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Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are
typically exposed to different aqueous solutions. We consider solutions of “particles” that experience
effectively repulsive interactions with these membranes and form depletion layers in front of the
membrane leaflets. The particles considered here are water-soluble, have a size between a few
angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither
adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small
sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first
study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall
interactions between these particles and the membrane. For this system, we obtain exact expressions
for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the
bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact
results for the hard-core system also show that the spontaneous curvature can be directly deduced
from the planar membrane geometry. Our results for the hard-core system apply both to ions and
solutes that are small compared to the membrane thickness and to nanoparticles with a size that is
comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We
then corroborate the different relationships found for the hard-core system by extensive simulations
of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear
relationships obtained for the hard-core system. Both our analytical and our simulation results show
that the spontaneous curvature induced by a single particle species can be quite large. When one
leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire
a spontaneous curvature of ±1/(270 nm). Our theoretical results can be scrutinized by systematic
experimental studies using a large variety of different types of particles. C 2016 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4960772]

I. INTRODUCTION

Biological and biomimetic membranes consist of bilayers
with two leaflets of lipid molecules. If such a membrane is
exposed to “particles” that experience effectively repulsive
interactions with the membrane, the particles are excluded
from the membrane and form depletion layers in front of
the two leaflets as illustrated in Fig. 1. When the two
depletion layers differ in their physico-chemical properties,
the membrane becomes asymmetric and prefers to adopt a
certain spontaneous curvature.1,2 In this paper, we corroborate
this depletion-induced curvature both for a hard-core and for
a soft-core system using analytical methods and molecular
simulations. The simulations extend our recent study in
which we determined the membrane curvature arising from
asymmetric adsorption layers.3

Depletion effects are well understood for solutions of
particles with different sizes. Each particle occupies a certain

a)Electronic mail: lipowsky@mpikg.mpg.de
b)URL: http://www.mpg.mpikg.de/th.

volume from which other particles are excluded. The exclusion
of the smaller particles by the larger ones leads to an
effective attraction between the larger particles because the
smaller particles gain translational entropy when the larger
ones move closer together.4 As a result of the effectively
attractive interactions, the particle mixture can undergo phase
separation.5 These depletion effects have been studied in
some detail, both theoretically6–9 and experimentally,10,11 see
the review in Ref. 12.

Membrane curvature generated by asymmetric depletion
layers as depicted in Fig. 1 represents another depletion
effect, arising from the interplay between excluded volume
and membrane flexibility. Indeed, for each depletion layer,
the translational entropy loss of the particles depends on the
volume of this layer and on the particle concentration in
the adjacent solution. Therefore, the membrane prefers to
curve in such a way that it reduces the number of excluded
particles. If the system contains only a single particle species,
the total number of excluded particles is reduced when the
membrane bulges (or curves) towards the solution with the
smaller particle concentration as shown in Fig. 1(a). If the
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FIG. 1. Spontaneous (or preferred) curvature of bilayer membranes (blue)
as generated by depletion layers (light grey) in front of the two membrane-
water interfaces: (a) The exterior and the interior solution contain different
molar concentrations of the same particle species and (b) the interior and
the exterior solution contain the same molar concentration of two different
particle species. In (a) and (b), the membrane bulges (or curves) towards the
solution with the smaller particle concentration and the smaller particle size,
respectively. In both cases, the preferred curvature reduces the number of
particles excluded from the two depletion layers and, thus, the associated loss
of translational entropy.

exterior and the interior solution contain the same molar
concentration of two distinct particle species, the membrane
bulges preferentially towards the solution with the smaller
particle size, see Fig. 1(b).

The particles considered here are water-soluble, have
a size between a few angstrom and a few nanometers, as
well as a rigid and more or less globular shape. Because of
their effectively repulsive interactions with the membranes,
the particles do neither adsorb onto nor permeate through
these membranes. Examples for such particles are provided
by ions,13 small sugar molecules,14 short PEG chains,15

globular proteins, functionalized dendrimers, or inorganic
nanoparticles with a hydrophilic surface. In all cases, we
will focus on the loss of translational entropy and will not
include additional internal degrees of freedom. In particular,
we will not include the loss of configurational entropy that
long flexible polymers7,9,16,17 or rod-like molecules18,19 suffer
adjacent to a membrane surface.

As shown below, the depletion layers formed by the
particles lead to leaflet coverages and leaflet tensions of
the bilayer membranes that are proportional to the particle
concentrations in the aqueous solutions and to spontaneous
curvatures that are proportional to the concentration
differences across the membranes. These simple linear
dependencies are obtained for both hard-core and soft-core
interactions between the particles. The leaflet coverages are
negative and decrease with increasing particle concentrations
whereas the leaflet tensions increase with these concentrations.
Symmetric depletion layers are obtained if the two leaflets are
exposed to the same aqueous solution. In this case, we focus
on bilayers that are compressed in the absence of the particles
and determine the “critical” particle concentration for which
the membrane becomes tensionless. Asymmetric depletion
layers are obtained if the two leaflets are exposed to different
aqueous solutions. In the latter case, the membrane acquires
a preferred or spontaneous curvature that is proportional

to the difference in the particle concentrations of the two
aqueous solutions. The spontaneous curvature induced by
the depletion layers of a single particle species can be quite
large. As an example, consider a lipid bilayer that has the
bending rigidity κ = 20 kBT and is exposed, on one side, to
a 100 mM glucose solution. When we model the glucose
molecules as spherical particles with a diameter of 1 nm, we
obtain a depletion-induced spontaneous curvature of about
±1/(270 nm).

Our paper is organized as follows. We first consider a
hard-core system for which the depletion-induced spontaneous
curvature can be obtained analytically. This system is
characterized by linear dependencies of the leaflet coverages
and leaflet tensions on the particle concentrations in the
adjacent aqueous solutions. Furthermore, the hard-core system
leads to a spontaneous curvature that is proportional to the
difference between the particle concentrations on the two sides
of the membrane. In Sec. III, we describe our computational
method based on Dissipative Particle Dynamics (DPD). The
latter method involves soft-core particles for which we propose
linear relationships in close analogy to the hard-core system.
These relationships are then confirmed by the simulations in
Secs. IV and V, both for symmetric and asymmetric bilayers.
At the end, we discuss the simulation results and give a short
summary and outlook.

II. SPONTANEOUS CURVATURE GENERATED
BY DEPLETION LAYERS IN A HARD-CORE SYSTEM

We first study a reference system for which the depletion-
induced spontaneous curvature can be obtained analytically.1

This system is based on ideal particle solutions and hard-core
interactions between these particles and the membrane. The
latter system involves only two parameters apart from the
membrane’s bending rigidity: the membrane thickness and
the particle size. The nanoparticles are taken to be spherical
with a hard-core radius Rhc, and the bilayer is described as
a thin film bounded by two impenetrable membrane-water
interfaces with constant separation ℓhw (the subscript “hw”
stands for “hard wall”).

The bilayer membrane separates the aqueous medium
into two compartments, an exterior and an interior one, which
are in contact with the outer and the inner leaflet of the
bilayer. In the absence of the nanoparticles, the membrane
is taken to be symmetric. The membrane tension Σno is then
equally shared by both leaflets and each leaflet experiences the
tension

Σl =
1
2
Σno (no particles) (1)

with the subscript l = ‘ex’ or ‘in’ corresponding to the outer
or inner leaflet, respectively. In general, the “bare” tension
Σno reflects external forces or constraints. In the molecular
dynamics simulations described below, this tension arises
from the periodic boundary conditions and the chosen size
of the simulation box which together determine the projected
membrane area per lipid molecule.3,20,21
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A. Excess tensions and negative coverages of leaflets

We now disperse nanoparticles in the two aqueous
compartments and characterize these compartments by their
molar particle concentrations, Xex and Xin. The bilayer is
then exposed to a symmetric and asymmetric environment
for Xex = Xin and Xex , Xin, respectively. The repulsive
interactions between the particles and the membrane lead
to depletion layers close to the two leaflets of the bilayer. The
volumes of these depletion layers, Ωex and Ωin, depend on
the membrane geometry. In the dilute limit in which we can
ignore particle-particle interactions, the excess free energies
δFex and δFin arising from the depletion layers have the form1

δFl = kBT Xl Ωl for large particle numbers (2)

with l = ex, in (which now plays the role of a leaflet or layer
index). The expression for δF1 as given by Eq. (2) is obtained
for an ideal solution of particles and applies to any shape of
the membrane. The scale for the excess free energies δFl is set
by the thermal energy kBT which reflects the entropic origin
of these free energies.

For a laterally uniform membrane, the excess free energies
δFl are proportional to the area A of the midsurface between
the two leaflets of the bilayer. The midsurface provides a
common reference surface for both leaflets. In a curved state,
the areas Aex and Ain of the two leaflet-water interfaces differ
from the area A of the midsurface but are proportional to A,
see further below. Therefore, we define the excess tensions
δΣl of the two leaflets by

δΣl ≡
δFl

A
= kBT Xl

Ωl

A
. (3)

The overall tension of leaflet l is then given by

Σl =
1
2
Σno + δΣl . (4)

It follows from Eq. (3) that the excess tension δΣl must be
positive but the leaflet tension 1

2 Σno arising from external
forces or constraints for Xex = Xin = 0 can be positive or
negative. Therefore, the two terms in Eq. (4) may cancel each
other, leading to a tensionless state with Σl = 0.

The number of particles excluded from depletion layer l
is XlΩl which implies the negative coverage

Γl ≡ −
XlΩl

A
(5)

of leaflet l. Note that the leaflet tensions Σl and the coverages
Γl satisfy the relations

∂ Σl
∂Xl
=

∂ δΣl
∂Xl

= −kBT
Γl

Xl
(6)

which have the same form as the Gibbs adsorption equation
for macroscopic interfaces. Furthermore, for the ideal particle
solution considered here, we also have the simple relationship

δΣl = −kBT Γl (7)

between the excess tensions and the coverages. The relations
(3)-(7) again apply to any shape of the membrane. In
Subsections II B–II C, we will consider three particularly
simple shapes: a planar membrane, a cylindrical membrane
tube, and a spherical membrane cap.

B. Planar membrane

The simplest geometry is provided by a planar membrane.
In this case, the area A of the bilayer’s midplane is equal to the
areas Aex and Ain of the outer and the inner membrane-water
interface. Furthermore, the volumes of the two depletion layers
are identical and given by Ωpl

in = Ω
pl
ex = ARhc.

We introduce the Cartesian coordinate z perpendicular to
the membrane and place the two membrane-water interfaces
at z = zex ≡ 1

2 ℓhw and z = zin ≡ − 1
2 ℓhw. The subscript “hw”

indicates that we consider these surfaces as “hard walls” which
are impenetrable to the particles. We use the convention that
the subvolumes with z > zex and z < zin contain the exterior
and interior solution, respectively. Because of the planar
geometry, the particle number density ρP depends only on the
coordinate z. The resulting density profile ρP(z) determines
the coverages Γex and Γin of the outer and inner leaflets via

Γ
pl
ex ≡

 ∞

zex

dz[ρP(z) − Xex] = −RhcXex (8)

and

Γ
pl
in ≡

 zin

−∞
dz[ρP(z) − Xin] = −RhcXin. (9)

The same coverages are obtained when we specify the general
expression (5) to the planar case.

Likewise, the expression for the excess tensions δΣl as
given by Eq. (7) leads to

δΣl = δΣ
pl
l
≡ kBT Rhc Xl (10)

for the planar geometry.

C. Curvature expansion of excess tensions
and coverages

Next, we consider a cylindrical membrane tube formed
by a bilayer of thickness ℓhw. We now need to distinguish three
cylindrical surfaces: the outer membrane-water surface with
area Aex, the inner membrane-water surface with area Ain, and
the midsurface with area A. This midsurface has the curvature
radius Rcy which defines the mean curvature M = 1/(2Rcy) of
the cylindrical membrane tube.

Because of the cylindrical geometry, the areas Aex and
Ain of the two membrane-water interfaces are related to the
area A of the midsurface via

Al ≈ A(1 + sl ℓhwM) for l = ex, in (11)

up to first order in the mean curvature M with the sign function

sl ≡ +1 for l = ex
≡ −1 for l = in.

Here and below, the symbol “≈” stands for “asymptotically
equal,” i.e., equal in the limit in which a certain parameter
becomes small or large. The excluded volumes Ωex and Ωin in
front of the two bilayer leaflets are then given by

Ωl ≈ A Rhc[1 + sl (ℓhw + Rhc)M] (12)

up to first order in M . Note that Ωl is approximately but not
exactly equal to AlRhc.
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Using the general expressions (5) for the coverage and
(3) for the excess tension, we obtain the negative coverage

Γl ≈ −Rhc [1 + sl(ℓhw + Rhc)M] Xl (13)

and the excess tension

δΣl ≈ kBT Rhc [1 + sl (ℓhw + Rhc)M] Xl (14)

of leaflet l.
The same line of reasoning can also be applied to a

spherical membrane cap. The radius Rsp of the midsurface
now defines the mean curvature M = 1/Rsp of the membrane.
To first order in M , we then obtain the same M-dependence for
the coverages and for the excess tensions as for the cylindrical
membrane tube.

D. Bilayer tension

The expression for the leaflet excess tensions as given by
Eq. (14) implies that the bilayer tension has the form

Σ = Σno + δΣex + δΣin = Σno + δΣpl + ζM (15)

up to first order in M with the excess tension

δΣpl ≡ kBT Rhc(Xex + Xin) (16)

of the planar membrane and the asymmetry coefficient

ζ ≡ kBT Rhc(ℓhw + Rhc)(Xex − Xin). (17)

For a symmetric environment with Xex = Xin = X , the
asymmetry coefficient ζ vanishes and the bilayer tension
becomes

Σ = Σno + δΣpl = Σno + 2kBT Rhc X. (18)

For an asymmetric environment with Xex , Xin, the depletion
layers generate a spontaneous curvature as described in
Subsection II E.

E. Spontaneous curvature induced
by depletion layers

The spontaneous curvature, m, can be obtained by
identifying the term of order M in the relation (15) with
the corresponding term, −4κmM , of the bending energy in
the spontaneous curvature model22,23 which also involves the
bending rigidity κ of the membrane. This identification leads
to1

m = − ζ

4κ
=

kBT
4κ

Rhc(ℓhw + Rhc)(Xin − Xex). (19)

Thus, the spontaneous curvature m is positive if the particle
concentration Xin in the interior solution is larger than the
particle concentration Xex in the exterior solution but negative
for Xex > Xin, see Fig. 1(a). As a consequence, for particle
depletion, the membrane prefers to bulge (or curve) towards
the aqueous solution with the smaller particle density. In
contrast, for particle adsorption, the membrane prefers to bulge
towards the aqueous compartment with the larger particle
density.1,3

F. Dilute particle solutions

It is interesting to note that the derivation of Eq. (19)
did not involve any assumption about the relative size of the
particle radius Rhc and the membrane thickness ℓhw. Thus,
as long as the solution is sufficiently dilute so that we can
neglect particle-particle interactions, the expression (19) will
also apply for particle radii that are comparable or even larger
than the membrane thickness.

A simple criterion for a dilute solution of hard spheres
with diameter dhc = 2Rhc is obtained from the virial expansion
which leads to the equation of state

P ≈ kBT X(1 + B2X) with B2 ≡ 2πd3
hc/3 (20)

up to second order in X . The ideal gas description provides a
reasonable approximation as long as the leading term is large
compared to the correction term of order X2 or, equivalently,
when the molar concentration X is small compared to the
crossover concentration

Xo ≡
1
B2
=

3
2πd3

hc

=
0.478

d3
hc

. (21)

As we increase the particle concentration beyond Xo, the
hard spheres start to freeze at the concentration X = Xfr
with Xfr = 0.944/d3

hc ≃ 2Xo corresponding to a volume (or
packing) fraction of 0.494.24

In Table I, we provide numerical values for the
crossover concentration Xo for a few particle sizes of
interest. In addition, we also include values for the inverse
spontaneous curvature 1/m as obtained from Eq. (19) for
particle concentrations Xin = Xo and Xex = 0, using the typical
value κ = 10−19 J for the bending rigidity of lipid bilayers.
Inspection of the (1/m)-values in Table I shows that the
spontaneous curvature m induced by the particle concentration
Xo decreases rapidly with increasing particle size.

G. Several species of particles

It has been tacitly assumed here that the exterior and
interior solutions are osmotically balanced. This balance may
involve a second “neutral” particle species that is neither
depleted from nor adsorbed to the membrane corresponding
to constant density profiles of these particles. Alternatively,
one may consider two or more different particle species as in
Ref. 1 and illustrated in Fig. 1(b). In general, let us consider
an arbitrary number of different particle species distinguished

TABLE I. Radii Rhc and diameters dhc of hard spheres, corresponding
crossover concentrations Xo as defined by Eq. (21) in units of 1/nm3 and
M (moles/dm3), and inverse spontaneous curvature 1/m as obtained from
Eq. (19) for particle concentrations Xin= Xo and Xex= 0 as well as bending
rigidity κ = 10−19 J.

Rhc (nm) 0.25 0.5 1 1.5 2
dhc (nm) 0.5 1 2 3 4
Xo (1/nm3) 3.8 0.48 0.06 0.02 0.008
Xo (M) 6.3 0.80 0.10 0.03 0.01
1/m (nm) 20 73 266 536 1107
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by the subscript j. The species j then makes the contribution1

m j = −
ζ

4κ
=

kBT
4κ

Rhc, j(ℓhw + Rhc, j)(Xin, j − Xex, j) (22)

to the spontaneous curvature and the total spontaneous
curvature becomes

m =

j

m j . (23)

Furthermore, the osmotic balance implies the additional
constraint 

j

(Xin, j − Xex, j) = 0 (24)

on the particle concentrations.

H. Spontaneous curvature from planar geometry

The spontaneous curvature as given by Eq. (19) can be
rewritten in terms of the leaflet tensions δΣpl

l
= kBT Rhc Xl for

the planar geometry as defined in Eq. (10). We then obtain
the relationship

m =
1

4κ
(ℓhw + Rhc)(δΣpl

in − δΣ
pl
ex) (25)

between the spontaneous curvature m and the excess tensions
δΣ

pl
ex and δΣin

in of the planar membrane. Note that the bare
tension 1

2 Σno drops out from the difference Σpl
in − Σ

pl
ex of

the overall leaflet tensions which is therefore equal to
the difference δΣ

pl
in − δΣin

ex of the excess tensions. As a
consequence, relationship (25) is equivalent to

m =
1

4κ
(ℓhw + Rhc)(Σpl

in − Σ
pl
ex). (26)

The expressions as given by Eqs. (25) and (26) show
explicitly that the spontaneous curvature m can be obtained
from the properties of the planar membrane when this
membrane is exposed to an asymmetric environment. This
relationship between the spontaneous curvature and the planar
geometry has been emphasized in our previous study on
particle adsorption3 without, however, providing a specific
example for which this relationship was proven in a rigorous
manner. Depletion layers arising from ideal particle solutions
as considered here represent such an example as demonstrated
by the exact Eqs. (25) and (26).

I. Tensionless bilayer states

In order to determine the spontaneous curvature for the
planar geometry by simulations, it will be convenient to
choose a symmetric and tensionless reference state of the
bilayer membrane. If the membrane is exposed to a symmetric
environment with Xex = Xin = X , it experiences the bilayer
tension

Σ
pl = Σno + kBT Rhc2X

as in Eq. (18) which vanishes for

Σno = −kBT Rhc2X. (27)

Therefore, a tensionless state can be obtained for any value
of X by an appropriate choice of the bare tension Σno arising

from the external forces and constraints. Because of the minus
sign in Eq. (27), this bare tension acts to compress the bilayer.
Alternatively, for a given bare tension Σno < 0, we obtain a
tensionless state for the particle concentration

X = X0 ≡
|Σno|

2kBT Rhc
. (28)

For the asymmetric case with particle concentrations
Xex , Xin, we introduce the excess concentrations

Yex ≡ Xex − X0 and Yin ≡ Xin − X0. (29)

The bilayer tension now has the form

Σ
pl = Σno + kBT Rhc(2X0 + Yex + Yin) (30)

which vanishes for

Yin = −Yex or
1
2
(Xex + Xin) = X0. (31)

Thus, if the planar membrane is symmetric and tensionless
for concentration Xex = Xin = X0, it is asymmetric and
tensionless for any concentration pair, Xex and Xin, for which
1
2 (Xex + Xin) = X0.

III. COMPUTATIONAL METHOD

In Secs. IV–V, we will study the depletion-induced
spontaneous curvature by Dissipative Particle Dynamics
(DPD) simulations of particles with soft-core interactions.
In the present section, we briefly review our computational
approach, a more detailed account has been given in Refs. 21
and 3.

A. Dissipative particle dynamics

Lipid molecules have a hydrophilic head group and two
hydrophobic chains. In our particle-based model, each of the
chains consists of six beads of type C and the head group is
built up from three beads of type H. The non-adhesive particles
are represented by single beads of type P. As in our previous
simulation study,3 we take all beads, including the particle
beads, to have the same diameter d, which is convenient from
a computational point of view. Furthermore, the separation of
the two head group layers is about 5d. For lipid bilayers, this
separation has a typical value of 4 nm which implies that the
bead diameter d ≃ 4 nm/5 = 0.8 nm.3

The interactions between the DPD beads are parametrized
in the usual form,3,21,25 the corresponding DPD parameters ai j

are given in Table II. These parameters describe the strength
of the repulsive forces between the soft-core particles.

In our previous work,3 we studied adsorption of small
molecules on lipid bilayers. The adsorbate molecules were
simulated as single beads and the lipids had the same
molecular architecture as the model lipids in the present
study. Furthermore, most of the DPD parameters ai j had
the same values except for aPH and aPW, which had the
values aPH = 25kBT/d and aPW = 35kBT/d in Ref. 3. In
the present study, the PH force is more repulsive with
aPH = 40kBT/d whereas the PW force is now less repulsive
with aPW = 25kBT/d, see Table II. As we will see below, the
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TABLE II. DPD parameters ai j, which describe the strength of the repulsive
forces between the soft-core particles, in units of kBT /d. Here, H, C, W, and
P denote the lipid head beads, the lipid chain beads, the water beads, and the
non-adhesive particle beads, respectively.

ai j H C W P

H 30 50 30 40
C 50 10 75 75
W 30 75 25 25
P 40 75 25 25

latter choice of the DPD parameters aPH and aPH leads to
depletion layers of the particles in front of the head group
layers.

In Ref. 3, we also studied the lipid bilayer in the absence
of any particles and obtained the value κ = 15 kBT for its
bending rigidity. The same κ-value applies to the present
study because we use the same DPD parameters for the
interactions between H, C, and W beads.

In all simulations described below, we used a cuboid
simulation box and Cartesian coordinates x, y , and z with
periodic boundary conditions in all three directions. The
bilayer spans the simulation box parallel to the (x, y)-plane
and perpendicular to the z-coordinate. The box contained
NW water beads, NLi lipid molecules, and NP non-adhesive
particles. The mole fraction of the non-adhesive particles is
then given by

ΦP ≡
NP

NW + NLi + NP
. (32)

B. Particle density profile and extended coverages

Because of the periodic boundary conditions, the particle
number density ρP depends only on the coordinate z
perpendicular to the membrane. The density profile ρP(z)
determines the particle coverage of the two leaflets as in
Eqs. (8) and (9) for the hard-core system. The latter equations
involve the locations ± 1

2 ℓhw of the hard walls corresponding
to the membrane-water interfaces. However, for the soft-core
interactions used in the DPD simulations, the membrane-water
interfaces represent soft rather than hard walls. Therefore, we
cannot directly calculate the two leaflet coverages using the
hard-core expressions in Eqs. (8) and (9). Instead, we will
now consider the extended coverages

Γ̃
pl
ex ≡

 ∞

0
dz[ρP(z) − Xex] (33)

and

Γ̃
pl
in ≡

 0

−∞
dz[ρP(z) − Xin] (34)

which include the leaflet volumes and can be calculated
without any a priori knowledge about the locations of the
membrane-water interfaces. For a symmetric environment
with Xex = Xin = X , the two extended coverages Γ̃pl

ex and Γ̃pl
in

have the same negative value given by

Γ̃
pl
sy =

1
2

 +∞

−∞
dz [ρP(z) − X] , (35)

where the subscript sy indicates that this is the coverage on a
single leaflet of a symmetric bilayer. For the hard-core system
described in Sec. II, the coverage as given by Eq. (35) becomes

Γ̃
pl
sy = −

1
2
(ℓhw + 2Rhc)X (36)

for l = in,ex. As shown below, the data of the DPD simulations
for the symmetric soft-core system also lead to a linear
relationship between the extended coverage and the molar
concentration which can be written in the form

Γ̃
pl
sy = −

1
2
(ℓ1 + 2R1)X, (37)

where we have decomposed the proportionality factor into
an effective membrane thickness ℓ1 and an effective particle
radius R1, in close analogy to the hard-core expression (36).
In order to determine these two length scales separately, we
need a second equation which will be provided by the bilayer
tension as explained further below.

C. Stress profile

Both the bilayer tension and the spontaneous curvature of
the planar membrane can be obtained from the stress profile
across the membrane. Because the aqueous solution and the
bilayer membrane are fluid, the pressure tensor is diagonal
with the tangential component PT = Pxx = Py y and the normal
component PN = Pzz. These two components determine the
stress profile20

s(z) = PN − PT(z) (38)

and the bilayer tension

Σ
pl =

 +∞

−∞
dz s(z) (39)

acting across the planar membrane.26 It is useful to decompose
this tension into two partial tensions corresponding to the two
leaflets of the bilayer. These leaflet tensions are defined by3

Σ
pl
ex ≡

 +∞

0
dz s(z) (40)

and

Σ
pl
in ≡

 0

−∞
dz s(z), (41)

where z = 0 corresponds to the midplane of the bilayer. Thus,
the exterior and interior solutions are again located at z > 0
and z < 0, respectively.

D. Concentration dependence of bilayer tension

For a symmetric hard-core system, the bilayer tension
Σpl increases linearly with the particle concentration X as in
Eq. (18), which implies

∂Σpl

∂X
= 2kBT Rhc. (42)

As shown below, the data of the DPD simulations for the
soft-core system are well fitted by the linear relation

Σ
pl = Σ

pl
no + 2kBT R1 X (43)
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which is equivalent to

∂Σpl

∂X
= 2kBT R1 (44)

and defines the effective particle radius R1 as obtained from
the tension and thus from the integrated stress profiles of a
symmetric bilayer. Fitting the simulation data for this stress
profile and for the particle density profile by the expressions
(43) and (37), we obtain the proportionality factors ℓ1 + 2R1
and R1 and, thus, both the effective particle radius R1 and the
effective membrane thickness ℓ1.

E. Spontaneous curvature from solution asymmetry

For the asymmetric hard-core system, we also derived a
linear relationship between the spontaneous curvature m and
the concentration difference Xin − Xex as given by Eq. (19)
which is equivalent to

2κm =
1
2

kBT Rhc(ℓhw + Rhc)(Xin − Xex). (45)

The simulation data for the soft-core DPD particles presented
further below are well fitted by the analogous relationship

2κm =
1
2

kBT R2 (ℓ2 + R2) (Xin − Xex), (46)

where we have introduced the effective particle radius R2 and
the effective membrane thickness ℓ2 as derived from the stress
profiles of an asymmetric bilayer.

F. Spontaneous curvature from stress profile

As shown in our previous study,3 the spontaneous
curvature m can be obtained from the stress profile of a
planar bilayer using two different computational methods.
First, we can determine the spontaneous curvature m from the
first moment of the stress profile using the relation27

2κm = −
 +∞

−∞
dz s(z) z, (47)

provided the membrane is tensionless and Σpl = 0. This
relation describes the equality between the nanoscopic and
the microscopic torque (or bending moment) acting onto a
cross section of the bilayer.

Alternatively, we can determine the spontaneous curva-
ture from the leaflet tensions Σpl

ex and Σpl
in. For hard-core

interactions, we derived the linear relationship Eq. (26)
between the spontaneous curvature m and the tension
difference Σpl

in − Σ
pl
ex which is equivalent to

2κm =
1
2
(ℓhw + Rhc)(Σpl

in − Σ
pl
ex). (48)

We will see that the DPD simulations of the soft-core particles
are well fitted by the analogous linear relationship

2κm =
1
2
(ℓ2 + R2)(Σpl

in − Σ
pl
ex), (49)

where we use the same effective membrane thickness ℓ2 and
the same effective particle radius R2 as in Eq. (46) because
the relations (49) and (46) are obtained from the same stress
profiles of the asymmetric bilayer. Fitting the simulation data
for this stress profile, we obtain the two proportionality factors
R2(ℓ2 + R2) and ℓ2 + R2 and, thus, both the effective membrane
thickness ℓ2 and the effective particle radius R2.28

IV. SYMMETRIC DEPLETION LAYERS

In this section, we consider single bilayer membranes in
a cuboid simulation box. Because of the periodic boundary
conditions in the z-direction perpendicular to the membrane,
both sides of the membrane are exposed to the same molar
concentration, X , of the particles. A typical snapshot of such
a membrane is displayed in Fig. 2.

A. Symmetric bilayers with zero bare tension

We first performed DPD simulations of bilayers with
projected lipid area A = A0 = 1.22 d2. The lateral dimensions
of the simulation box were Lx = Ly = 32 d and the bilayer
contained 1678 lipid molecules. The height of the simulation
box was varied from Lz = 32 d to Lz = 40 d to Lz = 48 d.
The number of water beads was adjusted so that the normal
pressure was PN = 20.7 kBT/d3 at the different box sizes. The
latter value of PN corresponds to the pressure of pure water
at the standard DPD conditions3 with the bulk water density
ρW = 3/d3. In the absence of the non-adhesive particles,
the bilayer was essentially tensionless: the bare tension Σno

FIG. 2. Simulation snapshots (side and
oblique view) of a lipid bilayer ex-
posed to non-adhesive particles. The
lipid-head beads (H) and the lipid-chain
beads (C) are shown in blue are red, re-
spectively. The non-adhesive beads (P)
are shown in tan. The water beads (W)
are transparent and not visible. The de-
pletion layers in front of the two leaflets
are hardly detectable in the simulation
snapshots but can be clearly seen in the
ratio of the particle to water densities
displayed in Fig. 3(c) below.
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had the value Σno = (0.06 ± 0.07) kBT/d2 and this value was
independent of the height of the simulation box.

In the present study, we did not investigate lateral
finite size effects, i.e., we did not vary the lateral box size
Lx = Ly. Such a study has been performed previously in
Ref. 29 and revealed a size dependence of the tension of
rupture. The lateral size Lx = Ly = 32 d used here, which
is about six times the membrane thickness, was chosen as
a compromise between two opposing requirements. On the
one hand, we wanted to simulate membrane segments that
were large compared to the lateral size of individual lipids in
order to study curvature-related properties of the membranes.
On the other hand, we also wanted to avoid strong shape
fluctuations of the membranes in order to obtain the intrinsic
density profiles of the H and C beads across the bilayer. If
we simulated much larger membrane patches, these intrinsic
profiles would be smeared out by the shape fluctuations and
we would need to introduce some deconvolution procedure
in order to retrieve the intrinsic profiles from the simulation
data.

1. Variation of particle mole fraction

We next performed DPD simulations of the bilayer
exposed to the non-adhesive particles. In these simulations,
the mole fraction ΦP of the particles was varied from 0.005
to 0.3, and the normal pressure was kept at the constant level
PN = 20.7 kBT/d3 to suppress finite-size effects. The height
of the simulation box was varied from Lz = 32 d to Lz = 40 d
to Lz = 48 d.

Fig. 3 shows the results of simulations for mole fraction
ΦP = 0.22. As mentioned, the normal pressure was adjusted
to PN = 20.7 kBT/d3 for all box sizes studied. The bilayer
tension is Σpl = (0.41 ± 0.07) kBT/d2, the latter value being
independent of the box height Lz within the statistical error.
Note that this tension is substantially larger than the membrane
tension in the absence of the non-adhesive particles. As shown
in Figs. 3(a) and 3(b), the density profiles ρ(z) for the C, H,
W, and P beads were found to be identical for Lz = 32 d,
40 d, and 48 d. Likewise, we found essentially the same stress
profile s(z) for all three values of Lz, see Fig. 3(d). Thus,
we did not observe any finite size effects arising from the
box height Lz. For comparison, Fig. 3(d) also displays the
stress profile s(z) for the symmetric and tensionless state for
ΦP = 0, i.e., in the absence of the particles. The stress profile
s(z) displayed in Fig. 3(d) has the same qualitative features as
found in previous simulation studies:3,20,21 Two double-peaks
with s(z) > 0 for the two head group layers and a pronounced
minimum with s(z) < 0 for the hydrophobic core of the
bilayer.

2. Density profiles and bulk concentration

The number density profiles of the lipid head (H) and
chain (C) beads are displayed in Fig. 3(a). The hydrophobic
core of the bilayer is characterized by a pronounced maximum
in the C density profile. The position of this maximum defines
the midplane of the bilayer and, thus, the origin of the

FIG. 3. Simulation data for symmetric bilayers with projected lipid area
A= A0= 1.22 d2, particle mole fraction ΦP= 0.22, and bilayer tension Σpl

= (0.41±0.07) kBT /d2: (a) Number density profiles ρ(z) for C and H beads,
(b) number density profiles ρW (z) and ρP(z) of W and P beads, (c) ratio
ρP(z)/ρW (z) of particle to water densities that directly demonstrates the
depletion of the P beads close to the bilayer membrane, and (d) stress
profile s as a function of the Cartesian coordinate z perpendicular to the
bilayer midplane. In (a), (b), and (d), the red, blue, and black lines cor-
respond to box height Lz = 32 d, Lz = 40 d, and Lz = 48 d, respectively.
The congruence of these three lines shows that the density and stress pro-
files are essentially independent of the box height. The pink dashed line
in (d) represents the stress profile for ΦP= 0, i.e., in the absence of the
particles.

z-coordinate perpendicular to the midplane. The H density
profile exhibits two smaller peaks, which correspond to the
two lipid-water interfaces.

The number density profiles ρW(z) and ρP(z) of the
water (W) and non-adhesive particle (P) beads are shown in
Fig. 3(b), the ratio of these two densities, ρP(z)/ρW(z), is
displayed in Fig. 3(c). The water density vanishes within the
hydrophobic core of the bilayer, increases gradually at the
lipid-water interface, and attains a plateau value further away
from the bilayer. The density profile ρP(z) of the non-adhesive
particles in Fig. 3(b) has a similar shape as the water density
profile ρW(z) but the density ratio ρP(z)/ρW(z) in Fig. 3(c)
clearly demonstrates that these particles are depleted from the
lipid-water interface. The plateau value of the profile ρP(z)
corresponds to the molar concentration X = Xex = Xin of the
particles.30 In what follows, we will discuss our simulation
results in terms of the molar concentration X rather than in
terms of the mole fraction ΦP.
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3. X -dependence of extended coverage
and bilayer tension

The simulation data for the extended coverage Γ̃pl
sy as

a function of X are displayed in Fig. 4(a), where the red,
blue, and black lines correspond to Lz = 32 d, Lz = 40 d,
and Lz = 48 d, respectively. The data confirm the linear
relationship between Γ̃pl and X in Eq. (37) and lead to the
estimate (ℓ1 + 2R1)/d = 6.45 ± 0.02 for the proportionality
factor ℓ1 + 2R1. As shown in Fig. 4(b), the simulations
also provide strong evidence that the bilayer tension Σpl

of the planar membrane increases linearly with the molar
concentration X . We determine the average value of the
effective particle radius R1 from a least-squares fit of the
data in Fig. 4(b) to Eq. (43) and estimate the uncertainty
of this average value from the band of scattered data that
are located between the upper and lower dashed lines in
Fig. 4(b). As a result, we obtain the effective particle radius
R1/d = 0.28 ± 0.07.

B. Symmetric bilayers with negative bare tension

We also studied symmetric bilayers with projected
area per lipid A = 1.20 d2 < A0. In the absence of the
particles, we measured the negative bare tension Σno

FIG. 4. Extended coverage Γ̃pl= Γ̃
pl
sy and bilayer tension Σpl as a function

of particle concentration X for symmetric bilayers with projected lipid area
A= A0= 1.22 d2 and bare tension Σno= (0.06±0.07) kBT /d2. (a) Extended
coverage Γ̃pl= Γ̃

pl
sy versus particle concentration X as computed via Eq. (35).

The data are very well described by the linear relation (37) correspond-
ing to a straight line with slope − 1

2 (ℓ1+2R1); a least-squares fit leads to
(ℓ1+2R1)/d = 6.45±0.02; (b) X -dependence of the bilayer tension Σpl. In
the absence of the particles, i.e., for X = 0, the bilayer is tensionless. The
data are consistent with the linear X -dependence as given by Eq. (43). A
least-squares fit of the data to the latter equation leads to the intermediate
dashed line with slope ⟨R1⟩/d = 0.28 corresponding to the average value of
R1. The uncertainty of this value is obtained from the band of scattered data
that are located between the upper and the lower dashed lines, both of which
have the same slope ⟨R1⟩/d = 0.28. As a result, we find R1/d = 0.28±0.07
for the effective particle radius R1. The red, blue and black data correspond
to Lz = 32 d, Lz = 40 d, and Lz = 48 d, respectively.

= (−0.31 ± 0.07) kBT/d2, corresponding to a slightly com-
pressed membrane. We then added the non-adhesive particles
and varied their bulk concentration from 0 to about 1.6/d3.
The corresponding simulation data are displayed in Fig. 5.
The simulations were again carried out in a cubic box with
dimensions Lx = Ly = Lz = 32 d and the number of the water
beads was again adjusted to keep the normal pressure constant,
PN = 20.7 kBT/d3 for all X-values.

1. X -dependence of extended coverage
and bilayer tension

The simulation data for the extended coverage Γ̃pl
sy on

a single leaflet of a symmetric bilayer are displayed in
Fig. 5(a) as a function of X . The data confirm the linear
relationship between Γ̃pl

sy and X in Eq. (37) and lead to the
estimate (ℓ1 + 2R1)/d = 6.47 ± 0.01 for the proportionality
factor ℓ1 + 2R1. As shown in Fig. 5(b), the simulations
also provide strong evidence that the bilayer tension Σpl

of the planar membrane increases linearly with the molar
concentration X . We again determine the average value of
R1 from a least-squares fit of the data in Fig. 5(b) to the
linear relation (43) and estimate the uncertainty of this value
from the band of scattered data between the upper and lower
dashed lines as explained before. As a result, we obtain
the value R1/d = 0.27 ± 0.07 for the effective particle radius
R1. Furthermore, inspection of Fig. 5(b) also reveals that
the membrane becomes tensionless for particle concentration
X = X0 = (0.72 ± 0.18)/d3.

2. Particle density and stress profiles

The particle density profiles ρP(z) in Fig. 5(c) demonstrate
that the non-adhesive particles are effectively repelled from
the membrane. Indeed, inspection of Fig. 5(c) shows that the
particle density profiles ρP(z) vanish close to the density
peaks of the head group beads, irrespective of the bulk
concentration X of the particles. The effect of the particle-
membrane repulsion on the lateral stress profile s(z) is shown
in Fig. 5(d). Inspection of the latter plot shows that the
outer peaks of the stress profile grow with increasing particle
concentration. These outer peaks are localized around the
interfaces between the head groups and the particle solution
whereas the inner peaks are at the interfaces between the head
groups and the hydrocarbon chains. The outer peaks should
increase with the particle concentration because of the growing
number of interactions between the P and the H beads. On the
other hand, the inner peaks should be only weakly affected by
changes in the particle concentration because the particles do
not penetrate into the head group layer.

V. ASYMMETRIC DEPLETION LAYERS

A. Simulation setup

To investigate the spontaneous curvature induced by
asymmetric depletion layers, we need to impose two different
particle concentrations, Xin and Xex, on the two sides of a
bilayer membrane. Because of the periodic boundary condition
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FIG. 5. Simulation data for symmetric bilayers with projected lipid area A= 1.2 d2 < A0 and negative bare tension Σno= (−0.31±0.07) kBT /d2: (a) Extended
coverage Γ̃pl= Γ̃

pl
sy on a single leaflet versus particle concentration X . The data are very well described by the linear relation (37) corresponding to a straight

line with slope − 1
2 (ℓ1+2R1); a least-squares fit leads to (ℓ1+2R1)/d = 6.47±0.01; (b) bilayer tension Σpl as a function of X . The tension vanishes for

particle concentration X = X0= (0.72±0.18)/d3. The data for the tension are consistent with the linear X -dependence as given by Eq. (44). Using the same
fitting procedure as for the data in Fig. 4(b), we obtain the estimate R1/d = 0.27±0.07 for the effective particle radius R1. The dashed lines have the slope
2R1/d = 0.54; (c) particle density profiles ρP(z), and (d) stress profile s(z) for bulk concentrations X = 0.5/d3 (red lines) and X = 1.5/d3 (blue lines). The
black dashed line in (c) corresponds to the density profile ρH(z) of the head beads. The simulation box had the dimensions Lx = L y = Lz = 32 d.

in the z-direction, we then need to simulate two bilayers as
in Fig. 6. As shown in this figure, one bilayer is located at
z > 0 and the other at z < 0. The “upper” bilayer at z > 0
is denoted by Bupp, the “lower” bilayer at z < 0 by Blow.
The two bilayers are, on average, parallel and partition the
simulation box into two compartments which have the same
volume. The same geometry was previously used in order
to study the spontaneous curvature arising from asymmetric
adsorption layers.3

In the DPD simulations, the projected area per lipid
was A = 1.20 d2 < A0 for each bilayer. As explained in Sec.
IV B, the two bilayers then experience the negative tension
Σno = (−0.31 ± 0.07) kBT/d2 in the absence of the particles,
see Fig. 5(b). The simulation box was now elongated in
the z-direction and had the dimensions Lx = Ly = 32 d and
Lz = 64 d. For any pair of concentrations, Xin and Xex, the
number of water beads was adjusted to keep the normal
pressure constant at the selected value PN = 20.7 kBT/d3.

FIG. 6. Simulation snapshots (side and
oblique view) of two lipid bilayers,
Bupp and Blow, that partition the sim-
ulation box into two equal subvolumes.
The upper leaflet of Blow and the lower
leaflet of Bupp are exposed to the par-
ticle concentration Xin. Likewise, the
lower leaflet of Blow and the upper
leaflet of Bupp are exposed to the parti-
cle concentration Xex < Xin. The color
code is the same as in Fig. 2.
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The numbers of particles were conserved in each of the two
compartments for all simulation runs, i.e., the particles did
not cross the bilayers on the time scale of several micro-
seconds.

B. Asymmetric and tensionless membranes

For the hard-core system, asymmetric and tensionless
membranes were obtained for pairs of particle concentrations,
Xin and Xex, with 1

2 (Xin + Xex) = X0, see Eq. (31), where X0 is
the particle concentration at which the symmetric membrane
becomes tensionless, for the same tension Σno of the bare
membrane in the absence of particles. For the soft-core system
studied by simulations, we find the analogous relationship

1
2
(Xin + Xex) = X0 with X0 d3 = 0.72 ± 0.18 (50)

as determined in Sec. IV B, see Fig. 5. The pairs of
concentrations Xin and Xex for which both bilayers are found
to be practically tensionless, i.e., for which both |Σupp| <
0.07 kBT and |Σlow| < 0.07 kBT , are shown in Fig. 7(a). For all
these concentration pairs we obtain density and stress profiles
as shown in Fig. 8 for Xin = 1.13/d3 and Xex = 0.31/d3 with
1
2 (Xin + Xex) = 0.72/d3.

The bilayers acquire a spontaneous curvature as soon as
their two leaflets are exposed to different concentrations of the
non-adhesive particles. We define the concentration difference
∆X by

∆X ≡ Xex − Xin for bilayer Bupp (51)

and

∆X ≡ Xin − Xex for bilayer Blow. (52)

Because we take Xin > Xex in our simulations, ∆X < 0 for the
upper bilayer and ∆X > 0 for the lower bilayer.

Fig. 7(b) displays the bilayer tension Σpl as a function
of the concentration difference ∆X . The data points for
negative values of ∆X correspond to the tension within the
upper bilayer, Σupp, and the data points for positive values
of ∆X correspond to the tension within the lower bilayer,
Σlow. Inspection of Fig. 7(b) shows that all membranes are
tensionless with |Σupp| < 0.07 kBT and |Σlow

mec| < 0.07 kBT for
all the data points.

C. Spontaneous curvature

Generalizing Eq. (47) to the two asymmetric and
tensionless bilayers displayed in Fig. 6, we obtain the relation

2κmupp = −
 +Lz/2

0
dz z s(z) (53)

for the spontaneous curvature mupp of the upper bilayer and
the relation

2κmlow = −
 0

−Lz/2
dz z s(z) (54)

for the spontaneous curvature mlow of the lower bilayer. As
shown in Fig. 7(c), the calculated values of these spontaneous
curvatures decrease linearly with increasing concentration

FIG. 7. Spontaneous curvature of bilayer membranes arising from asymmetric depletion layers: (a) Pairs of particle concentrations, Xin and Xex, in the interior
and exterior compartments for which both bilayers are (almost) tensionless. The dashed line corresponds to Xin+Xex= 2X0 with X0= 0.72/d3 as deduced
from the data in Fig. 5(b), (b) bilayer tension Σpl as a function of the concentration difference ∆X . The data points for ∆X < 0 and ∆X > 0 correspond to the
upper and lower bilayer in Fig. 6, respectively, see Eqs. (51) and (52), (c) spontaneous curvature m as obtained from Eqs. (53) and (54) as a function of the
concentration difference ∆X . The linear relation between 2κm and ∆X is consistent with Eq. (46); the solid line corresponds to a fit with R2(ℓ2+R2)= 2 d2,
and (d) spontaneous curvature 2κm as in (c) plotted against the parameter combination 1

2 ℓ′′me(Σpl
in−Σ

pl
ex) as in Eq. (49) with ℓ′′me≡ ℓ2+R2= 6 d. The solid line

corresponds to the identity of these two quantities.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  79.202.53.89 On: Sat, 20 Aug

2016 08:52:23



074117-12 B. Różycki and R. Lipowsky J. Chem. Phys. 145, 074117 (2016)

FIG. 8. ((a) and (b)) Density profiles and (c) stress profile of two parallel
bilayers as a function of the coordinate z perpendicular to the bilayers. The
projected lipid area is A= 1.20 d2 for each bilayer. The particles have the
concentrations Xin= 1.13/d3 and Xex= 0.31/d3 in the interior and exte-
rior compartment, respectively. The dimensions of the simulation box are
Lx = L y = 32d and Lz = 64d. The number of the water beads is adjusted
so that the normal pressure PN = 20.7 kBT /d3. (a) The density profiles of
the C, H, and W beads, (b) the density profile ρP(z) of the particles. The
concentrations Xin and Xex are chosen in such a way that the membranes
experience (almost) no mechanical tension, and (c) the lateral stress profile
s(z) of the two tensionless membranes.

difference ∆X . Our definition of this difference implies that
the data points with negative ∆X-values correspond to the
upper bilayer Bupp with m = mupp > 0 while the data points
with positive ∆X-values correspond to the lower membrane
Blow with m = mlow < 0.

The simulation data in Fig. 7(c) are consistent with
the relation (46) which was proposed in analogy to the
exact relation (19) for the hard-core system in Sec. II.
Because of the noisy data for 2κm, the proportionality factor
R2(ℓ2 + R2) in Eq. (46) has a relatively large uncertainty.
A least-squares fit for the average value of this prefactor
together with a conservative estimate for its uncertainty leads
to R2(ℓ2 + R2)/d2 = 2 ± 0.6. Likewise, the simulation data in
Fig. 7(d) confirm the relation (49) which is analogous to the
exact relation (26) for the hard-core system. The numerical
value for the proportionality factor ℓ2 + R2 is estimated to be
(ℓ2 + R2)/d = 6 ± 2.

VI. DISCUSSION OF SIMULATION RESULTS

A. Linear relationships and associated length scales

As described in Secs. IV and V, our simulation
data provide several linear relationships between different
quantities of interest. First, for symmetric bilayers, the data in
Figs. 4 and 5 confirm the linear dependencies of the extended
coverage Γ̃pl

sy and of the bilayer tension Σpl on the molar
concentration X as described by Eqs. (37) and (43), which
were proposed in close analogy to the hard-core equations
(36) and (18). Second, for asymmetric bilayers, the data in
Fig. 7 corroborate the linear dependencies of the spontaneous
curvature m on the concentration difference ∆X and on the

difference Σpl
in − Σ

pl
ex of the leaflet tensions as described by

Eqs. (46) and (49).
The data for the extended coverage Γ̃pl

sy are obtained from
the particle density profile ρP(z) which can be simulated with
high accuracy. In contrast, the bilayer tension Σpl and the
spontaneous curvature m as well as the leaflet tensions Σpl

l
are

obtained from the symmetric and asymmetric stress profiles,
which are less accurate. As a consequence, the data for Γ̃pl

sy
in Figs. 4(a) and 5(a) have very small error bars whereas the
other data are rather noisy, see Figs. 4(b) and 5(b), as well as
Figs. 7(b)–7(d).

The proportionality factors for the linear relationships
have been denoted by ℓ1 + 2R1, R1, R2(ℓ2 + R2), and ℓ2 + R2
as defined by Eqs. (37), (43), (46), and (49) and were
introduced in close analogy to the hard-core system. These
four proportionality factors contain four length scales, the
effective membrane thicknesses ℓ1 and ℓ2 as well as the
effective particle radii R1 and R2 which we have distinguished
because they should, in general, depend on the details of
the different density and stress profiles from which they
are derived. In order to reduce the number of relevant length
scales, it would be desirable to identify the effective membrane
thicknesses ℓ1 and ℓ2 as well as the effective particle radii R1
and R2. We will now examine whether such an identification
is consistent with the simulation data.

From the data in Figs. 7(c) and 7(d), which are derived
from the asymmetric stress profiles, the proportionality
factors were found to be R2(ℓ2 + R2) = 2d2 and ℓ2 + R2 = 6d
with an accuracy of about 30%. A combination of these
two equations leads to the estimates R2/d = 0.33 ± 0.1 and
ℓ2/d = 5.67 ± 1.9 for the effective particle radius R2 and
the effective membrane thickness ℓ2. Likewise, from the
simulation data displayed in Figs. 5(a) and 5(b), we obtain
the proportionality factors (ℓ1 + 2R1)/d = 6.47 ± 0.01 and
R1/d = 0.27 ± 0.07 which leads to the effective membrane
thickness ℓ1/d = 5.93 ± 0.08.

We thus conclude that the membrane thicknesses ℓ1 and
ℓ2 as well as the particle radii R1 and R2 are approximately
equal and can be identified within the accuracy of our
simulation data. However, based on these data, we cannot
exclude the possibility that these length scales are somewhat
different reflecting the details of the different particle density
and stress profiles from which they have been derived.
Furthermore, these length scales are expected to depend,
in general, on the chosen set of DPD parameters. In contrast,
the linear dependencies of the extended coverages and the
bilayer tension on the molar concentration X as well as
the linear relationship between the spontaneous curvature
and the concentration difference ∆X should be universal and
independent of the DPD parameters.

B. Concentration regimes

The linear relationships discussed in Subsection VI A
are observed in the simulations over a relatively large
concentration range. Indeed, for symmetric bilayers, the linear
dependence of the extended coverage and of the bilayer tension
on the molar concentration X is observed over the range
0 < X ≤ 1.5/d3 as shown in Fig. 5. Likewise, for asymmetric

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  79.202.53.89 On: Sat, 20 Aug

2016 08:52:23



074117-13 B. Różycki and R. Lipowsky J. Chem. Phys. 145, 074117 (2016)

bilayers, the linear dependence of the spontaneous curvature
on the concentration difference ∆X is observed over the range
−1.5/d3 ≤ ∆X ≤ 1.5/d3 as displayed in Fig. 7.

Because the total bead density has the essentially constant
value 3/d3 at constant pressure, the simulation box contains
about the same number of particle and water beads for
the largest particle concentration X = 1.5/d3 which thus
corresponds to a concentrated solution in which the volume
fraction of the particle beads is close to 0.5. It is quite
remarkable that the linear relationships are found to apply for
such high particle concentrations because these relationships
were originally derived for an ideal gas of spherical particles
that experience no mutual interactions but only hard-core
interactions with the membrane. As explained in Sec. II E, the
ideal-gas description should provide a reliable approximation
for a dilute solution of hard spheres with diameter dhc provided
the molar concentration X is sufficiently small and satisfies
X < Xo = 0.478/d3

hc as in Eq. (21). In contrast, for the soft-
spheres with diameter d as studied in our simulations, the
linear relationships apply to much larger concentrations up to
X = 1.5/d3.

VII. SUMMARY AND OUTLOOK

In summary, we first considered a hard-core system
consisting of an ideal gas of hard-core particles of radius
Rhc interacting with a “hard wall” membrane of thickness ℓhw.
For this system, we analytically calculated the dependencies
of the leaflet coverages and leaflet tensions on the particle
concentrations. For a planar membrane, both dependencies
are linear as described by the relationships in Eqs. (8)-(10).
The solution of the hard-core system also shows explicitly
that we can calculate the spontaneous curvature m as given
by Eq. (19) from the properties of the planar membrane,
see Eqs. (25) and (26). Depending on the particle size, the
particle concentrations, and the membrane’s bending rigidity,
the magnitude of the depletion-induced spontaneous curvature
can be fairly large, see Table I.

Linear relationships analogous to those derived for
the hard-core system were also obtained for the soft-core
particles studied by DPD simulations. In particular, we found
linear relationships (i) between the membrane tension Σpl of
symmetric bilayers and the particle concentration X (Eq. (44)
and Fig. 5(b)) and (ii) between the spontaneous curvature
m and the difference ∆X of the particle concentrations on
the two sides of the membrane (Eq. (46) and Fig. 7(c)). In
this way, our results provide strong evidence that the linear
dependencies (i) and (ii) are universal in the sense that they
do not depend on the nature of the interparticle interactions,
in contrast to the prefactors of these relationships which are
expected to reflect the interaction parameters.

The simulation results reported here scrutinize and
corroborate the analytical theory introduced in Ref. 1 which
focussed on the loss of translational entropy. Other theoretical
studies considered rod-like particles and examined the loss
of configurational entropy when these rods come close to a
membrane.18,19 The latter entropy loss was found to contribute
to the second but not to the first order in the membrane’s mean
curvature, i.e., the results of Refs. 18 and 19 imply that the

configurational entropy loss of rod-like particles does not
contribute to the spontaneous curvature of the membrane.
However, rod-like particles close to a membrane also suffer
a loss of translational entropy which will again contribute to
the membrane’s spontaneous curvature.

The membranes considered in this paper are lipid bilayers
which typically have a bending rigidity of the order of 20 kBT .
Because the bending rigidity provides the basic energy scale
for the membranes, our study explores the low-temperature
regime in which shape fluctuations or bending undulations
are expected to play only a minor role. The opposite case has
been investigated theoretically in Ref. 31 and it was proposed
that strong shape fluctuations lead to a constant density profile
of the particles adjacent to a fluctuating membrane. The latter
proposal has not been addressed here and remains to be
corroborated by molecular simulations.

Our theoretical results can be scrutinized by systematic
experimental studies. Indeed, a large variety of nanoparticles
could be used in order to study the depletion effects
described here. The smallest “particles” are monoatomic
ions which form exclusion layers in front of the bilayer
leaflets, with a thickness of up to 1 nm.13 Somewhat
larger particles are water-soluble macromolecules such as
short PEG chains15 or small sugar molecules.14,32 In fact,
even adhesive nanoparticles experience effectively repulsive
interactions with lipid membranes when the size of the
particles is below a certain critical size.33 In all of these cases,
the spontaneous curvature induced by asymmetric depletion
layers can be measured via the spontaneous tabulation of giant
vesicles.34
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[http://dx.doi.org/10.1063/1.4978679]

In the abstract and on page 2, right column, first paragraph, of Ref. 1, the value m = ±1/(270 nm) of the spontaneous
curvature m was erroneously assigned to spherical hard-core particles with a diameter of 1 nm but applies instead to such
particles with a radius of 1 nm. Furthermore, in Table I of Ref. 1, the numerical values of the spontaneous curvature m for the
hard-core system are obtained from Eq. (19) for variable particle radius Rhc as well as for constant bending rigidity κ = 20 kBT
(instead of κ = 10−19 J) and constant membrane thickness `hw = 4 nm. Glucose molecules have a hydrodynamic radius of
0.36 nm at room temperature.2 Using the particle radius Rhc = 0.36 nm and the previously mentioned membrane parameters,
Eq. (19) predicts the spontaneous curvatures m = ±1/(846 nm) and m = ±1/(423 nm) when the two sides of the membrane are
exposed to aqueous glucose solutions with a concentration difference of 100 mM and 200 mM, respectively.
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