Length-dependent translation of messenger RNA by ribosomes

Angelo Valleriani,1,4 Gong Zhang,2 Apoorva Nagar,1 Zoya Ignatova,2 and Reinhard Lipowsky1
1Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, D-14424 Potsdam, Germany
2University of Potsdam, Institute of Biochemistry and Biology, D-14467 Potsdam, Germany

(AReceived 15 May 2010; published 21 April 2011)

A simple measure for the efficiency of protein synthesis by ribosomes is provided by the steady state amount of protein per messenger RNA (mRNA), the so-called translational ratio, which is proportional to the translation rate. Taking the degradation of mRNA into account, we show theoretically that both the translation rate and the translational ratio decrease with increasing mRNA length, in agreement with available experimental data for the prokaryote Escherichia coli. We also show that, compared to prokaryotes, mRNA degradation in eukaryotes leads to a less rapid decrease of the translational ratio. This finding is consistent with the fact that, compared to prokaryotes, eukaryotes tend to have longer proteins.

DOI: 10.1103/PhysRevE.83.042903 PACS number(s): 87.10.Mn, 87.14.gn, 87.15.A–

Understanding and controlling the different mechanisms that determine the rate of protein synthesis is a fundamental issue both in cell biology and biomedicine [1–4]. On the one hand, the predicted stationary or homeostatic level of proteins under different environmental conditions allows one to estimate the growth rate of the cells and their sensitivity to changes in their environment [5]. On the other hand, an accurate description of the underlying molecular processes allows one to determine the corresponding response time of cells [6] and is therefore a central issue in cell biology.

Degradation of messenger RNA (mRNA) plays an important role in shaping the balance between mRNA and protein molecules. This process follows different pathways in prokaryotic and eukaryotic cells, as illustrated in Fig. 1 and in Ref. [7]. In prokaryotic cells, the mRNA can be degraded cotranslationally, all ribosomes that are on the mRNA at the moment of degradation are lost and the mRNA chains are degraded immediately [8–10]. In eukaryotic cells, the degradation of mRNA proceeds in two steps. First, the initiation region is decapped to prevent the assembly of new ribosomes. Second, those ribosomes that are present on the mRNA at the moment of decapping are allowed to complete the translation [8,11].

We assume here that the process of mRNA degradation is governed by a certain rate ω_d, or equivalently, that any intact mRNA is characterized by a random lifetime U, which is the time until fast degradation in prokaryotes or decapping in eukaryotes. Thus, the time U has a probability density that is given by

$$\phi_U(t) = \omega_d \exp(-\omega_d t).$$

As we shall see, in both prokaryotic and eukaryotic cells, the degradation rate ω_d of mRNA will enter into the expression that determines the rate by which proteins are synthesized.

One relatively simple and successful theory that relates mRNA and protein abundance is based on flux balance relations that include both transcription and translation [1]. For fixed external conditions, an active gene is steadily transcribed with a certain transcription rate ω_{on}. This process generates several copies of mRNA. Each mRNA is then steadily translated into a protein with a certain synthetic rate ω_p, defined here as the mean number of protein molecules synthesized per mRNA per unit time [1]. Furthermore, both the proteins and the mRNA are degraded with rates ω_p and ω_d, respectively [12]. Since all these processes are stochastic in nature, the number of mRNA chains and the number of proteins in the cell will, in general, fluctuate [13–15]. Nevertheless, the average numbers N_r and N_p of mRNA and proteins that arise from a certain gene are governed by the simple equations

$$\frac{dN_r}{dt} = \omega_{\text{on}} - \omega_d N_r,$$

$$\frac{dN_p}{dt} = \omega_p N_r - \omega_d N_p,$$

which determine N_r and N_p as a function of time t. Starting from any initial condition, the average numbers N_r and N_p eventually attain their steady-state values

$$N_r^\text{st} = \frac{\omega_{\text{on}}}{\omega_d}$$

and

$$N_p^\text{st} = \frac{\omega_p \omega_{\text{on}}}{\omega_d \omega_p}.$$

The ratio

$$r = \frac{N_p^\text{st}}{N_r^\text{st}} = \frac{\omega_p}{\omega_d},$$

called the translational ratio, is a simple measurable quantity that depends only on the translation rate ω_p and the protein degradation rate ω_d. In the theories based on Eq. (2), it has been convenient to consider rates that are independent of each other. In this Brief Report, we will show that the rate of translation ω_p is determined by the mRNA degradation process and by the time scale of translation, which is, in turn, proportional to the length of the mRNA.

Schematically, the process of translation can be summarized as follows: Ribosomes enter the coding region with a certain rate ω_{on}, will pass this region with a mean velocity v and will leave the end of the coding region instantaneously. During their walk through the coding region, the ribosomes may prematurely drop off from the chain with a rate ω_{off}. The number of ribosomes on a single mRNA molecule is therefore a stochastic variable. Assuming a constant density of ribosomes in the cell and a low density of ribosomes on each mRNA, the average ribosome number $M(t)$ on a given mRNA obeys the deterministic equation [16]

$$\frac{dM}{dt} = \omega_{\text{on}} - \omega_{\text{off}} M \quad \text{for} \quad t < t_L = L/v,$$

where L is the length of the mRNA chain and v is the mean velocity of the ribosomes. The solution of this equation with the initial condition $M(0) = 0$ is

$$M(t) = \frac{\omega_{\text{on}}}{\omega_{\text{off}}} \left(1 - \exp(-\omega_{\text{off}} t)\right).$$

If ω_{off} is large enough, the ribosome density is sufficient to prevent premature termination of protein synthesis.

Moreover, the rate of translation ω_p is a function of the number of ribosomes on the mRNA, which is in turn a function of the mRNA degradation rate ω_d. This leads to a feedback mechanism that regulates the translation rate and, consequently, the protein synthesis rate. In eukaryotes, the mRNA degradation rate is typically much larger than in prokaryotes, and the translational ratio is therefore much lower.

References

2. University of Potsdam, Institute of Biochemistry and Biology, D-14467 Potsdam, Germany

3. Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, D-14424 Potsdam, Germany

4. angelo.valleriani@mpikg.mpg.de

5. DOI: 10.1103/PhysRevE.83.042903 PACS number(s): 87.10.Mn, 87.14.gn, 87.15.A–

©2011 American Physical Society
until the previously loaded ribosomes have completed their protein synthesis, prevents the loading of new ribosomes but the mRNA is not degraded. (b) In prokaryotes, mRNA degradation aborts translation and protein synthesis for all loaded ribosomes. (c) In eukaryotes, decapping prevents the loading of new ribosomes but the mRNA is not degraded until the previously loaded ribosomes have completed their protein synthesis and are released from the 3' end of the mRNA. The arrow indicates the evolution with time t.

where the run time t_L is the time needed by the first ribosome to reach the end of the chain. For $t \geq t_L$, the number M of ribosomes attains the constant value M_L, which is the average number of ribosomes in the steady state [16]. Since the drop-off rate ω_{off} is very small [17], we will henceforth consider only the limit of zero ω_{off}. The solution of Eq. (5), with initial condition $M(0) = 0$ is then given by

$$M(t) = \begin{cases} \omega_{\text{on}} t & \text{for } t < t_L, \\ M_L = \omega_{\text{on}} t_L & \text{for } t \geq t_L. \end{cases}$$

The relations (6) describe the mean number of ribosomes on a single mRNA starting from the initial time $t = 0$, at which ribosomes can initiate translation.

Translational ratio in prokaryotic cells. Inspection of Eq. (6) shows that two mutually exclusive events can occur: Either the mRNA is degraded before the first ribosome reaches the end of the coding region or it is degraded after steady state with $M(t) = M_L$ has been established. In the first case, there are no proteins produced from the mRNA. In the second case, the number of produced proteins depends on the excess life time $t - t_L^{\text{pro}}$ of the mRNA, where $t_L^{\text{pro}} = L/v^{\text{pro}}$ and v^{pro} is the average velocity of ribosomes in prokaryotic cells [7].

If the ribosomal traffic on the mRNA has reached the stationary state, the number of proteins produced per unit time is equal to the number of ribosomes leaving the chain per unit of time, which is given by the ribosomal current or flux M_L/v^{pro}. Thus, to obtain the number of ribosomes that are able to successfully complete the translation, we need to multiply the ribosomal flux by the random excess lifetime $t - t_L^{\text{pro}}$. The translational yield η, defined as the mean number of proteins per transcript, is thus given by

$$\eta^{\text{pro}} = \frac{M_L}{t_L^{\text{pro}}} \int_{t_L^{\text{pro}}}^{\infty} dt \left(t - t_L^{\text{pro}} \right) \phi_U(t),$$

which, after substituting Eq. (1) and taking the limit of zero ω_{off}, is described by the simple expression

$$\eta^{\text{pro}} = \frac{\omega_{\text{on}}}{\omega_{\text{pro}}} \exp \left(-\omega_{\text{pro}} t_L^{\text{pro}} \right),$$

which shows that longer mRNAs tend to produce fewer proteins. To compute the translation rate, therefore, one has to compute the average of the number of ribosomes that complete translation divided by the lifetime of the transcript. Taking Eq. (1) into account in the limit of zero ω_{off}, we obtain the translation rate

$$\omega^{\text{pro}}_{\text{on}} = \frac{\omega_{\text{on}}}{\omega_{\text{pro}}} \int_{t_L^{\text{pro}}}^{\infty} dt \left(t - t_L^{\text{pro}} \right) \omega_{\text{pro}} \exp \left(-\omega_{\text{pro}} t \right),$$

which is a decreasing function of L and contains an explicit dependence on the degradation rate ω_{on}. Finally, after inserting Eq. (9) into Eq. (4) we can determine the dependence of the translational ratio on the values of the rates, including the mRNA degradation rate. Thus, for a prokaryotic cell the translational ratio (4) is given by

$$r^{\text{pro}} = \frac{\omega^{\text{pro}}_{\text{on}}}{\omega_{\text{pro}}} \int_{t_L^{\text{pro}}}^{\infty} dt \left(t - t_L^{\text{pro}} \right) \omega_{\text{pro}} \exp \left(-\omega_{\text{pro}} t \right),$$

which has the property to decrease linearly for small L and exponentially for large L. This means that the larger L, the larger the pool of mRNA molecules that are needed to maintain a certain level of protein abundance.

We have compared Eq. (10) with experimental data from Ref. [18] and shown [13,27] that the translational yield η^{eu} for the eukaryotic cell is defined as the mean number of proteins per transcript, is thus given by

$$\eta^{\text{eu}} = \frac{M_L}{t_L^{\text{eu}}} \int_{t_L^{\text{eu}}}^{\infty} dt \left(t - t_L^{\text{eu}} \right) \phi_U(t),$$

where the function $\phi_U(t)$ is a decreasing function of t. Finally, after inserting Eq. (9) into Eq. (4) we can determine the dependence of the translational ratio on the values of the rates, including the mRNA degradation rate. Thus, for a prokaryotic cell the translational ratio (4) is given by

$$r^{\text{eu}} = \frac{\omega^{\text{eu}}_{\text{on}}}{\omega_{\text{eu}}} \int_{t_L^{\text{eu}}}^{\infty} dt \left(t - t_L^{\text{eu}} \right) \omega_{\text{eu}} \exp \left(-\omega_{\text{eu}} t \right),$$

which has the property to decrease linearly for small L and exponentially for large L. This means that the larger L, the larger the pool of mRNA molecules that are needed to maintain a certain level of protein abundance.
A comparison with Eq. (8) shows how mRNA degradation contributes to the remarkable differences between prokaryotic and eukaryotic cells.

The translation rate ω_{1u}^{eu} for eukaryotes is given by the sum of two contributions. Namely, the one arising from chains that have been decapped before reaching steady state (i.e., before time t_L^{eu}) and the other deriving from chains that have been decapped after having reached steady-state ribosomal loading [7]. The computation of these two contributions leads to

$$\omega_{1u}^{eu} = \omega_{on} \int_0^\infty dt \frac{t}{t + t_L^{eu}} \omega_r \exp(-\omega_r t),$$

in the limit of zero ω_{off}. If we turn now our attention back to Eq. (4), we find that the translational ratio for eukaryotes is given by

$$r_{eu} = \frac{\omega_{on}}{\omega_p} \int_0^\infty dt \frac{t}{t + t_L^{eu}} \omega_r \exp(-\omega_r t),$$

which predicts a decrease of the translational ratio as a function of the transcript length L for eukaryotes. Our analysis of the data in Ref. [18] for the yeast S. cerevisiae shows that there is a significant negative correlation between translational ratio r_{eu} and mRNA length L also for this organism (see Ref. [7]). If the velocities of ribosomes in prokaryotes and eukaryotes were identical (i.e., for $v_{pro} = v_{eu} = v$) the expression (13) would imply

$$r_{pro} = \exp(-\omega_{r} t_L) r_{eu}.$$

Since $v_{pro} > v_{eu}$ [19,26] the prokaryotic translational ratio exceeds the eukaryotic one at small lengths L, while the exponential decrease of r_{pro} leads to the opposite ordering at large L. The differences between the prokaryotic and the eukaryotic translational ratio r_{pro} and r_{eu} are illustrated in Fig. 3, where we consider a class of genes for which the rates ω_p and ω_r are the same. The translational ratio for the prokaryotic degradation is similar to the ratio for the eukaryotic degradation up to a mRNA length of about 1000 codons, if we take into account that the velocity of translation in eukaryotes is about one half of that in prokaryotes [19,26]. On the other hand, for larger mRNA length, prokaryotic translation becomes much less efficient (Fig. 3). Thus, the different degradation mechanism allows eukaryotes to considerably decrease the translation velocity while keeping the same translational ratio as prokaryotes for short mRNAs and have a better ratio for long mRNAs. This allows eukaryotic cells to perform a more accurate translation process [28] for long proteins [29,30].

In summary, our theory predicts (i) that the process of mRNA degradation leads to a strong dependence of the translational ratio on the length L of the mRNA and (ii) that this L dependence shows marked differences between prokaryotic
and eukaryotic cells, see Fig. 3. The latter differences reflect the distinct degradation mechanisms for these two types of cells as illustrated in Fig. 1. We also compared the predictions of our theory for prokaryotes with experimental data for E. coli, see Fig. 2. In addition, we find that our prediction for eukaryotes is in qualitative agreement with the data for S. cerevisiae [7,18] and for fission yeast in Ref. [31].

As shown in Fig. 3, the decrease of the translational ratio with the mRNA length is found to be faster in prokaryotic cells compared to eukaryotic cells. This difference is consistent with the observation that proteins in eukaryotic cells are on average longer than those in prokaryotic ones. Thus, our theory implies that this larger size of the eukaryotic proteins is facilitated by a more parsimonious use of the transcriptional resources.

Acknowledgment. A.N. was financially supported by GoFORSYS; Z.I. was supported by the DFG (IG 73/10-1). The illustrations were prepared by Susann Valleriani.

[12] For simplicity, the degradation rate \(\omega_r \) is taken to be constant and independent of length \(L \). An increasing degradation rate with increasing \(L \), as discussed in [20,21,32] would enhance the effects described here but does not significantly change our results.