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Model and Simulations
SimulationMethod.Wehave performed dissipative particle dynamics
(DPD) simulations (1–3). DPD is a coarse-grained molecular
dynamics technique that explicitly includes water (3). The DPD
particles, or “beads,” represent either a number of identical
molecules or several molecular groups, rather than single atoms.
The internal degrees of freedom of these molecules or molecular
groups are reflected by dissipative forces and random forces, and
the chemical nature of the molecules and molecular groups—for
example, their hydrophobicity and hydrophilicity—is taken into
account by conservative forces. Because all forces conserve
momentum, DPD reproduces the correct hydrodynamics (3).
The DPD force that a bead j exerts on a bead i is the sum

of three pairwise-additive forces: (i) the conservative force FC
ij ,

which results from bonded and nonbonded interactions of the
beads; (ii) the dissipative or viscous friction force FD

ij ; and (iii)
the random force FR

ij . The dissipative force FD
ij is related to the

relative velocity vij = vi − vj of the beads via

FD
ij =

(
−γij

�
1− rij=r0

�2�r̂ij ·vij�r̂ij; rij < r0
0; rij ≥ r0

[S1]

with a friction coefficient γij = γji that depends on the bead type.
Here, rij = jri − rjjdenotes the distance between the beads, r̂ij =
ðri − rjÞ=rij is the unit vector pointing from bead j to bead i, and r0
is the diameter of the beads. The random force FR

ij representing
thermal noise has the form:

FR
ij =

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γijkBT

p �
1− rij=r0

�
ζijr̂ij; rij < r0

0; rij ≥ r0
: [S2]

Here, kB is Boltzmann’s constant, T is the temperature, and the
Gaussian white-noise ζij satisfies the stochastic properties hζijðtÞi= 0
and hζijðtÞζi′j′ðt′Þi= ðδii′δjj′ + δij′δji′Þδðt− t′Þ as well as the symmetry
property ζijðtÞ= ζjiðtÞ.
Bonded Interactions.Our coarse-grained model includes water, lipid
molecules, and receptor and ligand molecules. Water molecules
(W) are represented by single beads. A lipid molecule consists
of three hydrophilic head beads (H) and two hydrophobic chains
(C) with four beads each (4–7) (Fig. 1A). Adjacent beads are
connected via harmonic potentials

VbondðrÞ= 1
2
krðr− l0Þ2; [S3]

with bond strength kr = 128  kBT=r20 and preferred bond length
l0 = 0:5  r0 (5). Here, r is the distance between the two beads. The
two hydrophobic chains of the lipid molecules are stiffened by
the bending potential (4)

VbendðϕÞ= kϕ½1− cosðϕ−ϕ0Þ� [S4]

that acts between two consecutive bonds along each chain. The
bending constant is kϕ = 15  kBT, and the bond angle ϕ attains
the preferred value ϕ0 = 0 for collinear bonds (6, 7).
The anchored receptor and ligand molecules consist of a trans-

membrane segment and an interaction segment (Fig. 1A). The

transmembrane segment is composed of four layers of lipid-chain–
like beads (TC), which are shown in yellow in Fig. 1A, in between
two layers of lipid-head–like beads (TH) shown in blue. The
interaction segment consists of six layers of a hydrophilic bead
type I. Each pair of nearest neighboring beads of a receptor or
ligand is connected by a harmonic potential with bond strength
kr = 128  kBT=r20 and bond length l0 = 0:875  r0. This bond length
corresponds to the average distance of neighboring water beads
in our simulations with bead density ρ= 3  r−30 . Each pair of next-
nearest neighboring beads in two adjacent layers of a receptor or
ligand is connected by a harmonic potential with bond strength
kr = 128  kBT=r20 and bond length l0 =

ffiffiffi
2

p
× 0:875  r0.

Nonbonded Interactions. In addition to the forces resulting from
the bonded interactions specified above, all pairs of DPD beads—
except for the interaction beads of a receptor and a ligand—
exhibit the soft repulsive forces

FC
ij =

(
aij
�
1− rij=r0

�
r̂ij rij < r0

0; rij ≥ r0
[S5]

with a repulsion strength aij that depends on the types of the two
beads i and j (Table S1). The different repulsion strengths reflect
the chemical nature of the beads—that is, their hydrophobicity or
hydrophilicity. To avoid a clustering of receptors and ligands, the
repulsion strength between the beads of two different receptors
or two different ligands adopts the value aij = 75  kBT=r0, which is
larger than the repulsion strength aij = 25  kBT=r0 between two
beads of the same receptor, same ligand, or a receptor and a ligand.
The friction coefficient γij of the dissipative forces given by Eq. S1
between two beads is affected by their repulsion strength as (5):

γij =

8<
:

4:5; aij < 35
9:0; 35≤ aij < 75
20:0; aij ≥ 75

: [S6]

The friction coefficient is given here in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0kBT=r20

q
, where

m0 is the bead mass.
The specific binding of a receptor and a ligand molecule is

modeled via the binding potential

Vbindðr; θÞ= vbindðrÞe−kθðθ− θ0Þ2 ; [S7]

which depends both on the distance r between the interaction
beads of the receptors and ligands and on the angle θ between
the two molecules. The interaction beads are located in the center
of the top layer of the receptors’ and ligands’ interaction regions
and are indicated in black in Fig. 1A. The angle θ between a re-
ceptor and a ligand molecule is defined as the angle between the
two bonds that connect the interaction beads of the molecules
to the central beads of the adjacent bead layers. The distance-
dependent term vbindðrÞ of the specific interaction is

vbindðrÞ=

8>>>>>><
>>>>>>:

1
2 r0

�
aIIð1− r=r0Þ2 −Fm

�
; r< r0

Fmr0
�ð1− r=r0Þ2 − 1

2

�
; r0 ≤ r< 3

2 r0

−Fmr0ð2− r=r0Þ2; 3
2 r0 ≤ r< 2r0

0; r≥ 2r0

[S8]
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with the DPD repulsion strength aII = 25 kBT=r0 and the attrac-
tion strength Fm = 16  kBT=r0 (Fig. S1A). Differentiating vbindðrÞ
with respect to r leads to the radial force component

FbindðrÞ=

8>>>>><
>>>>>:

aIIð1− r=r0Þ; r< r0

2Fmð1− r=r0Þ; r0 ≤ r< 3
2 r0

2Fmðr=r0 − 2Þ; 3
2 r0 ≤ r< 2r0

0; r≥ 2r0

; [S9]

which includes a soft repulsion for r< r0 and an attraction for
r0 ≤ r< 2  r0 (Fig. S1B). The parameter kθ in the binding potential
S7 determines the width of the binding angle distribution and is
chosen to be kθ = 10  rad−2 here. The angle θ between the two
molecules adopts the preferred value θ0 = 0 if the two molecules
are facing each other. The binding potential attains its minimum
value of −1

2Fm   r0 = − 8  kBT at r= r0 and θ= θ0. For this interme-
diate binding energy of the receptors and ligands, both stable
bonds and a large number of binding and unbinding events can
be observed in our simulations.

DPD Simulations. In each simulation, the number density of DPD
beads in the rectangular simulation box of size V =Lx ×Ly ×Lz is
set to ρ= 3  r−30 . The total number of beads in each simulation
system thus is ρV. The Newton’s equations of motion are nu-

merically integrated with a time step t0 = 0:03
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0r20=kBT

q
using

the velocity-Verlet algorithm as in ref. 3. For this time step, the
average temperature of the beads deviates from the expected
value by at most 2%. Our optimized DPD code is parallelized to
achieve a speedup of about a factor 6 by using eight central
processing unit (CPU) cores, which enables us to simulate up to
tens of thousands of binding and unbinding events to determine
the binding constants with high accuracy. A relaxation run of
2− 5·106   t0 is performed for thermal equilibration in each system
before statistical sampling.
Physical length and time scales for the bead diameter r0 and

for the step width t0 of our simulations can be obtained from a
comparison with experimental data for dimyristoyl-phosphati-
dylcholine (DMPC) bilayers (6, 7). Our model lipids correspond
to the phospholipid DMPC as each C bead of the lipid tails can
be seen to represent 3.5 CH2 groups (4, 6), which leads to a total
tail length of 14 CH2 groups as for DMPC. To obtain a physical
length scale for the bead diameter r0, we compare experimental
data for the thickness of fluid DMPC bilayers or, more precisely,
for the vertical distance dHH between the head groups of the two
monolayers. From the experimental value dHH ’ 3:53 nm (8) and
our simulation result dHH ’ 3:64  r0, we obtain the physical length
scale r0 ’ 1:0 nm. From a comparison of the experimentally
measured lateral diffusion coefficient D ’ 5 μm2=s of DMPC (9)
to our simulation result D ’ 5:7 ·10−4r20=t0, we obtain the physical
time scale t0 ’ 0:114  ns.

Simulations with Confining Potentials. In our simulations with con-
fining membrane potentials, we impose additional harmonic
potentials

VconfðzÞ= 1
2
kconfðz− z0Þ2 [S10]

on one of the three head beads of each lipid in the two distal
monolayers of the apposing membranes—that is, in the two
monolayers that do not face the other membrane. The potential
is imposed on the head bead that is connected to the left side
chain of the lipid molecule shown in Fig. 1A. The z-direction of
our simulation box is on average perpendicular to the membranes.
The three red data points in Fig. 4 are from simulations with the
rather weak confining strengths kconf = 1, 2 and 4 kBT/nm

2 (from

right to left). The membrane tensions in these simulations are
0.13 ± 0.02, −0.15 ± 0.03, and −0.49 ± 0.01 kBT/nm

2 for the
confining strengths 1, 2, and 4 kBT/nm

2, respectively.

Analysis of Binding Kinetics
Maximum-Likelihood Estimation of Rate Constants.We complement
here the analysis of the binding kinetics described in the main
text by (i) a derivation of the time-dependent probability PnðtÞ of
a state with n receptor–ligand bonds and (ii) an estimation of the
errors for the rate constants obtained by this analysis.
In Fig. S2A, the number of bonds n is displayed as a function of

time for a short segment of a simulation trajectory of our largest
membrane system with 15 receptors and 15 ligands. A central
quantity for extracting the binding kinetics from our simulation
trajectories is the probability PnðtÞ of staying for a dwell time t in
state n. For a Markov process, we have

Pnðt+ΔtÞ=PnðtÞPnðt+ΔtjtÞ; [S11]

where Pnðt+ΔtjtÞ is the conditional probability of remaining in
state n from time t to t + Δt. For small time windows Δt, this
probability is

Pnðt+ΔtjtÞ= 1−
h
kðnÞ+ + kðnÞ−

i
Δt; [S12]

where kðnÞ+ is the transition rate from state n to state n + 1, and
kðnÞ− is the transition rate from state n to state n − 1. The prob-
abilities of transitions from state n to states n ± 2, n ± 3, . . . are
negligible for small Δt. From Eqs. S11 and S12, we obtain

Pnðt+ΔtÞ−PnðtÞ
Δt

= −PnðtÞ
h
kðnÞ+ + kðnÞ−

i
; [S13]

which leads to

dPnðtÞ
dt

= −PnðtÞ
h
kðnÞ+ + kðnÞ−

i
[S14]

for Δt→ 0. The solution of Eq. S14 is the exponential dwell-time
distribution

PnðtÞ= e−½kðnÞ+ +kðnÞ− �t: [S15]

Fig. S2B illustrates that the histogram of dwell times in state n = 5
obtained from our DPD simulations with 15 anchored receptors
and ligands fits well to an exponential distribution.
The variances δ2k of the maximum likelihood estimators can be

estimated by the Cramer–Rao lower bound δ2k= ð−d2   ln  L=dk2Þ−1
(10). For the likelihood function L given in Eq. 17 and k= kðnÞon

or kðnÞoff given in Eq. 18, we obtain as errors of our rate constant
estimates

δkðnÞon ’ kðnÞonffiffiffiffiffiffiffi
N+

n

p [S16]

and

δkðnÞoff ’
kðnÞoffffiffiffiffiffiffiffi
N−

n

p : [S17]

Binding of Soluble Receptors and Ligands. In addition to the mem-
brane systems described in the main text, we have determined
the binding kinetics of soluble receptor and ligand molecules
that lack the transmembrane anchor. We have considered a
single soluble receptor and a single soluble ligand randomly
placed in water contained in simulation boxes with the four
different sizes Lx =Ly =Lz = 20 nm, 24 nm, 28 nm, and 32 nm.
Within the statistical errors, the 3D on- and off-rate constants

Hu et al. www.pnas.org/cgi/content/short/1305766110 2 of 9

www.pnas.org/cgi/content/short/1305766110


kon and koff and the binding equilibrium constant K3D are
independent of the box size (Fig. S3). We obtain the es-
timates kon = ð6:2± 0:2Þ·107nm3=s, koff = ð4:0± 0:1Þ·105=s, and
K3D = ð157± 6Þnm3.

Receptors and Ligands with Increased Binding Energy. To illustrate
that our general results for the ratio of K2D and K3D do not
depend on the values of the on- and off-rate constants or binding
constants, we have performed additional simulations in which
the binding strength Fm of the receptors and ligands is increased
from our standard value 16 kBT=r0 (Eq. S8) to the value 20 kBT=r0.
For the larger binding strength 20 kBT=r0, we obtain the binding
constant K3D = ð537± 23Þnm3 and the rate constants kon =
ð6:6± 0:2Þ·107nm3=s and koff = ð1:23± 0:04Þ·105=s of our soluble
receptors and ligands. The increase in the binding strength and
binding energy by 25% thus increases the binding constant K3D
by a factor 3.4 ± 0.2, mainly due to a decrease in the off-rate koff.
From simulations with tensionless membranes of area 14 ×
14 nm2 at the optimal membrane separation, we obtain the value
K2D = ð2820± 60Þnm2 for the binding strength 20 kBT=r0, which
is a factor 3.4 ± 0.1 larger than the value K2D = ð829± 12Þnm2

for this membrane system from simulations with our standard
binding strength 16 kBT=r0 (see dark blue data point indicated by
the left arrow in Fig. 4). The relative membrane roughness ξ⊥
is determined by the membrane area in this system and, thus,
independent of the binding strength within numerical accuracy.
Because the increase in the binding strength increases both K2D
and K3D by the same factor, the ratio K2D=K3D of the binding
constants does not change. For the increased binding strength
20 kBT=r0, the rate constants of the membrane-anchored re-
ceptors and ligands are kon = ð7:6± 0:1Þ·107nm2=s and koff =
ð2:69± 0:04Þ·104=s in this membrane system. For our standard
binding strength 16 kBT=r0, these rate constants are kon =
ð7:3± 0:1Þ·107nm2=s and koff = ð8:8± 0:1Þ·104=s.
Calculation of Binding Free Energies
Binding Free Energy of Soluble Receptors and Ligands. The binding
equilibrium constant K3D of a single soluble receptor and a single
soluble ligand molecule in a volume V is related to the binding
free energy ΔG3D of the molecules via Eq. 2. The binding free
energy can be written as

ΔG3D = − kBTðln  Zb − ln  ZuÞ; [S18]

where Zb and Zu are the configurational integrals in the bound
and unbound state of the molecules. For rod-like receptors and
ligands, the configurational integral in the unbound state is

Zu ’ 2πV
Zπ

0

sin θdθ= 4πV [S19]

in the dilute limit V →∞, where θ is the angle between the two
molecules. The configurational integral in the unbound state is
the product of the translational phase space volume V and the
rotational phase space volume 4π of the unbound receptor rel-
ative to the ligand.
To calculate the configurational integral Zb in the bound state

of the molecules, we follow a standard approach that is based on
a harmonic expansion of the potential of mean force Uðrx; ry; rz; θÞ
between the interaction beads of the two bound molecules around
its minimum U0 (11, 12):

U
�
rx; ry; rz; θ

� ’ U0 +
X
q=x;y;z

kq
2
�
rq − rq;0

�2 + k′θ
2

θ2: [S20]

Here, ðrx; ry; rzÞis the distance vector between the beads. For
definiteness, we assume that the z-direction is parallel to the

ligand, and thus, on average parallel to the receptor–ligand com-
plex, which attains its potential minimum for θ= 0—that is, for
a collinear orientation of the receptor and ligand. With Eq. S20,
the configurational integral in the bound state can be approxi-
mated as

Zb ’ e−U0=kBTZtransZrot; [S21]

with the translational integral

Ztrans ’ ∏
q=x;y;z

Z∞
−∞

e−
1
2 kqðrq − rq;0Þ2

�
kBTdrq = ð2πÞ3=2ξxξyξz [S22]

and the rotational integral

Zrot ’ 2π
Zπ

0

e−
1
2 k′θθ

2=kBT   sin θdθ ’ 2πσ2b  for   k′θ � kBT: [S23]

Here, ξq = ðkBT=kqÞ1=2 and σb = ðkBT=k′θÞ1=2 are the SDs of the
Gaussian distributions for the coordinates q= x; y; z of the binding
vector and the binding angle θ, which result from the harmonic
approximation of the potential of mean force in Eq. S20. The
integrals Ztrans and Zrot involve three translational and two rota-
tional degrees of freedom. Based on these integrals, the binding
free energy ΔG3D defined in Eq. S18 can be written as

ΔG3D ’ U0 +ΔGtrans +ΔGrot; [S24]

with the change ΔGtrans = − kBT   lnðZtrans=V Þ in translational free
energy and the change ΔGrot = − kBT   lnðZrot=4πÞ in rotational
free energy during binding.
We now decompose the translational free-energy change ΔGtrans

into (i) an entropic contribution

−TΔStrans =T
∂ΔGtrans

∂T
= − kBT   ln

�
Vb

V

�
[S25]

with the bound-state translational phase space volume

Vb = e3=2Ztrans = ð2πeÞ3=2ξxξyξz [S26]

and (ii) an enthalpic contribution ΔUtrans =ΔGtrans +TΔStrans =
3
2 kBT. The factor e3/2 in Eq. S26 results from the temperature
dependence of the SDs ξx, ξy, and ξz. Similarly, we decompose
the rotational free-energy change ΔGrot into (i) an entropic
contribution

−TΔSrot =T∂ΔGrot=∂T = − kBT   ln½ωb=4π� [S27]

with the bound-state rotational phase space volume

ωb = eZrot = 2πeσ2b [S28]

and (ii) an enthalpic contribution ΔUrot =ΔGrot +TΔSrot = kBT.
The binding free energy ΔG3D then can be written as the sum
of enthalpic and entropic contributions as in Eq. 3 with the
binding enthalpy

ΔU =U0 +ΔUtrans +ΔUrot =U0 +
5
2
kBT: [S29]

Binding Free Energy of Membrane-Anchored Receptors and Ligands.
Analogous to the case of soluble molecules, we now consider a
single receptor and a single ligand that are anchored in two ap-
posing membranes of area A. Our aim is to decompose the
binding free energy ΔG2D, which is related to the apparent
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binding constant K2D of the molecules via Eq. 5, into the sum
of an enthalpic contribution ΔU and entropic contributions. We
assume that the binding interface of the membrane-anchored
molecules is identical with the binding interface of the soluble
counterparts of the molecules, which lack the membrane anchors
(13). This assumption is supported by the distributions of binding
distances and angles for our soluble and membrane-anchored
receptor–ligand complexes (Fig. S4). The binding enthalpy ΔU
of the membrane-anchored receptor and ligand molecules is then
identical to the binding enthalpy of the soluble molecules.
Because the anchored molecules diffuse along the membranes,

the free-energy contribution from the translational entropy change
during binding is

−TΔStrans ’ −kBT   ln
�
Ab

A

�
; [S30]

where Ab is the translational area of the bound receptor–ligand
complex in analogy to Eq. S25. The two membranes are on aver-
age perpendicular to the receptor–ligand complex. In analogy to
Eq. S26, the bound-state translational area of the complex is then:

Ab = 2πeξxξy; [S31]

where ξx and ξy are the SDs of the binding vector coordinates in
the two directions perpendicular to the complex and parallel to
the membranes. In our simulations, the distributions of the binding
vector coordinates x and y perpendicular to the complex are iden-
tical for the soluble and anchored molecules (Fig. S4A).
In analogy to Eqs. S27 and S28, the free-energy contribution

from rotational entropy changes of the anchored molecules can
be calculated as

−TΔSrot =− kBT   ln
�
ωbωRL

ωRωL

�
; [S32]

where ωR = 2πeσ2R and ωL = 2πeσ2L are the rotational phase space
volumes of the unbound receptor and unbound ligand relative to
the membrane, and ωRL = 2πeσ2RL is the rotational phase space
volume for the bound receptor or bound ligand relative to the
membrane. Here, σR, σL, and σRL are the SDs of the anchoring
angle distributions for the unbound and bound receptor and ligand
molecules shown in Fig. S5. Eq. S32 implies that the binding angle
distribution is significantly narrower than the anchoring angle dis-
tribution of the bound receptors and ligands. The binding angle
distribution then is not affected by the anchoring and is practically
identical for the soluble and anchored molecules (Fig. S4). Be-
cause the rotational degrees of freedom for the binding angle thus
are independent from the anchor rotations, the overall rotational
phase space volume for the receptor–ligand complex is the prod-
uct of the volume ωRL for the rotation of the receptor (or ligand)
relative to the membrane and the volume ωb of the ligand (or
receptor) relative to its binding partner. Because our receptor

and ligand molecules have identical anchors, the rotational phase
space volume ωRL is identical for the ligand or receptor. How-
ever, Eq. S32 should also hold for different anchoring of recep-
tors and ligands if the binding angle distribution is sufficiently
narrow. The receptor–ligand complex is then rather stiff, and the
anchoring angles for the receptor and ligand are rather similar
because the membranes are on average parallel.
In addition to the translational and rotational entropy loss

ΔStrans and ΔSrot of the molecules, the binding of anchored re-
ceptor and anchored ligand molecules also leads to an entropy
loss ΔSmem of the membranes, as the bound receptor–ligand com-
plex constrains the membrane shape fluctuations. Here, we ap-
proximate the receptor–ligand complex as a harmonic constraint
ðb=2Þl2i of the local membrane separation li with strength b. For
such a harmonic constraint, the purely entropic free-energy change
of the membrane has been calculated exactly as (14)

−TΔSmem =
kBT
2

ln
�
1+

bξ2⊥
kT

�
=
kBT
2

ln

"
1+

ξ2⊥
ξ2RL

#
; [S33]

where ξRL =
ffiffiffiffiffiffiffiffiffiffiffi
kT=b

p
is the SD for fluctuations of the local sep-

aration li within the harmonic constraint. With Eqs. S30, S32,
and S33, we obtain the decomposition of the binding free energy
ΔG2D of the anchored receptors and ligands given in Eq. 6.

Results for Our Model. In our harmonic approximation, the changes
in rotational and translational entropy during binding of receptors
and ligands depend on the SDs of the binding vector coordinates,
binding angles, and anchoring angles. For our receptors and
ligands, these SDs can be calculated from the distributions shown
in Figs. S4 and S5. For the soluble receptors and ligands, we obtain
the SDs ξx = ξy ’ 0:52 nm for the binding vector coordinates rx
and ry in the two directions perpendicular to the receptor–ligand
complex from Fig. S4A and the SD ξz ’ 0:19 nm for the co-
ordinate rz parallel to the complex from Fig. S4B. These SDs
lead to the estimate Vb ’ 3:6 nm3 for the translational phase
space volume of the bound receptor relative to the ligand (Eq.
S26). From the binding angle distribution shown in Fig. S4C, we
obtain the SD σb ’ 0:084, which leads to the estimate ωb ’ 0:12
for the rotational phase space volume of the bound receptor
relative to the ligand.
The distributions of the binding vector coordinates rx and ry

and the binding angle θ are practically identical for the sol-
uble and anchored receptors and ligands. From the values ξx =
ξy ’ 0:52 nm for the SDs of rx and ry, we obtain the estimate
Ab ’ 4:6 nm2 for the translational phase space area of the an-
chored receptor–ligand complex (Eq. S31) and the estimate ξb =
Vb=Ab ’ 0:78 nm. From the SDs σR = σL ’ 0:21 and σRL ’ 0:14
of the anchoring angle distributions for the unbound and bound
receptor and ligand molecules shown in Fig. S5, we obtain the
estimates ωR =ωL ’ 0:75 and ωRL ’ 0:33 for the rotational phase
space volumes of the molecules.
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Fig. S1. (A) The distance-dependent term vbindðrÞ of the binding potential between the interaction beads of receptor and ligand molecules (Eq. S8). The
minimum of the binding potential is −8 kBT. (B) The radial force component corresponding to vbindðrÞ (Eq. S9).
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Fig. S2. (A) Number of receptor–ligand bonds n as a function of time t for a short time interval of a simulation with 15 anchored receptors and 15 ligands. (B)
Dwell-time probabilities in state n= 5 obtained from our simulations with 15 anchored receptors and ligands. The dashed line results from an exponential fit.
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Fig. S3. (A) 3D on- and off-rate constants kon and koff and (B) binding equilibrium constant K3D = kon=koff obtained from DPD simulations with a single soluble
receptor and a single soluble ligand in cubic simulation boxes of different volume V.
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Fig. S5. Probability distributions of the anchoring angle θa between the unbound and bound receptors and ligands and the membrane normal.
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Table S1. DPD repulsion strength aij in units of kBT=r0

Bead type W H C TH TC I

W 25 30 75 30 75 25
H 30 30 35 30 35 30
C 75 35 10 35 10 35
TH 30 30 35 25(75) 25(75) 25(75)
TC 75 35 10 25(75) 25(75) 25(75)
I 25 30 35 25(75) 25(75) 25(75)

Numbers in parentheses indicate the repulsion strength between the
beads of two different receptors or two different ligands.
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