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Sequences of phase transitions in Ising models on correlated networks
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Using the generic example of Ising spins on scale-free networks, we demonstrate that degree-degree correlations
can induce a large number of thermodynamically stable states in networks that otherwise exhibit only the
two completely ordered states. The additional stable states are related to the layered network structure. As
one increases the temperature, a cascade of first-order phase transitions is found, at which some layers of
the network become disordered, while others remain ordered. Negative degree-degree correlations are found
to stabilize ordered layers against thermal fluctuations. Positively correlated networks can exhibit an infinite
number of ground states and phase transitions, while in negatively correlated networks both numbers are
finite.
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I. INTRODUCTION

A vast variety of systems can be described as networks of
interacting units that evolve with time. In the last decade, many
universal characteristics in the topology of such networks have
been revealed; important examples include degree distribu-
tions, degree-degree correlations, and community structures
[1]. A key question of current research in the field of complex
networks is how the structure of networks is related to
the properties of dynamical processes that take place on
them.

An important class of dynamical processes with numerous
applications are pairwise-interacting two-state systems. The
paradigmatic model of such systems is the Ising model. It can
be viewed as a simple dynamical system, which describes, e.g.,
the process of opinion formation [2–4]. In many applications,
thermodynamic properties, such as the number of stable
patterns and their robustness against thermal fluctuations,
are of great interest, since they can often be identified
with relevant states of the underlying system. Furthermore,
Ising models are equivalent to maximum entropy models
for the average values and correlations of binary variables
as used, e.g., for the activity patterns in neural networks
[5].

Ising models have been studied for many years on different
topologies, from regular lattices in the classical model to recent
studies on complex networks; see [6] for a comprehensive
overview. The randomness of the connectivity in networks
generally favors globally ordered dynamical states [2,7]. Net-
works with a broad degree distribution and without correlations
in the degrees of adjacent vertices remain in the ordered phase
for all finite temperatures [8].

In this paper, we study the general question of how local
ordering can be induced in networks that usually only show
global ordering. In particular, we demonstrate that degree-
degree correlations can lead to a large number of thermody-
namically stable states with local ordering. We characterize
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these states in terms of the underlying network structure and
determine their total number. Further, we show that correlated
networks exhibit a sequence of phase transitions, at which
some parts of the network become disordered, while others
remain in the ordered phase; see Fig. 1.

II. NETWORK STRUCTURE

We consider scale-free networks with their vertex degrees
k characterized by the degree distribution

P (k) = 1

Ak−γ for k0 � k � kmax , (1)

with the normalization constant A ≡ ∑
k k−γ . The structural

parameters of these networks are the size N , the exponent
γ of the degree distribution, and the lower cutoff k0. We

use the so-called natural cutoff kmax = min(N − 1,k0N
1

γ−1 )
[9]. In general, the degree distribution does not completely
describe the structure of a network, since it may have
correlations in the degrees of adjacent vertices [10]. Networks
are called assortative or positively correlated if vertices
with similar degree are preferably connected to each other.
Networks are called dissortative or negatively correlated if
vertices with high degree are linked to vertices with low
degree.

Several measures have been proposed to describe the
correlations of a given network [10–13]. In this work, we
use a rewiring scheme from [14]. Starting from uncorrelated
networks as obtained from the configuration model [15],
the algorithm allows for the gradual increase of positive or
negative correlations: In each step of the iterative algorithm,
two edges with four vertices at their ends are chosen at
random. Rewiring the two edges such that the two vertices
with the highest degree are connected leads to a more
assortative network. Connecting the vertex with the highest
degree to the vertex with the lowest degree leads to a
more dissortative network. In this work we consider only
simple networks, so we check at every step whether the
new connections are allowed, and return to the previous
configuration otherwise. Repeated iteration of this procedure
eventually leads to asymptotic network configurations with
maximal correlations. As shown in [13], these networks exhibit
a number of distinctive and well-defined features. The key
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FIG. 1. (Color) (a) Sequence of transition temperatures T∗ for
maximally correlated networks. The assortative case (top sequence)
exhibits an infinite number of equidistant transition temperatures,
while this number is finite in the dissortative case (bottom sequence).
(b),(c) Snapshots of Monte Carlo simulations on a network with
N = 210 vertices and a scale-free degree distribution as in (1) with
γ = 2.5, k0 = 6, and (b) assortative or (c) dissortative correlations.
Each column parallel to the y axis shows the spin values {σi} of all the
vertices in the network. The vertices are ordered according to their
degree, from the k0 vertices at the top to the kmax vertex at the bottom.
Spin-up and spin-down states are shown in red and blue, respectively.
As the temperature increases, one after another the ordered layers
become disordered.

features that are important for the present study are the
following:

Assortative networks are characterized by pronounced
layers of vertices in which vertices are mostly connected
to vertices of the same degree. These layers correspond to
square regions in the adjacency matrix; see Fig. 2. Since
scale-free networks are characterized by the presence of a
relatively small number of vertices with high degree, there is
a certain degree ks such that vertices with degree k � ks are
essentially saturated with vertices of the same degree whereas

vertices with degree k > ks are not able to saturate all of their
edges by connecting them only to other vertices of the same
degree, simply because the number of such vertices in the
network is too small. The high-degree vertices with k > ks

therefore form a large cluster that is connected by the hubs.
The degree ks is directly visible in the average nearest neighbor
degree KNN(k) of the k vertices, which exhibits an essentially
linear k dependence with Knn(k) ≈ k for k � ks, see Fig. 5 in
Ref. [13].

By comparing the total number of edges emanating from all
vertices with a certain degree k with the available vertices of
degree k, one can derive an analytical expression for the degree
ks. In the asymptotic limit of totally assortative networks,
for which the layers of vertices with degree k � ks are
completely separated from the rest of the network, ks is given
by [13]

ks = k
(γ−1)/(γ+1)
0 (γ − 1)1/(γ+1)

(
3γ

2γ − 1

)1/(2−γ )

N1/(γ+1).

(2)

The low-degree vertices with degree k � ks form monolayers
that consist of vertices with a single degree. The total number
Nmono of these monolayers is given by the number of all degrees
smaller than or equal to ks:

Nmono ≡ ks − k0 + 1. (3)

Comparing with Eq. (2) we see that the number of such layers
increases with network size N .

Dissortative networks also exhibit a pronounced layered
structure. As correlations become more and more negative,
a number of well-separated bilayers emerges that are nested
around each other and around a central cluster of degree kce;1

see Fig. 2. Each bilayer consists of all low-degree vertices with
a single degree k < kce on one side and all vertices within a
range of high degrees on the other side.

1The degree kce of the central cluster was denoted by kme in Ref. [13].

maximally
dissortative uncorrelated maximally

assortative

bilayers
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FIG. 2. (Color) Different correlation profiles of a scale-free network with N = 210, γ = 2.5, and k0 = 6 as provided by its ordered
adjacency matrices A. The matrices have N × N entries Aij , with Aij = 1 (red) if the vertices i and j are connected and Aij = 0
(white) otherwise. The vertices are arranged according to their degree k with k0 < k1 < · · · < kmax. The black and white bars at
the left and upper boundary have a length proportional to the number of vertices with a certain degree. The square regions in maximally
assortative networks correspond to monolayers of vertices with a certain degree k � ks that are connected only to other vertices of the same
degree. The vertices with degree k > ks form a big component that is connected via the hubs. Maximally dissortative networks consist of
bilayers, where all k vertices of the low-degree side are connected to a range of high-degree vertices. The degree kce belongs to the central
cluster around which the bilayers are nested and therefore determines their total number.
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The value of kce can be computed using the condition that
the total number of edges emanating from all vertices with k <

kce must equal the total number of edges attached to vertices
with k > kce:

kce∑
k=k0

NP (k)k =
kmax∑

k=kce

NP (k)k. (4)

Solving Eq. (4) in the limit of large and maximally dissortative
networks, we find that the degree kce becomes independent of
N and attains the asymptotic value [16]

kce ≈ k∞
ce ≡ 21/(γ−2)k0. (5)

The total number of bilayers Nbi in the network is simply
given by the number of degrees smaller than kce. Contrary to
the assortative case, this number is bounded from above and
satisfies

Nbi � max(Nbi) = k∞
ce − k0. (6)

III. DYNAMICS

Each vertex i of the network is occupied by an Ising spin
σi = ±1. We study the standard Ising model as defined by the
configurational energy

H = −J
∑
NN

σiσj , (7)

with uniform ferromagnetic interactions J > 0 between con-
nected vertices and without external magnetic field. The sum
in (7) runs over all pairs of nearest neighbors. The pattern {σi}
of all spins σi evolves according to the Glauber update [17]:
At each Monte Carlo step, a spin i is chosen at random and its
value σi changed to −σi with the probability P (σi → −σi) ≡
1/[1 + exp(2�H/kBT )], where �H = H+ − H− denotes the
energy difference of the two states with the spin being in
either state σi or −σi . One Monte Carlo sweep consists of
the sequential update of N randomly chosen vertices and
defines the macroscopic time step �t . At zero temperature,
the Glauber update rule is equivalent to the so-called majority
rule with random update [2–4].

IV. THE GROUND STATES AT ZERO TEMPERATURE

As shown in [2], uncorrelated networks exhibit only two
stable fixed points which correspond to the two completely
ordered states. The absolute value of the magnetization per
spin as defined by |m| = | 1

N

∑N
i=1 σi | then has the value

|m| = 1. In contrast, the strongly correlated networks in Fig. 3
show additional fixed points with |m| �= 1. As demonstrated
in [16] for the special case of parallel update of all spins and
dissortative networks, this behavior is closely related to the
layered structure of the underlying networks which becomes
more and more pronounced as correlations increase. Each
individual layer is ordered locally, with all its vertices being in
the same state. Figure 3 shows that different layers can exhibit
different local ordering. In the limit of maximally correlated
and infinitely large networks the layers are expected to separate
completely and the network then falls apart into disconnected
components. In this limit the observed fixed points with local
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FIG. 3. (Color) Time evolution of three spin patterns {σi} at
zero temperature on (a) maximally assortative and (b) maximally
dissortative networks with N = 210, γ = 2.5, and k0 = 6. Time t is
measured in Monte Carlo sweeps. As in Fig. 1, each column parallel
to the y axis shows the spin values {σi} of all vertices, ordered by their
degree. The initial configurations at t = 0 are random. Both networks
in (a) and (b) exhibit many ground states with locally ordered layers.

ordering become true global ground states. Their total number
Ng is then simply given by all possible combinations of the
local states of Nl layers,

lnNg = Nl ln 2 . (8)

For finite networks, Eq. (8) provides an upper bound for the
total number of fixed points. Note that these fixed points
correspond to real ground states in the thermodynamic limit;
they are therefore qualitatively different from metastable states
observed for Ising models on square and cubic lattices [18,19].
Note also that, for random sequential (or asynchronous) update
as used here, the long time dynamics is always governed by
fixed points and cannot lead to limit cycles, in contrast to
parallel (or synchronous) update as used in Ref. [16], where a
large number of blinkers or two-cycles was found in addition
to fixed points.

Assortative networks consist of Nmono low-degree monolay-
ers and the cluster of all remaining vertices; the total number
of layers is therefore given by Nl = Nmono + 1. Dissortative
networks consist of Nbi bilayers plus the central cluster with
degree kce, so the total number of layers is Nl = Nbi + 1.
Note that the number of ground states behaves very differ-
ently for assortative and dissortative networks. According
to Eqs. (5) and (6) the number of layers and subsequently
Ng attain a constant value for large dissortative networks.
In assortative networks, on the other hand, the number of
layers in (3) and therefore Ng grow continuously with network
size.

V. PROPERTIES AT FINITE TEMPERATURE

Correlated networks exhibit a heterogeneous layered struc-
ture, where the individual layers vary greatly in the number
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of vertices they contain and in their internal connectivity. We
therefore expect that the individual layers of the network also
behave differently when temperature is introduced. Figure 1
shows snapshots of the spin patterns {σi} of maximally
correlated networks for increasing temperatures. At T = 0,
all individual layers are locally ordered. When temperature is
increased, we see that one after another the ordered layers
become disordered. In the assortative network depicted in
Fig. 1(a) the low-degree layers are the first to undergo such a
transition as temperature increases. In the dissortative network
in Fig. 1(b) we see the opposite. Here, the outer bilayers are
more stable against thermal fluctuations.

For a more detailed analysis of the temperature-driven
transition from order to disorder, we consider the Binder
cumulant [20]

Cb(T ,k,N ) ≡ 1 − 〈M4〉
3〈M2〉2

. (9)

The nth moment of the magnetization M is computed
by 〈Mn〉 = 1

s

∑s
i=1 Mn

i , where the average is taken over s

independent simulations. The Binder cumulant can be used to
determine the transition temperature T∗ by plotting CB(T ,k,N )
for different system sizes N as a function of temperature. The
transition temperature T∗ is given by the temperature of the
intersection point of the different curves, and the shape of
these curves provides additional insight into the order of the
transition [21].

According to the previous finding that the different layers
of the system become disordered at different temperatures,
we analyzed the subsets of all vertices of a single degree k

separately. In assortative networks, these subsets correspond
to a low-degree monolayer, in dissortative networks to the
low-degree part of a bilayer. Figure 4 shows examples for the
Binder cumulant as a function of temperature, plots for other
k layers are qualitatively similar.

Figure 5 shows the transition temperatures T∗(k) for the dif-
ferent k layers, as determined from the corresponding Binder
cumulant. Curves for different network sizes intersect at a
common temperature, indicating clearly a temperature-driven
phase transition. These results can be understood using the
mean-field theory in Ref. [8], according to which the transition
temperature scales as T∗ ∼ 〈k2〉/〈k〉. For homogeneous
k layers in assortative networks, this expression leads to
〈k2〉/〈k〉 = k, which implies a linear dependence of T∗ on k: As
temperature increases, a sequence of transition temperatures
T∗(k) appears, at which the monolayers undergo subsequent
transitions into the disordered phase, beginning with the k0

layer.
The vertices of the bilayers in dissortative networks, on

the other hand, are highly inhomogeneous in their degrees
and 〈k2〉/〈k〉 decreases with k. This is consistent with the
decrease of T∗ as k increases for the dissortative case in
Fig. 5. In effect, the inner parts of the nested bilayer
structure around kce are the first to undergo a transition
into the disordered phase as the temperature increases.
Note that the heterogeneity of the vertex degrees within
the outer bilayers strongly enhances the stability of dis-
sortative networks against thermal fluctuations: The transi-
tion temperatures are much larger than those of assortative
networks.
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FIG. 4. (Color) Binder cumulant CB as a function of temper-
ature T for maximally correlated networks of different sizes N ,
γ = 2.5, and k0 = 6. (a) The k = 6 layer of an assortative network
and (b) the k = 11 layer of a dissortative network. Each data point is
an average over 100 networks and 1000 random initial configurations
for each network. The temperature at which the curves for different
network sizes N intersect provides an estimate of the transition
temperature T∗.

Finally, we address the nature of the individual phase
transitions. The plots of the Binder cumulant in Fig 4 exhibit
minima for temperatures slightly above T∗ that become
more pronounced and whose position approaches T∗ with
growing network size. These features are typical for first-order
phase transitions [21]. Because of finite size effects, it is
difficult to observe the discontinuity at T∗ directly. To provide
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FIG. 5. (Color online) Transition temperatures in units of J/kB

of the individual k layers for maximally correlated networks with γ =
2.5 and k0 = 6 as obtained from the intersections of the corresponding
Binder cumulants.
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FIG. 6. (Color online) The distribution P (|m|) of the absolute values |m| of the magnetization for (a) the k = 7 layer of an assortative
network and (b) the k = 8 layer of a dissortative network for different temperatures close to the critical temperature T∗ � 5.75 and T∗ � 34,
respectively. The remaining network parameters are N = 216, γ = 2.5, and k0 = 6. All data points are averages over 1000 random initial
configurations. Both temperature trajectories clearly show the emergence of a second peak, indicating a metastable state, and thus a first-order
phase transition.

further evidence for first-order transitions, we analyzed the
distribution P (|m|) of the absolute values of the magnetization
for different temperatures; see Fig. 6. For both assortative
and dissortative layers, the distributions around T∗ develop
a second peak, indicating the existence of metastable states.
We also observed hysteresis in |m|, when T∗ is crossed from
above and from below; see Fig. 7. We performed additional
simulations on random networks for which all vertices had the
same degree k, for different values of k and different network
sizes. The latter networks showed no negative values in CB(T ),
no double-peaked distributions P (|m|), and no hysteresis. We

conclude that the coupling between adjacent layers is crucial
for the details of the phase transition and that adjacent layers
are not completely separated but remain connected by a small
number of edges. Because of this overlap the vertices of one
layer receive input not only from within the layer, but also from
adjacent layers. Generally, this input can be different from the
spin value of the locally ordered layer and thus be regarded
as an effective small external field, acting on a fraction of
spins. This situation is similar to the bimodal random-field
Ising model, for which a first-order phase transition has been
discussed previously [22].
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FIG. 7. (Color online) Absolute value of the magnetization |m|
as a function of temperature for (a) the k = 7 layer of an assortative
network and (b) the k = 10 layer of a dissortative network. The
remaining network parameters are N = 218, γ = 2.5, and k0 = 6. At
each temperature, ten Monte Carlo sweeps were performed before
measuring |m| and proceeding to the next adjacent temperature. The
values of the critical temperatures are given by T∗ � 5.75 in (a) and
T∗ � 25.2 in (b).

VI. DISCUSSION

We have shown that degree-degree correlations give rise
to a large number of stable dynamical patterns with local
ordering in networks that only exhibit global ordering when
no correlations are present.

A detailed analysis of the resulting network structure
provides analytical bounds for the total number of ground
states, as well as estimates for the transition temperatures
where the local ordering is destroyed. Interestingly, we
find very different behavior for assortative and dissortative
networks. Dissortative networks exhibit a lower complexity
in terms of the number of possible stable patterns, but at
the same time their patterns are more stable against thermal
fluctuations. These structural and dynamical properties are
generic and robust. We have found rather similar properties
for Ising models with more complex interactions, for systems
with more than two degrees of freedom as described, e.g.,
by Potts models, and for networks with other types of degree
distribution that are sufficiently broad to allow the formation
a several layers of vertices.
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