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Motivated by recent experiments on biomimetic membranes exposed to several aqueous phases, we

theoretically study the morphology of a membrane in contact with a liquid droplet formed via aqueous

phase separation. We concentrate on membranes with negligible spontaneous curvature. At small

droplet volumes, bending energy dominates and the droplet is only partially wrapped by the membrane.

At large volumes, this configuration can become unstable and undergo a discontinuous transition to

a state in which the droplet is (almost) completely wrapped by the membrane. A morphology diagram,

showing the parameter region where such budding transition occurs, is constructed as a function of the

membrane tension and the intrinsic contact angle of the liquid with the membrane. The effects of

spontaneous curvature are discussed qualitatively.
1 Introduction

Recently, biomimetic membranes exposed to several aqueous

phases have been introduced experimentally.1–4 They are found

to exhibit a number of interesting and surprising phenomena,

such as partial to complete wetting transitions,1 budding,2 and

membrane tube formation,3 which are not yet fully understood.

The origin of these diverse phenomena is the competition

between the bending rigidity of the membrane and the interfacial

tensions of the participating phases. Essentially, we are dealing

with wetting phenomena on surfaces which are flexible and can

attain many different morphologies.

A particularly interesting process we shall focus on here is

droplet-induced budding, which represents a morphological

transition from a state where the liquid droplet is partially

wrapped by the membrane to a state where the droplet is almost

completely wrapped by the membrane. The resulting bud is

connected to the original membrane by a small neck, as shown in

Fig. 1.

Budding is an important and frequent cellular process. For

example, it represents an important step during endo- and

exocytosis of all membranes. Endocytosis leads to the formation

of transport vesicles,5 which allow communication and transport

of biomolecules between different organelles. Likewise, budding

also occurs during viral replication processes.6 In addition, there

have been proposals for using synthetic membranes for techno-

logical applications, e.g. refs 7–9. In such cases, it is often

desirable to mimic real cellular processes, including budding, as

the modus operandi. This is a particularly promising approach in

the context of microfluidics, the miniaturization of fluidic

operations.
Theory & Biosystems, Max Planck Institute of Colloids and Interfaces,
14424 Potsdam, Germany. E-mail: halim@mpikg.mpg.de; lipowsky@
mpikg.mpg.de

6914 | Soft Matter, 2011, 7, 6914–6919
Given the relevance of budding for biological and biomimetic

systems, it is important to understand its possible mechanisms.

Budding can be induced by intramembrane domains, as first

predicted theoretically,10,11 and confirmed experimentally by

optical microscopy.12–16 The budding process then depends on

the elastic properties of the membrane domains and on the line

tension of the domain boundary. For biological membranes, the

domains may contain assemblies of proteins,17,18 which are

inserted into the membrane with a preferred orientation and,

thus, induce a spontaneous curvature of the domain.

In this article, we consider a novel budding mechanism where

the driving force is the interfacial tension between the aqueous

phases, see Fig. 1. Droplet-induced budding is somewhat similar

to the encapsulation of solid or rigid particles, to which the

membrane adheres.19–21 However, in contrast to such particles,

the liquid droplets considered here change their shape during the

budding process. While such a budding phenomenon has been

reported experimentally,2 there is no detailed theoretical analysis

yet. It is our aim here to shed light on this new budding mech-

anism. In particular, we address the required conditions for

budding to occur and whether the transition is continuous or

discontinuous. We shall focus on the limiting, yet instructive,

case for which the bud size is small compared to the original
Fig. 1 Droplet-induced budding transition: The membrane separates

the exterior aqueous phase g from the two coexisting interior aqueous

phases a and b. The a droplet partially wets the membrane.
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membrane area and the membrane spontaneous curvature is

negligible. Our calculations show that for a sufficiently low

membrane tension, there is a critical droplet volume beyond

which the partially wrapped configuration is unstable and a bud

is formed. How low the membrane tension must be for a budding

transition to occur depends on the wetting properties of the

liquid on the membrane. This dependence can be summarized in

a morphology diagram. Finally, we discuss how the membrane

spontaneous curvature may modify the budding transition.
2 Theoretical description

The starting point of our calculation is the theory described in

ref. 22 for membranes and vesicles in contact with two aqueous

phases. Here, we consider the geometry shown in Fig. 2. The

total energy E of the latter system has several contributions.

First, it contains a term that depends on the volume of the liquid

droplet Va and its pressure difference Pga h Pg � Pa with the

exterior phase g. The aqueous phase b is taken to be much larger

than the droplet a, which implies Pg � Pb ¼ 0, and the b phase

volume contribution can be ignored. Second, the ab interface,

with area Aab and interfacial tension Sab, as well as the two

membrane segments, with areas Aag and Abg and membrane

tensions Sag and Sbg, contribute three surface terms.

The membrane tensions Sag and Sbg are mechanical tensions

that can be related to the anisotropic pressure tensor across the

membrane. Thus, the tension Sbg is well-defined and remains, in

general, nonzero in the limit in which the two aqueous phases

b and g become identical, see ref. 23.

In principle, the contact line provides an energetic contribu-

tion proportional to its length Labg and to its line tension l,22 but

for simplicity we have neglected this contribution. Finally, the

vesicle energy contains the bending energies Ebe,i of the two

membrane segments, with i¼ a,b. The bending rigidity, the mean

curvature, and the spontaneous curvature of the membrane are

denoted by k, M and m respectively. We further assume that the

bending rigidities and sponteneous curvatures are the same in

both membrane segments. Likewise, we ignore a possible

difference in the Gaussian curvature moduli of the two

membrane segments, compare ref. 11. The latter assumption
Fig. 2 (a) The geometry of an axisymmetric a droplet. The coordinate

along the symmetry axis is denoted by z, the distance from this axis by r,

the arc length by s, and the local tilt angle by j. All of these variables

depend on the contour parameter t. The contact line is located at t ¼ t1.

The gray area corresponds to a spherical cap with tangent angle q. (b) An

enlarged view close to the contact line: The intrinsic contact angle qin

between the two planes that are tangential to the ab interface and to the

smoothly curved vesicle membrane, respectively.

This journal is ª The Royal Society of Chemistry 2011
implies that the Gaussian curvature terms do not contribute to

the bending energy of the membrane. The total energy then has

the form

E ¼
X
i¼a; b

ð 
dAig

h
2kðM �mÞ2þSig

i
þ SabAab þ PgaVa: (1)

As shown in ref. 22, the force balance along the contact line is

characterized by the intrinsic contact angle qin of the liquids at the

membrane which satisfies

Sbg � Sag

Sab

¼ cosqin; (2)

and represents a hidden material property of the system. The

definition of the intrinsic contact angle is shown schematically in

Fig. 2(b). It represents the contact angle on the nanometre scale

between the ab interface and the membrane surface. Substituting

eqn (2) into (1) and defining the rescaled areas �Aig h Aig(Sab/k)

and �Aab h Aab(Sab/k), volume �Va h Va(Sab/k)
3/2, mem-

brane curvature �M h M(k/Sab)
1/2, spontaneous curvature �m h

m(k/Sab)
1/2, pressure �Pga h Pga(k/S

3
ab)

1/2, and membrane tension
�Sig h Sig/Sab, we obtain the rescaled energy

EhE=k ¼
X
i¼a; b

ð 
dAig2ðM �mÞ2þcosqinAag þ SbgAme þ Aab

þ PgaVa;

(3)

where �Ame ¼ �Aag + �Abg is the rescaled total membrane area.

We consider axisymmetric shapes which we calculate using the

same procedure as in refs 11 and 22. We choose the symmetry

axis to be the z -axis. The distance from this axis will be denoted

by r. The vesicle shape is then uniquely described by its one-

dimensional contour (z(t),r(t)), as shown in Fig. 2(a). The

parameter t is the contour parameter, which varies over two fixed

intervals: t0 ¼ 0# t# t1and t1 # t# t2, corresponding to the two

membrane segments �Aag and �Abg. Here, t1 is the position of the

contact line, and we will focus on the limit of large t2, and thus

large �Abg. Two additional quantities that play an important role

in the theory are the arc length s(t) and the tilt angle j(t). Using

this parameterization, the total energy �E of the vesicle can be

written as

E

2p
¼

X
i¼a;b

ð 
dtLi þ 1

3
R

2

ab

�
1� cos3q

�
(4)

where the tangent angle q corresponds to the angle between the

ab interface and the horizontal plane, see Fig. 2(a), the rescaled

curvature radius �Rab is determined by the Laplace equation �Pga

¼ �2/ �Rab, and the Lagrange functions

Lih
1

2
rs0

�
j

s0
þ sinj

r
� 2m

�2

þSigrs
0

þ1

2
Pgir

2s0sinjþ Yðr0 � s0cosjÞ:
(5)

The Lagrange multiplier Y is used to ensure the geometrical

relation r0 ¼ s0cosj. The primes correspond to derivatives with

respect to contour parameter t.

The first variation of the energy �E along the membrane surface

leads to the following Euler–Lagrange or shape equations
Soft Matter, 2011, 7, 6914–6919 | 6915
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Fig. 3 The total energy of the system as a function of the droplet volume

for various membrane tensions. At low tensions (a and b), the partially

wrapped droplet (full lines) become unstable when the droplet volume �V

exceeds the threshold volume �V *
1, whereas the completely wrapped

droplet (dashed lines) becomes unstable for �V # �V *
2. The dotted lines

correspond to energy barriers. In (c), the completely wrapped configu-

ration is only slightly more preferable to the partially wrapped. Thus,

both configurations can coexist over a wide range of droplet volumes. At

large membrane tensions (d), the partially wrapped configuration always

has a lower energy. Nonetheless, the completely wrapped configuration is

still metastable. (e–g) Typical morphologies with increasing droplet

volume.
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€j ¼ cosjsinj

r2
�

_j

r
cosjþ Pgi

2
rcosjþ Y

r
sinj;

Y
_

¼ 1

2

�
_j� 2m

�2�sin2
j

2r2
þ Sig þ Pgirsinj and

_r ¼ cosj;

(6)

while its first variation along the contact line leads to the

boundary conditions

_J(s1)b ¼ _J(s1)a and €j(s1)b � €j(s1)a ¼ sinqin, (7)

with the intrinsic contact angle qin as given by eqn (2). The

overdots now denote derivatives with respect to the arc length s,

rather than the contour parameter t. Furthermore, we impose the

condition that the membrane is essentially flat for large t2. In

practice, this is done by imposing |j| ¼ | _j| ¼ |€j| < 3 at finite, but

very large t2. We typically choose 3 to be of the order of 10�2 and

t2 to be of the order of one million of the discretization steps.

These differential equations are then solved using the standard

fourth order Runge–Kutta method.24

3 The budding transition

In this paper, we concentrate mainly on membranes with negli-

gible spontaneous curvature, �m¼ 0. In this case, the morphology

of the system is determined by three independent dimensionless

parameters: the intrinsic contact angle qin, the membrane tension
�Sbg and the droplet volume �Va. We note that generally the

membrane tensions �Sag s �Sbg. They are related by the equation

for the intrinsic contact angle, eqn (2). The effects of non-zero

spontaneous curvature will be briefly discussed in section 6.

Fig. 3(a) shows the typical energy curve as a function of

volume for a given intrinsic contact angle and (low) membrane

tension. As a representative example, we have taken qin ¼ 45�. In
the calculations, we have also used a flat membrane with no

liquid droplet as the reference surface. As mentioned, we

consider the limit in which the area of this reference surface

becomes large. Thus, the energies shown in Fig. 3 are the devi-

ations from the energy of this flat reference surface. Initially,

when the liquid volume is small, bending energies dominate and

the membrane bends very weakly, see Fig. 3(e). The system thus

behaves in a similar fashion to the usual wetting geometry. With

increasing liquid volume, the interfacial energies become more

important and compete with the bending terms. A rather useful

simplistic concept to have in mind is that the interfacial energy

terms scale as the square of the length scale, while the bending

term has no explicit length scale dependence. At higher volumes,

as shown in Fig. 3(f), while the membrane is highly deformed, the

system is still in the partially wrapped configuration. This

remains the case until a certain critical volume �V *
1, above which it

becomes unstable and assumes the completely wrapped config-

uration (Fig. 3(g)). From here on, increasing the liquid volume

further increases the size of the spherical bud and at the same

time reduces the size of the neck (Fig. 3(h)).

It is important to realize that the partially and completely

wrapped configurations may coexist over a range of volumes. As

a result, the budding transition described above exhibits hyster-

etic behaviour. The threshold volume at which the morpholog-

ical instability occurs depends on whether we are increasing ( �V *
1)

or decreasing ( �V *
2) the liquid volume. Between �V *

1 and �V *
2, there is
6916 | Soft Matter, 2011, 7, 6914–6919
an energy barrier for a morphological transition between

partially and completely wrapped configurations. In this volume

range, the shape eqns (6) and (7) have three solutions. The two

lower energy configurations correspond to partially and

completely wrapped configurations, while the third provides the

energy barrier. The latter is plotted as dotted lines in Fig. 3.

Increasing the membrane tension, Fig. 3(b), we find that it

becomes harder to bend the membrane. Thus, the budding

transition occurs at a higher droplet volume. Furthermore, the

volume range for which both the partially and completely

wrapped configurations coexist increases with increasing tension.

In fact, if we increase the membrane tension even further, Fig. 3

(c) and (d), we find that the two configurations effectively always

coexist. In Fig. 3(c), the completely wrapped configuration

eventually becomes the global minimum configuration for large

volumes. In contrast, the partially wrapped configuration

represents the state of lowest energy for all volumes in Fig. 3(d).

4 Morphology diagram

The behaviour described in the previous section is, in fact, typical

for all values of the intrinsic contact angle. Thus, we may
This journal is ª The Royal Society of Chemistry 2011
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construct a morphology diagram as a function of intrinsic

contact angle and membrane tension. As shown in Fig. 4, there

are two regimes: (I) a low tension regime, in which the completely

and partially wrapped configurations represent the state of

lowest energy for large and small volumes, respectively; and (II)

a high tension regime, in which the partially wrapped configu-

ration is the state of lowest energy for all volumes. The wetting

properties of the liquids on the membrane play an important

role. For smaller contact angles qin, the liquid droplet wants to

increase its contact area with the membrane, which favors the

budded state. Therefore for smaller qin, the budding transition

occurs over a larger range of membrane tension.

We also note that, close to the boundary between regimes (I)

and (II), it can be rather difficult to decide numerically if

a budding transition is present. A typical example is provided by

Fig. 3(d). Both the partially and completely wrapped configu-

rations are metastable over a wide range of droplet volumes, with

the former having a lower energy than the latter within the

computed volume range. It is, however, conceivable that the

completely wrapped configuration will become the state of lowest

energy at an even larger droplet volume. In such a case, we

compute the energy gradient d �E/d �V for the two morphologies. If

this gradient is larger for the completely wrapped configuration

in the limit of large droplet volumes, then we conclude that the

system will not exhibit a budding transition.
5 Spherical cap approximation

We shall now argue that a simple, spherical cap approximation

as in ref. 10 may be used to estimate the boundary between the

two tension regimes shown in Fig. 4. Such an estimation is rather

useful, since the full numerical solutions are time consuming to

calculate. The spherical cap approximation is based on the
Fig. 4 A morphology diagram as a function of membrane tension �Sbg

and intrinsic contact angle qin with two distinct regimes: high and low

tension regimes. The data points correspond to the full numerical solu-

tions: circles indicate the occurrence of budding transitions and crosses

the absence of budding transitions. We also compare the numerical

results with the simple prediction (10), which is based on the spherical cap

approximation.

This journal is ª The Royal Society of Chemistry 2011
assumption that the contributions from the interfacial terms

dominate the bending terms when the volume of the droplet is

large. This reflects the fact that the two energetic contributions

scale differently with size. When this approximation is valid, the

global shape of the system can be simply determined by

considering the force balance of the interfacial tension with the

membrane tensions. This is analogous to Neumann’s triangle for

the force balance between capillary surfaces.25 The resulting

effective angles qa, qb and qg, defined in Fig. 5, are given by

cosqi ¼
S2

jk � S2
ij � S2

ik

2SijSik

(8)

with i,j,k ¼ a,b,g and i s j s k, compare also to refs 3 and 22.

The sum of the effective angles is equal to 2p. In contrast to

capillary surfaces, for which Neumann’s triangle applies, the

membrane tensions, as well as the effective contact angles, do not

represent material parameters; in contrast to the intrinsic contact

angle as we have shown in ref. 22. However, the three tensions

are related via the relation for the intrinsic contact angle, eqn (2).

In Fig. 5, we compare some shapes as obtained from the spherical

cap approximations with the full numerical solutions. At high

membrane tensions, the spherical cap model predicts the partially

wrapped configuration well, see Fig. 5(a). At lower membrane

tensions, close to the boundary in the morphology diagram, the

spherical cap approximation becomes less accurate, as in compar-

ison Fig. 5(b), and it may give a solution corresponding to a parti-

ally wrapped configuration even when such a solution no longer

exists for the original differential equations described in section 2, see

Fig. 5(c). Finally, at very low tensions, the spherical cap approxi-

mation does not have a solution anymore, as in Fig. 5(d). Using the

force balance at the contact line, the solution is lost when

Sag + Sbg < Sab (9)

which implies

Sbg

Sab

¼ Sbg\
1þ cosqin

2
: (10)

This restriction does not exist in the full numerical solutions,

because the bending terms can compensate the force imbalance
Fig. 5 Comparison of shapes as obtained from the full numerical

solutions and from the spherical cap approximations for qin ¼ 45�. The
latter approximation breaks down at low membrane tension, but is

accurate for high tension. The definitions of the tensions and effective

angles are also shown.

Soft Matter, 2011, 7, 6914–6919 | 6917
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between the interfacial and membrane tensions. This importance

of bending terms in the limit of infinite droplet volume implies

a small contact line radius, which is consistent with a droplet in

the completely wrapped configuration. Therefore, the inequality

(10) represents a criterion for the possible existence of

a completely wrapped state, and thus of a budding transition.

The limiting case of relation (10), as given by �Sbg¼ (1 + cosqin)/2,

corresponds to the dashed line in the morphology diagram,

Fig. 4. Inspection of Fig. 4 shows that this line, as obtained from

the spherical cap approximation, provides a rather good estimate

for the boundary between the low and high tension regimes as

determined by the full numerical solution. Compared to the full

numerical solutions, the spherical cap approximation always

predicts that the budding transition is lost at a lower membrane

tension for a given intrinsic contact angle.

In this study, we have ignored thermally excited undulations,

which can be justified as follows. For a membrane tension of the

order of Sab, the longest wavelength of these undulations is

about (k/Sab)
1/2. Using the typical experimental values,22 Sab �

10�19 J m�12and k � 10�5 J, one obtains (k/Sab)
1/2 x 100 nm,

which is well below optical resolution. Furthermore, the area

stored in these undulations is of the order of
kBT

8pk
ln

�
k=Sab

l2me

�

times the membrane area,10where lme is the small wavelength cut-

off of the order of the membrane thickness. For kx 10 � 20kBT

at room temperature, the area fraction stored in thermally

excited undulations is less than 1–2 percent.

6 Spontaneous curvature

So far, we have only considered the case where the membrane

spontaneous curvature has a negligible effect. In this section, we

shall briefly discuss the influence of the spontaneous curvature on

the budding transition shown in Fig. 1. For small membrane

tensions, this transition increases the bending energy of the

membrane by about 8pk, and decreases the interfacial energy by

about SabV
2/3
a . The budding transition occurs when these two

energies are comparable, i.e. for droplet size V1/3
a � (k/Sab)

1/2 x
100 nm. The spontaneous curvature m should affect the budding

transition when 1/m ( (k/Sab)
1/2.

This expectation is confirmed by our preliminary calculations,

see Fig. 6. Indeed, for m > (Sab/k)
1/2, the resulting bud no longer

has a spherical shape, but a tube-like structure. In fact, we find

a variety of solutions to the differential equations presented in

section 2. Detailed analysis on the global minimum configuration

for a given liquid volume is outside the scope of this paper and
Fig. 6 Evolution of membrane shape with increasing droplet volume for

spontaneous curvature m ¼ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sab=k

q
, vanishing membrane tension �Sbg,

and intrinsic contact angle qin ¼ 45�. The spontaneous curvature leads to
nonspherical, tube-like membrane shapes.

6918 | Soft Matter, 2011, 7, 6914–6919
will be presented elsewhere. Nonetheless, it is interesting to note

that we find tube-like membrane structures even in the absence of

external pulling forces, as in ref. 3. The tubes are initiated by the

minimization of the interfacial area Aab of the aqueous phases

and their narrow structures are maintained by the spontaneous

curvature of the membrane.
7 Conclusions

In summary, partial wetting of membranes by liquid droplets

leads to a new budding mechanism, which is governed by the

competition between the bending and surface energies. Budding

can be induced by increasing the volume of the liquid droplet,

decreasing the membrane tension, and/or lowering the intrinsic

contact angle of the droplet at the membrane. Upon performing

one of these changes, the membrane becomes more strongly bent

until it undergoes a discontinuous transition to a completely

wrapped configuration.

Our theoretical results are accessible to experimental studies.

One example is provided by micropipette experiments, in which

the budding transition may be induced by varying the membrane

tension. Alternatively, by deflating the vesicles, a number of

relevant parameters such as droplet volume, membrane tension

and intrinsic contact angle can be altered at the same time to

induce budding.

In the experiments performed so far on these systems, the sizes

of the two liquid compartments were comparable, whereas in our

calculations one phase is much larger than the other. It will be of

great interest to extend our study and include finite size effects

arising from the finite volume of the b phase. We expect that

global constraints act to suppress budding and only small buds

will be possible. In this sense, the droplet-induced budding

mechanism considered in this paper represents an important

limiting behaviour. Other future areas of interest include

a detailed analysis of the effects arising from spontaneous

curvature, and the influence of the wetting properties on the neck

structure of the buds.
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