differences in the Gaussian curvature moduli, were chosen in

accordance with experimental values, see the ESIy. Therefore,
the different multi-domain morphologies should also be acces-

sible to experiment. Indeed, two of these morphologies, namely

I3 and I4 have already been observed, see Fig. 1, but a systematic

exploration of the morphology diagrams has not been pursued so

far. Presumably the simplest way to explore these morphologies

experimentally would be by changing the vesicle volume via

osmotic deflation or inflation. Indeed, as shown in Fig. 4, the

vesicles can attain five different multi-domain morphologies as

a function of membrane composition c(a) and reduced volume v.

For membrane composition 0.4 ( c(a) ( 0.5, deflation of

a spherical vesicle should lead to three different multi-domain

morphologies corresponding to the sequence I1 / I2 / II1,

which involves two morphological transitions. During the tran-

sition I1 / I2, the liquid-disordered domain splits up into two

such domains. During the transition I2 / II1, the domain

pattern is inverted which strongly affects the vesicle shape, see

Fig. 3(a). For membrane composition 0.65 ( c(a) ( 0.7, defla-

tion of a spherical vesicle can lead to the extended sequence I1 /

I2 / I3 / I4 / II1, which involves even four morphological

transitions. All of these transitions change the topology of the

stable domain patterns, a transformation that should be easy to

detect in the fluorescence microscope.
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