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Abstract

In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor
density on the surface, one can control the number N of motors that pull simultaneously on a single filament. Here, such
gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force
balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the
filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the
presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical
motor number, Nc. Because of thermal fluctuations, fractional filament steps are only detectable as long as NvNc. The
corresponding fractional filament step size is ‘=N where ‘ is the step size of a single motor. We first apply our
computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs
with a zero rest length, the critical motor number is found to be Nc~4, and the corresponding distributions of the filament
step sizes are in good agreement with the available experimental data. In general, the critical motor number Nc depends on
the elastic stalk properties and is reduced to Nc~3 for linear springs with a nonzero rest length. Furthermore, Nc is shown
to depend quadratically on the motor step size ‘. Therefore, gliding assays consisting of actin filaments and myosin-V are
predicted to exhibit fractional filament steps up to motor number N~31. Finally, we show that fractional filament steps are
also detectable for a fixed average motor number SNT as determined by the surface density (or coverage) of the motors on
the substrate surface.
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Introduction

Molecular motors are enzymes which convert chemical energy

into mechanical work. Motor proteins such as kinesin, dynein or

myosin are unidirectional stepping motors, which are involved in

force generation and active intracellular transport. Kinesin-1 and

myosin-V are processive motors moving on microtubule (MT) or

actin filaments, respectively, for example for intracellular cargo

transport. Such cargo transport often involves groups of cooperat-

ing motor proteins. Whereas the stepping mechanism of single

motor proteins is well-studied experimentally and theoretically,

much less is known about the resulting cargo step sizes in collective

transport. In a recent experiment by Leduc et al. cargo step sizes

have been studied in gliding assays with kinesin-1 motor proteins

and MTs [1].

In gliding assays, the tails of molecular motors are immobilized

on a planar substrate while their motor heads attach to filaments

and pull them over the substrate [2,3]. In the gliding assays of

Leduc et al., labeled MTs were observed to perform stepwise

motion as a result of the transport by stepping kinesin-1 motors

with step size 8nm. Monitoring the filament rotation it was

possible to discriminate between transport by (i) one motor (ii) two

motors and (iii) more than two motors and analyze MT trajectories

separately for these cases. In this analysis an 8nmMT step size was

found for MTs transported by a single motor, whereas half steps of

4nm were found when MTs were transported cooperatively by

two kinesin-1 motors, whereas smaller fractional step sizes such as

8nm=3 for transport by more than two kinesin-1 motors have not

been observed. As explained further below, additional noise in the

experiments reduces the critical motor number below which

fractional steps can be observed to Nc~3. On the one hand, the

observation of fractional filament steps provides evidence that

kinesin-1 stepping in cooperative transport is not synchronized.

On the other hand, it remains to be understood which system

properties determine the presence or absence of higher-order

fractional steps and whether fractional filament stepping can be

expected for gliding assays with other processive motors such as

myosin-V.

In order to address these latter issues, we describe the gliding

assays by microscopic Brownian (or Langevin) dynamics [4,5]. In

this latter dynamics, we numerically solve the equations of motion

for the translation and rotation of a rigid filament under the

influence of the forces arising from the attached molecular motors

as well as from thermal and frictional forces [6–8]. We focus on

gliding assays for the processive motors kinesin-1 (henceforth

called ‘‘kinesin’’) and myosin-V with long run lengths. Kinesins

walk along MTs towards their plus end with a step size of 8nm [9],

whereas myosin-V walks along actin filaments with a much larger

step size of 36nm [10,11]. Our theoretical description contains

several microscopic properties of motor proteins: the step size,

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e43219



a force-dependent stepping frequency or velocity, motor stalk

length and stalk stiffness, rates for force-free attachment and

detachment of motor heads to and from the filament, as well as

a detachment force for force-induced motor detachment. For

gliding assays of microtubules and kinesin, we use the kinesin

motor parameters as reported in Ref. [1]. Because analogous

experimental data on actin/myosin-V gliding assays are not

available, we use literature values from different sources for

myosin-V. In particular, the length and elasticity of the motor stalk

are taken from literature values for mouse myosin-V [12,13]. We

use a coarse-grained description in the sense that we do not resolve

the two distinct motor domains of the double-headed motors.

Motors pulling on the same filament take steps in an un-

synchronized manner but these steps generate mutual load forces

and, thus, correlations between the motors. Indeed, each motor

step gives rise to an instantaneous load force within the polymeric

motor stalk, which is described by the force-extension relation of

the stalk. This load force is transmitted onto the filament and then

affects, via the resulting filament motion, all attached motor heads

and their stepping frequency.

In addition to the microscopic Brownian dynamics, we also

study the fractional steps of the filaments using a simplified

description in terms of a force equilibrium model, in which the

elastic forces of the motor stalks are mechanically balanced after

each motor step. The force equilibrium model shows that motor

step size, motor stalk length, and motor stalk elasticity are the

essential motor parameters determining fractional filament step-

ping.

Using the microscopic simulation model we investigate the

resulting stepwise motion of the transported filaments. In

particular, we study how the number N of attached motors and

the elastic properties of the motor stalks, which are responsible for

the force transduction from motor heads onto the filament, affect

the stepwise motion of filaments. There are only a few experi-

mental results on the elasticity of motor stalks for kinesin [14–16]

and myosin-V [12]. Therefore, we will study the influence of the

elastic properties of the motor stalk on the filament stepping

behavior. The motor stalk consists of polypeptide chains, and we

will compare four generic models from polymer physics for the

elastic properties of the motor stalk [6,17]: (I) a simple linear

Hookian spring with zero rest length, (II) a linear spring with non-

zero rest length, (III) a nonlinear spring for a freely jointed chain

without bending energy, where chain segments are connected fully

flexible, and (IV) a nonlinear spring for a worm-like chain with

bending rigidity.

For kinesin gliding assays our microscopic simulation model

achieves quantitative agreement with the experimentally observed

MT stepping behavior in Ref. [1] even for the shapes of MT step

size distributions. This agreement is remarkable because we use

much higher motor velocities as appropriate for physiological ATP

concentrations, whereas the experiments were performed for very

low ATP concentration and, thus, rather low motor velocities in

order to reduce additional noise from the MT position measure-

ments by quantum dot position tracking. Our simulation results

therefore show that the experimentally observed stepping behavior

applies to a larger range of parameters. We find that fractional

half-steps of 4nm for transport by N~2 kinesin motors occur for

all four variants (I) – (IV) of the elastic motor stalks, a property that

we can also understand in the framework of the force equilibrium

model. On the other hand, smaller fractional step sizes of 8nm=3
for MTs transported by N~3 motors occur only for the elastic

springs (I), (III), and (IV), which all have a zero rest length. For the

linear spring (II) with non-zero rest length, we do not find smaller

fractional step sizes than 4nm because of much broader

distributions of step sizes. This broadening can also be understood

in the framework of the force equilibrium model.

We then consider gliding assays in general, i.e., built up from an

arbitrary pair of cytoskeletal filaments and motors. We show that

each such pair can be characterized by a critical motor number,

Nc. Because of thermal fluctuations, fractional filament steps are

only detectable as long as NvNc. For motor stalks that act as

linear springs with spring constant K , we derive an explicit

expression for the critical motor number Nc, which is found to be

proportional to the spring constant K and to the squared step size of

a single motor. For kinesin motors with a step size of 8nm, we find

Nc~4 and fractional steps become undetectable for N§4 in

agreement with our simulation results. We also study gliding assays

of actin filaments pulled by myosin-V motors, which have the

larger step size 36nm. For this latter system, our simulations reveal

fractional steps up to the much higher motor number N~31, in
agreement with our explicit expression for the threshold number.

So far, we have implicitly assumed that the overall filament

trajectories can be decomposed into distinct segments, each of

which is characterized by a fixed motor number N. Such

a decomposition is always possible in simulations and has also

been achieved experimentally in Ref. [1] up to N~3. However, it

is hardly possible to experimentally distinguish segments with

N~No from those with N~Noz1 for large values of No. In

contrast, the average number SNT can be directly controlled

experimentally via the surface density (or coverage) of the motors

on the substrate surface. Thus, at the end, we also determine the

step size distributions of filaments for fixed average number SNT
and find, for a wide range of SNT-values, that these distributions

exhibit fractional filament steps as well.

Methods

Our microscopic simulation model is based on a gliding assay

model which has been introduced in Refs. [4,5]. Here we use this

model to study the motor-driven motion of a single rigid filament

in the two-dimensional substrate plane. We use the same model

with different parameters both for kinesin/MT and myosin-V/F-

actin gliding assays. We include stochastic discrete motor stepping

into this model, which is essential for filament stepping dynamics.

The simulation model contains three types of degrees of

freedom: (i) the filament configuration as described by its center

of mass and orientation in the two-dimensional substrate plane; (ii)

motor heads, which can attach and move on the filament and are

described by their position; (iii) motor stalks, which are stretched

by the motion of motor heads and transmit their stretching forces

both onto the filament and the motor head. To understand the

origin of fractional filament steps it is crucial that the simulation

model explicitly includes motor stalks, which act as force

transducers and are modeled as polymeric springs. These springs

are characterized by a force-extension relation, which specifies the

stretching force for a given equilibrium distance between the

substrate-anchored motor tail and the motor head.

In order to simulate the filament motion we use Brownian (or

Langevin) dynamics, which is based on the equations of motion for

translations and rotations of the rigid filament under the influence

of the external motor and thermal forces in the overdamped limit,

i.e., neglecting inertia effects in comparison to frictional forces [6].

For micrometer-sized filaments, the overdamped limit is well

justified. We determine (i) the translational equation of motion for

the filament’s center-of-mass under the influence of forces arising

from the attached molecular motors, thermal fluctuations, as well

as hydrodynamic friction, and (ii) the corresponding rotational

equation of motion for the filament’s orientation angle under the

Fractional Steps in Filament Gliding Assays
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influence of the corresponding torques. The strength of the

stochastic thermal forces and torques is taken to be proportional to

temperature in accordance with the usual fluctuation-dissipation

theorem (or Einstein relation), which guarantees that time

averages correspond to thermodynamic averages [6]. In our

simulation, these equations of Brownian dynamics are then

integrated numerically [7,8].

In each simulation time step, we first update the filament

position and orientation according to the corresponding equation

of motion. We then perform steps of the motor heads along the

filament for the same time interval according to the motor force-

velocity relation. Stepping of motor heads with surface anchored

motor tails leads to forces that build up in the motor stalks that act

as elastic springs. These forces are transmitted both onto the motor

head affecting its stepping behavior and onto the filament to which

the motor head is attached affecting the filament motion. Motor

stalks equilibrate fast for given positions of the motor head and the

anchoring point on the substrate. Therefore, motor stalk forces

can be recalculated instantaneously after updating motor head or

filament positions by applying the equilibrium force-extension

relation of the motor stalk spring. We perform simulations by

advancing motor head positions and filament position and

orientation in discrete time steps Dt according to the forces

transmitted by the stretched motor stalks. We also allow for

stochastic attachment and detachment of motor heads during each

time step. If not mentioned otherwise, we use the time step

Dt~0:1ms. Values for motor parameters used in the simulations

are summarized in Table 1.

Motor Proteins, Motor Stalks
Molecular motors are randomly distributed on the substrate

surface with motor density s. In simulations we mainly use

s~40mm{2. We use periodic boundary conditions to mimic

a large substrate. Each molecular motor is described by two points:

the position of its motor head and the position of its anchored

motor tail, which are connected by the polymeric motor stalk. In

a gliding assay filaments are pulled down to the substrate and glide

at a constant small height, which has been determined for kinesin

as ^17nm [16]. The quantity that varies during the motion of the

motor head is a two-dimensional vector Dr, which is the projection

of the vector pointing from the motor head to the anchored motor

tail into the gliding plane, Dr~r0{r, see Fig. 1, where r and r0 are
the projected positions of motor head and anchored tail,

respectively. The motor stalk is modeled as an elastic polymeric

spring with a characteristic force-extension relation. For a small

gliding height we can neglect the force component perpendicular

to the substrate. The force-extension relation F~F(Dr) then

specifies the two-dimensional force vector onto the motor head

within the gliding plane, see Fig. 1.

There are a few experimental results on the elasticity of kinesin

motor stalks [14–16]. The measurements of Ref. [15] on single-

headed kinesin are consistent with a contour length Lm^78nm of

the kinesin motor stalk. In Ref. [15] a fluctuation analysis of an

attached cargo showed a non-linear spring behavior with a non-

zero rest length for a single-headed kinesin. The stretching stiffness

was measured as 0:3pN=nm, the compression stiffness as only

0:05pN=nm. The gliding assay experiments of Ref. [16] with

kinesin-1 showed that the gliding height of a MT is significantly

less than the contour length and agrees with the mean square end-

to-end distance of a freely jointed chain with 8 segments. In Ref.

[14] direct optical trap measurements on a kinesin bead assay

showed a linear force-extension with zero rest length relation for

displacements parallel to the gliding plane and an elastic modulus

around K^0:5pN=nm. In the experiments of Leduc et al. in Ref.

[1], truncated kinesins of contour length Lm^20nm have been

used. To allow comparison with the experimental results of Ref.

[1] in the following, we will use this contour length for truncated

kinesins and K^0:5pN=nm [14] in our motor stalk spring models

(see Table 1).

For myosin-V, we use parameter values that have been reported

for mouse myosin-V (see Table 1). For processive myosin-V

motors the total contour length is Lm*100nm where the elastic

extended tail domain has a length *70nm and the lever arm

a length *25nm [13,18]. Using optical traps a stiffness of

K^0:2pN=nm [12] for myosin-V has been measured.

We will compare different force-extension relations

F(Dr)~F(Dr)Dr=DDrD for motor stalk stretching in the gliding

plane. Since the motor stalks are polypeptide chains, we will

consider four generic models for polymers [17]:

(I,II) A linear relation.

F(Dr)~K(Dr{Dr0) ð1Þ

corresponding to a harmonic or Hookian spring, which is

characterized by a rest length Dr0 and the spring constant K for

Table 1. Values of motor parameters as used in the
simulations.

Parameter kinesin myosin-V

Step size , 8nm [9] 36nm [10,11]

Motor contour length Lm 20nm (trunc.) [1] 100nm [13,18]

Maximal velocity n0 1mm=s [26] 400nm=s [10]

Motor stalk stiffness K 0:5pN=nm [14] 0:2pN=nm [12]

Motor stall force Fs 5pN [25] 2:5pN [10,27]

Motor detachment force Fd 3pN [29] &2:5pN [27]

Detachment rate koff,0 1=s [29] 0:16=s[30]

Attachment rate kon,0 5=s [34] 5000=s [35]

doi:10.1371/journal.pone.0043219.t001

Figure 1. Top view of a gliding assay. When a motor head (blue
dot) attaches to the filament (yellow rod) or steps along this filament,
the motor stalk (blue spring) is stretched to an end-to-end vector Dr.
The force-extension relation of the motor stalk specifies a corresponding
load force F~F(Dr) generated in the motor stalk. This stalk then acts as
a spring which transmits this load force onto the filament. The
component FE parallel to the filament also affects the motor head
velocity.
doi:10.1371/journal.pone.0043219.g001
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the motor stalk. The contour length Lm does not enter. It will be

important to distinguish the two cases

(I) of a zero rest length Dr0~0 and

(II) a non-zero rest length Dr0. In the simulations we choose

Dr0~Lm=2.
The elastic coupling (I) also applies to linear force-extension

relations F(Dr)~K(Dr{Dr0) with a rest position Dr0: such

a motor stalk corresponds to a stalk with a linear force-extension

relation and zero rest length with a shifted motor tail anchoring

point at r0zDr0.
(III) A nonlinear spring relation appropriate for a freely jointed

chain (FJC) in three dimensions,

Dr

Lm

~fFJC(
Fb

kBT
) with fFJC(x):

1

tanh (x)
{

1

x
ð2Þ

which is characterized by the segment length b or the number

Nm~Lm=b of flexibly connected segments in the motor stalk for

given total length Lm (kB is the Boltzmann constant and T the

temperature). Approximate inversion of (2) leads to [19,20]

F (Dr)~
kBT

b

1

1{Dr=Lm

{1z2
Dr

Lm

� �
, ð3Þ

the latter relation being equivalent to a linear entropic spring

F (Dr)&(3kBT=b)(Dr=Lm) for small extensions Dr%Lm, i.e.,

a relation of the type (1) with zero rest length Dr0~0 and spring

constant K~3kBT=Lmb. For kinesin we will use Lm~20nm and

Nm~15, which gives in the linear small extension regime the same

stiffness K as used for the linear springs (I) and (II). For myosin-V

we use Lm~100nm and Nm~160 accordingly.

(IV) A nonlinear spring relation appropriate for an inextensible

worm-like chain (WLC) with bending rigidity. We use the

approximate relation as given by [21]

F (Dr)~
kBT

Lp

1

4

1

(1{Dr=Lm)
2
{

1

4
z

Dr

Lm

 !
ð4Þ

which is characterized by the persistence length Lp~k=kBT of the

motor stalk and, thus, by its bending rigidity k. For kinesin we will

use Lp~2=3nm and Lm~20nm, which gives in the linear small

extension regime the same stiffness K~3kBT=2LmLp as used for

the linear springs (I) and (II). For myosin-V we use Lp~0:3nm
and Lm~100nm.

Note that the zero rest length for the springs (I),(III), and (IV)

only refers to the projected displacements in the gliding plane. The

total displacement including the height coordinate can still exhibit

a non-zero rest length: for a filament in the gliding plane, the

interaction forces between the filament and the substrate surface

have to be balanced by the perpendicular force components

arising from the motor stalks.

Filament Dynamics
The filament is taken to move within the quasi-two-dimensional

gliding plane at approximately constant gliding height. Thus, we

ignore the surface roughness of the underlying substrate surface.

The rigid filament has then two degrees of freedom, its center of

mass position R and its orientation angle h. The MT has

a diameter of D~25nm and we use a length of L~1mm in our

simulations. This choice is motivated by the experiments of Leduc

et al. [1], where relatively short MTs are studied as well. F-actin

has a diameter of D~7nm, and we use lengths L~1mm or

L~5mm. As mentioned before, the filament motion in the two-

dimensional gliding plane is simulated by Brownian dynamics, i.e.,

we solve the overdamped equations of motion (5) for the center of

mass R and (6) for the orientation angle h.
If N motor heads are attached to the filament with motor head

positions ra and fixed motor tail positions r0a (a~1,:::,N), each

attached motor head transmits the stretching force Fa~F(r0a{ra)

of the motor stalk and a corresponding torque Ma~D(ra{R)|FaD
onto the filament. The overdamped equations of motion for the

filament’s center-of-mass R as given by

C:LtR~
XN
a~1

Fazf(t) ð5Þ

and for the orientation angle h, which has the form

CrLth~
XN
a~1

Mazfr(t) , ð6Þ

contain the motor forces Fa and motor torques Ma, the thermal

forces f(t) and thermal torques fr(t), as well as the frictional forces
and torques on the left hand side of these two equations. The

frictional forces are characterized by the matrix

C~CEu6uzC\(I{u6u) depending on the translational friction

coefficients CE and C\ as well as on the unit vector

u~( cos h, sin h) for the filament orientation. The rotational

friction coefficient is denoted by Cr~CEL
2=6. Friction coefficients

are given by CE~C\=2~2pgL= ln (L=D), where g is the viscosity

of water. Using a higher viscosity g~0:1pNs=mm2 in the

simulation, we have a friction coefficient of

CE^1:7|10{4 pNs=nm for MTs and CE^1:2|10{4 pNs=nm
for F-actin of 1mm length.

Motor Stepping, Attachment, and Detachment
The stretching force Fa is also transmitted onto the motor head

a. We assume that only the component Fa,E parallel to the filament

has an effect on motor velocity, whereas the component Fa,\

perpendicular to the filament can be neglected [22]. The velocity

of motors walking along a filament decreases monotonically from

a maximal velocity v0 without external load to zero at the stall

force Fs [23–25]. We approximate the relation between the force

Fa,E parallel to the filament and the mean velocity vm of the

molecular motor by a piecewise linear function, which is justified

by experimental results for kinesin [26]. In the piecewise linear

force-velocity relation resisting forces FE slow down motors

linearly,

vm(FE)~v0(1{FE=Fs), ð7Þ

whereas motors move with the maximal velocity vm~v0 for

assisting forces. The stall force Fs is taken to be 5pN for kinesin

[25]. For the zero force velocity of kinesin, we use the value

v0~1mm=s, which applies to ATP concentrations that exceed

1mM [26] (see Table 1). Note that the experiments of Leduc et al.

[1] were performed at much lower ATP concentrations in order to

reduce the stepping frequency of motors and, thus, improve step

detection. The experimental motor velocities observed in Ref. [1]

are only of the order of nm/s. For processive myosin-V motors, we

will use the same piecewise linear force-velocity relation with a stall

force Fs~2:5pN [10,27] and a maximal motor velocity

v0~400nm=s [10] (see Table 1). These parameter values from

Fractional Steps in Filament Gliding Assays
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Refs. [10,27] are for chicken brain myosin-V but very similar

values v0*300nm=s and a similar force-dependence of the

kinetics have been reported for mouse myosin-V [12].

In Refs. [4,5] we approximated the motion of the motor head

on the filament as a continuous deterministic motion with velocity

vm, which makes the observation of MT stepping impossible.

Here, we employ a realistic model with discrete stochastic motor

steps at a force-dependent stepping rate kstep. Kinesin moves along

MTs towards the plus end with a discrete step size of ‘~8nm,

which is the size of a tubulin dimer [9]. Myosin-V moves along

actin filaments with a step size of ‘~36nm [10,11] towards the

barbed end. The force-dependent mean velocity vm(FE) as given

by (7) is the result of discrete stochastic motor steps with step size ‘
and the stepping rate kstep. In order to obtain the same mean

velocity, this stepping rate has to be force-dependent and chosen

as

kstep~vm(FE)=‘: ð8Þ

We simulate the motion of molecular motors with a stochastic

stepping mechanism which means that molecular motors move by

a discrete step ‘ during the time interval Dt with a probability

kstepDt or remain at their position with probability 1{kstepDt. As
mentioned before, we do not resolve the two heads of the double-

headed motors.

Because of the force dependence of the stepping rate, the order,

in which the different motors perform a step, depends on the

loading state of their motor stalks. Motors which are pulled

backwards have a smaller stepping probability, motors which are

pulled forward are more likely to move. We assume a fixed motor

step size ‘ [28], which is independent of the load force. The

variance in experimentally obtained step size distributions [26]

appears to be force-independent and can be attributed to noise in

the measurement process.

We will also use a more refined stochastic modelling for the

detachment and attachment of motor heads from and to filaments

as compared to the model employed in Refs. [4,5]. The

detachment process of a motor head from the filament is a force-

dependent stochastic process and the detachment rate koff is given
by koff~koff,0 exp (F=Fd ) where koff,0 is the detachment rate in

the absence of force and Fd is the detachment force. For kinesin,

we choose the values Fd~3pN [29] and koff,0~1=s [29]. For

myosin-V, we use Fd~2:5pN equal to the stall force because the

detachment appears force-independent in experiments [27] and

koff,0~0:16=s [30] (see Table 1).

The attachment of a motor to the filament also represents

a stochastic process depending on the force-extension relation of

the polymeric motor stalk, which gives rise to the potential energy

V (Dr)~
Ð Dr
0

drF (r) for the motor head position relative to the

fixed motor tail position. We assume fast orientation of the motor

heads to the filament orientation during the attachment process.

The potential energy V (r) determines the on-rate

kon~kon,0 exp ({V (Dr)=kBT) for motor head attachment at

a distance Dr from the motor tail position. The on-rate is thus

decreased by the stretching energy, which is involved in the

binding process of the motor-head. If we assumed that an identical

reaction coordinate Dr could be used for attachment and

detachment of motor heads, detailed balance would require the

on-rate kon to contain an additional factor exp (F=Fd ) involving
the detachment force. This has been pointed out in Refs. [31,32].

We argue that attachment and detachment of motor heads

proceeds along different pathways: whereas the detachment

process of the motor head always starts with the motor stalk in

a strained configuration and the distance Dr between motor head

and anchored tail can serve as reaction coordinate, the attachment

process starts from a relaxed configuration of the motor stalk and

can proceed along many different paths in the configurational

space of the motor stalk. As a consequence, unbinding and

rebinding of motor heads cannot be described by the same

reaction coordinates [33], and we can use the simple expression

kon~kon,0 exp ({V (Dr)=kBT) for the motor head attachment

rate. We also note that inclusion of an additional factor

exp (F=Fd ) into kon would have a negligible effect on our results

as we checked explicitly. We use kon,0~5=s for the V~0 on-rate

for kinesin [34] and kon,0~5000=s for myosin-V [35] (see Table 1).

Using the additional Boltzmann factor we assume that polymeric

motor stalks have a sufficiently fast dynamics such that the

equilibrium force-extension relation is always satisfied during the

attachment process. As a result of this attachment modelling, the

motor attachment radius around the MT is roughly given by the

distance DrT , where the motor stalk deformation energy becomes

of the order of the thermal energy, V (DrT )*kBT . For most of our

analysis of the apparent fractional filament steps, the attachment

and detachment processes are not crucial because we analyze the

filament trajectories for a fixed number of attached motors N, i.e.,

betweenmotor attachment or detachment events, see Figs. 2(A,B,C).

We also perform simulations keeping the average number SNT
fixed. In the latter case, the attachment process is important

because it determines the typical attachment length ‘a of motors,

which is the distance over which attachment of a motor is

probable. The attachment length is approximately given by the

motor stalk extension corresponding to the thermal stretching

energy, V (‘a)*kBT .

Filament Stepping Analysis
In the simulations we analyze the stepping motion of filaments

by detecting the number N of motors to which the filament is

attached during transport and analyzing the stepping motion for

each number of attached motors N separately by measuring three

quantities.

First, we record trajectories of the filament center of mass and

determine the walked distances d(t) of the filament center of mass

along its trajectory as a function of time. Steps in filament motion

give rise to steps in the walked distance curves d(t). This procedure
is analogous to the experimental procedure of Leduc et al. [1].

Secondly, we calculate histograms of pairwise distances along the

filament trajectories. From the walked distances d(t), pairwise

distances dn{dm~d(t0znDt){d(t0zmDt) are calculated for

nwm for a fixed reference time t0. All these pairwise distances

dn{dm are collected in a histogram. Peaks in the distribution of

pairwise distances signal steps in filament motion: If there is a well-

defined filament step length peak positions should occur at

multiples of this filament step length. This procedure is identical to

the analysis of the corresponding experimental data by Leduc et al.

[1].

Finally, we use the model-independent step finding algorithm

described in Ref. [36] to obtain step size distributions from the

walked distances d(t) of filaments. Also these results can be directly

compared to the experimental data of Ref. [1] (where a different

step finding algorithm was used). We measure filament step size

distributions not only for a fixed number N of attached motors as

in Ref. [1] but also for the experimentally more accessible situation

of a fixed average number SNT as determined by the surface density

(or coverage) of the motors on the substrate surface.

Fractional Steps in Filament Gliding Assays
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Results

Fractional MT Stepping in Kinesin Assays
First, we study fractional steps of MTs in a kinesin gliding assay.

The simplest model for kinesin motor stalk elasticity is a linear

spring model of the form (1) with a zero rest length Dr0~0. This
model is independent of the motor contour length Lm and the

force is not diverging such that motors will not detach if extensions

Dr exceed the contour length Lm of the motor stalk. To overcome

this problem, we let all molecular motors detach from the filament

when the length extensions reach their contour length.

In the simulation motor stepping leads to a similar stochastic

‘‘stepping’’ motion for MTs, and the step size depends on the

number of molecular motors attached on the filament as shown in

the walked distances in Figs.2(A,B,C) and histograms of pairwise

distances in Figs. 2(D,E,F). If transported by a single kinesin MTs

walk on the substrate surface with a step size of 8nm equal to the

motor step size (Fig. 2(A)). Each time, the attached molecular

motor takes one 8nm step on the MT, the motor stalk is extended,

which generates a force in the motor stalk pulling the MT in the

opposite direction. When the MT has moved by 8nm driven by

this force the motor stalk is relaxed and the overdamped MT

motion stops because of a short relaxation time ts*CE=K%1ms.

MT steps of 8nm are also dominant in the histogram of pairwise

distances for single motor transport in Fig. 2(D) and in the step size

distribution obtained with the step detection algorithm in Fig. 2(G).

Only if the stochastic waiting times between successive stochastic

motor steps are short the step finding algorithm interprets such

steps as 16nm double-steps. In the experiments of Ref. [1] double-

steps appear more frequently because of the additional noise from

the MT position measurements by quantum dot position tracking.

Therefore, the experimental step size distribution for N~1 has

more weight around a 16nm peak. The slightly higher noise level

in the experiment also gives rise to a broadening of the step size

distribution around the dominant 8nm and the smaller 16nm
peak. Otherwise there is quantitative agreement between the

experimental step size distribution of Ref. [1] and our simulation

result as can be seen in Fig. 3(A).

We also find fractional 8nm=N steps in MTmotion for transport

by N~2 or N~3 motors (Figs. 2(B,C)), as can also be seen by the

Figure 2. MT stepping behavior for a linear force-extension relation (1) of motor stalks with zero rest length (K~0:5pN=nm). Top
row: Walked distances (in nm) of the MT center of mass as a function of time (in simulation steps Dt~0:1ms) and best fit result of the step detection
algorithm. Middle row: Histograms of pairwise distances. Bottom row: Step size distributions. A,D,G: One motor (N~1), B,E,H: two motors (N~2),
C,F,I: three motors (N~3) are attached to the MT. The step size distributions exhibit peaks at 8nm=N .
doi:10.1371/journal.pone.0043219.g002
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peak positions in the histogram of pairwise distances (Figs. 2(E,F))

and clearly in the step size distributions (Figs. 2(H,I)), which are

centered around 4nm forN~2 and 8nm=3 forN~3. Also the step
size distribution for N~2 quantitatively agrees with the experi-

mentally observed step size distribution, see Fig. 3(B). As for N~1,
the experimental step size distribution is slightly broader because of

the additional noise from the MT position measurement.

Smaller steps for N§4 cannot be observed because the thermal

fluctuations of the MT position are too large. This results in

a failure of the step finding algorithm to identify steps for N§4.
This is illustrated by the walked distances for N~4 shown in

Fig. 4(A) and the histogram of pairwise distances, Fig. 4(C), which

does not exhibit clear peaks.

Thermal Fluctuations Limit Observable Fractional Step
Sizes
Thermal noise limits the observability of fractional steps. In our

simulations, the thermal noise level at room temperature is too

high to observe even smaller fractional 8nm=N steps with Nw3 as
demonstrated in Fig. 4(A,C). If thermal fluctuations of the MT

about its mean position between motor steps become larger than

half the step size, MT positions before and after a step ‘‘overlap’’,

and step finding algorithms can no longer identify a MT step. In

thermal equilibrium, equipartition gives MT position fluctuations

S(DX )2T~kBT=2NK for N attached motors by harmonic motor

stalks with spring constant K . We consider only one component

DX along the MT orientation. This results in typical MT

positional fluctuations of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(DX )2T

q
^

ffiffiffiffiffiffiffiffiffi
4=N

p
nm

for simulation parameters (kBT^4pNnm). It becomes difficult to

distinguish fractional steps of size ‘=N~8nm=N from thermal

fluctuations if fluctuating positions before and after the step

overlap. This leads to the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(DX )2T

q
v‘=2N for the

observation of fractional steps. Because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(DX )2T

q
*1=

ffiffiffiffiffi
N

p
, this

condition is equivalent to the inequality

Nv

K‘2

2kBT
:Nc ð9Þ

for the motor number N, which defines the critical motor number

Nc. For the parameters of the MT/kinesin system as used in our

simulations, the critical number Nc as given by (9) becomes Nc~4
in agreement with our simulation results. Experimentally, already

larger fractional step sizes such as 8nm=3 could be unobservable

because of the additional noise from the MT position measure-

ments. Therefore, Nc only represents an upper limit for the

observability of fractional steps set solely by thermal fluctuations.

Assuming an additional experimental noise level DXexp for the

MT position measurement, which is independent of thermal

fluctuations, we can formulate a criterion for observable fractional

steps as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(DX )2TzDX 2

exp

q
v‘=2N which leads to

Nc~
K‘2

2kBT

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
zDX 2

exp

K2‘2

kBT

s0
@

1
A

{1

ð10Þ

For a realistic experimental noise of DXexp^1nm and with the

same parameter used in the simulation, this leads to Nc^2 as

observed in experiments.

The derivation of the critical motor number (9) did also not

include possible effects from non-linear stalk elasticity. It should be

applicable as long as these effects are small, which is the case for

step sizes ‘ much smaller than motor contour lengths Lm. This is

fulfilled for the gliding assays considered here as will be discussed

in more detail below.

It is important to note that Nc depends quadratically on the

motor step size ‘ according to (9). Therefore, we can expect to

observe a much higher Nc, i.e., much smaller fractions of full steps

for myosin-V motors, which have a 4–5 fold larger step size of

Figure 3. Normalized step size distributions for (A) N~1 and (B) N~2. Experimental data from Ref. [1] shown as black point, simulation data
as lines. Red line: Motor stalk that acts a linear spring (I) with zero rest length. Blue line: linear spring (II) with non-zero rest length. Green line: freely
jointed chain (III). Purple line: worm-like chain (IV).
doi:10.1371/journal.pone.0043219.g003
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36nm as compared to kinesin, as long as the motor stiffness K is

not much smaller. We will discuss this point below.

Force Equilibrium Model
Motor stepping is much slower than the equilibration dynamics

of the motor stalks and the filament position: For MTs the

maximal motor speed v0~1mm=s roughly corresponds to 1 step

per 10ms, whereas the typical filament position relaxation time is

ts*CE=K , which is well below 1ms. Therefore, mechanical

equilibrium of the filament position can be reached after each

motor step, and our results can be rationalized by a simplified

force equilibrium model.

In the force equilibrium model we consider a filament with N

motors attached with initial motor stalk extensions Dri (i~1,::,N),

which are the result of previous motor steps, and take the x-

coordinate parallel to its orientation. Then, the x-component Dxi
of a motor stalk extension vector is changed by a step size ‘ in

a single step of one of the motors. It is assumed that after each

motor step the filament center of mass R adjusts quickly by moving

its center of mass by DR in order to relax the motor stalk stretching

forces in x- and y-direction. Displacing the filament center of mass

by DR leads to new motor stalk extensions Dri{DR, such that the

new equilibrium DR is determined by

XN
i~1

F(Dri{DR)~0: ð11Þ

We assume that filament rotation is slower, which is justified for

sufficiently long filaments because Cr!CEL
2, and neglect rota-

tional motion towards torque equilibrium.

The force equilibrium model explains that, in the absence of

thermal noise, fractional ‘=N-steps are an intrinsic feature of the

elastic coupling (I), characterized by a linear force-extension

relation with zero rest length, and should be observable for all N.

For the spring (I), i.e., a linear force-extension relation (1) with zero

rest length, the force equilibrium in the x-direction parallel to the

filament decouples from the force equilibrium in the perpendicular

y-direction. For motor stalk extensions Dri~(Dxi,Dyi) and

filament displacement DR~(DX ,DY ), the parallel force equilib-

rium (11) for the spring (I) gives a linear equation for the

equilibrium filament displacement DX ,

XN
i~1

Fx(Dri{DR)~
XN
i~1

K(Dxi{DX )~0: ð12Þ

Figure 4. MT stepping behavior for N~NC . (A,B) Walked distances (in nm) of the MT center of mass as a function of time (in simulation steps
Dt~0:1ms); (A) Motor stalks that act as a linear spring (I) with zero rest length and motor number N~Nc~4: the step finding algorithm fails to
identify steps; (B) linear springs (II) with non-zero rest length and N~Nc~3: typical step sizes are significantly larger than 8nm=3. (C) Histogram of
pairwise distances for linear springs (I) with zero rest length and N~Nc~4. There are no clear peaks.
doi:10.1371/journal.pone.0043219.g004
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The resulting equilibrium displacement

DX~
1

N

XN
i~1

Dxi ð13Þ

is independent of the spring stiffness K . The perpendicular

filament displacement DY decouples from the parallel force

equilibrium (12) and the parallel displacement DX and can be

determined from the perpendicular force equilibrium.

If one of the attached motors moves one step ‘ in x-direction

along the filament, we have
PN

i~1 DDxi~‘, which leads to

a change

DDX~‘=N ð14Þ

of the filament position in the new mechanical equilibrium as

illustrated in Fig. 5. In particular, this change of the filament

position is independent of the initial motor positions Dxi and, thus,
from the load on each motor and the order of motor stepping for

Nw1. Therefore, we expect to observe a unique apparent filament

step size ‘=N. This argument is valid for arbitrary N such that in

the absence of noise, all fractional filament step sizes ‘=N with

N§2 would be observable for a stalk, which behaves as the linear

spring (I).

In simulations and experiments, we do not observe a sharp step

size distribution for the linear spring (I) because of the additional

thermal noise and, in the experiments, also because of noise from

the filament position measurement. Such noise can be included in

the force equilibrium (11) as additional, approximately Gaussian

random forces. If the time interval between consecutive filament

steps is short, steps can be missed by the step finding algorithm

resulting in the detection of a double step instead of two

consecutive single steps. This effect leads to a distortion of the

step size distribution since a certain fraction pdou of single steps is

counted as double steps. For the linear spring (I), both noise and

double step detection combine in the force equilibrium model to

give double- (or even multiple) Gaussian distributions consisting of

a superposition of Gaussians centered around multiples of ‘=N
both for N~1 and N~2 as observed experimentally Ref. [1] and

in our simulations. Deviations from such double-Gaussian

distributions indicate deviations from a linear motor stalk elasticity

with zero rest length. In the theoretical description used here, the

ATP concentration enters only via the force-velocity relationship

(7), which involves two parameters, the zero-force velocity v0 and

the stall force Fs. In the present study, we focused on relatively

high ATP concentrations that exceed 1mM, which implies the

value v0~1mm=s for the zero-force velocity. Furthermore, the stall

force Fs, which was chosen here to be Fs~5pN, depends only

weakly on the ATP concentrations as experimentally observed in

[25,26]. An increase in the motor velocity and, thus, the stepping

frequency will slightly increase the fraction pdou of false double

step detections by the step finding algorithm, which increases the

peak around 2‘=N relative to the peak around ‘=N in the filament

step size distribution. An increase in the stall force has only

negligible effects on the filament step size distribution.

Influence of Stalk Elasticity on MT Stepping
The mechanical force equilibrium that is reached after one

attached motor performed a step depends on the the number of

motors attached to the filament and the elastic properties of the

Figure 5. Force equilibrium model. After one of the attached motors moves one step ‘ (A) the mechanical equilibrium position of the MT is
shifted by DDX to establish force equilibrium (B).
doi:10.1371/journal.pone.0043219.g005
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motor stalks. Therefore, using microscopic Brownian dynamics,

we compare the influence of the different force-extension relations,

a linear relation with (I) zero and (II) non-zero rest length, (III)

a freely jointed chain relation, and (IV) a worm-like chain relation

on the stepping motion of the MTs.

Non-zero rest length. The linear spring (II) with non-zero rest

length Dr0w0 appears, at first sight, to be not much different from

the linear spring (I) with zero rest length. Somewhat surprisingly,

a non-zero rest length can, however, lead to a rather different MT

stepping behavior. For non-zero rest length, we still observe 8nm
MT steps if one motor is attached but the step size distribution is

significantly broadened as compared to zero rest length, see

Fig. 6(A). Similarly, for MT transport by N~2 motors (Fig. 6(B)),

the step size distribution exhibits peaks around 4nm but is

considerably broader as for a zero rest length. For three motor

transport, on the other hand, the peak in the step size distribution

is at a value larger than 8nm=3 with a broad distribution such that

fraction third steps cannot be observed for non-zero rest lengths,

see Fig. 6(C).

These simulation results for the linear spring (II) can be

rationalized in the framework of the force equilibrium model. For

N~1 all MT displacements DR with DDr1{DRD~Dr0, i.e., on
a ring of radius Dr0 around DR~Dr1 are solutions of the force

equilibrium (11). This degeneracy corresponds to a soft mode in

the actual simulation dynamics with the motor stalk and the

attached MT rotating around the anchoring point resulting in

large diffusive displacement fluctuations, which broaden the step

size distribution for N~1 considerably. For Nw1 and a non-zero

rest-length, the force equilibrium of several motor stalks results in

two coupled and non-linear equations for the displacement vector DR,

XN
i~1

K(DDri{DRD{Dr0)
Dri{DR

DDri{DRD
~0: ð15Þ

The force equilibrium is at displacements DR, which are close to

all N circles DDri{DRD~Dr0. For attachment distances shorter or

comparable to the rest length r0, the coupled non-linear eqs. (15)

give rise to a strong coupling between parallel filament motion

DDX and perpendicular motion DDY resulting in a filament

stepping not aligned with filament orientation and broadening of

the filament step size distribution. For N~3, the broadening of

the step size distribution shifts the peak in the step size distribution

to a value significantly larger than ‘=3, see Fig. 6 (C) such that

fractional steps with N§3 cannot be observed and Nc~3 for this

model. This is also evident from the walked distances shown in

Fig. 4(B) for N~3. The absence of a sideways motion not aligned

with filament orientation in experiments [1] favors motor stalk

models with zero rest length in the gliding plane.

Non-linear force extension relation. Finally, we investi-

gated whether an intrinsically non-linear force-extension relation

of motor stalks as described by the freely jointed chain (III) or the

worm-like chain (IV) gives rise to similar effects in the step size

distributions. The comparison of normalized step size distributions

in Fig. 3 for all four motor stalk models clearly shows that the

effects arising from the non-linearities of freely jointed chains (III)

and worm-like chains (IV) are relatively small and hardly change

the behavior observed for linear springs (I).

To explain this result we note that, for parameter values

corresponding to the same motor stalk contour length and linear

spring constant at small extensions, both freely jointed chains and

worm-like chains are well in their linear regime at energies around

the thermal energy 1kBT . The thermal energy is the typical

stretching energy if motor attachment is governed by a on rate

kon! exp ({V (Dr)=kBT) with a Boltzmann factor containing the

stretching energy. Also an additional displacement by one motor

step ‘ does not lead to non-linear effects as long as ‘%Lm, which is

fulfilled both for kinesin and myosin-V. Because both freely jointed

chains and worm-like chains also have a zero rest length, they

behave very similar to the linear harmonic model with zero rest

length.

The comparison of simulated normalized step size distributions

in Fig. 3 for all four motor stalk models show that a non-zero rest

length has the most pronounced effect and results in a significant

broadening of step size distributions, whereas intrinsic non-

linearities as described by freely jointed chains or the worm-like

chains deviate only little from the linear model with zero rest

length.

Fig. 3 also shows the normalized experimental step size

distributions from Ref. [1] for comparison. The linear spring (II)

with non-zero rest length fits the experimental data best but one

has to keep in mind that there is additional noise from the MT

position determination in the experiment. Such additional noise

will also give rise to a lowering of the peaks at 8nm and 4nm,

respectively, and a broadening of the step size distributions.

Therefore, the linear spring (I) and the non-linear springs (III) and

(IV) with zero rest lengths can lead to equally good fits if additional

noise is applied in the simulations, and it is difficult to draw

definite conclusions about the stalk elasticity from the comparison

Figure 6. MT step size distribution for a linear force-extension relation (1) of motor stalks with non-zero rest length (K~0:5pN=nm,
Dr0~10nm). A: One motor (N~1), B: two motors (N~2), C: three motors (N~3). For three motors, the peak is at a value significantly larger than
8nm=3 with a broad step size distribution.
doi:10.1371/journal.pone.0043219.g006
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of experimental and simulation data for N~1 and N~2, The
situation is much more conclusive for N~3, for which a non-zero

rest-length of the motor stalk clearly shifts the peak of the step size

distribution to values larger than ‘=3 (Fig. 6 (C)) in our simulations.

However, for N~3, experimental step size distributions are not

available so far.

Fractional F-actin Stepping in Myosin-V Assays
We also simulated gliding assays consisting of actin filaments

and myosin-V motors, for which fractional filament steps have not

been studied experimentally so far. This system is interesting

because of the much larger step size ‘~36nm of myosin-V. We

focused on motor stalks that act as linear springs (I) with zero rest

length. Because the critical motor number Nc below which

fractional steps of size 36nm=N should be observable increases

quadratically with the step size ‘ according to (9), we can predict

that much smaller fractions of full steps should be observable for

myosin-V. For K~0:2pN=nm, we find Nc^32 based on our

criterion (9). This is confirmed by our simulations where we

observe fractional filament steps up to N~31 corresponding to

a step size 36nm=31^1:16nm, see Fig. 7. In the presence of

additional experimental noise DXexp~1nm the corresponding

criterion (10) predicts that fractional steps up to Nc^7 should also

be experimentally observable.

The critical number Nc of observable fractional filament step

sizes is also inversely proportional to the stiffness K according to

eq. (9). For softer motor stalk stiffnesses we therefore expect to

observe much less fractional step sizes. To test this dependence we

also performed simulations for a reduced stiffness

K~0:02pN=nm. Indeed, we can only observe half-steps corre-

sponding to Nc~3 in the simulations, which agrees again with

criterion (9). This shows that an experimental determination of Nc

for a myosin-V gliding assay can give information about the motor

stalk stiffness of myosin-V.

So far, we have implicitly assumed that the overall filament

trajectories can be decomposed into distinct segments, each of

which is characterized by a fixed motor number N. Such

a decomposition is always possible in simulations and has also

been achieved experimentally in Ref. [1] up to N~3. However, it

is hardly possible to experimentally distinguish segments with

N~No from those with N~Noz1 for large values of No.

In contrast, the average number SNT of motors that actively pull

on the filament can be directly controlled experimentally via the

surface density (or coverage) s of the motors on the substrate

surface. For a filament of length L, this average number is given by

SNT^sL‘a [5] and is, thus, proportional to the motor surface

density s, the filament length L, and the attachment length ‘a of

the motors, the latter being approximately equal to the motor stalk

extension arising from thermal fluctuations, which implies

V (‘a)^kBT .

Thus, we performed simulations for actin/myosin-V gliding

assays, for which the motor density has been adjusted to produce

a certain average number SNT of the attached motors whereas the

actual motor number N~N(t) becomes time-dependent and

fluctuates around its average value SNT. Examples for the

corresponding distributions of the filament step size are shown

in Fig. 8. Inspection of this figure reveals pronounced peaks in the

Figure 7. F-actin step size distributions in myosin-V gliding assays for fixed motor number N. (A) N~1; (B) N~2; (C) N~4; and (D)
N~31. Results are obtained for a linear force-extension relation (1) of motor stalks with zero rest length (K~0:2pN=nm). The peaks are at step sizes
36nm=N with 36nm=31^1:16nm.
doi:10.1371/journal.pone.0043219.g007
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step size distributions, with a decreasing peak position as a function

of the average filament number SNT. In comparison to

simulations with fixed motor number N, the filament step size

distribution for fixed SNT is broadened and its peak position is

shifted to values that are slightly smaller than ‘=SNT. This can be

understood as follows. The step size distribution for fixed average

SNT is a superposition of different, approximately Gaussian

distributions corresponding to the different values of N(t). For N
attached motors with harmonic motor stalks with spring constant

K , the step size distribution is a Gaussian centered around ‘=N

with a width given by S(DX )2T1=2*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=KN

p
, which decreases

for increasing N. The superposition of these Gaussian step size

distributions gives rise to a broadening of the step size distribution.

The decreasing width of the superimposed Gaussians for higher

values of N gives rise to a shift in the peak step size of the

superposition to a value smaller than ‘=SNT. In any case, our

simulations show that filament step size distributions for fixed

average motor number SNT also exhibit peaks at fractional step

sizes over a wide range of SNT-values with SNTvNc.

Discussion

We have investigated fractional filament steps ‘=N in gliding

assays both for MTs and F-actin, which are transported

cooperatively by a number N of kinesin or myosin-V motor

proteins with different step lengths ‘~8nm and ‘~36nm,

respectively. Our simulation data shows that the filament stepping

behavior crucially depends on the number N of transporting

motors and the elasticity of the motor stalks, which transmit forces

onto the filaments. We have employed four different elastic

elements to describe the motor stalks in our simulations: linear

springs with zero and non-zero rest length as well as freely jointed

chains and worm-like chains.

For the kinesin gliding assays we found filament step size

distributions and histograms of pairwise distances for transport by

N~1 and N~2 motors (Figs. 2(D,E,G,H)), which show quanti-

tative agreement with the experimental results of Ref. [1] using

a linear motor stalk elasticity with zero rest length. Small

differences arise from the somewhat higher noise levels in

experiments, which is generated during the MT position

measurement. This demonstrates that our simulation model,

which does not include any motor coordination mechanism apart

from a coordination via the load force distribution, is able to

quantitatively reproduce the experimental results of Ref. [1] on the

resulting step-like transport of microtubules by kinesin.

Thermal fluctuations and additional experimental noise limit

the observability of small fractional steps. We derived the criterion

(9) that fractional steps are only observable for

NvNc~K‘2=2kBT for a linear motor stalk elasticity with zero

rest length and for purely thermal noise as in our simulations. This

analytical estimate gives Nc~4 for the kinesin-assay in agreement

with our simulation results, where fractional steps can be observed

up to N~3 (Figs. 2(F,I)). In experiments, the value Nc can be

Figure 8. F-actin step size distributions in myosin-V gliding assays for fixed average motor number SNT. (A) SNT~4; (B) SNT~8; (C)
SNT~16. Results are obtained for a linear force-extension relation (1) of motor stalks with zero rest length (K~0:2pN=nm). The peaks of the
distributions are located at 7 nm, 4.5 nm, and 2.25 nm for SNT~4,8, and 16, respectively.
doi:10.1371/journal.pone.0043219.g008
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smaller because of additional noise from the filament position

measurements, see eq. (10).

In our simulations, we compared these results for stalks that act

as linear springs with zero rest length to those that act as linear

springs with non-zero rest length or as intrinsically non-linear

freely jointed chains and worm-like, see Fig. 3. Within a force

equilibrium model we find that for a linear motor stalk elasticity

with a zero rest length within the gliding plane the step size

distribution should be double- (or multiple) Gaussian distributions

in agreement with our simulations. This provides an experimental

test for a linear motor stalk elasticity with zero rest length. The

experimental results of Ref. [1] show that indeed, double-Gaussian

fits describe the experimental data well.

Furthermore, effects from non-linearity are important if forces

K‘ generated in single step drive the spring into a non-linear

regime or if attachment energy of 1kBT is sufficient to drive the

spring into the non-linear regime. This is the case only if ‘=Lm is

sufficiently close to full stretching, which means larger than *0:5
for freely jointed or worm-like chains, which is neither the case for

truncated kinesin with ‘~8nm and Lm~20nm nor for myosin-V,

which has a larger step length ‘~36nm but also a larger contour

length Lm*100nm. Therefore it is difficult to rule out such non-

linear models based on the experimental data for step size

distributions (Fig. 3).

On the other hand, our simulations show that a non-zero motor

stalk rest length, which means a non-zero rest length for extensions

within the gliding plane, has a much stronger effect and leads to

a considerable broadening of the step size distributions for N~1
and N~2. Moreover, for N~3 fractional steps become un-

observable for kinesin-assays, i.e. the critical Nc is reduced to

Nc~3 for a non-zero rest length as a result of the broadening of

the step size distribution. The maximum of the step size

distribution for N~3 is around 4nm rather than 8nm=3 (Fig. 6).

Therefore, reduction of experimental noise such that thermal noise

is dominant, as in our simulations, would allow an experimental

test for a non-zero motor stalk rest length by inspection of the step

size distribution for N~3.
For myosin-V gliding assays with the much larger step length

‘~36nm our simulations show that fractional ‘=N steps of F-actin

are observable up to a much higher motor number N~31 (Fig. 7).

This agrees again very well with our criterion NvNc~K‘2=2kBT
from eq. (9) for the observability of fractional filament steps in the

presence of thermal noise, which gives Nc^32 for the myosin-V

gliding assay. This pronounced increase in the critical value Nc is

caused by the quadratic dependence on the step length ‘. For an
experimental measurement with additional noise we predict that

fractional step up to Nc^7 should be observable, which is still

significantly higher as for kinesin assays. This prediction needs to

be checked in further experiments. The critical value Nc is also

sensitive to the motor stalk stiffness K . For a very small K the

critical number Nc becomes small despite a large step size ‘. Our

simulations confirm that Nc drops by a factor of 10 to Nc^3 if the

stiffness of the myosin-V stalk is reduced from K~0:2pN=nm to

K~0:02pN=nm. Therefore, an experiment on a myosin-V assay

would also yield valuable information about the myosin-V stalk

stiffness, which has been measured only in one experiment so far

[12].

Using simulations for myosin-V gliding assays we also showed

that fractional filament steps are still detectable in the filament step

size distributions if the motor number N fluctuates around

a certain average motor number SNTvNc, which is the typical

experimental situation for gliding assays with a certain surface

density (or coverage) of randomly adsorbed motors. The filament

step size distributions are broadened but exhibit a pronounced

peak at a step size slightly smaller than ‘=SNT.
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