
Chapter 3
Molecular Motors: Cooperative Phenomena
of Multiple Molecular Motors
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Abstract Transport of various types of cargoes in cells is based on molecular motors
moving along the cytoskeleton. Often, these motors work in teams rather than as iso-
lated molecules. This chapter discusses analytical and computational approaches to
study the cooperation of multiple molecular motors theoretically. In particular, we
focus on stochastic methods on various levels of coarse-graining and discuss how
the parameters in a mesoscopic theoretical description can be determined by aver-
aging of the underlying microscopic processes. These methods are applied toward
understanding the effects of elastic coupling in a motor pair and in the cooperation of
several motors pulling a bead. In addition, we review how coupling can have different
effects on different motor species.

3.1 Background

Long-distance transport in cells is powered by molecular motors of the kinesin,
myosin, and dynein superfamilies that move along microtubules or actin filaments
[41, 64, 81]. Representatives of each superfamily have been characterized biochemi-
cally, structurally, and biophysically in some detail. In particular, the development of
single-molecule techniques has greatly expanded our knowledge about the dynamics
of these motors and provided a detailed picture of the stepping of the motors and
the forces they exert [19, 42, 70, 82, 86, 89, 97]. These experimental efforts have
been complemented by theoretical investigations studying relatively coarse-grained
stochastic descriptions of one or several chemomechanical working cycles of specific
molecular motors [12, 29, 44, 61]. In addition, molecular dynamics and Brownian
dynamics simulations, using both detailed empirical force fields as well as structure-
based (Gō-type) approaches, have been used to address the mechanical details of the
motors’ molecular motion, see, e.g., [33, 43, 45].
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In cells, these motors often work in small teams rather than as single molecules
[9, 34]. Therefore in recent years, the cooperation of motors and the dynamics of
motor complexes have moved to center stage, in experimental [5, 22, 34] as well
as theoretical studies [9, 51]. In contrast to earlier work on motor cooperation [46],
which mostly dealt with large numbers of motors, as in the contraction of muscle,
which is based on the cooperation of billions of myosin molecules [40], the recent
studies focus on defined complexes of small numbers of motors, starting with motor
pairs up to complexes of 7 motors. These numbers are typical for transport in cells,
as indicated by electron microscopy and as deduced from in vivo force and velocity
measurements [34].

Specifically, the recent development of synthetic complexes linking a defined
number of motors [1, 25, 30, 66, 79, 96] enables the detailed quantitative charac-
terization of the dynamical behavior of coupled motors using the techniques origi-
nally developed for single motor molecules. Previous quantitative characterizations
of coupled motors [5, 90] have remained somewhat limited by the fact that only
the average number of motors rather than their actual number could be prescribed.
These synthetic complexes link motors via a DNA linker [30, 66, 79], a quantum
dot [1], an antibody [96], or via a DNA origami scaffold [25]. In particular, the latter
method allows to control the numbers and types of motors as well as their geometric
arrangement.

In this chapter, we discuss the analytical and computational treatment of coopera-
tive molecular motors and motor complexes consisting of a small number of motors
coupled with elastic linkers. We review three approaches describing such systems
at different levels of detail, with different theoretical scopes and invoking different
computational costs. The three approaches start with different descriptions of single
motor molecules, specifically (i) as a random walker on a chemomechanical network
of motor conformations, (ii) as a stochastic stepper with force-dependent rates, and
(iii) as a molecule moving in three spatial dimensions subject to geometric constraints
such as binding to a bead, but with a rather coarse-grained description of its internal
degrees of freedom. In all three cases, we consider two or more such motors coupled
via some elastic element, which may correspond to the flexible stalk or tail of the
motor, a linker molecule, or the common cargo of the coupled molecular motors.

3.1.1 Length and Time Scales of Molecular Motor Motility

The movements of individual motor molecules as well as of motor complexes involve
motion on a wide range of length scales, which we illustrate here for the best stud-
ied motor, dimeric kinesin-1 (conventional kinesin). The movement of kinesin-1
(as well as of other cytoskeletal motors) is powered by the hydrolysis of adenosine
triphosphate (ATP) to adenosine diphosphate (ADP). The kinesin-1 dimer has two
heads, each of which contains an ATP binding site and can bind to a microtubule.
The hydrolysis reaction involves conformational rearrangements in the ATP bind-
ing pocket that occur on a length scale of �1 nm. These small movements lead
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to allosteric conformational changes in other parts of the same head of the motor,
including the microtubule binding site. They also affect the other head, possibly via
the generation and release of strain between the two heads [35, 45, 76, 99]. This
process is believed to involve the docking of a flexible structure called the neck linker
to the leading head [76] and ultimately leads to large-scale motion of the rear head,
the actual step of the motor.

That step, which brings the rear head of the motor in front of the leading head in
a hand-over-hand fashion [100], is quite long, 16 nm for kinesin (and even 72 nm for
myosin-V). The corresponding movements of the motor’s center of mass is 8 nm (or
36 nm, respectively). Typically a single motor performs tens or even hundreds such
steps while bound to the filament along which it walks, so that overall the motion
of a motor bound to a filament proceeds over distances of ∼1µm. This distance,
which is called the run length and which is still quite small on the scale of the cell, is
further increased by the cooperation of motors: Complexes with several motors can
remain attached to a filament as long as at least one motor is bound to the filament,
thus giving unbound motors a chance to rebind while the complex is still attached to
the filament [51]. In addition to enhancing the overall run length of motors, motor
cooperation also has an impact on the smaller length scales. In particular, the elastic
coupling of the motors results in forces between the motors that can affect stepping,
binding to the microtubule, and, via the motors’ chemomechanical coupling, even
their chemical rates of nucleotide binding and hydrolysis.

The corresponding timescales also range over several orders of magnitude. The
transitions between different conformations of a single motor occur in the range of
µs – s. Somewhat unexpectedly, the actual mechanical step is quite rapid with a
rate of ∼105 s−1. The corresponding movement of a motor head over 16 nm happens
instantaneously on the timescale of the experimental resolution of about 30 µs [19]
(see also the discussion in Ref. [15]). By contrast, the chemical transitions, which
correspond to much smaller spatial reorientations, are slower with rates of ∼0.01
s−1 (see the set of rates collected in [48, 61]). The entire chemomechanical cycle
takes on average 0.01 s at saturating ATP concentrations, corresponding to a motor
velocity of 800 nm/s in the absence of a load force. Unbinding of a kinesin motor
from a microtubule occurs on a timescale of two orders of magnitude larger (∼1 s),
corresponding to a run length of ∼1µm. For several motors, unbinding of motors
is more frequent because all bound motors can unbind, so that the timescale of
unbinding becomes smaller (and less separated from the stepping timescale). At
the same time, unbinding of the cargo or the motor complex from the microtubule
occurs on a longer timescale, as it requires unbinding of all motors. Estimates based
on noninteracting motors lead to run times of many seconds or more. On such long
timescales, additional effects become important, for example, the architecture of
the cytoskeletal networks, because motors will often reach the end of a filament or
filament–filament intersections. Using arrays of parallel isopolar microtubules large
cargo particles have been shown to reach run lengths of millimeters, corresponding
to runtimes of ∼10 min [16].
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3.2 Multiscale Computational Challenges

As discussed above, the dynamics of molecular motors and motor complexes involves
movements on many different time and length scales. Therefore, typically different
theoretical descriptions of the motors are used to study different aspects of their motil-
ity, dependent on the length and timescales on which the pertinent movements occur.
The movements of molecular motors and motor complexes is often described using
sets of discrete configurations or motor states, which may represent, for example,
the chemical states of a motor or different mechanical configurations. Throughout
most of this chapter we will follow the same strategy and describe systems of cou-
pled motors by networks of discrete states and stochastic transitions between them.
Such networks can however be constructed at many different levels of detail and we
describe three of these below.

A key issue for the function of molecular motors is the coupling of mechanics
and chemistry. At the level of a single motor, chemical (free) energy is converted
into movement and work by the main chemomechanical cycle, in which hydrolysis
of ATP in a motor head is followed by a mechanical movement of a motor head.
An opposing load force can slow down the movement of the head, but may also
induce backward steps and, via deformation of the motor head, affect the kinetics
of the chemical processes such as ATP hydrolysis or ADP and phosphate release.
In both cases, thermodynamic consistency imposes certain constraints relating the
force-dependence of a rate to the force-dependence of the rate of the reverse process
[61, 65]. The details of the chemomechanical cycle have consequences even on the
largest time and length scales: Because the unbinding rate of a motor is dependent on
its chemical state, changes in the nucleotide concentrations can modulate not only
the motor velocity, but also the unbinding rate, and thus the run length. In a two-
motor complex, such a modulation can shift the dominant mode of transport from
a situation where transport is predominantly by a single motor bound to one where
transport is predominantly by two motors [8, 96].

Specific to motor complexes is the question of coupling effects: If two or more
motors are working cooperatively, will each of these motors work with the same
characteristics as a single motor on its own or do motors interfere with each other?
One generic reason for interference are forces between the motors that build up due
to stochastic stepping: If coupled motors do not step in a synchronous fashion, the
distance between the motors fluctuates over time and the linkers between the motors
get stretched, thus mediating a fluctuating elastic force between the motors. If coupled
motors interfere with each other, the next question is in what way do they interfere?
Force between the motors may result in reduced stepping rates and thus a slow-down
of the motor complex. In addition, however, a load force affects the unbinding rate
of a motor, and thus its run lengths. Typically, the unbinding rate increases strongly
with increasing force. As a consequence, a force between coupled motors could
increase their unbinding rates and thus reduce the benefit of longer binding times
(or run lengths) obtained from using several motors instead of just one. Indeed, both
effects have been observed, with enhanced unbinding for a synthetic two-kinesin-1
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motor complex [79] and reduced speed for a complex of two myosin V motors [66].
Reduced velocity has also been observed in microtubule gliding assays at high motor
density with certain kinesin constructs with reduced flexibility [11, 24].

Our recent analysis of such interference effects has indicated the importance of
the dynamic nature of these forces [7, 8]: Typically a motor will bind to the filament
in a force-free fashion. The force between the motors is then built up by the stochastic
stepping. The generation of forces of the order of the stall force (where a motor stops
to step) or of the detachment force (the characteristic force scale for the unbinding
rate) thus occurs over some characteristic timescales. These timescales have to be
compared to the timescale for spontaneous unbinding, which provides a measure for
the time the motors have to build up strain. If the time for spontaneous unbinding is
very small, typically motors unbind before substantial strain is generated and thus
interference effects are rather weak. A related issue arises when an external force is
applied to a multi-motor complex: Only motors bound to the filament experience the
load. When an additional motor binds to the filament, it will initially not experience
any force and thus it will take some time until the force is actually shared equally
among the bound motors. Equal force sharing is only reached if unbinding of motors
is slower than the characteristic timescale for the equilibration of force sharing.
Another question related to the stochastic stepping of the motors concerns the size
of the observed steps. If the motors do not move in a synchronised fashion, steps that
correspond to fractions of the single-motor step can be expected. This has indeed
been observed in gliding assays for two motors, but not for three motors [58]. This
observation has been attributed to nonequal force sharing between three motors [58]
and to nonlinear elastic coupling between the motors [60].

Yet another longstanding challenge is the question how force is actually exerted on
the molecules. This question is directly related to the spatial structure of the molecule.
Force is typically exerted via the tail domain of the motor and somehow transmitted
to the nucleotide binding pocket and to the microtubule binding site. How this force
transmission occurs is not very clear. Important questions in this context are: Does
the force experienced by the nucleotide binding pocket depend on the direction of
the force in three dimensions? Is the commonly used one-dimensional description
by a force along the direction of motion reasonably accurate? If not, which direction
of force is characteristic in multi-motor complexes?

We conclude this section on the challenges to modeling and computation by a few
general remarks. One rationale for using a palette of models at different scales, each
appropriate for certain research questions, rather than a single model that describes
everything, is the maxim attributed to Einstein to make things as simple as possible,
but not simpler.1 Doing so allows one to identify the key ingredients for certain
phenomena to arise, while still being able to make quantitative predictions. This does
not mean that further simplifications are useless. Further simplification may still be
of use to provide a theoretical perspective on the core mechanisms. Nevertheless,
one needs to keep in mind that every theoretical description is based on certain

1 A discussion of the origin of the quote can be found at http://quoteinvestigator.com/2011/05/13/
einstein-simple/#more-2363.

http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363.
http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363.
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assumptions (which may be explicit or implicit) and should thus be expected to
have a limited range of applicability. Outside this range its predictions may not be
very reliable. As a matter of course, the construction of the model requires a careful
choice of ingredients: Some results will not really be predictions, but rather rephrased
statements of features of the model, as they have (explicitly or implicitly) been built
into the model by way of its construction.

3.3 Methods

In the following we describe methods that have recently been developed for the
theoretical and computational study of coupled molecular motors. We start with
chemomechanical networks (Sect. 3.3.1) which provide a systematic framework for
the description of individual motors that has very recently been extended to coupled
motors [49]. We then discuss stochastic stepper approaches that are more coarse-
grained in the sense that different chemical states of an individual motor are not
distinguished and that movement is described by one or two effective stepping rates
for forward and, possibly, backward steps (Sect. 3.3.2). The latter description can be
further coarse-grained by characterizing the movement of a cargo by a set of velocities
for different numbers of bound motors and not accounting for the individual steps
of the motors. Finally, we briefly discuss approaches that describe the geometry of
the motors and the cargo in some detail (Sect. 3.3.3). We conclude the discussion of
the different methods with some general remarks and some comments on how the
different methods can be integrated.

3.3.1 Chemomechanical Networks

A detailed description of single molecular motors is given by chemomechanical net-
works [61], which provide a generalization of simple enzymatic cycles. The use of
networks rather than a single chemomechanical cycle is necessary to account for
complex coupling between ATP hydrolysis and stepping [20, 44, 61]. For example,
backward steps of kinesin-1 under superstall forces have been observed to require
ATP, indicating that ATP is hydrolyzed rather than synthesized during the backward
stepping cycle [19, 20]. As a consequence, the backward stepping cycle is differ-
ent from the forward stepping cycle run in reverse. The chemomechanical network
approach explicitly incorporates the chemistry behind the stepping process, i.e., the
different chemical configuration of the motor domains. This theoretical framework
has been used successfully for a quantitative description of experimental observations
for kinesin-1 [48, 49, 61] and myosin V motors [12, 13].

Cargo transport by a motor complex or a small team of motors (that may belong
to the same or to different motor species) can also be studied with chemomechanical
networks. Each motor of such a team can be described by its chemomechanical
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network which contributes to the team network. Moreover, each motor in the team
has a finite run length, after which it dissociates from the filament. As long as the
cargo is still connected to the filament by the remaining motors, the inactive motor
has a chance to rebind to the filament. As a consequence, the number of actively
pulling motors fluctuates. In the following, we focus on two identical motors, using
two coupled kinesin-1 motors as an example [49].

3.3.1.1 Single Motor Network

The movement of a molecular motor on the filament is determined by the chemical
reaction taking place within the catalytic domains of the motor which is coupled to a
conformational change in the motor domains that causes translational motion of the
motor. The dynamics of a molecular motor is described by a continuous-time Markov
process on a discrete state-space or network [61, 65], the vertices of which represent
the different chemical states of the two motor heads. The edges describe transitions
between these states based on the network theory in enzyme kinetics introduced
in [37]. The states of such a network are governed by certain dwell times that are
exponentially distributed in a continuous-time Markov process [88]. The average
dwell time in a certain state is given by the inverse of the sum of all transitions rates
out of this state. The probability to find the motor in a certain state of such a network
at a certain time is determined by the Master equation [88]. Our approach is based on
identifying distinct motor states via the nucleotide occupancy of the two motor heads
and (chemical as well as mechanical) stochastic transitions between these states.

The catalytic domain of each of the two motor heads of kinesin-1 can attain three
different chemical configurations corresponding to the ATP-hydrolysis reaction: The
binding pocket can be empty (E) or it can be occupied by ATP (T ), by the cleavage
products of the hydrolysis, ADP and phosphate (θ ), or, upon phosphate release,
by ADP alone (D). This classification thus leads to four different chemical states.
Combining the cleavage transition (T → θ ) and the phosphate release transition
(θ → D) into a single transition (T → D), one obtains a reduced network in which
a single motor head can attain the three states E, T, and D. These states are linked by
six transitions, each of which corresponds to binding or release of certain nucleotides
as shown in Fig. 3.1a.

The two-headed kinesin motor can then attain 32 = 9 states, but not all of these
states are relevant to describe the dynamics of kinesin motors as shown in [61].
Two of these states, namely (E E) and (T T ), should not play any prominent role in
the processive motion of kinesin because the motor head is strongly bound to the
filament when the head is empty or contains ATP, whereas it is only loosely bound
to the filament when it contains ADP [80]. As a consequence, the motor most likely
dissociates from the (DD) state. Neglecting the strongly bound states leads to the
7-state network shown in Fig. 3.1b.

Kinesin motors move in a hand-over-hand fashion [100] which implies that a
mechanical step requires the interchange of the positions of the leading and trailing
head of the motor. In principle, there are several possibilities to fullfill this condition
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Fig. 3.1 a Kinetic diagram of a single motor head, for which hydrolysis and phosphate release have
been combined into a single transition. b Chemomechanical 7-state network of the kinesin-1 motor
as introduced in [61]. The dashed line represents the mechanical step, the black arrows indicate the
direction of the ATP hydrolysis and the gray arrow indicates dissociation. Figure adopted from Ref.
[61]. c State-space of motor pair as described by three coordinates [49]: the motor states ile and itr
of the leading and the trailing motor, and the extension ΔL of the elastic spring (axis perpendicular
to the plane of the figure). In general, the motor pair states form a stack of layers, each of which
corresponds to a fixed value of ΔL . Here, only the layer with ΔL = 0 is shown. Open circles
represent motor pair states, thin lines represent the chemical transitions between these states and
dashed lines mechanical transitions during 1-motor runs. The thick stubs represent transitions to a
neighboring ΔL-layer. Full stubs correspond to forward steps and broken stubs describe backward
steps of one of the motors. Dotted lines represent binding and unbinding events between the single
motor states i = 7 and i = 0, the latter describes an inactive motor. The black arrows indicate
unbinding events emanating from any other ΔL-layer

for mechanical stepping, see Fig. 3.1b. The transition from (DT ) to (T D) is taken
to be the mechanical stepping transition [65], in agreement with single motor data.2

The transition rates between two states i and j depend on the molar nucleotide
concentrations [X ], with X = ATP, ADP or P, and on the load force F . In general,
these rates can be parameterized in the factorized form

ωi j = ωi j,0 �i j (F) with �i j (0) ≡ 1, (3.1)

2 For backward steps, the transition between the states (E D) and (DE) may also play a role [44],
a picture supported by recent experiments on mutant kinesins that are more prone to backward
stepping [20]. The two different mechanical transitions were also studied in Ref. [63].
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where the dependence on the nucleotide concentrations is embedded in the zero
force rate ωi j,0 and the force dependence is described by the factor �i j (F) [49, 61].
These factors are subject to constraints to fulfill detailed balance: For all chemical
transitions, the force factors �i j (F) satisfy �i j (F) = � j i (F); for the mechanical
stepping transitions between states (DT ) and (T D) [states 2 and 5 in Fig. 3.1b],
�25(F) = �52(F) × exp(−F�/kB T ) with the step size � [65].

Compared to a mechanical forward step, which is completed within µs, the chem-
ical transitions are rather slow and take several ms. Thus, the chemical reaction paths
are explicitly accessible to experiments and experimentally obtained reaction rates
can be implemented as the transition rates of the network model [61]. One important
property of these networks is that they involve several motor cycles, which provide
the free energy transduction between ATP hydrolysis and mechanical work. As one
varies the nucleotide concentrations and the external load force, the fluxes on these
cycles change and different cycle fluxes dominate for different parameter regimes.
In this sense, the chemomechanical networks of a single motor as introduced in [61]
contain several competing motor cycles. Imposing cyclic balance conditions [62]
on all motor cycles ensures that the network description satisfies both the first and
second law of thermodynamics.

3.3.1.2 Motor Pair Network

To extend the network description to coupled motors, we consider a pair of two
kinesin-1 dimers that are attached to the same cargo and walk on the same fila-
ment. We refer to the two motors in the pair as the leading and the trailing motor,
respectively, according to their relative positions in the direction of motion.

The modeling so far points to two key questions: What happens if one of the
motors dissociates from the filament? And second, how does the translocation of one
of the motors influence the motor pair system? For single motors, the answers are
rather simple because the single motor run is terminated when the motor dissociates
from the filament and the unbound motor is not spatially restricted. For the motor
pair, unbinding from and rebinding to the filament provides an alternating sequence
of 1-motor runs, where the cargo is pulled by one active motor, and 2-motor runs,
where the cargo is actively pulled by both motors, as outlined in the upper row of
Fig. 3.2. During 1-motor runs, the dynamics of the bound or active motor can be
described by a random walk on the single motor network as discussed above. The
only difference to the case of a single motor is that the average dwell time in any state
i now also involves the rebinding rate of the second (unbound or inactive) motor.
A 1-motor run is terminated either by unbinding of the remaining motor, which
corresponds to the termination of the motor pair walk, or by rebinding of the inactive
motor, which initiates a 2-motor run. During 2-motor runs, the state-space consists of
combinations of the 7 chemical states of the individual motors, i.e., 72 = 49 states.

Concerning the coupling of the motor pair, we consider the flexible stalks of the
kinesin motors as linear springs. Since both springs are only coupled via the cargo,
which is taken to be rigid, we can effectively describe the system by one linear spring
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Fig. 3.2 Motor pair walk for two kinesin motors (blue), each of which has two motor heads. Both
motors are attached to the same cargo (light gray) and walk along the same filament (black line).
A reduced representation describes such a system in terms of 2-motor ‘particles’ connected by an
effective spring. As long as both motors are attached to the filament and, thus, active as indicated
by the blue ‘balls’ they perform a 2-motor run. After unbinding from the filament, an active motor
becomes inactive as indicated by the white ‘balls’. If the cargo is pulled by only one active motor,
the cargo performs a 1-motor run until it either unbinds as well, leading to an unbound motor pair,
or until the inactive motor rebinds to the filament and the cargo starts another 2-motor run

as indicated in the bottom row of Fig. 3.2. As a result, we obtain a one-dimensional
description of the motor pair, consisting now of two motor particles which are con-
nected via one linear spring with an effective spring constant, the coupling parameter
K , and the (dimensionless) spring extension ΔL , which corresponds to the extension
of the motor–motor separation (in multiples of the step size). This coupling generates
the elastic force

Ftr,le = −ΔL�K = −Fle,tr (3.2)

Ftr,le between the two motors, as soon as one of these motors is spatially translocated,
i.e., when it performs a mechanical step with the kinesin stepsize �. We consider this
interaction force as an external load on the individual motor, which thus enters the
transition rates, in the form

ωi j,le = ωi j,0 �i j (Fle)

ωi j,tr = ωi j,0 �i j (Ftr), (3.3)

compare Eq. (3.1). In these latter relations, we used the convention that resisting
forces are positive, whereas assisting forces are negative. Therefore, the forces that
enter these relations are F = Fle with Fle ≡ −Ftr,le for the leading motor and
Ftr ≡ −Fle,tr for the trailing motor. Concerning the influence of coupling on the
transition rates of the motor pair system, inspection of Eq. (3.3) shows that the force
arising from a mechanical step of one motor during a 2-motor run affects all chemical
and mechanical transition rates of both motors.

Three variables span the state-space of the motor pair, the individual motor states
i = ile and i = itr of the leading and the trailing motor, and the spring extension ΔL
(which we define here as a dimensionless quantity, in multiples of the step size �),
as shown in Fig. 3.1c. In general, the motor pair states form a stack of layers, each of
which corresponds to a fixed value of ΔL . For simplicity, only the single layer with
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ΔL = 0 is shown in Fig. 3.1c. All chemical transitions take place within this layer,
but mechanical steps during 2-motor runs are transitions to a neighboring ΔL-layer.
Note that a forward step by the leading motor and a backward step by the trailing
motor have the same effect on the spring extension. Rebinding and unbinding events
take place between the single motor states i = 7 and i = 0 within this layer, whereas
an unbinding event emanating from any other ΔL-layer always leads to the ΔL = 0-
layer. As a result, we obtain a uniquely defined chemomechanical network for the
motor pair. Although this network is rather complex and contains a large number of
states, transitions, and motor cycles, it involves only two parameters in addition to
the single motor parameters: the coupling parameter K as well as the rebinding rate
π of a single motor.

In experimental studies, the values of these two parameters are typically not
known, but can be deduced from the statistical properties of the trajectories [49]. This
deduction is facilitated by the following separation of parameters: The properties of a
1-motor run depend on the rebinding rate, but not on the coupling parameter, whereas
2-motor runs depend on the coupling parameter, but not on the rebinding rate. This
feature of the pair network also allows us to study the influence of these motor pair
parameters separately in computational studies. Thus, on the one hand, an analysis
of the statistical properties of the motor pair trajectories gives access to the motor
pair parameters K and π . On the other hand, it also allows to study the properties of
the motor pair properties such as its average velocity, run length, and run time, once
these two parameters are known (or as functions of these parameters). Because the
chemomechanical network approach explicitly incorporates the different chemical
configurations of the four motor heads, it also allows the calculation of quantities
such as motor pair efficiency or operation regimes that are not directly accessible
within other, more coarse-grained descriptions that we discuss next.

3.3.2 Stochastic Stepper Models

To understand the dynamics of coupled motors, it has proven useful to use simplified
descriptions of molecular motors as stochastic steppers. In such a description, the
chemistry is effectively incorporated into a single stepping rate and the focus is
on the coupling of the motors. The advantage of such a coarse-grained description
is the reduced number of parameters, which can be obtained from experimental
studies. This type of approach, which has been used in several studies of cooperative
motors [7, 8, 17, 18, 26, 54, 93, 101] provides a powerful conceptual framework
for analyzing experimental data as well as to address generic aspects of cooperative
molecular motors.

3.3.2.1 A Single Molecular Motor as a Stochastic Stepper

The dynamics of a single molecular motor consists of three basic processes, stepping
along a filament as well as unbinding from and binding to this filament. To account for
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the stochastic nature of these processes, each process is described by a transition rate.3

In this way, the complex chemomechanical process of stepping is simplified into a
single transition. However, the rate of that transition may be dependent on external
control parameters that influence the chemomechanical cycle, such as an external
load force or nucleotide concentrations. For example, the (forward) stepping rate α

is typically force-dependent and can be related to the experimental force–velocity
relation vsi(F) of a single motor via

α ≡ vsi(F)

�
(3.4)

with the step size � of the motor. Likewise, unbinding from the filament is described
by the force-dependent rate

εsi(F) ≡ 1

〈tsi(F)〉 (3.5)

that can be determined from the measured average binding or attachment time 〈tsi〉.4
The third process, binding, is a rather complicated process, which depends on the
precise geometry and other factors. Since very limited experimental data is available,
it is often described by a force-independent rate π , based on the argument that
typically elastic strain in the unbound motor is expected to relax upon unbinding.
However, force-dependent binding rates have also been used, e.g., in Refs. [26, 66],
see also the discussion in Ref. [8].

The general description introduced so far depends on the force velocity relation
vsi(F), the step size �, the unbinding rate ε(F), and the binding rate π of a single
motor. All these quantities can be measured and depend on the type of motor under
consideration. Most of them have been measured for various motor species. Typical
parameter values are summarized in Table 3.1. In the following, we use specific
values as experimentally determined for kinesin-1 motors.

The force–velocity relation has been measured in optical trapping experiments.
Typically, the velocity of the motor decreases with increasing load force F until it
vanishes under the so-called stall force Fs [19, 21, 32]. Here, we use the following
sign convention of the force: load forces opposing the stepping direction of the
motor are taken to be positive, whereas negative forces are assisting forces pulling
in the direction of the motor’s stepping. A good approximation for the force velocity
relation of kinesin-1 is the piecewise linear function

3 Thus, we implicitly assume an exponential dwell time distribution.
4 The index ‘si’ is used to indicate explicitly the unbinding rate and average binding time of a
single motor. The corresponding quantities for a single bound motor in a complex of several motors
(e.g., in a motor pair as discussed below) are denoted by ε1 and t1 respectively. These quantities are
closely related to the single motor parameters, but there are some subtleties: While ε1 = εsi, the
dwell time in the 1-motor bound state (or the average duration of a 1-motor run) for cooperative
motors also depends on the binding rate π of the second motor or any other in a system with more
than 2 motors, t1 = (ε1 + π)−1 < tsi.
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Table 3.1 Overview of parameters for the different molecular motors kinesin-1, dynein, myosin
V, and myosin VI

Parameter kinesin-1 dynein myosin V myosin VI

Binding rate
π [s−1]

4.7∗ [57], 5∗ [5,
57]

1.6∗ [72] − −

Step size � [nm] 8 [91] 8 [32] 36 [21] 36 [74]

Stall force
Fs [pN]

6 [82, 85], 5
[23], 7 [19]

7 [87] 1.1 [67] 1.7 [21], 3 [70] 2.8 [78]

(Force-free)
velocity v [nm/s]

1,000 [82], 490
[79]

650∗ [72], 700
[50]

400 [21], 380 [1] 150 [1], 291 [78]

(Force-free)
unbinding rate
ε0 [s−1]

1 [82], 0.6 [79] 0.27∗ [72], 0.16
[68]

0.48 [70], 0.3 [1] 0.25 [1], 1.3 [78]

Detachment
force Fd [pN]

3 [82] 1.1∗ [72] 4∗ [1] 2.6∗ [1]

The values marked by an asterisk are inferred indirectly by theoretical modeling of experimental
data

vsi(F) ≡
⎧
⎨

⎩

v F < 0
v(1 − F/Fs) 0 ≤ F < Fs

0 F ≥ Fs,

(3.6)

see Fig. 3.3b, but more complicated functional forms and parameterizations can
also be used [7]. The force-dependence of the unbinding rate is described by the
exponential form

εsi(F) ≡ ε0 exp(|F |/Fd). (3.7)

Note that by using the absolute value of the force, we do not distinguish between dif-
ferent pulling directions. This type of dependence is suggested on theoretical grounds
according to Kramers’ rate theory [53] and Bell’s equation [6] and supported by mea-
surements of the force-dependence of the run length [82]. The force-dependence of
the unbinding rate is currently revisited by several labs for different types of motors.
Deviations from this exponential increase have recently been reported for dynein
motors, with an exponential increase for small forces but catch-bond-like behavior,
i.e., a decrease in the unbinding rate, for forces around the stall force [55, 59].

Since it is difficult to measure the binding rate π directly, its value has been
determined by fitting theoretical models to experimental data. In this way, a binding
rate π 
 4.7 s−1 is obtained from an experiment where kinesin-1 motors extract
membrane nanotubes from vesicles [57]. A similar value has been reported in a study
fitting the run length distribution of beads transported by several kinesin-1 motors
[5]. For other types of motors, most of the parameters have also been determined
experimentally; the corresponding parameter values are summarized in Table 3.1.

The simple stochastic stepper description of a single motor incorporates those
properties of single motors that are relevant for large-scale cargo transport. Further-
more, the theoretical framework described here can easily be extended, for example,
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Fig. 3.3 Force-dependent dynamics of a single motor: a Schematic setup of a typical single mole-
cule experiment, in which a single kinesin is held with an optical trap that exerts the force F on the
motor in the direction opposite to its walking direction. The motor steps forward with the force-
dependent stepping rate α(F) and the step size �. Force-dependent unbinding of the motor from
the filament is described by the rate ε1(F). b Piecewise-linear parametrization of the force velocity
relation vsi(F), from which the stepping rate is determined via α(F) = vsi(F)/�. c Parameteriza-
tion of the force-dependent unbinding rate of the single motor. The stall force Fs in (b) and the
detachment force Fd in (c) provide the basic force scales for the single motor behavior

to include backward steps or functional dependencies on other parameters such as
the nucleotide concentrations [7]. Incorporating additional features of single motors
usually requires additional parameters that need to be determined either directly from
experiments or calculated from more microscopic models such as the chemomechan-
ical networks described above. In the case of backward stepping, the forward stepping
rate and the backward stepping rate can be determined from the force–velocity rela-
tion and the force-dependent ratio of forward to backward steps [8, 61]. The latter
quantity has been measured for kinesin-1 [19].

3.3.2.2 Two Elastically Coupled Molecular Motors

In the following, we use the coarse-grained single motor description that we intro-
duced above to study two elastically coupled molecular motors. As a generic case, we
focus on two identical motors coupled via their stalks to a common cargo. Below, we
use this model to determine the time t2 that two motors stay simultaneously attached
to the filament and the resulting velocity v2 of the cargo, two key quantities for an
even more coarse-grained description of transport by a motor pair as described at
the end of this section. In general, these two quantities are expected to depend on
the single motor dynamics and on the coupling. Because of the stochastic stepping
of the motors, the elastic elements between them are stretched (or compressed) and
relaxed. Thus strain forces are generated that in turn influence the stepping of the
motors [7].

Assuming a linear force-extension relation of the elastic coupling, the only para-
meter, in addition to the single motor parameters, is again the coupling strength K .
Since the motors step in a discrete manner, the induced strain forces have discrete
values

Fi = i�K , (3.8)
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Fig. 3.4 State-space of a cargo transported by two identical motors. In state (C1) the cargo is
transported by only one motor. The other states (2, i) correspond to different strain forces between
two motors simultaneously pulling the cargo. In state (2, 0), the motors are bound with relaxed
linkers such that there is no force between them. When one of the motors performs a step, a strain
force is generated between the two motors (the same strain is generated by stepping of either motor,
therefore there are two configurations corresponding to the same state). Thus, stepping transitions
between the states lead to the stretching or compression or to the relaxation of the elastic linkers.
Unbinding of a motor occurs with rate ωoff

where � is the motor step size, K the coupling strength and i the distance (number
of steps) between the motors.

The state of the two motors is now described by a discrete state-space, in which
every state is characterized by the number of motors bound to the filament and, when
both are bound, the discrete extension of the elastic linker between the motors (or the
associated force), see Fig. 3.4. The states with no or one motor bound to the filament
are denoted by (C0) and (C1), respectively. The states with two motors bound are
denoted by (2, i), where i is the discrete distance between the motors.5 Thus, in state
(2, 0), the linkers between the motors are relaxed. When one of the motors steps, the
strain force F1 = �K is built up between them in such a way that one motor is pulled
backwards with force F1 and the other motor is pulled forwards with force −F1, see
state (2, 1) in Fig. 3.4. Because we do not distinguish between the two motors, there
are two configurations for this state.

Transitions between the different states (2, 1) are associated with stepping of
the motors. We denote the corresponding transition rates by ωs(2, i) and ωr(2, i),
depending on whether the transition stretches (or compresses) or relaxes the linkers.
These transition rates depend on the state of the motor pair and are related to the
single motor stepping rates via

ωs(2, i) = α(Fi ) = vsi(Fi )/� (3.9)

5 It is convenient to introduce a highest state (2, N ) to reduce the network to a finite number of states.
The state (2, N ) corresponds to a very large extension between the motor. Such a configuration is
unlikely, because the motors typically unbind before reaching this state. Nevertheless, one has to
check that the results do not depend on the choice of the value of N .
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and
ωr(2, i) = α(−Fi ) = vsi(−Fi )/�. (3.10)

for all states (2, i) with i > 0 and

ωs(2, 0) = 2α(0) = 2vsi(0)/� (3.11)

for state (2, 0). In these expressions, vsi(F) denotes the force-velocity relation of a
single motor.

Transitions between the states (C0) and (C1) correspond to binding and unbinding
of a motor, with rates given by the single-motor parameters. Unbinding of the bound
motor in state (C1) occurs with the single-motor unbinding rate ε and leads to state
(C0). The reverse transition is given by binding of one motor. Because either of
the motors may bind, the rate for this transition is 2π . Likewise, binding of the
second motor occurs with rate π . We take this transition to lead to state (2, 0), i.e.,
we assume that the second motor binds in such a way that upon binding there is
initially no strain between the motors. Finally, unbinding of one of the two bound
motors, i.e., a transition to state (C1) may occur from any state (2, i) and its rate is
force-dependent,

ωoff(2, i) = 2ε1(Fi ). (3.12)

3.3.2.3 Effective Parameters of Transport by Two Bound Motors

While the dynamics of the motor pair can be studied using the model as described in
the previous section, additional insight into the cargo transport can be obtained by
lumping the states (2, i) into one state (C2) with two motors bound to the filament
and to determine an effective stepping rate or an average velocity v2 for this state
as well as an effective unbinding rate ε2 for one of the two motors, i.e., a transition
rate to state (C1). The resulting coarse-grained description was originally proposed
in Ref. [51], well before the more microscopic description. Coarse-graining of the
microscopic model, however, now allows to obtain the parameters of state (C2) in a
systematic way.

To determine the properties of the state (C2), we can focus on its substates (2, i)
and treat state (C1) as an absorbing state. Thus, all transitions associated to unbinding
of a motor become transitions into the absorbing state with transition rates ωoff(2, i).
We then consider a Markov process on this network with the initial condition that
all trajectories start immediately after binding of the second motor, i.e., in state
(2, 0). The binding time or average dwell time in the two-motors-bound states is
then obtained as the mean first passage time to absorption, the effective unbinding
rate as the inverse of the binding time, and the velocity as the average stepping rate
before absorption. We note that unbinding of motors is a mechanism for relaxing
strain between the motors, because the unbinding rate increases with increasing force
and rebinding occurs under zero load. Thus, simply neglecting unbinding, as done in
some studies [93], will overestimate the probability of states (2, i) with large i , i.e.,
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Fig. 3.5 Closed network for calculating the probability distribution before unbinding of one motor:
Starting from the network shown in Fig. 3.4, only the states (2, i) in which both motors are simul-
taneously bound to the filament are considered and the state (C1) is treated as an absorbing state.
The network is closed by redirecting all transitions that lead into the absorbing state back into the
initial starting state (2, 0)

with large strain forces and therefore overestimate the effect of those forces. Indeed,
neglecting unbinding typically leads to a strongly reduced velocity for two coupled
kinesin-1 motors [47, 93], in contrast to what is found in the model with unbinding
[7] and to what is observed experimentally [79].

An intuitive way to calculate the quantities characterizing state (C2) is based on
a method proposed by Hill [38, 39]. The basic idea is to use the ensemble average
instead of the time average, which makes it unnecessary to solve the time-dependent
problem. To construct a network, whose steady state probability distribution is the
steady state probability distribution before absorption of the original network, all
transitions into the absorbing state are redirected to the initial state. Intuitively, this
procedure can be understood as concatenating many trajectories, in the same way
as one would do it in a computer simulation, namely by starting the next trajectory
immediately after the one before has reached the absorbing state. Such a closed
network is shown in Fig. 3.5. The probability distribution P2,i for the closed network
is determined by solving the steady state of the master equation

∂t P2,0 = −[ωs(2, 0) + ωoff(2, 0)]P2,0 + ωr(2, 1)P2,1 +
N∑

j=0

ωoff(2, j)P2, j

∂t P2,i = ωs(2, i − 1)P2,i−1 − [ωs(2, i) + ωr(2, i) + ωoff(2, i)]P2,i

+ωr(2, i + 1)P2,i+1 (3.13)

∂t P2,N = ωs(2, N − 1)P2,N−1 − [ωr(2, N ) + ωoff(2, N )]P2,N ,

where the middle equation is valid for 0 < i < N . Here P2,i is the probability of
being in state (2, i) before absorption. Together with the normalization condition,
the steady state of this set of equations can be solved with a backward substitution,
since P2,N only depends on P2,N−1. Now, the inverse mean first passage time or the
effective unbinding rate (the rate of being absorbed), ε2, is given by the probability
current into the absorbing state, i.e.,
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ε2 = 1

t2
=

N∑

i=0

ωoff(2, i)P2,i . (3.14)

Averaging the stepping rates of both motors, weighted with the probabilities P2,i ,
we obtain the velocity as

v2 = �

2

N∑

i=0

[α(Fi ) + α(−Fi )]P2,i . (3.15)

Once these two parameters have been obtained, the transport properties for a
cargo pulled by two motors can be obtained using the theoretical framework of Ref.
[51], which is discussed below. Specifically, the average velocity of the cargo, i.e.,
averaged over the states (C1) and (C2), is obtained as

vca = πv2 + ε2v1

π + ε2
, (3.16)

where v1 is the velocity when only one motor is bound. In the absence of an external
force, v1 = v, whereas in the presence of an external force, it s given by the force-
velocity relation (3.6). Likewise, the average run length of the cargo, the distance
moved before complete unbinding, is obtained as

〈Δxca〉 = πv2 + ε2v1

ε1ε2
. (3.17)

The advantage of using this combination of the explicit description of substates (2, i)
and the coarse grained description with states (C0), (C1) and (C2) is that different
parameterizations for the single motors or different couplings can be implemented
rather easily and their cooperative behavior can be deduced in a computationally
inexpensive manner [7].

3.3.2.4 Motility States of a Cargo and Semistochastic Approaches

Many experimental studies report trajectories (or kymographs) of labeled cargoes.
Unless experimental methods with very high spatial and temporal resolution are
used, e.g., [58, 98], discrete steps are not resolved and the cargo is seen to perform
continuous motion with a velocity v, suggesting a deterministic description of the
cargo movement of the cargo. Such a description [51] can be considered as resulting
from the coarse-graining of a more microscopic description that replaces stochastic
stepping by constant cargo velocities that characterize the different states of the cargo,
for example, the states (C1) and (C2) discussed above.

The value of the cargo velocity is determined by the dynamics of the motors.
If the cargo imposes a substantial load for the motors, for example in a viscous
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Fig. 3.6 A cargo particle is transported by N motors. Each state is characterized by the number of
bound motors. In each state the cargo has velocity vn , a motor unbinds from the filament with rate
εn and an additional motor binds to the filament with rate πn (reprinted from Ref. [51])

medium, a larger number of motors actively pulling on the cargo can result in higher
speed [31, 51]. Since motors unbind and rebind to the filament, the velocity of such a
cargo changes when the number of bound motors change. Therefore, a rather general
coarse-grained description for cooperative cargo transport by molecular motors can
be obtained by a discrete state-space with cargo states associated with the number
of bound motors [51]. Transitions between these states correspond to binding and
unbinding of motors, see Fig. 3.6. Thus, the model is semistochastic, describing
the cargo movement (based on rapid steps) as a deterministic process and motor
binding/unbinding, which happens on longer timescales, as stochastic processes. In
principle, the parameters of this model, the velocities and unbinding rates can be
obtained by systematic coarse-graining as described above. However, this has so far
not been done for more than two motors. For cases with more than two motors, the
rates have been obtained by making plausible assumptions such as weak coupling
between the motors and equal sharing of load forces [51, 72]. This approach allows
us to calculate dynamical properties of the cargo, like the run length and run time of a
cargo transported by teams of motors. Such studies have been done for unidirectional
transport by a single team of motors [51], for bidirectional transport by two teams of
motors [72], for transport by motors with different velocities [56], and for combined
directed and diffusive transport by active and inactive motors [10, 75].

If a cargo is transported by two teams of antagonistic motors, i.e., by motors
that walk in opposite directions, the cargo is transported in a bidirectional manner,
changing direction every few seconds. A theoretical description for this transport
mode also starts by identifying discrete states associated with the numbers of bound
motors of both types, see Fig. 3.7. Transitions between the states arise from binding
and unbinding of the motors. Since the unbinding rate depends on the external force,
motors can pull each other from the filament resulting in a tug-of-war. Such a tug-
of-war displays a rich pattern of motility depending on the single motor parameters
[71–73]. In particular, the analysis of this model showed that mechanical interac-
tions of the motors mediated by the two teams pulling on each other is sufficient to
generate rapid bidirectional movements [72]. No specialized coordination complex,
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Fig. 3.7 A cargo with 3 plus (blue) motors and 2 minus (yellow) motors is pulled by a fluctuating
number of motors bound to the filament. The different states are defined by the number of bound
motors. Only five of 12 possible states are displayed (reprinted from Ref. [72])

as proposed earlier (see, e.g., Ref. [95]), is required. Later experiments provided
direct evidence for such mechanical interaction between motors [36, 84], which can
be seen as an unavoidable physical constraint on the coordination of motors with
opposite directionality. Some recent experimental studies also indicate that not all
observations can be interpreted by mechanical interactions alone [55, 59], suggesting
an additional layer of biochemical regulatory mechanisms regulating the tug-of-war,
as emphasized in the theoretical studies [73].

The approach described so far can be extended to account for diffusive movements
of the cargo along the filaments as observed experimentally [2]. For cargo states in
which the motors diffuse, the velocity v of the cargo vanishes. To account for the
diffusive dynamics (or, likewise, for biased diffusive dynamics) one can describe the
position of the cargo again in a stochastic fashion using an over-damped Fokker-
Planck equation [77]. In this way, the motion of the spatial coordinate of the cargo
in a state (i) is described by a Fokker-Planck operator Li . Extending the master
equation to account for the time evolution of this coordinate explicitly leads to

∂t pi (x, t) =
∑

j

ω j i p j (x, t) −
∑

j

ωi j pi (x, t) + Li pi (x, t). (3.18)

Here pi (x, t) is the probability that the cargo is in state (i) at the coordinate x at
time t . The transition rate from state (i) to ( j) is given by ωi j . Within the framework
of Fokker-Planck operators one can describe a wide range of motility patterns. Two
important limiting cases are purely diffusive motion, which is represented by

L = D∂2
x (3.19)
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and deterministic motion with constant velocity v, represented by

L = −∂x v. (3.20)

If one is only interested in average values of observables such as the run length
and the average binding time, one can avoid to explicitly solve the Fokker-Planck
equation by using again the Hill method. This approach has been used in Ref. [10] to
study how the presence of inactive, but diffusing motors enhances the processivity
of actively pulling motors.

3.3.3 Explicit Descriptions of the Geometry of Motor–Cargo
Complexes

Finally, studying some aspects of molecular motor complexes requires geometric
information about the system. A rather obvious example is effects of the arrangement
of the motors on the cargo or in a multi-motor complex: Does it make a difference
whether motors are attached to a cargo in one specific location or randomly distributed
on a large cargo? What impact does the distance between two motors in a motor pair
have? Does steric hindrance between motors play a role? These aspects have been
studied in less detail than the stochastic network models discussed so far. Moreover,
the construction of models that incorporate three-dimensional spatial information is
less systematic than for the stochastic networks. In this section, we give a brief review
of what has been done, without going into the technical details. We then discuss one
such approach [52] in more detail to highlight some issues that arise in a geometric
description of systems of cooperative motors.

In models that describe the spatial structure of the motor–cargo complex, motors
are typically represented by a few degrees of freedom, namely their point of attach-
ment to the filament (the ‘head’), their point of attachment to the cargo and an elastic
element between these two points, which may be a linear spring, a cable-like spring,
or an empirically defined nonlinear spring. The position of the attachment point to
the cargo is determined by the position and orientation of the cargo. Once the head is
attached to the filament it moves like a stochastic stepper, but the force it experiences
is now calculated according to a three-dimensional force balance. The movements
of unbound heads are typically not described explicitly. Rather, unbound heads may
bind to the filament according to a rate that depends on the relative location of the
attachment point and the nearest sites on the filament, accounting for the distance to
the filament and possibly for steric hindrance by the cargo or by other motors.

Approaches of this type have been used to address a number of issues. One study,
in which our group was involved [52], has addressed the sharing of a viscous force
among motors that are randomly distributed on a cargo and compared different elastic
elements (linear and cable-like springs with different lengths). A similar study by
Erickson et al. [28] investigated the impact of the geometric arrangement of motors
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by comparing motors randomly distributed on a cargo and clustered motors and
found that cooperation is more efficient in the clustered case, with larger run lengths.
Finally, Driver et al. [26] used geometric force balance to determine transition rates
in a Master equation approach used for a systematic comparison with optical trapping
experiments on a two-kinesin-1 complex. The models used in these studies differ in
various aspects, such as the description of the cargo (as simply the center of mass
of the motors or as a diffusing particle), the choice of elastic element between the
motor head and the cargo, and the inclusion of hydrodynamic effects and of steric
hindrance. These differences make the comparison of the models quite difficult, and
the relative importance of the various ingredients of these models remains to be
elucidated.

We now describe the approach by Korn et al. [52] in some more detail in order
to point out a few issues that arise in a description of the motor complex geometry.
In that model, the motion of a spherical cargo particle is described using a Langevin
equation with 6 degrees of freedom (its position in a three-dimensional space and its
orientation) and with a position-dependent mobility matrix that accounts for hydro-
dynamic effects due to the presence of a wall (the coverslide on which the filament
is immobilized). The motors are randomly distributed on the cargo and, when bound
to the filament, move by stochastic stepping as described in Sect. 3.3.2 above. The
motor “tail”, the link between the motor head on the filament and the attachment
point on the cargo, is described as an elastic element (either a linear spring or a
cable-like spring). Thus, the cargo particle is subject to the forces mediated by the
motor springs, viscous forces from the surrounding fluid and random forces that lead
to the diffusion of the cargo particle around the equilibrium position given by the
balance of the motor forces. External forces acting on the cargo can also be incor-
porated. In particular, because hydrodynamic effects are already incorporated in the
mobility matrix, this approach is particularly suited to study hydrodynamic forces,
arising, e.g., from shear flow.

Within this description of the motors, the elastic forces act along the direction of
the springs, i.e., under an angle to the direction of motion. It is thus not entirely clear
how this force should affect the stepping rates, as in the experiments the forces are
typically exerted in the direction parallel to the filament. Therefore, an additional
assumption has to be made at this point and simulations to validate this modeling
assumption are required. In Ref. [52], the spring force was projected onto the direction
of motion and the projected force was used in a linear force dependence of the
stepping rate. This assumption led to a linear force-velocity relation in simulations
mimicking an optical tweezers experiment with an external force applied to the cargo
in the direction antiparallel to the direction of motion. Obviously, more complex force
dependencies can be implemented, but in any case, the assumed force dependence
needs to be validated by comparison to experimental data or to a desired simplified
force-velocity relation.

A second issue that deserves a few comments is how binding of a motor to the
filament is treated. In the approach of Korn et al. [52], the position of unbound
motor heads is not described explicitly. Unbound motor heads perform rapid tethered
diffusion with the ends of their tails fixed by the position of the cargo. Their rebinding
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to the filament is therefore determined probabilistically with a rate that depends on
two factors, a bare binding rate for a motor close to the filament and a probability that
the motor is indeed close to the filament, i.e., within some capture distance to a free
binding site on the filament. The latter distance can be determined by considering
the overlap between the binding sites and the shell on which the tethered motor head
diffuses.

3.3.4 General Modeling Strategy and Integration of Models
on Different Scales

We conclude our discussion of theoretical methods with some general remarks about
the choice of a theoretical description and the construction of suitable models. The
theoretical approaches described above provide different description of cooperative
transport by several motors or of motor complexes, but they follow the same general
modeling strategy.

The first step is to choose a level of theoretical description that is appropriate to
study the questions of interest. This choice involves both the desired output of the
model and the prior knowledge available as its input. The desired output determines
how detailed the description needs to be and defines the time and length scales to be
studied (if simulation time is a limiting issue, the latter may be a strong constraint).
The available input, on the other hand, is critical for the feasibility by determining
the number of unknown parameters. For the discrete stochastic models described
above, the choice of a theoretical description ultimately leads to the identification
of a set of states of the system described by a set of variables characterising these
states. These variables are typically a combination of variables characterizing each
individual motor (e.g., the chemomechanical states of the two motors) and variables
characterizing their coupling (e.g., the force between the motors). While a motor or
motor complex is in one such state, these parameters are taken to remain constant, so
molecular movements on scales smaller than the chosen description are neglected.

In addition to the states, one needs to identify the transitions between the states
(which are related to chemomechanical transitions of the configuration of a motor,
stepping of a motor or binding/unbinding of a motor). For a multi-motor complex,
these transitions are derived from the corresponding transitions of the single motors.
Once the network of states linked by the allowed transition between them is set up,
the transitions have to be associated with the corresponding transition rates. This is
ideally done based on experimental data, but in many cases this step needs additional
theoretical input. For cooperative motors, these transition rates can often be derived
from the transition rates of individual motors under force, by incorporating forces
arising from the coupling of the motors into the force experienced by that motor.
Alternatively, one can calculate these rates from a more detailed model. An example
is given by our calculation of ε2 in the stepper model in Sect. 3.3.2 that can be used in
the semi-stochastic theoretical description of cargo movements. Yet another option
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would be to use force-dependent single-motor transition rates, but determine the
force from a detailed microscopic force balance. Thus, this step, the calculation of
transition rates, provides an opportunity for true multiscale approaches.

Once the rates are known, the dynamics of the system can be solved either ana-
lytically or by simulations and observables can be determined and compared with
experimental data. If necessary, the model is then adjusted. The latter comparison
provides a consistency check in cases where the input of the model, the transition
rates, is taken directly from experimental data, and a validation step for descriptions
based on assumptions about the microscopic processes and interactions. Finally,
quantitative predictions can be made with such a consistent theoretical description.

3.4 Results

The methods described above have been used extensively to study cooperative trans-
port by molecular motors. Here we highlight some results where bridging the length
and timescales has been crucial. Specifically, we discuss two issues: the effect of the
coupling strength on motor cooperation and the different transport regimes that can
emerge when different motor types are coupled.

3.4.1 Impact of Elastic Coupling

3.4.1.1 Varying Elastic Coupling in Chemomechanical Networks

Both the chemomechanical network and the stochastic stepper model as described
above are based on a complete description of a single motor. In addition to the
parameters characterizing the single motor, these models have only two parameters,
the binding rate π and the coupling parameter K .6 Figure 3.8 shows some results
obtained with the chemomechanical network approach for kinesin-1, systematically
varying these two parameters. Figure 3.8a shows different activity regimes, regions in
the parameter space, where transport is dominated by 1-motor runs and 2-motor runs,
respectively. Which activity state is dominant during a motor pair walk obviously
depends on the rebinding rate π , but also on the coupling parameter K , because K
influences the termination rate ε2 of 2-motor runs. The activity regime diagram in
Fig. 3.8a shows the crossover line which separate the parameter regime in which 1-
motor runs dominate the cargo run from the regime in which 2-motor runs are more
likely. Along this line, both are equally probable. A small rebinding rate leads to a
clear dominance of 1-motor runs for all values of the coupling parameter, whereas
clear dominance of 2-motor runs is only found for relatively large rebinding rates
and small coupling parameters.

6 There may be more parameters for nonlinear couplings.
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(a) (b)

Fig. 3.8 a Activity regimes of a motor pair in terms of the probabilities P1 and /P2 for 1-motor
and 2-motor runs: The crossover line P2 = P1 separates the parameter regime, in which 1-motor
runs dominate the cargo run from the regime in which 2-motor runs are more likely. The dashed
and the dotted lines are the crossover lines at which P1 = 2P2 and P2 = 2P1, respectively.
b Contour plot of the probability distribution P(ΔL) for the extension ΔL of the motor-motor
separation as a function of the coupling parameter K . The red line indicates maximal values of ΔL
observed in the simulations

From trajectories of the individual motors within a motor pair, one can deduce
the distribution of the extension ΔL of the motor-motor separation as shown in
Fig. 3.8b. Since we define ΔL ≡ 0 for 1-motor runs, this is a property of 2-motor
runs. The probability distribution P(ΔL) is symmetrically distributed around the
average 〈ΔL〉 = 0 for all coupling parameters, which implies that the leading and
trailing motor are interchangeable. The number of accessible ΔL values decreases
with increasing coupling parameter K . Within the studied range for the coupling
parameter, this number varies by one order of magnitude. Measuring the width and
amplitude of the distribution for the deflectionΔL one can, for instance, determine the
coupling parameter K . In principle, this distribution could also be used to reconstruct
the full force–extension curve for a nonlinear spring that couples the motors. We note
however that the distribution P(ΔL) not only reflects the interaction potential of
the two motors, but also depends on their unbinding, because unbinding from a state
with large ΔL with subsequent relaxation and rebinding also provides a pathway to
return to small extensions ΔL .

3.4.1.2 Coupling Dependence in Stochastic Stepper Models

We briefly review the effect of varying the coupling strength in the stochastic stepper
model and use this example as an illustration for how models at different scales and
with different levels of detail can be integrated. Specifically, the detailed stochastic
stepper model is used to determine parameters that enter the coarse-grained semi-
stochastic description where all substates of the two-motor-bound state are lumped
together.
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Fig. 3.9 Transport properties of an elastically coupled kinesin pair: a Effective unbinding rate ε2,
b average velocity v2 of two bound motors, c run length and d average cargo velocity as functions
of the coupling constant K . In all subfigures, the K -independent single motor properties are also
included. The kinks in these curves are due to the discrete values of the force between the motors
and arise when the stall force is an integer multiple of the strain force, i.e., for K = Fs/(�n) with
integer n. At these values of K , the number of states (2, i) with forces below the stall force changes
by 1

Figure 3.9a, b shows the effective unbinding rate ε2 and the effective velocity v2
as functions of the coupling strength K using parameters for kinesin-1 and assuming
coupling by a linear spring. The two quantities, which are calculated via Eqs. (3.14)
and (3.15), are characteristics of 2-motor runs and therefore independent of the
binding rate π . The effect of coupling on the velocity is moderate with only about
15 percent reduction for strong coupling. The effect on unbinding is much more
pronounced: For weak coupling, the motors unbind independently of each other, and
the unbinding rate of one of them is thus twice the single-motor unbinding rate.
With increasing coupling strength, the unbinding rate exhibits a strong increase, in
agreement with experimental observations [79].

Using these results of the microscopic stepper model in the more coarse-grained
semi-stochastic one, one can calculate the transport properties of the cargo such as
the average velocity (averaged over 1-motor runs and 2-motors runs) and the cargo
run length via Eqs. (3.16) and (3.17). These two quantities are plotted in Fig. 3.9c,
d, also as functions of the coupling strength. Both quantities also depend on the
binding rate. The dominant effect of coupling on the unbinding rate can also be seen
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here: the run length decreases strongly with increasing coupling strength. The run
length of the two-motor complex, however, is always larger than the run length of a
single motor (which is approached for large coupling strength), i.e., the interference
between the motors decreases the effect of motor cooperation, but does not reduce
it below the level of a single motor. The average velocity shows even less reduction
than the velocity v2 of 2-motor runs and increases again for strong coupling, because
with increasing coupling strength, 1-motor runs become more and more likely, and
thus the reduced velocity of 2-motor runs contributes less and less to the average.

Nonlinear couplings have also been considered within the stochastic stepper
approach [8]. For example, cable-like springs (that are linear springs with respect to
stretching but exhibit no resistance to compression) leads to a much weaker effect
because it takes longer to build up substantial strain forces between the two motors
[8]. In addition, several studies have considered springs with a force-dependent spring
constant, specifically, the case of a spring that is rather soft at low force and stiff at
large forces. Such a spring can be characterized by two spring constants and is sug-
gested by some experiments on the kinesin tail [3, 27]. The latter spring also leads to
weaker coupling effects, indicating that the lower spring constant (for which building
up strain requires some time) is dominant during 2-motor runs [8].

3.4.1.3 Different Types of Elastic Coupling and Cargo Geometry

Finally, the impact of the type of spring was also studied in simulations of bead
movements with explicit representation of the cargo geometry. Two different types
of springs were studied, a linear spring and a cable-like (or semi-harmonic) spring
that behaves as a linear spring when stretched, but does not resist compression. In
addition, different rest lengths were used in both cases. For all cases, run length
distributions were determined from extensive simulations. The distributions were
approximately given by double-exponentials, and the average run length was found
to increase almost exponentially with the number of motors attached to the cargo.
For the same number of motors on the cargo, the average run length was found to be
longer for longer springs [52]. This result can be explained by the observation that, in
this case, more motors are bound to the filament simultaneously. This means that the
longer spring rest length provides more flexibility to accommodate a larger number of
motors on the filament. Moreover for all rest lengths, cable-like springs lead to longer
run lengths than linear springs. This has been interpreted as an effect of the average
distance between the cargo and the filament, which is expected to be smaller for
cable-like motors, where the springs do not induce upward forces on the cargo, than
for linear-spring motors [52]. However, our more recent discussion of interference
effects for nonlinear springs suggests another explanation (not mutually exclusive
with the first): For cable-like linkers, forces between the motors build up more slowly
than for linear springs [8], so interference effects are less pronounced. Specifically,
for linear springs, forces built up because of the nonsynchronous stochastic stepping
of the motors, enhance unbinding, thus effectively reducing the number of bound
motors.
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Fig. 3.10 Run length of
simulated beads transported
by many kinesin motors: Data
for the run lengths obtained
with different elastic elements
collapse onto a single master
curve, when plotted against
the average number of bound
motors, indicating that the
number of bound motors is
what effectively determines
the run length (reprinted from
Ref. [52] with permission
from AIP Publishing)
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When the average run length is plotted against the average number of bound
motors, the results for all spring models collapse on a single curve (Fig. 3.10).
This master curve can also be described by the theoretical expectation based on the
model of Ref. [51], if the maximal number of motors able to bind simultaneously
is taken from a Poisson distribution, as indicated by the solid line in Fig. 3.10.
This result shows that the dependence of the run length on the geometric details is
fully mediated by a modulation of motor-filament binding and that additional factors
such as modulation of the stepping rate or the movement of the cargo are of lesser
importance.

3.4.2 Transport Regimes

Finally, we briefly discuss some generic aspects of cooperative transport that can
be understood based on the derivation of the effective parameters ε2 and v2 of 2-
motor runs from the microscopic stochastic stepper model. In the absence of an
external force, the stepper model is characterized by three different force scales,
the stall force Fs , the detachment force Fd , and the strain force FK that arise from
coupling. The latter is defined by the force generated by a single step extending the
elastic element between the motors. For a linear spring, FK = F1 = �K . If both
force scales of the single motor, Fs and Fd , are expressed as ratios to FK , the two-
motor parameters ε2 and v2 can be calculated as functions of the two dimensionless
force ratios Fs/FK and Fd/KK , from which one can identify four different transport
regimes [7]: when both force ratios are large, the coupling is weak and neither
velocity nor unbinding rate is strongly affected by the coupling, i.e., v2 ≈ v1 and
ε2 ≈ 2ε1 as for noninteracting motors (weak coupling regime). In the opposite limit,
for which both force ratios are small, the coupling is strong, the velocity is reduced,
and unbinding is enhanced (strong coupling regime). Furthermore, the motor pairs
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exhibit two additional regimes, in which one of the two quantities is affected by
coupling, while the other is not: A reduced velocity regime, in which the velocity is
reduced, but the unbinding rate is (almost) unaffected by the strain force, is found
for large Fd/FK and small Fs/FK . In the opposite case, for small Fd/FK and large
Fs/FK , we have the enhanced unbinding regime, with an increased unbinding rate
and a velocity that is unaffected.

The crossover lines between these regimes depend also on the dynamic parameters
v1 and ε1, because the force between the motors is built up dynamically by stepping.
They can be understood based on the comparison of three timescales: the times to
build up forces comparable to the stall force and the detachment force and time for
spontaneous unbinding of a motor [7, 8]. If the time for spontaneous unbinding is
the shortest, there is no time to build up a sufficiently large strain force to affect the
motors’ behavior, corresponding to the weak coupling regime. If one of the other two
timescales (or both) is shorter than the time for spontaneous unbinding, the corre-
sponding parameter (ε2, v2 or both) is affected, resulting in the enhanced unbinding
regime, the reduced velocity regime, or the strong coupling regime, respectively.
We note that the presence of an external load force will provide an additional force
scale, the external force itself, and additional timescales, such as the time it takes to
equilibrate the distribution of the external force among the motors (force sharing).

Interestingly, which of the four regimes are accessed via a variation of the coupling
strength is dependent on the motor species under consideration, because the force
scales are characteristic parameters of these motors. For example, kinesin-1 motors
are predicted to exhibit the strong and weak coupling regimes and, for intermediate
coupling strength, the enhanced unbinding regime, while myosin V motors are pre-
dicted to be in the reduced velocity regime for intermediate couplings (in addition
to also exhibiting the strong and weak coupling regimes) [7, 8]. This theoretical
prediction was confirmed by experimental results: a pair of kinesin-1 motors was
found to exhibit enhanced unbinding and little reduction of the velocity [79], while
a reduced velocity was recently found for a pair of myosin V motors [66].

3.5 Open Questions

The cooperation of several molecular motor, specifically of well-defined small num-
bers of motors, is currently under intense investigation, mostly driven by new exper-
imental techniques to couple molecular motors in a defined fashion, e.g., [25, 79].
These experiments address various aspects on different length scales, from molec-
ular deformations on the scale of nanometers arising from elastic coupling-induced
strains to increases in run lengths on the scale of many microns. These new exper-
iments can be expected to lead to a rather detailed picture of motor cooperation in
the near future, which will allow to address more detailed issues theoretically and to
go beyond the coarse-grained descriptions of the motor configurations used so far.
For example, we expect that precise empirical force dependencies of velocities and
unbinding rates for a specific system can be used instead of the generic relations with
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simple functional forms as employed in current studies. These improvements will,
however, require fruitful interplay between model construction and experiments. One
aspect that we hope can be addressed quite soon is the coupling to the chemistry of
the motors, i.e. the interplay of nucleotide concentrations and forces in affecting the
transport parameters of cooperatively pulled cargos. First steps in this direction have
already been made, both from the experimental [96] and the theoretical sides [8, 49].

A key question will be what additional components are needed for certain patterns
of movements. From the biochemical perspective, this is a question about additional
molecular players such as regulatory components or proteins that modulate certain
properties of the motors. Examples include the dynactin complex, which increases
dynein’s processivity and has been proposed as a candidate for regulating the inter-
play between kinesin and dynein motors [94], and the recently characterized regula-
tors of dynein, NudE, and LIS1 [69]. From a theoretical perspective (where one tries
to explain properties of a larger scale system, such as a complex of multiple motors,
based on the known properties of its components, here the individual motors), these
regulators modulate the parameters of the individual motors or of their coupling,
so the question for regulatory factors can be addressed by studying the dynamic
variation of parameters to explain observations that cannot be explained by fixed
parameters characterizing the (unregulated) motors. For example, how would addi-
tional biochemical coordination have to affect a tug-of-war situation to result in the
very long pauses that have been observed [55] or in directional memory after forced
unbinding [59]. One example, in which such an extension of a tug-of-war is under-
stood is the transport of early endosomes in the fungus Ustilago maydis, where a
tug-of-war is controlled by the reversible binding and unbinding of a dynein motor
to the moving cargo [83].

In order to understand transport in cells, it will also be necessary to consider the
movements of motors on multiple levels of complexity (in addition to the different
time and length scales discussed above). If single motors in vitro are considered
as relatively simple systems,7 complexity will increase and the space of possible
dynamic behaviors extended by coupling motors in a defined way. These systems
however are still relatively simple with respect to the number of different molecular
components, which is relatively small. Moreover, all of these components are known.
The system complexity increases further as one goes beyond the defined in vitro
motility to movements in cell extracts and, finally, transport in vivo [4, 14]. Here,
additional molecular players may modulate the properties of the motors and the
possible existence of unknown components or of cross-talk and unknown interactions
with other systems cannot easily be excluded. In this regard, theory can play an
important role by bridging not only between different length and timescales but also
between the different levels of complexity.

7 Of course, the molecules themselves may also add a layer of complexity to the patterns of
movements, for example if the motor has several different functional modes, as reported for dyneins
[92].
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