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5.1 INTRODUCTION AND OVERVIEW
The architecture of biological membranes is characterized by a 
wide range of length scales. On the µm scale, these membranes 
exhibit a unique combination of properties: (i) They form closed 
surfaces without edges; (ii) They are highly flexible and, thus, can 
easily adapt their shape to external perturbations; (iii) In spite of 
this flexibility, they provide robust and stable barriers between 
the different aqueous compartments; and (iv) In the cell, these 
compartments are continuously remodeled via membrane fusion 
and fission (or scission).

These properties arise from the specific molecular structure 
of these membranes. When viewed on the nm scale, each bio-
membrane consists of a specific mixture of many different lipids 
and membrane proteins which reflects the biological functions of 
this membrane. However, in spite of this chemical complexity, 
all biomembranes are organized according to the same universal 
principle: their basic building block is provided by a bilayer of 
lipid molecules. The latter molecules are essentially insoluble in the 
aqueous solution which ensures the stability of the membrane. 
In addition, these lipid bilayers are maintained in a fluid state 
which enables the membranes to adapt to external perturbations 
by remodeling of membrane composition, shape, and topology.

Many of the fascinating remodeling processes that have 
been found for biological membranes can also be observed for 
giant unilamellar vesicles (GUVs) that are formed by mem-
branes with a relatively small number of molecular compo-
nents. The theory described here will typically be compared to 
experimental observations on lipid vesicles but the same theory 
applies to vesicle membranes that are composed of lipids and 
membrane proteins.

One intriguing example for the remodeling of membrane 
shape is provided by the formation of membrane necks via 
budding, a crucial step of all endo- and exocytotic processes. 
Another example is provided by the formation of membrane 
nanotubes, highly curved membrane structures that protrude 
from weakly curved membrane segments. As far as the remod-
eling of composition is concerned, we now have a variety of 
lipid mixtures that can phase separate into two f luid phases, 
a liquid-ordered and a liquid-disordered phase. When we 
study this membrane phase separation in giant vesicles, we 
often observe large intramembrane domains that partition the 
vesicle membrane into a few membrane compartments with a 
lateral extension in the micrometer range. In addition, multi-
component membranes exposed to a heterogeneous environ-
ment form ambience-induced segments that can also differ 

5.7 Adhesion of Vesicles 114
5.7.1 Interplay of Adhesion and Bending 115
5.7.2 Theory of Vesicle Adhesion 115
5.7.3 Vesicles Adhering to Planar Surfaces 116
5.7.4 More Complex Adhesion Geometries 119
5.7.5 Endocytosis of Nanoparticles 120
5.7.6 Ambience-Induced Segmentation 121

5.8 Membrane Phase Separation and Multi-Domain Vesicles 122
5.8.1 Budding of Intramembrane Domains 123
5.8.2 Theory of Two-Domain Vesicles 123
5.8.3 Domain-Induced Budding of Vesicles 126
5.8.4 Stable Multi-Domain Patterns 128
5.8.5 Membrane Phase Separation and Ambience-Induced Segmentation 129

5.9 Wetting of Membranes by Aqueous Droplets 130
5.9.1 Distinct In-Wetting Morphologies 131
5.9.2 Fluid-Elastic Molding of Membranes 132
5.9.3 Theory of Vesicle-Droplet Systems 132
5.9.4 Shape Equations and Matching Conditions 135
5.9.5 Three-Spherical-Cap Shapes 137
5.9.6 Shape Functional for Three Spherical Caps 139
5.9.7 Force Balance along Apparent Contact Line 141
5.9.8 Two-Droplet Vesicles with Closed Necks 143
5.9.9 Nucleation of Nanodroplets at Membranes 144

5.10 Topological Changes of Membranes 145
5.10.1 Free Energy Landscapes 145
5.10.2 Exergonic Fusion for Small m 145
5.10.3 Exergonic Fission for Large m 145

5.11 Summary and Outlook 146
Acknowledgments 148
Appendices 148
Glossary of Symbols 162
References 164



5.2 Biomembranes and giant vesicles: Basic aspects 75
G

iant vesicles theo
retically and

 in silico

in their molecular composition. One example for this type 
of segmentation is provided by vesicle membranes exposed to 
aqueous two-phase systems or water-in-water emulsions which 
exhibit several wetting morphologies. The interplay between 
ambience-induced segmentation and membrane phase separa-
tion leads to the confinement of phase separation to single 
membrane segments which represents a generic mechanism 
to suppress the formation of large intramembrane domains or 
rafts in cellular membranes.

The present chapter is organized as follows. The next two 
Sections 5.2 and 5.3 are introductory in nature: they describe 
basic aspects of biomembranes and provide an elementary view of 
membrane curvature. The relation between local curvature gen-
eration and spontaneous curvature is explained in Section 5.3.5. 
Different molecular mechanisms for local curvature generation 
are described in Box 5.1. Section 5.4 describes the theory of 
curvature elasticity for uniform membranes.1 This theory is based 
on the local curvature-elastic properties of the membranes, but 
also takes into account that the ultralow lipid solubility and the 
osmotic conditions lead to global constraints on the membrane 
area and the vesicle volume. In fact, what makes this theory both 
appealing and challenging is this interplay between local and 
global membrane properties.

We will focus on the spontaneous curvature model but 
also discuss the modifications arising from area-difference-
elasticity. On the one hand, the spontaneous curvature model 
is particularly attractive from a theoretical point of view 
because it depends only on a small number of curvature-elastic 
parameters. In fact, for membranes with a laterally uniform 
composition, the spontaneous curvature model involves only 
two such parameters, (i) the bending rigidity κ which describes 
the resistance of the membrane against bending deformations 
and (ii) the spontaneous curvature which provides a quantita-
tive measure for the bilayer asymmetry of the membranes. 
On the other hand, the spontaneous curvature model is also 
sufficient to obtain a quantitative description for the behavior 
of many membranes of interest. Indeed, this model applies to 
all membranes with (at least) one molecular component such as 
cholesterol that undergoes frequent flip-flops between the two 
leaflets of the bilayer. Area difference elasticity is only relevant 
in the absence of flip-flops, i.e., when the number of molecules 
is separately conserved in each leaflet.

One striking consequence of curvature elasticity is the forma-
tion of closed membrane necks that represent narrow funnel-like 
membrane structures between two larger membrane segments. 
The stability of these necks depends on the relative magnitude 
of the neck curvature and the spontaneous curvature, which 
may contain a nonlocal contribution from area-difference-
elasticity. These stability conditions for closed membrane necks 
can be  reinterpreted as effective constriction forces generated 
by  spontaneous curvature. Simple estimates show that suf-
ficiently large spontaneous curvatures lead to the cleavage of 
the  membrane necks and thus to complete membrane fission. 
The different aspects of membrane necks are summarized in 
Box 5.2.

Sections 5.5 and 5.6 are devoted to two striking morpholo-
gies formed by uniform membranes: (i) multi-sphere shapes that 
involve small spherical buds and (ii) membrane nanotubes that 
can be necklace-like or cylindrical. Section 5.7 describes the 
behavior of vesicles that interact with an adhesive and rigid sur-
face. For simplicity, the latter section will focus on vesicle mem-
branes with a laterally uniform composition but will also discuss 
adhesion of vesicles as an example for ambience-induced segmen-
tation of membranes. A closely related subject, the behavior of 
adhesive nanoparticles in contact with membranes and vesicles, 
will be addressed in Chapter 8 of this book. The shapes and shape 
transformations of vesicles that contain two or multiple intra-
membrane domains are discussed in Section 5.8, and the wetting 
of membranes in contact with aqueous two-phase systems or 
water-in-water emulsions in Section 5.9. For partial wetting, the 
water-water interfaces exert capillary forces onto the membranes 
which then respond with strong shape deformations. On the 
nanometer scale, the membrane segments close to the three-phase 
contact line should be curved in a smooth manner and the capil-
lary forces then lead to a complex force balance along this contact 
line which involves an intrinsic contact angle. On the microm-
eter scale, the membrane shapes exhibit kinks which define an 
apparent contact line and apparent contact angles. Experimental 
aspects of aqueous two-phase systems will be addressed in 
Chapter 29 of this book. Both membrane phase separation and 
membrane wetting leads to vesicle membranes that have a later-
ally nonuniform composition. At the end, we will briefly look 
at the consequences of curvature elasticity for membrane fusion 
and fission (or scission) of membranes, the two most important 
topological transformations of membranes.

Each of the different membrane systems discussed in 
Sections 5.7 through 5.9 involves one additional parameter: the 
adhesive strength W of substrate surfaces, the line tension λ of 
domain boundaries, and the interfacial tension Σαβ between two 
different aqueous phases. Because all of these parameters can be 
measured or deduced from experimental observations, the theory 
leads to quantitative predictions. In fact, the theory described 
here leads to a large number of simple relationships between 
material parameters and geometric quantities which provide 
important checkpoints for the comparison between theory and 
experiment.

5.2  BIOMEMBRANES AND GIANT 
VESICLES: BASIC ASPECTS

Here and below, the term “biomembranes” will be used as 
an abbreviation for “biological and biomimetic membranes.” 
These two types of membranes differ primarily in their chemi-
cal complexity. Biological or cellular membranes usually contain 
hundreds or even thousands of different lipid species and a large 
number of different membrane proteins. Biomimetic membranes 
as considered here have a much simpler composition with only a 
few molecular components but share one crucial physical property 
with biological membranes, namely their fluidity, which enables 
both types of membranes to undergo analogous remodeling 
processes. The simplest biomimetic membranes are provided by 
one-component lipid bilayers which have a molecular structure as 
in Figure 5.1.

1 Here and below, a ‘uniform membrane’ is ‘laterally uniform’ and a ‘uniform 
aqueous phase’ is ‘spatially uniform’.
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5.2.1 BIOMEMBRANES BASED ON LIPID BILAYERS

Essentially all biological membranes contain a single lipid bilayer 
as their basic building block. The importance of lipids was already 
realized by Langmuir and others at the beginning of the 20th 
century. This insight came from spreading experiments: the mem-
branes were dissolved in a volatile organic solvent, the solution 
was spread on a water surface, and the solvent was evaporated. 
In this way, one obtains a lipid monolayer at the air–water inter-
face. Such a technique was also used by Gorter and Grendel who 
extracted lipids from red blood cells (Gorter and Grendel, 1925; 
Robertson, 1960). They found that the area of the monolayer was 
approximately twice the area of the cell and proposed that the cell 
should be covered by a lipid bilayer. This proposal was confirmed, 
in the 1950s and 1960s, by imaging cross-sections of biomem-
branes via electron microscopy. Such electron microscopy images 
gave direct evidence that cell membranes are based upon a single 
bilayer and showed that these bilayers have a thickness of 4–5 nm 
(Robertson, 1959).

Electron microscopy studies also demonstrated that bilayers 
are already formed by a single species of phospholipid mole-
cules (Bangham and Horne, 1964). Therefore, bilayers consist-
ing of one or a few lipid components have become important 
model systems for biological membranes. Different bilayer 
systems have been developed and intensely studied, includ-
ing multilamellar liposomes, black lipid membranes, solid-
supported bilayers, and unilamellar vesicles. Giant unilamellar 
vesicles as considered here typically have a linear size of tens 
of micrometers and can be directly imaged in their fluid state 
using optical microscopy.

5.2.2  SEMI-PERMEABILITY AND OSMOTIC 
CONDITIONS

One basic function of biological membranes is that they parti-
tion space into separate aqueous compartments and represent 
effective barriers for the diffusion of ions and solute molecules 
from one compartment to another. These functions are also pro-
vided by lipid bilayers. When these bilayers form vesicles, they 
create an interior aqueous compartment that is well separated 
from the exterior solution. Indeed, the bilayers are permeable to 
small uncharged molecules such as H2O, O2, and CO2 as well 
as H3O+ and OH− ions, but do not allow the permeation of 
other ions or larger water-soluble molecules such as glucose and 

other monosaccharides. As a consequence, these solutes represent 
osmotically active “particles” and exert osmotic pressures onto 
the vesicle membranes. The experimental methods to measure 
the permeability of membranes are reviewed in Chapter 20 of 
this book.

The osmotic pressures depend on the solute concentrations 
in the interior and exterior solutions. If a vesicle membrane is 
exposed to different interior and exterior concentrations, the 
resulting osmotic pressure difference causes water to move 
through the membrane into the compartment with the higher 
solute concentration. First, consider a higher solute concentra-
tion in the exterior solution which leads to osmotic deflation 
of the vesicle. In this case, the water outflux reduces the vesicle 
volume until the interior particle concentration matches the 
exterior one and the osmotic pressure difference is close to zero. 
On the other hand, if we start with a higher solute concentra-
tion in the interior compartment, the volume of the vesicle is 
increased by osmotic inflation. However, this volume increase 
is truncated by the limited ability of the vesicle membrane to 
increase its area by mechanical stretching. Indeed, when a lipid 
bilayer is mechanically stretched, its area can only be increased 
by a few percent before it ruptures. Therefore, once the inflated 
vesicle has attained a spherical shape, further influx of water 
increases the membrane tension up to a limiting value at which 
the membrane ruptures and forms pores. These pores then 
provide an alternative pathway for the reduction of the osmotic 
pressure difference.

5.2.3 FLUIDITY OF BIOMEMBRANES

Another universal aspect of biological membranes is that 
they are maintained in a fluid state which is characterized by 
fast lateral diffusion of the molecules along the membrane. 
This membrane fluidity became generally accepted at the beginning 
of the 1970s as a result of three parallel developments. First, the 
lateral diffusion was probed by spin-labeled lipids (Kornberg 
and McConnell, 1971; Devaux and McConnell, 1972) and 
steroids (Sackmann and Träuble, 1972; Träuble and Sackmann, 
1972) which led to lateral diffusion constants of the order of 
1 µm2 per second. Nowadays, the lateral diffusion of membrane 
molecules can be observed directly by fluorescence recovery 
after photobleaching (FRAP) (Almeida and Vaz, 1995) and by 
single particle tracking (Sako and Kusumi, 1994; Saxton and 
Jacobson, 1997; Fujiwara et al., 2002; Kusumi et al., 2005), two 
methods that have been applied to a large variety of biomimetic 
and biological membranes. These studies confirmed that the 
lateral diffusion constants of membrane molecules are indeed 
of the order of 1 µm2 per second. A detailed discussion of both 
FRAP and single particle tracking as well as tables with diffu-
sion constants for a variety of lipids can be found in Chapter 21 
of this book.

Second, it has been realized that the observed shape transfor-
mations of red blood cells (Canham, 1970; Evans, 1974) and lipid 
vesicles (Helfrich, 1973; Deuling and Helfrich, 1976) are only 
possible if the membranes represent two-dimensional liquids. 
Indeed, these shape transformations change the curvature of the 
membranes in a smooth and continuous manner and would be 
impossible for solid-like or polymerized membranes. Particularly 
interesting shape changes are provided by budding processes in 

Figure 5.1 Lipid bilayer as the basic building block of all biomem-
branes: the lipid molecules are arranged into two monolayers or leaf-
lets, with the lipid headgroups forming the two interfaces between 
the bilayer and the aqueous solutions. the thickness of the bilayer 
is 4 to 5 nm. For a fluid bilayer, each lipid molecule undergoes rapid 
lateral diffusion within the membrane. this diffusive process is based 
on the pairwise exchange of neighboring lipids (black and white) on 
the time scale of nanoseconds.
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which small spherical out- or in-buds are formed from larger 
mother vesicles. Out-buds point towards the exterior aqueous 
solution, in-buds towards the interior solution. One example for 
the formation of an out-bud is shown in Figure 5.2. Such a bud-
ding process provides direct evidence that the membrane is in a 
fluid state. The associated curvature elasticity of biomembranes 
has now been developed into a quantitative theory (Berndl et al., 
1990; Seifert and Lipowsky, 1990; Seifert et al., 1991; Miao et al., 
1991; Lipowsky, 1991; Miao et al., 1994; Döbereiner et al., 1997; 
Lipowsky, 2013; Liu et al., 2016; Lipowsky, 2018a) which will be 
described in this chapter.

Third, in 1972, a large body of observations on cellular mem-
branes was integrated into the fluid mosaic model in which the 
membrane proteins are dispersed in a fluid bilayer of lipids (Singer 
and Nicolson, 1972). Whether the fluid mosaic model actually 
describes the supramolecular structure of cell membranes has been a 
matter of some debate. On the one hand, the endocytosis and exo-
cytosis of cell membranes involves the formation of fluid domains 
that are enriched in membrane-anchored receptors and coat proteins 
and can be understood in terms of domain-induced budding 
(Lipowsky, 1992, 1993; Agudo-Canalejo and Lipowsky, 2015a).

On the other hand, it has also been proposed that cell mem-
branes contain intramembrane domains, so-called rafts, that are 
enriched in certain lipids such as sphingomyelin and cholesterol 
(Simons and Ikonen, 1997). In spite of a large number of experi-
mental studies, including superresolution microscopy methods 
such as stimulated emission depletion (STED) microscopy, it 
has not possible to obtain direct evidence for such rafts in cel-
lular membranes. If these lipid rafts exist in mammalian cells, 
their diameter does not exceed 20 nm (Eggeling et al., 2009). 
The different experimental techniques used to search for such rafts 
have been critically reviewed by (Klotzsch and Schütz, 2013). 
One generic mechanism that explains the difficulty to observe 
membrane phase separation in cellular membranes is ambience-
induced segmentation by the heterogeneous environment to which 
these membranes are exposed (Lipowsky, 2014b) as discussed in 
Section 5.8.5 below.

5.2.4 REMODELING OF COMPOSITION AND SHAPE

In general, the fluidity of biomembranes implies that these 
membranes can easily adapt to changes in their environment by 
remodeling their composition, shape, and topology. This multi-
responsive behavior includes shape transformations of GUVs, 

membrane segmentation by laterally nonuniform environments 
such as adhesive surfaces, membrane phase separation, and the 
responses of GUVs to capillary forces arising from water-in-water 
droplets.

The remodeling of membrane composition in ternary lipid 
mixtures leads to the nucleation and growth of intramembrane 
domains that can be directly observed in the optical microscope, 
see Figure 5.3. Such domains, which demonstrate the coexis-
tence of two (or more) lipid phases, have now been observed for 
a variety of membrane systems including giant vesicles (Dietrich 
et al., 2001; Veatch and Keller, 2003; Baumgart et al., 2003; 
Bacia et al., 2005; Riske et al., 2006; Dimova et al., 2007; 
Semrau et al., 2008), solid-supported membranes (Jensen et al., 
2007; Garg et al., 2007; Kiessling et al., 2009), hole-spanning 
(or black lipid) membranes (Collins and Keller, 2008), as well as 
pore-spanning membranes (Orth et al., 2012). The phase dia-
grams of such three-component membranes have been deter-
mined using spectroscopic methods (David et al., 2009) as well as 
fluorescence microscopy of giant vesicles and X-ray diffraction of 
membrane stacks (Veatch et al., 2006; Vequi-Suplicy et al., 2010; 
Uppamoochikkal et al., 2010; Pataraia et al., 2014). The experi-
mental aspects of lipid phase separation and domain formation 
are reviewed in more detail in Chapter 18 of this book.

Another particularly striking example for the remodeling of 
membrane shape that does not require membrane phase separa-
tion is provided by the spontaneous tubulation of GUVs (Li 
et al., 2011; Lipowsky, 2013; Liu et al., 2016). Two examples for 
the resulting pattern of nanotubes are displayed in Figure 5.4. 
In these examples, the vesicles respond to osmotic deflation by 
the formation of many nanotubes that emanate from the giant 
mother vesicle and protrude into the vesicle interior. As a result, 
highly curved membrane segments coexist with weakly curved 
segments even though the membrane has a laterally uniform com-
position. The nanotubes shown in Figure 5.4 were formed spon-
taneously, i.e., in the absence of external pulling forces. Another 
quite different mechanism for the formation of membrane 

Figure 5.2 Formation of a spherical out-bud from a giant unilamellar 
vesicle (GUV) as observed by phase contrast microscopy. this bud-
ding process, which took about 5 s, proceeds in a smooth and 
continuous manner and provides direct evidence on the micrometer 
scale that the lipid membrane is in a fluid state on the molecular scale. 
(reproduced with permission from Dimova, r. et al., a practical guide 
to giant vesicles: Probing the membrane nanoregime via optical 
microscopy, J. Phys. Cond. Mat., 18, S1151–S1176, 2006, Institute of 
Physics)

Figure 5.3 remodeling of membrane composition can lead to 
 domain-induced budding of vesicles as theoretically predicted in 
(Lipowsky, 1992, 1993; Jülicher and Lipowsky, 1993) and observed by 
fluorescence microscopy in (Baumgart et al., 2003; riske et al., 2006): 
(left) Cross section through a vesicle that formed two domains after 
a decrease in temperature (Baumgart et al., 2003); and (right) three-
dimensional confocal scan of a two-domain vesicle that was formed by 
electrofusion. In both cases, the vesicle membrane is composed of dio-
leoyl phosphadityl choline (DOPC), sphingomyelin, and cholesterol (see 
appendix 1 of the book for structure and data on these lipids) together 
with small concentrations of two fluorescent probes. (reproduced with 
permission from riske, K.a. et al., Biophys. Rev. Lett., 1, 387–400, 2006. 
Copyright (c) 2006 World Scientific Publishing.)
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nanotubes is provided by external pulling forces that are locally 
applied to the membranes. A particularly instructive setup for the 
latter tubulation process is obtained if one aspirates a giant unila-
mellar vesicle in a micropipette and simultaneously applies a pull-
ing force to a membrane-bound nanobead via magnetic tweezers 
(Heinrich and Waugh, 1996) or optical traps (Sorre et al., 2012), 
as schematically depicted in Figure 5.5.

The experimental methods that have been developed for GUVs 
composed of a few lipid components can also be applied to giant 
plasma membrane vesicles (GPMVs) or “blebs,” which contain a 
wide assortment of different lipids and proteins, all oriented in 
the same way as in the original cell membrane. In spite of their 
chemical complexity, the membranes of GPMVs were found to 
phase separate into coexisting lipid phases (Baumgart et al., 2007; 
Veatch et al., 2008), in close analogy to ternary lipid mixtures. 
One cellular process that has been elucidated using GPMVs 
is the molecular recognition of “self” during phagocytosis by 
macrophages. This recognition process involves the binding of the 
immunoglobulin CD47, a ubiquitous “marker of self” protein, to 
the macrophage receptor SIRPα (Sosale et al., 2015). The adhe-
sion of GPMVs with CD47 to SIRPα immobilized on a substrate 
surface revealed that the two proteins bind in a cooperative 

manner (Steinkühler et al., 2019), confirming previous theoretical 
studies (Weikl et al., 2009, 2016; Hu et al., 2013). Furthermore, 
it has also been observed that GPMVs form many nanotubes 
under deflation and that these tubulated vesicles exhibit rather 
unusual elastic properties (Steinkühler et al., 2018b).

5.2.5 STABILITY OF BILAYER MEMBRANES

In spite of their high flexibility, lipid membranes have a robust 
molecular architecture and maintain this architecture even under 
strong local deformations. One example is provided by force-
induced tubulation as shown in Figure 5.5. Using this method, 
one can produce nanotubes or “tethers” with a radius of only 
10 nm, which should be compared to the bilayer thickness of 
4–5 nm (Sorre et al., 2012). Tubes of a similar width have also 
been generated by a slightly different setup in which the laser 
trap is replaced by another micropipette that grabs the nanobead 
(Hochmuth et al., 1982; Tian et al., 2009). However, in spite 
of the large curvature of these nanotubes, the tube membranes 
maintain their structural integrity and provide an efficient separa-
tion of the interior and exterior aqueous compartments. Detailed 
information about the experimental method to pull nanotubes 
from GUVs can be found in Chapter 16 of this book.

The stability of the bilayer structure reflects the ultralow solu-
bility of phospholipids in water. One measure for this solubility 
is provided by the critical micelle concentration which represents 
both the concentration at which the lipids start to self-assemble 
into bilayers (instead of micelles) and the concentration of individ-
ual lipid molecules in the presence of bilayers. The critical micelle 
concentration of phospholipids decreases exponentially with their 
chain length, i.e., with the number of hydrocarbon groups per 
chain (Cevc and Marsh, 1987). The phospholipid dimyristoyl 
phosphatidyl choline (DMPC, see Appendix 1 of the book for 
structure and data on this and other lipids), for example, has the 
relatively short chain length of 14 hydrocarbon groups, but its 
critical micelle concentration is only 10−10.5 in mole fraction units 
or about 0.95 DMPC molecules per µm3. When this lipid forms a 
giant unilamellar vesicle with a radius of 10 µm, the vesicle mem-
brane consists of about 4 × 109 lipid molecules whereas the inte-
rior aqueous compartment of the vesicle contains only about 4 × 
103 such molecules. Most biologically relevant phospholipids have 
a chain length that exceeds 14 hydrocarbon groups which implies 
an even lower critical micelle concentration. As a consequence, 
one can usually ignore any exchange of phospholipids between the 
bilayer membrane and the aqueous solutions and assume that the 
membrane contains a fixed number of such lipids.

5.2.6 POLYMORPHISM OF VESICLES

Because biomembranes are fluid, one might expect that their 
shape can be understood by analogy with liquid droplets. 
However, in the absence of external forces or constraints, a liquid 
droplet of a given volume always attains a spherical shape in 
order to minimize its interfacial area and, thus, its interfacial free 
energy. In contrast to liquid droplets, lipid vesicles can attain 
a large variety of different shapes such as discocytes, stomato-
cytes, and dumbbells. Furthermore, the vesicle may undergo 
shape transformations as one changes the osmotic conditions 
or the temperature. Because the lipid molecules are practically 
insoluble in water, the total number of lipid molecules within 

Rsp
micropipette

GUV

nanotube

bead

optical trap

f

Figure 5.5 Pulling a membrane nanotube attached to a bead from a 
giant unilamellar vesicle (GUV) by an optical trap: the weakly curved 
GUV is aspirated by the micropipette, the right end of the strongly 
curved nanotube experiences the pulling force f arising from the 
optical trap. the latter force is typically of the order of 10 pN and can 
then generate tubes with a radius of 10–20 nm.

Figure 5.4 remodeling of membrane shape can lead to complex 
patterns of flexible nanotubes. the nanotubes were formed by liquid-
disordered membranes after the interior aqueous compartment sepa-
rated into a PEG-rich and dextran-rich phase: (a) Disordered pattern 
corresponding to a vesicle membrane that is completely wetted by the 
PEG-rich phase; and (b) Layer of densely packed tubes correspond-
ing to a membrane that is partially wetted by both aqueous phases. 
all tubes are connected to the outer vesicle membranes (red circles). 
In both images, the diameter of the tubes is below the diffraction limit 
of the confocal microscope but the tubes are theoretically predicted 
to be necklace-like and cylindrical in (a) and (b), respectively (Liu et al., 
2016). (reproduced with permission from Liu, Y. et al., ACS Nano, 
10,  463–474, 2016. Copyright american Chemical Society.)
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the membrane is conserved during such shape transforma-
tions. In addition, at any given temperature, each lipid molecule 
tries to occupy a certain optimal area within the membrane. 
Furthermore, when exposed to external forces or constraints, lipid 
bilayers hardly change their area before they rupture. Therefore, 
the area of the vesicle membrane is conserved, to a very good 
approximation, during isothermal shape transformations arising, 
e.g., from osmotic deflation and inflation. The latter processes 
change the vesicle volume for fixed membrane area. In general, 
the volume of a vesicle can become arbitrarily small but cannot 
exceed the volume of a sphere.

Shape transformations can also be induced by tempera-
ture changes reflecting the different thermal expansivities of 
the lipid bilayer and the aqueous solution. When we increase 
the temperature by ΔT, the initial membrane area A0 increases 
by ΔA = αAΔTA0 with αA ≃ 2 × 10−3/K for lipid bilayers. 
At the same time, the initial water volume V0 increases by 
ΔV = αV ΔTV0 with αV ≃ 2 × 10−4/K. When we apply these rela-
tions to a GUV, we find that an increase in temperature gener-
ates excess area of the membrane and reduces the volume-to-area 
ratio of the vesicle. One example for temperature-induced shape 
transformations is displayed in Figure 5.6.

The multi-responsive behavior of GUVs as illustrated by 
Figures 5.2 through 5.6 can be understood, in a quantitative man-
ner, by the unusual curvature-elastic properties of the vesicle mem-
branes. In the next two sections, we will first discuss the general 
concept of membrane curvature and then introduce the spontaneous 
curvature model for the description of curvature elasticity.

5.3 CURVATURE OF MEMBRANES
This section provides an elementary introduction into different 
aspects of curvature. It first emphasizes that membrane curvature 
emerges on nanoscopic scales and then describes basic concepts 
from differential geometry which include the two principal 
curvatures, the mean curvature, and the Gaussian curvature. 
Furthermore, one simple but important issue that is discussed in 
some detail is our convention for the sign of the principal curvatures, 
which can be positive or negative. At the end of this section, several 
molecular mechanisms for local curvature generation are briefly 

discussed and summarized in Box 5.1. Local curvature generation 
is intimately related to the preferred or spontaneous curvature of a 
membrane. The latter curvature can again be positive or negative. 
The present section is supplemented by Appendix 5.A on differen-
tial geometry.

5.3.1  EMERGENCE OF CURVATURE ON NANOSCOPIC 
SCALES

As shown in Figure 5.3 and Figure 5.6, vesicle shapes appear to 
be rather smooth when viewed under the optical microscope. 
Therefore, on the micrometer scale, membranes can be described 
as smoothly curved surfaces and then characterized by their cur-
vature. However, this smoothness does not persist to molecular 
scales, i.e., when we resolve the molecular structure of a bilayer 
membrane as in Figure 5.7.

Because membranes are immersed in liquid water, each lipid 
and protein molecule undergoes thermal motion with displace-
ments both parallel and perpendicular to the membrane. The per-
pendicular displacements represent molecular protrusions that 
roughen the two interfaces bounding the membrane. Therefore, 
in order to characterize a lipid/protein bilayer by its curvature, 
one has to consider small membrane patches and average over 
the molecular conformations within these patches. The minimal 
lateral size of these patches can be determined from the analysis 
of the bilayer’s shape fluctuations and was found, from molecular 
dynamics simulations of a one-component lipid bilayer, to be 
about 1.5 times the membrane thickness, see Figure 5.7 (Goetz 
et al., 1999). For a membrane with a thickness of 4 nm, this mini-
mal size is about 6 nm. Because such a membrane patch contains 
80–100 lipid molecules, membrane curvature should be regarded 
as an emergent property arising from the collective behavior of a 
large number of lipid molecules.

The curvature just discussed applies to the midsurface of the 
bilayer membrane, i.e., to the surface between the two leaflets of 
the bilayer. Furthermore, for a membrane segment with mid-
surface area A and bending rigidity κ, curved conformations as 
in Figure 5.7 are only possible if the membrane is “tensionless” 
in the sense that the mechanical membrane tension is small 
compared to κ/A (Goetz and Lipowsky, 1998). For the example 
displayed in Figure 5.7, the latter tension scale is found to be 
κ/A = 0.08 mN/m.

Figure 5.6 temperature-induced shape transformation of a single 
vesicle: In this example, the vesicle starts from the initial shape of a 
discocyte (D) which is transformed, via the intermediate stomato-
cytes S1 and S2, into the limit shape Lsto consisting of two spheres. 
the small sphere of Lsto forms an in-bud that is connected to the 
large sphere via a closed membrane neck. the generation of a 
smooth spherical bud without any membrane folds again demon-
strates the fluidity of the membrane. the top row displays images of 
phase contrast microscopy, the bottom row theoretical shapes with 
minimal curvature energy. (From Berndl, K. et al., Europhys. Lett., 13, 
659–664, 1990.)

Figure 5.7 Emergence of membrane curvature on nanoscopic scales 
as observed in molecular dynamics simulations. the bilayer has a 
thickness of about 4 nm, the smallest curvature radius of its midsur-
face (red curve) is about 6 nm. For comparison, two circles (broken 
lines) with a radius of 6 nm are also displayed. (reproduced from 
Goetz, r. et al., Phys. Rev. Lett., 82, 221–224, 1999.)
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5.3.2 MEAN AND GAUSSIAN CURVATURE

For each point on a smooth surface, we can construct a unit normal 
vector perpendicular to the membrane surface. Now, any plane that 
contains both the chosen point and this normal vector, defines a 
so-called normal section of the membrane surface, see Figure 5.8. 
The intersection between the surface and such a normal section 
defines a cross-sectional curve through the chosen point with a cer-
tain curvature C at this point. I will take this curvature to be positive 
if the cross-sectional curve bulges in the direction of the chosen 
normal vector as in Figure 5.8. This sign convention ensures that the 
cross-sectional curves on a sphere have positive curvature. Now, let 
us rotate the normal section around the normal vector. As a result 
of this rotation, the cross-sectional curve through the chosen point 
changes and so does the curvature C. As we change the rotation 
angle from 0 to 360 degrees, the  latter curvature varies over a certain 
range as given by Cmin ≤ C ≤ Cmax. The two extremal values Cmin 
and Cmax define the principal curvatures, C1 and C2, at the chosen 
point. These principal curvatures correspond to the eigenvalues of 
the negative curvature tensor, see Appendix 5.A. Furthermore, for 
C1 ≠ C2, the normal sections that contain the cross-sectional curves 
with C = C1 and C  = C2 are always orthogonal to each other.

For fluid membranes as considered here, the molecules diffuse 
laterally along the membrane, which implies that the membrane 
surface should be described in terms of geometric quantities that do 
not depend on the choice of the surface coordinates, i.e., that are 
invariant under a reparametrization of the surface. Such quantities 
are provided, apart from a possible change of sign, by the principal 
curvatures C1 and C2 or equivalently by the mean curvature

 M C C≡ +1
2

( )1 2  (5.1)

and the Gaussian curvature

 G C C≡ 1 2 . (5.2)

The mean curvature is proportional to the trace of the curva-
ture tensor whereas the Gaussian curvature is equal to its deter-
minant (Appendix 5.A). Note that C M M G1

2= − −  and 
C M M G2 = 2+ − . Both expressions are always real-valued 
because M2 ≥ G. 2 Indeed, the latter inequality is equivalent to 

(C1 − C2)2 ≥ 0 and, thus, holds for any shape of the membrane seg-
ment. The equality M 2 = G applies to spherical segments with C1 = C2.

5.3.3 SIGN OF MEMBRANE CURVATURE

The mean curvature M is invariant under all orientation- 
preserving transformations of the surface coordinates, i.e., 
under all transformations that have a positive Jacobi deter-
minant. The latter transformations do not affect the normal 
vectors of the membrane. However, we may also consider 
improper transformations of the surface coordinates which 
reverse the orientation of the normal vectors. A simple 
example of such an improper transformation A1 is provided 
by a transposition of the two surface coordinates, i.e., by 
the  transformation from (s1, s2) to ( , )1 2 2 1s s s s≡ ≡ . The rever-
sal of the normal vector implies that the principal curvatures 
change their sign and so does the mean curvature.

On the one hand, the reversal of the normal vectors provides 
a useful operation from a theoretical point of view because many 
physical properties of the membrane should not depend on our 
choice for the orientation of the normal vectors and must there-
fore be invariant under the reversal of these vectors. On the other 
hand, in order to avoid any ambiguity, we need a convention 
that always assigns a definite orientation to the normal vectors. 
For vesicle membranes as considered here, we can always distin-
guish between an interior and an exterior compartment and, thus, 
can always take the normal vectors to point towards the outer 
leaflet which is in contact with the exterior aqueous compart-
ment, see Figure 5.9.

The sign of the mean curvature M depends on the sign of the 
principal curvatures C1 and C2. As explained before, each princi-
pal curvature is obtained from a certain normal section and taken 
to be positive if the corresponding cross-sectional curve bulges in 
the direction of the normal vector. If all cross-sectional curves of 
the membrane bulge into the direction of the normal vector as in 
Figures 5.8 and 5.9a, both C1 and C2 are positive which implies 
that the mean curvature M is positive as well.3 Likewise, the mean 

2 The expressions for C1 and C2 imply that C 1 = ψ  and C r2 = sin /ψ  for axisym-
metric shapes parametrized by the tilt angle ψ and the radial coordinate r of the 
shape contour (Seifert et al., 1991).

P

Figure 5.8 Normal section through membrane surface: Consider 
a point P of the membrane surface and the normal vector (arrow) 
at point P. a normal section is provided by any plane that contains 
both the point P and its normal vector. the intersection between the 
chosen normal section and the membrane surface defines a cross-
sectional curve through point P. this curve has a certain curvature at 
point P. the latter curvature changes in a smooth manner as we rotate 
the normal section around the normal vector.

Figure 5.9 Sign convention for mean curvature M: (a) the mean cur-
vature is positive if the membrane curves or bulges locally towards its 
outer leaflet in contact with the exterior compartment; (b) the mean 
curvature vanishes for a planar membrane; (c) the mean curvature is 
negative if the membrane curves or bulges locally towards its inner 
leaflet in contact with the interior compartment; and (d) If P is a 
saddle point, the two principal curvatures C1 and C2 have opposite 
sign and the mean curvature M C C= ( )1

2 1 2+  is small or even zero.

3 Choose local Cartesian coordinates (x,y,z) with the origin given by point P = (0,0,0), 
normal vector n


= ( , , )0 0 1 , and the x-coordinate parallel to the normal section that 

contains the cross-sectional curve with the principal curvature C1 = Cmin. The cross-
sectional curves within the normal sections with y = 0 and x = 0 are then described 
by z ≈ −C1x 2 and z ≈ −C2 y2 for small values of x and y.
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curvature M is negative if all cross-sectional curves of the mem-
brane bulge into the direction of the negative normal vector, see 
Figure 5.9c. At a saddle point of the membrane surface, the two 
principal curvatures have opposite signs and the mean curvature 
M can be positive or negative or even vanish, depending on the 
relative magnitude of the two principal curvatures, see Figure 5.9d.

5.3.4 CONSTANT-MEAN-CURVATURE SHAPES

In general, the principal curvatures and the mean curvature M 
are local quantities that vary along the membrane surface. Some 
particularly simple shapes are, however, characterized by constant 
mean curvature, i.e., all points on the surface have the same mean 
curvature, see Figure 5.10. Thus, a planar membrane has vanish-
ing mean curvature, M = 0, whereas a sphere with radius Rsp has 
mean curvature M = 1/Rsp and M = −1/Rsp when its inner leaflet 
is in contact with the interior and the exterior solution, respec-
tively. Likewise, a cylinder with radius Rcy has mean curvature 
M = 1/(2Rcy) when the enclosed volume of water belongs to the 
interior compartment and M = −1/(2Rcy) when this volume is 
connected to the exterior compartment. Another simple shape 
is a catenoid for which each point represents a saddle point with 
vanishing mean curvature M = 0 as depicted in Figure 5.10c.

Cylinders represent possible shapes for membrane nanotubes. 
Another tube morphology that has been observed are necklace-
like tubes as shown in Figure 5.11a. The latter tubes consist of 

 identical spheres connected by closed membrane necks. For spheres 
with radius Rsp, the necklace-like tube has mean curvature M = 1/Rsp 
and M = −1/Rsp when the enclosed volume of the tube is connected 
to the interior and exterior solution, respectively. A necklace-like tube 
consisting of spheres with radius Rsp can be continuously transformed 
into a cylindrical tube with radius R Rcy sp= 1

2
, thereby preserving 

the value of the mean curvature. This transformation proceeds via a 
family of intermediate unduloids, all of which have the same mean 
curvature as the necklace-like and the cylindrical tube. The undu-
loids consist of lemon-like bulges connected by open necks, see the 
example in Figure 5.11b. Thus, during the constant-mean-curvature 
transformation, the closed necks of the necklace-like tube open up 
and the bulges of the necklace retract until the necks and the bellies 
have the same radius and form a cylindrical tube.

5.3.5  LOCAL CURVATURE GENERATION AND 
SPONTANEOUS CURVATURE

The simulation snapshot in Figure 5.7 displays a symmetric 
bilayer consisting of two leaflets that have the same molecular 
composition and are exposed to the same aqueous environment. 
Likewise, the cartoons in Figure 5.9 did not indicate any asym-
metry between the two leaflets. In real systems, such symmetric 
bilayers are somewhat exceptional, but they provide a useful 
reference system because their elastic properties are governed by 
a single elastic parameter, the bending rigidity κ that provides the 
basic energy scale of membranes. For phospholipid bilayers, the 
latter scale is of the order of 10−19 J, which is about 20kBT at room 
temperature. For different lipid bilayers, the measured values of 
the bending rigidity vary by about an order of magnitude, see the 
corresponding tables in Chapters 11, 14, and 15 of this book.

Real bilayer membranes are typically asymmetric. This asym-
metry can arise from a different lipid composition of the two 
leaflets as found in all biological membranes (van Meer et al., 2008; 
Fadeel and Xue, 2009). One prominent example is provided by the 
ganglioside GM1, a glycolipid that is abundant in all mammalian 
neurons (Aureli et al., 2016) and plays an important role in many 
neuronal processes and diseases (Schengrund, 2015). Furthermore, 
GM1 acts as a membrane anchor for various toxins, bacteria, and 
viruses such as the simian virus 40 (Ewers et al., 2010). The cur-
vature generated by different leaflet concentrations of GM1 has 
been recently studied, both experimentally for giant vesicles (Bhatia 
et al., 2018; Dasgupta et al., 2018) and by simulations of molecular 
bilayers (Dasgupta et al., 2018; Sreekumari and Lipowsky, 2018; 
Miettinen and Lipowsky, 2019). Likewise, membrane proteins 
in biological membranes have a preferred orientation, which also 
contributes to their asymmetry. In addition, membranes can 
acquire such an asymmetry from their environment as provided 
by the exterior and interior aqueous compartments. Indeed, the 
membranes become asymmetric when these two compartments 
contain different concentrations of ions, small solutes such as sugar 
molecules, and/or proteins that form adsorption or depletion lay-
ers on the two leaflets of the bilayer membranes (Lipowsky and 
Döbereiner, 1998; Lipowsky, 2013; Rozycki and Lipowsky, 2015, 
2016; Liu et al., 2016; Karimi et al., 2018; Ghosh et al., in prepara-
tion). Examples for mechanisms of local generation of membrane 
curvature are given in Box 5.1. Local curvature generation by 
proteins is reviewed in Chapter 23 of this book.

Rsp
Rcy

(a) (b) (c)

Figure 5.10 Simple membrane shapes with constant mean curva-
ture M: (a) Sphere with radius Rsp and mean curvature M = ±1/Rsp; 
(b) Cylinder with radius Rcy and mean curvature M = ±1/(2Rcy); and (c) 
Catenoid with mean curvature M = 0. For spheres and cylinders, the 
sign of the mean curvature depends on whether the inner leaflet is in 
contact with the interior or exterior aqueous solution.

Figure 5.11 three membrane tubes with different morphologies but 
the same constant mean curvature M: (a) Necklace-like tube consisting 
of identical spheres with radius Rsp = 1/|M|. the spheres are connected 
by closed membrane necks; (b) Unduloid with lemon-like bulges con-
nected by open necks. the neck radius Rne and the bulge radius Rbu are 
related to |M| via |M| = 1/(Rne + Rbu); and (c) Cylindrical tube with radius 
Rcy = 1/(2|M|). (reproduced from Lipowsky, r. Biol. Chem. 395, 253–
274, 2014b. With permission of Walter de Gruyter GmBH & CO.KG.)
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Box 5.1 Local generation of membrane curvature

Bilayer asymmetry and spontaneous curvature can be generated by a variety of molecular 
mechanisms as illustrated in this Box.

• A simple example is provided by a flexible polymer that is anchored with one of its ends 
to the membrane (Lipowsky, 1995; Nikolov et al., 2007).

• Such an anchored polymer generates curvature in order to increase its configurational 
entropy.

• Adhesive nanoparticles that are partially engulfed by the membrane act as scaffolds and 
impose their curvature onto this membrane, (Lipowsky and Döbereiner, 1998; Deserno, 
2004; Agudo-Canalejo and Lipowsky, 2015a) see Chapter 8 of this book.

• Small adhesive solutes generate a substantial spontaneous curvature m as predicted 
theoretically (Lipowsky and Döbereiner, 1998; Lipowsky, 2013) and observed in  molecular 
simulations (Rozycki and Lipowsky, 2015). For particles with a diameter of 1 nm and a 
concentration difference of 100 mM, adsorption leads to m = 1

77nm
.

• Depletion layers of solutes induce a spontaneous curvature m of the opposite sign 
(Lipowsky and Döbereiner, 1998). This prediction has also been confirmed by recent 
molecular simulations (Rózycki and Lipowsky, 2016). For particles with a diameter of 1 nm 
and a concentration difference of 100 mM, depletion leads to m nm

= 1
270

− .

The case of divalent ions is controversial because two recent experimental studies on Ca2+ ions (Simunovic et al., 2015; 
Baumgart et al., 2017) led to different conclusions about the sign of the ion-induced spontaneous curvature.

• N-BAR proteins such as amphiphysin (Takei et al., 1999; Peter et al., 2004) and endophilin 
(Farsad et al., 2001), F-BAR proteins such as pacsin/syndapin (Wang et al., 2009), and 
other proteins involved in endocytosis such as epsin (Ford et al., 2002) can bind to mem-
branes and impose their curvature onto these membranes.

Membrane-binding proteins that act as scaffolds for the membrane shape are usually quite rigid. They can be regarded 
as adhesive nanoparticles with two characteristic properties: (i) their shape is typically nonspherical and often banana-like 
or convex-concave; and (ii) their surface contains a more or less complex pattern of adhesive and nonadhesive surface 
domains. Thus membrane-binding proteins that impose their shape onto the membrane can be regarded as nonspherical 
Janus-like nanoparticles.

• If the planar membrane can bind to some of the adhesive surface domains (red) of the 
particle, the particle generates membrane curvature via an induced-fit mechanism.

• If the adhesive surface domains (red) can only be reached by an appropriately curved 
membrane, the particle generates membrane curvature via conformational selection 
(Lipowsky, 2014b).
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On length scales that exceed about twice the membrane 
thickness, the bilayer asymmetry can be described in terms of 
another curvature-elastic parameter, the spontaneous curvature m. 
In order to define the sign of m in an unambiguous manner, we 
use the same sign convention as for the mean curvature M, see 
Figure 5.9. Thus, we distinguish an interior from an exterior 
aqueous compartment and take the spontaneous curvature to be 
positive and negative if the membrane prefers to bulge towards 
the exterior and interior compartment, respectively. Note that, 
under the reversal of the normal vectors, the spontaneous curva-
ture transforms in the same way as the mean curvature and, thus, 
changes sign.

If the membrane is decorated by many bound “particles,” it will 
acquire a certain spontaneous curvature that depends both on the 
local particle-induced curvature and on the particle coverages for 
the two leaflets of the bilayer membrane (Breidenich et al., 2000; 
Lipowsky, 2002). Thus, if a single particle that is bound to the 
outer leaflet of an asymptotically flat bilayer generates the local, 
position-dependent mean curvature Msi(s1, s2), the spontaneous 
curvature m is given by

 m IM= ( ),si Γ Γex in−  (5.3)

with the integrated mean curvature

 I AM s sM ,
1 2( , )si sid≡ ∫  (5.4)

and the coverages Γex and Γin which are equal to the numbers 
of particles bound to the outer and inner leaflets per unit area 
(Breidenich et al., 2000). In contrast to other elastic membrane 
parameters such as the bending rigidity or the area compressibil-
ity modulus, the spontaneous curvature can vary over more than 
three orders of magnitude, from the inverse size of giant vesicles, 
which is of the order of 1/(50 µm), to half the inverse membrane 
thickness, which is of the order of 1/(10 nm).

Inspection of the relationship Eq. 5.3 shows that the sign of 
the spontaneous curvature m is determined (i) by the sign of 
the integrated mean curvature IM,si induced by a single particle 
bound to the outer leaflet of the bilayer and (ii) by the sign of 
the difference Γex − Γin between the coverages of the outer and 
inner leaflets. Depending on the molar particle concentrations 
in the exterior and interior aqueous compartments, the sign of 
Γex − Γin can be positive or negative. Likewise, the sign of the 
integrated curvature IM,si can be positive or negative as well, 
reflecting different molecular interactions between the bound 
particle and the membrane. An anchored polymer, for example, 
generates a positive value of IM,si but this value becomes negative 
when all monomers of the polymer are strongly adsorbed onto 
the membrane (Breidenich et al., 2001, 2005). A negative sign of 
IM,si also applies if the particle is large and partially engulfed by 
the membrane.

As explained previously, we use two related conventions in 
order to define the sign of the local mean curvature of the mem-
brane in an unambiguous manner. The first convention is that the 
normal vector of the membrane is taken to point towards the exte-
rior compartment. The second convention is that we take the local 
mean curvature of the membrane to be positive if the membrane 

bulges in the direction of the normal vector. Therefore, the spon-
taneous curvature is taken to be positive as well if the membrane 
prefers to bulge towards the exterior solution, i.e., in the direction 
of the normal vector.

The intuitive notion that asymmetric membranes have a pre-
ferred curvature was originally discussed by Bancroft for surfactant 
monolayers in water-oil emulsions (Bancroft, 1913; Bancroft and 
Tucker, 1927) and was included by Frank as the so-called “splay 
term” in the curvature elasticity of liquid crystals (Frank, 1958). 
In the context of lipid bilayers, spontaneous curvature was first 
considered by Helfrich (1973), who introduced it in analogy to 
the splay term for liquid crystals. The corresponding curvature 
energy of the membrane is now known as the spontaneous cur-
vature model (Seifert et al., 1991) which will be presented in the 
next section.

5.4  CURVATURE ELASTICITY OF 
UNIFORM MEMBRANES

This chapter describes the theoretical framework that has been 
crucial in order to understand the morphology of giant vesicles. 
This framework is based on membrane curvature and the asso-
ciated elastic energy contributions. The theory also takes into 
account that the low lipid solubility and the osmotic conditions 
lead to important constraints on the membrane area and the 
vesicle volume. In fact, what makes this theory both appealing and 
challenging is the interplay between local and global membrane 
properties.

On the one hand, the shape of a membrane can be described 
locally by its mean and Gaussian curvatures. On the other hand, 
in the absence of topological transformations such as membrane 
fusion and fission, both the membrane area and the vesicle volume 
are essentially fixed which has a direct and strong influence on 
the local membrane behavior. The connection between local and 
global properties is provided by two quantities, the mechanical 
tension Σ within the membrane and the pressure difference ΔP 
across this membrane. For free vesicles, these two quantities can-
not be measured experimentally. However, the theory described 
in this chapter provides explicit relations between Σ and ΔP 
and those quantities that are directly accessible to experimental 
observations.

Another intriguing aspect of the morphology of giant vesicles 
is the frequent observation of membrane necks that connect 
two larger membrane segments. One example is provided by 
the neck that connects the spherical bud to the mother vesicle 
in Figure 5.2, another example is provided by the shape Lsto in 
Figure 5.6. Theoretically, these necks were first discovered by 
numerical energy minimization (Seifert et al., 1991; Miao et al., 
1991; Berndl et al., 1990) of vesicles with uniform membranes as 
considered in this section. The necks are interesting from a con-
ceptual point of view because they lead to local relations between 
(i) geometric quantities that can be directly observed in the opti-
cal microscope and (ii) curvature-elastic parameters such as the 
spontaneous curvature.

This section focuses on the spontaneous curvature model 
which is theoretically appealing because it depends on a rela-
tively small number of parameters. Indeed, uniform vesicle 
membranes involve two geometric quantities, the vesicle volume 
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V and the membrane area A, as well as two material param-
eters, the bending rigidity κ and the spontaneous curvature m 
introduced in Section 5.3.5. In fact, as shown below, the vesicle 
shapes depend only on two dimensionless parameters, the 
volume-to-area ratio proportional to V/A3/2, also known as the 
reduced volume, and the dimensionless spontaneous curvature 
proportional to mA1/2.

The spontaneous curvature model is based on an expansion in 
powers of the principal curvatures and should be reliable as long 
as these curvatures are small compared to the inverse membrane 
thickness. In addition, the spontaneous curvature model implic-
itly assumes that the area difference between the two leaflets can 
change via flip-flops of lipid molecules. While a phospholipid 
molecule may stay in the same leaflet for hours, a cholesterol 
molecule will, on average, flip-flop from one leaflet to the other 
within one second. Therefore, the spontaneous curvature model 
should provide a reliable description for bilayer membranes that 
contain cholesterol or another sterol. The latter membranes are 
of particular interest because they undergo phase separation into 
liquid-disordered and liquid-ordered phases, see Section 5.8 below 
and Chapter 18 of this book.

If all membrane components undergo relatively slow flip-
flops, one should extend the spontaneous curvature model by 
adding a nonlocal term that depends on the quenched area 
difference between the two leaflets. This extension leads to the 
area-difference-elasticity model and to an effective spontane-
ous curvature as described at the end of this section.

The present section is supplemented by three appen-
dices: Appendix 5.B on different topologies of vesicles; 
Appendix 5.D which explains the identity of the mechani-
cal tension with the Lagrange multiplier for membrane area; 
and Appendix 5.E which describes the different variants of 
curvature models.

5.4.1  SPONTANEOUS CURVATURE MODEL

Curvature expansion of local curvature energy
Within the spontaneous curvature model, the curvature energy 
functional cu{ }S  of a certain membrane shape S is provided by 
the area integral4

 cu{ }= ( )S A s∫d cuε  (5.5)

where εcu( )s  represents a local energy density that varies smoothly 
with the two-dimensional surface coordinates s s s≡ ( , )1 2  used to 
parametrize the membrane surface via the three-dimensional vector 


X s( ). When expressed in terms of these coordinates, the area ele-
ment dA depends on the metric tensor gij, see Appendix 5.A , and 
has the form

 d d d withA s s g g g g g g gij= ( ) = .1 2
11 22 12 21≡ −det  (5.6)

The local density εcu of the curvature energy should only 
depend on the principal curvatures C1 and C2. In addition, 

at any given point P of the membrane surface, this energy 
density must remain unchanged when we rotate the surface 
coordinates by π/2 which implies εcu(C2, C1) = εcu(C1, C2). An 
expansion of εcu up to second order in the principal curvatures 
then leads to5

 εcu( , ) ( ) ( ) .1 2 0 1 1 2 2 1
2

2
2

3 1 2C C a a C C a C C a C C≈ + + + + +  (5.7)

When this relation is expressed in terms of the mean curvature M 
and the Gaussian curvature G, we obtain

 ε κ κcu ≈ − +2 ( )2M m GG  (5.8)

with the bending rigidity κ, the spontaneous curvature m, and 
the Gaussian curvature modulus κG.6 As a result, the curvature 
energy functional has the form (Helfrich, 1973; Seifert et al., 
1991)

 
cu d{ }= [2 ( ( ) ) ( )]2S A M s m G sG∫ − +κ κ  (5.9)

which defines the spontaneous curvature model.

Vesicles without bilayer edges or pores
For a closed vesicle without bilayers edges or pores, the Gauss-
Bonnet theorem of differential geometry implies

 ∫ −dAG = 2 = 2 (2 2 )πχ π g  (5.10)

with the Euler characteristic χ and the topological genus g, 
which counts the number of handles, see Appendix 5.B. Thus, 
for a closed vesicle shape S and a uniform vesicle membrane, the 
spontaneous curvature model is defined by the curvature energy 
functional

  cu be{ }= { } 2S S G+ πχκ  (5.11)

with the bending energy functional

 be{ }= 2 ( ) .2S A M mκ∫ −d  (5.12)

When we evaluate the functionals Ɛcu and Ɛbe for a certain shape 
So, we obtain the corresponding curvature and bending energies 
Ecu = Ɛcu{So} and Ebe = Ɛbe{So} for which we use normal capital 
letters E.

It is instructive to consider the behavior of the bending energy 
functional Eq. 5.12 under the reversal of the normal vectors. Thus, 
consider a certain shape So and map it onto another shape ′So  by 
reversing all normal vectors of its membrane surface. The mean 
curvature M of shape So is then transformed into the mean curva-
ture ′ −M s M s( ) = ( ) of shape ′So  which implies 

4 Here and below, large calligraphic letters such as   and   are used for func-
tionals that map shapes into real numbers.

5 Here and below, the symbol ≈ stands for ‘asympotically equal’ in a certain limit
6 The constant term a a a0 1

2
24− /( ) has been omitted.
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  be be({ }, ) = ({ }, ) = ,′ ′ ′ −S m S m m mo o for  (5.13)

i.e., the bending energy functional is invariant under a reversal of 
the normal vectors provided we reverse the spontaneous curvature 
m as well.

The bending energy functional be d{ }S AM~ ∫ 2  of symmet-
ric membranes with m = 0 has a long history in the calculus 
of variations. The quadratic expression in the mean curvature 
was first studied at the beginning of the 19th century by the 
French mathematician Germain in her theory of vibrating plates 
(Dalmédico, 1991). About a hundred years later, this expression 
played a prominent role in the work of the German mathemati-
cian Blaschke and his students, who were particularly interested 
in its invariance properties under conformal transformations. 
In the 1960s, the subject was studied in a systematic manner 
by the British mathematician Willmore, and the shapes that 
minimize ∫dAM 2  are often referred to as Willmore surfaces 
(Willmore, 1982).

Separation of length scales
As described above, the spontaneous curvature model is based 
on the expansion of the curvature energy density in powers of 
the principal curvatures and includes all terms up to second 
order in these curvatures. This truncation of the curvature 
expansion at second order is clearly appropriate as long as the 
 principal curvatures are much smaller than the inverse membrane 
thickness 1/ 1/(4me nm ) as follows from the discussion in 
Section 5.3.1. Thus, the spontaneous curvature model should 
provide a reliable description for the shapes of giant vesicles as 
observed in the (conventional) optical microscope, which resolves 
membrane  curvatures below 1/(300 nm). In fact, as explained in 
Appendix 5.C.1, the spontaneous curvature model is expected to 
be quite reliable up to principal curvatures of about 1/(80 nm). 
For more strongly curved membrane segments, third-order curva-
ture terms may become important which involve two additional 
curvature-elastic parameters, see Appendix 5.C.1.

5.4.2 SPONTANEOUS TENSION

The bending energy functional as given by Eq. 5.12 attains its 
minimal value, Ɛbe = 0, when we consider shapes for which 
the mean curvature M is equal to the spontaneous curvature 
m. The expression Eq. 5.12 also implies that the bending 
rigidity κ represents a “spring constant” for deviations of the 

actual mean curvature M from the spontaneous curvature m 
of the membrane.

Real membranes experience a variety of constraints that 
necessarily lead to such deviations of M from m. One important 
constraint is provided by the size of the membrane. If the membrane 
area A is large compared to 4π/m2, which is the surface area 
of a sphere with radius 1/| |m , the membrane cannot adapt its 
curvature to the spontaneous curvature by forming a single sphere 
but can do so, to a large extent, by forming a long cylinder with 
radius Rcy = 1/(2m). Another important constraint arises from the 
osmotic conditions that determine the vesicle volume and, thus, 
the volume-to-area ratio, also known as the reduced volume. If 
the vesicle volume is increased by osmotic inflation, it will eventu-
ally attain a spherical shape with mean curvature M = 1/Rsp that 
usually differs from the spontaneous curvature m of the vesicle 
membrane. In fact, for a giant spherical vesicle, the mean curva-
ture M = 1/Rsp can be very small compared to the absolute value 
|m| of the spontaneous curvature. Likewise, supported lipid bilay-
ers with M = 0 can have a large spontaneous curvature with mag-
nitude | | 0m  . Whenever a large membrane segment of area A is 
forced to attain a mean curvature that is much smaller than the 
spontaneous curvature, the contribution of this segment to the 
bending energy obtained from Eq. 5.12 has the form E Abe ≈ σ  
with the spontaneous tension (Lipowsky, 2013) 

 σ κ≡ 2 .2m  (5.14)

This tension represents the only tension scale that can be defined, 
apart from a dimensionless multiplicative factor, by the two 
parameters κ and m. Therefore, the spontaneous tension σ may 
be viewed as the intrinsic tension of curvature elasticity. If the 
membrane has a bending rigidity of about 10−19 J, a spontaneous 
curvature of 1/(20 µm) leads to a spontaneous tension of about 
10−6 mN/m while a spontaneous curvature of 1/(20 nm) leads to 
a spontaneous tension of about 1 mN/m. Thus, in real membrane 
systems, the spontaneous tension can vary over six orders of mag-
nitude, see the examples in Table 5.1. 

5.4.3 GLOBAL AND LOCAL PARAMETERS

Volume and area as global control parameters
As explained in Section 5.2.2, lipid bilayers are permeable to 
water and small gas molecules but essentially impermeable to 
ions and solute molecules, see also Chapter 20 of this book. 
As a consequence, the vesicle volume is primarily determined 

Table 5.1  Spontaneous (or preferred) curvature m in units of 1/µm and associated spontaneous tension σ = 2κm2 in units of 2 mN/m for four 
different membrane systems where the bending rigidity was taken to have the typical value κ ≃ 10−19 J.

SUGAR SOLUTIONSa DNA STRANDSb PEG/DEXTRAN SOLUTIONSc BAR-DOMAIN PROTEINSd

m [1/µm] 0.01−0.1 0.1–1 3−10 10–50
σ [2 mN/m] 10−8−10−6 10−6−10−4 10−3−10−2 10−2−0.5

a Döbereiner, H.G. et al., Eur. Biophys. J., 28, 174–178, 1999.
b Nikolov, V. et al., Biophys. J., 92, 4356–4368, 2007.
c Li, Y. et al., Proc. Nat. Acad, Sci. USA, 108, 4731–4736, 2011; Liu, Y. et al., ACS Nano, 10, 463–474, 2016.
d Peter, B.J. et al., Science, 303, 495–499, 2004; McMahon, H.T. and Gallop, J.L. Nature, 438, 590–596, 2005.
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by the osmotic conditions and the temperature. Therefore, one 
convenient procedure to change the vesicle volume at constant 
temperature is via osmotic inflation and deflation. Osmotic defla-
tion is limited by the attractive intermolecular forces that start to 
become important when different membrane segments come into 
close proximity. Thus, at very small volumes, different segments 
of the vesicle membrane may start to fold back onto themselves or 
to form local membrane stacks. On the other hand, osmotic infla-
tion is limited by the available membrane area. Indeed, for a given 
membrane area A and the corresponding vesicle size 

 Rve = A /(4 ) ,π   (5.15)

the vesicle volume V attains its maximal value when the vesicle 
has a spherical shape. Therefore, the vesicle volume satisfies the 
inequality 

 V A≤ 







4
3

= 4
3 4

.3
3/2π π

π
Rve  (5.16)

For constant temperature and lipid composition, the area A of 
the vesicle membrane is primarily determined by the number of 
lipid molecules within the membrane. Indeed, in the absence 
of external forces or constraints, the lipids attain a certain 
molecular area corresponding to their optimal packing density. 
In principle, the membrane area can be changed by a mechani-
cal tension that acts to stretch the membrane. In practice, such 
a tension can increase the membrane area only by a few percent 
because the membrane starts to rupture for larger extensions of 
its area. Therefore, as long as the membrane does not rupture, 
the membrane area A should attain a constant value to a very 
good approximation.

For giant unilamellar vesicles, one can directly measure 
the vesicle volume V and the membrane area A. It is therefore 
rather natural from an experimental point of view to regard V 
and A as basic geometric parameters that determine the vesicle 
shape.

Dimensionless parameters of spontaneous 
curvature model
For closed vesicles, the Gaussian curvature modulus contributes 
a constant term to the curvature energy functional Ɛcu which is 
independent of the vesicle shape. We are then left with the bend-
ing energy functional Ɛbe that depends on four (dimensionful) 
parameters: two material parameters, namely bending rigidity κ 
and spontaneous curvature m, as well as two geometric parame-
ters, vesicle volume V and membrane area A. Furthermore, we can 
choose a basic energy and length scale. One convenient choice 
for these two scales is provided by the bending energy κ and the 
vesicle size Rve as defined by Eq. 5.15.

For the latter choice, the dimensionless bending energy Ebe/κ 
depends only on two dimensionless parameters: (i) the volume-to-
area ratio or reduced volume of the vesicle 

 v V V A≡ =4
3

6 /
3

3/2
π π

Rve

 (5.17)

and (ii) the rescaled and dimensionless spontaneous curvature 

 m m m A≡ =Rve /(4 ).π  (5.18)

In the following, we will often discuss the behavior of vesicles 
with a certain, fixed membrane area and, thus, with a fixed length 
scale Rve. Deflation and inflation processes are then described 
by changes in the volume v for a certain value of the spontane-
ous curvature m . Likewise, adsorption and desorption processes 
which affect the bilayer asymmetry are described by changes of 
the spontaneous curvature m  for a fixed value of the volume v.

Scale transformations of vesicle shapes
The conclusions of the previous subsection can be understood 
from a somewhat different perspective if we study the behavior of 
the energy functional in Eq. 5.12 under scale transformations. As 
mentioned, the vesicle shape S can be described by a vector-valued 
function 



X s( ) that depends on the two-dimensional surface 
coordinate s . A scale transformation from the shape S to the new 
shape S ′ is then described by 

 
  

X s X s X s( ) ( ) ( )→ ′ ≡ ζ ζwith a scale factor >0 (5.19)

which implies the scale transformations 

 V V V A A A→ ′ = → ′ =ζ ζ3 2and  (5.20)

of vesicle volume and membrane area.
The bending energy functional Ɛbe in Eq. 5.12 remains invari-

ant under the scale transformation Eq. 5.19, i.e.,  be be{ } { }′ =S S  
if we combine this transformation with the rescaling 

 m m m→ ′ ≡ /ζ  (5.21)

of the spontaneous curvature.
Now, assume that we have minimized the energy functional 

and found the shape S0 of minimal bending energy for a certain 
set of the (dimensionful) parameters V, A, κ, and m. Any slightly 
deformed shape, say S1, will have a larger bending energy, i.e., 
Ɛbe{S1} > Ɛbe{S0}. This property remains valid if we compare the 
bending energies of the shapes ′S0 and ′S1 as obtained by rescaling 
both S0 and S1 with the same scale factor ζ , i.e.,  be be{ }> { }1 0S S' '  
for any small deformation of S'0, provided we also rescale the 
spontaneous curvature according to Eq. 5.21. Therefore, the 
rescaled shape S'0 represents the shape of minimal bending energy 
for the parameters ζ 3V , ζ 2 A, κ , and m /ζ .

The same conclusion can be drawn from the dimension-
less parameters introduced in the previous subsection. Indeed, 
the dimensionless bending energy Ebe/κ depends only (i) on the 
volume-to-area ratio v ∝ V/A3/2 and (ii) on the spontaneous 
curvature m m= Rve, both of which remain invariant under the 
combined scale transformation Eqs 5.20 and 5.21.

It is often instructive to consider the special case of a sym-
metric membrane with vanishing spontaneous curvature, m = 0. 
In this case, the energy functional Eq. 5.12 is invariant under 
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the scale transformation of the vesicle geometry as described 
by Eq 5.20 and does not involve the rescaling of any material 
parameter. Thus, for m = 0, large and small vesicles have the same 
bending energy if they have the same shape.

5.4.4  LOCAL SHAPE EQUATION AND ENERGY 
BRANCHES

Constrained energy minimization
If we take the vesicle volume and the membrane area as control 
parameters, we are thus faced with the problem of minimiz-
ing the curvature energy functional as given by Eq. 5.11 for 
a given vesicle volume V and membrane area A. In principle, 
there are a variety of ways to tackle this minimization problem 
numerically.

Numerical minimization typically involves a discretization of 
the vesicle shape into a triangular mesh of membrane patches. 
Furthermore, in order to model the fluidity of the membrane, one 
has to choose a dynamic triangulation. The advantage of numeri-
cal minimization is that we do not have to make any simplifying 
assumptions about the vesicle shape. The disadvantage of such a 
numerical procedure is that we can only explore a limited region 
of the parameter space. Furthermore, numerical minimization 
methods becomes difficult whenever the vesicle shape involves 
narrow membrane necks or long tubes. As we will see further 
below, such somewhat exotic shapes are quite common for vesicle 
membranes.

In order to apply analytical approaches to the constrained 
minimization, we will now incorporate the area and volume 
constraints via Lagrange multipliers Σ and ΔP and consider the 
shape functional 

 F V A E{ } { } { } { }S P S S S= − + +∆ Σ be  (5.22)

where we have omitted the shape-independent term arising from 
the integrated Gaussian curvature. The two Lagrange multipliers 
have to be chosen in such a way that the volume functional  and 
the area functional  attain the values {S } = V and {S} = A. 
Note that we again denote the functionals , , and  by large 
calligraphic letters and their numerical values for a certain shape 
by normal capital letters F, V, and A.

As shown in Appendix 5.D, the Lagrange multiplier Σ can 
be identified with the mechanical tension experienced by the 
uniform membrane. The latter identity can be derived by defining 
the overall elastic energy of the membrane to be the sum of its 
bending and stretching energy and by minimizing this overall 
elastic energy (Lipowsky, 2014a).

Euler-Lagrange or local shape equation
The first variation of the shape functional {S} leads to the Euler-
Lagrange equation 

 ∆ ΣP M M M m M M m G= − ∇ − − + −2 2 4 [ ][ ( ) ]2κ κLB  (5.23)

with the Laplace-Beltrami operator ∇LB
2  and the (local) Gaussian 

curvature G. When expressed in terms of the surface coordinates 
s , the action of this operator onto a scalar function f s( ) has the 
explicit form 

 ∇ = ∂
∂

∂
∂







LB

2 1f
g s

g g
s
fk

kj
j  (5.24)

with the inverse metric tensor (gij) ≡ (gij)−1 and an implicit sum-
mation over repeated indices (do Carmo, 1976). Note that the 
Euler-Lagrange Eq. 5.23 provides an explicit relation between 
the Lagrange multipliers ΔP and Σ with the mean and Gaussian 
curvatures, M and G, which describe the membrane shape locally. 
Therefore, the Euler-Lagrange equation represents a local shape 
equation.

The Euler-Lagrange Eq. 5.23 is equivalent to

 ∆ ΣP M M mM M m M G= − ∇ − − − −2 2 4 4 [ ][ ]2 2 2
 κ κ κLB  (5.25)

with the total membrane tension 

 Σ Σ Σ ≡ + = +2 2κ σm  (5.26)

which represents the sum of the mechanical tension Σ and the 
spontaneous tension σ, where we identified the Lagrange multi-
plier Σ with the mechanical tension, see Appendix 5.D. Therefore, 
the only tension that enters the solution of the Euler-Lagrange 
equation is the total tension Σ  that contains the spontaneous 
 tension σ defined in Eq. 5.14.
For spontaneous curvature m = 0, the Euler-Lagrange 
Eq 5.23 assumes the simplified form 

 ∆ ΣP M M M M G= − ∇ − − =2 2 4 [ ] ( 0)2 2κ κLB m  (5.27)

which was derived by several mathematicians as reviewed in 
the monograph of Willmore (Willmore, 1982). It seems that 
the variation of the more general case with m ≠ 0 was first 
considered by (Jenkins, 1977) who included both normal and 
tangential displacements of the membrane surface.7 However, 
in order to derive the Euler-Lagrange Eq. 5.23, it is sufficient to 
include only normal displacements as shown by (Ou-Yang and 
Helfrich, 1989).

Energy branches of stationary shapes
The solutions of the Euler-Lagrange Eq. 5.23 represent the 
stationary shapes corresponding to local minima, saddle points, 
or local maxima of the bending energy. The physically relevant 
shapes are the local minima, which represent (meta)stable states, 
and the saddle points which provide the activation barriers 
between different (meta)stable states.

In practice, the combination of the Laplace-Beltrami opera-
tor and the nonlinearities in the principal curvatures C1 and C2, 
arising from the second and third power of the mean curvature 
M C C= +1

2 1 2( ) and from the Gaussian curvature G = C1C2, 
make the Euler-Lagrange Eq. 5.23 rather difficult to solve. 
As explained further below, much insight can be obtained for 
special shapes such as spheres, cylinders, and  combinations 

7 The final result of the variational calculation by (Jenkins, 1977) contains one 
term that is cancelled by another, missing term.
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thereof. For axisymmetric shapes, the partial  differential 
Eq 5.23 is equivalent to a set of ordinary  differential  equations 
that can be solved numerically, e.g., by shooting methods. 
In this way, the regime of relatively small spontaneous curva-
tures m with | | | | 2m m= Rve   has been studied in a systematic 
manner (Seifert et al., 1991).

These numerical solutions have shown that the stationary 
shapes form, in general, several branches for the same set of 
parameters as illustrated in Figure 5.12.8 The latter figure displays 
the branches for vanishing spontaneous curvature m = 0. The dif-
ferent branches will now be labeled by the index j and the cor-
responding stationary shapes by S j. Along branch j, the bending 
energy function

 E V A m j S jbe be( , ; , ; ) { }κ =   (5.28)

varies in a continuous manner as one changes one of the con-
trol parameters. When expressed in terms of the dimensionless 
parameters v and m m= Rve as defined in Eqs 5.17 and 5.18, one 
obtains

 E V A m j E v m jbe( , ; , ; ) 8 ( , ; ),κ πκ=  (5.29)

see Figure 5.12. The corresponding shapes of minimal energy are 
displayed in Figure 5.13.

Pressure difference and membrane tension
In order to get further insight into the two Lagrange multipliers 
ΔP and Σ, it is useful to consider the shape energy

 F P m j PV A E V A m j( , ; , ; ) ( , ; , ; )∆ Σ ∆ Σκ κ≡ − + + be  (5.30)

along a certain branch j of stationary shapes and to interpret 
this expression as the Legendre-transformed energy from the 
extensive variables V and A to the intensive variables ΔP and Σ. 
The formal structure of such a Legendre transformation, which 
plays an important role in thermodynamics, implies (Svetina 
and Zeks, 1989; Seifert et al., 1991; Miao et al., 1991; Seifert, 
1997)

 ∆P dE V A m j
dV A

= 







be( , ; , ; )κ
 (5.31)

and

 Σ = −







dE V A m j
dA V

be( , ; , ; ) .κ  (5.32)

When we have several branches of stationary shapes for the same 
values of V and A, the derivatives on the right hand side of these 
relations will depend on the branch index j and so will the values 
of ΔP and Σ, compare Figure 5.12.

The relation Eq. 5.31 implies that the Lagrange multiplier ΔP 
is the pressure conjugate to the vesicle volume V and can, thus, be 
identified with the difference

 ∆P P P= −in ex (5.33)

between the pressures Pin and Pex within the interior and exterior 
compartments. In practise, these pressures are usually osmotic 
pressures but may also include hydrostatic pressures as imposed 
by a micropipette. The pressure difference ΔP is usually orders of 
magnitude smaller than the individual osmotic pressures Pin and Pex. 
The relation Eq. 5.32 implies that the Lagrange multiplier Σ is the 
tension conjugate to the membrane area A. In fact, as previously 
mentioned, this tension can be identified with the mechani-
cal tension experienced by the uniform membrane as shown in 
Appendix 5.D (Lipowsky, 2014a).

When expressed in terms of the dimensionless bending energy 
E Ebe be= /(8 )πκ , the general relations Eqs 5.31 and 5.32 for the 
pressure difference and the membrane tension can be rewritten in 
the form

 ∆P dv
dV

E
v A

E
vA8

6 1
3/2πκ

π= 







∂
∂

= ∂
∂

be be  (5.34)
8 The ‘branches’ are really two-dimensional sheets over the ( , )v m -plane.

Figure 5.12 Dimensionless bending energy E Ebe be= /(8 )πκ  as a 
function of volume-to-area ratio v for spontaneous curvature m = 0: 
the sphere corresponds to the largest possible volume-to-area ratio 
v = 1. In the limit of small v, we obtain the limit shape Lsto of a sto-
matocyte consisting of two concentric spheres of (almost) equal size 
connected by a closed membrane neck. the two full lines emanating 
from the sphere correspond to (meta)stable prolates and oblates. 
the dashed-dotted line connecting the limit shape Lsto with the transi-
tion point Dsto corresponds to stable stomatocytes, the one between 
Dsto and Msto to metastable stomatocytes, and the dashed-dotted line 
between Msto and Csto to the activation barriers between the oblates 
and the stomatocytes. (reproduced from Seifert, U. et al., Phys. Rev. 
A, 44, 1182–1202, 1991.)

Figure 5.13 axisymmetric shapes of a vesicle with constant area A and 
variable volume V as expressed in terms of the dimensionless volume 
v (bottom row) for spontaneous curvature m = 0. (reproduced from 
Seifert, U. et al., Phys. Rev. A, 44, 1182–1202, 1991.)
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or

 ∆P E
v

Rve be
3

6
κ

= ∂
∂

 (5.35)

and

 Σ
8

9 1
45/2 1/2πκ

π
π

= ∂
∂

− ∂
∂

V
A

E
v

m
A

E
m

be be  (5.36)

or

 ΣRve be be
2

3 .
κ

= ∂
∂

− ∂
∂

v E
v

m E
m

 (5.37)

For vanishing spontaneous curvature, m m= = 0, the second term 
in Eqs 5.37 and 5.36 vanishes which implies that both ΔP and Σ 
become proportional to the partial derivative ∂ ∂E vbe/ . Inspection 
of Figure 5.12 shows that this derivative is negative along the 
prolate and oblate branch but close to zero along the stomatocyte 
branch. Thus, as we reduce the volume of a spherical vesicle with 
m = 0, the pressure difference ΔP and the membrane tension Σ 
are both negative along the prolate and oblate branches. A nega-
tive pressure difference ΔP = Pin − Pex implies that the exterior 
osmotic pressure exceeds the interior one and that the pressure 
difference acts to compress the vesicle volume. A negative tension 
Σ implies that the membrane is slightly compressed compared to 
its optimal packing density. Along the stomatocyte branch, on 
the other hand, both the pressure difference and the membrane 
tension are close to zero.

A combination of the two relations Eqs 5.34 and 5.36 leads to

 3 2 4 ,1/2∆ ΣPV A m
A

E
m

− = ∂
∂

π κ be  (5.38)

independent of the derivative ∂ ∂E vbe/  which cancels out from 
this special combination of ΔP and Σ. In the absence of a sponta-
neous curvature, we then obtain the simple relation

 3 2 ( 0).∆ ΣPV A m= =  (5.39)

We will see in the next subsection that the same relation also 
follows from special deformations (or variations) of the stationary 
shapes as provided by infinitesimal scale transformations.

5.4.5 GLOBAL SHAPE EQUATION

Now, consider a certain stationary shape S j of the shape func-
tional  as given by Eq. 5.22. The pressure difference ΔP and the 
tension Σ then have specific values as obtained from the partial 
derivatives in Eqs 5.31 and 5.32 along the corresponding branch 
that includes the chosen shape S  j. Small deformations of this 
shape can be described by membrane displacements u s( ) which 
define the deformed shape S′ via

 
  

X s X s X s u s( ) ( ) ( ) ( ) | | 1.→ ′ = + ε εwith   (5.40)

Because the shape S j represents a local minimum or saddle point 
of the shape functional F, we know that

   { } { } ( ) { }| 0.2
=0′ − =

′
=S S O d S

d
j ε

ε εor  (5.41)

A particular shape deformation is provided by the choice 




u s X s( ) ( )=  which leads to the infinitesimal scale transformation

 
  

X s X s X s( ) ( ) (1 ) ( ).→ ′ = + ε  (5.42)

This scale transformation implies that the area A and the volume 
V are transformed according to A → Aʹ = (1 + ε)2A and V → V ′ 
= (1 + ε)3V. Likewise the integrated mean curvature

 I S AMM M= ≡ ∫ { } d  (5.43)

transforms according to

 I I IM M M
'

M M= → = = + { } { } (1 )S S' ε  (5.44)

while the integral ∫  dAM 2 remains unchanged. When applied 
to the explicit form of the shape functional , the condition 
Eq 5.41 leads to

 − + − =3 2 4 0∆ ΣPV A mIM κ  (5.45)

with the total membrane tension Σ Σ = + 2 2κm  as in Eq. 5.26. 
For any stationary shape Sj, this equation provides an explicit 
connection between ΔP, Σ  and the global geometric quanti-
ties V, A, and IM. Therefore, Eq. 5.45 represents a global shape 
equation.

For m = 0, the global shape equation reduces to the relation 
Eq. 5.39. Furthermore, a combination of Eq. 5.45 with Eq. 5.38 
leads to the expression

 ∂
∂

= −E
m

m I
A
Mbe 2

π
 (5.46)

for the partial derivative of the dimensionless bending 
energy E v mbe( , ) with respect to the spontaneous curvature 
m m= Rve. Note that the integrated mean curvature IM depends 
on the stationary shape S j and, thus, on the spontaneous 
 curvature m .

5.4.6 VESICLE SHAPES WITH MEMBRANE NECKS

The numerical solutions of the Euler-Lagrange equations for 
axisymmetric shapes revealed that these shapes develop narrow 
membrane necks in certain regions of the parameter space and 
that these shapes approach limit shapes with closed necks. These 
necks provide information about the spontaneous curvature m as 
will be explained in the following subsections, see also Box 5.2 for 
a summary of necks for vesicle membranes with laterally uniform 
composition.

Neck closure condition
Let us consider a branch of stationary shapes Sst that represent 
local minima of the bending energy and, thus, solutions of the 
Euler-Lagrange Eq. 5.23. These shapes are smooth in the sense 
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that the shape variable 


X s( ) is twice differentiable with respect 
to the surface coordinates and that the mean curvature varies 
continuously along an arbitrary path on the membrane surface. 
For any point P on this surface and for any path through this 
point, we can thus define two mean curvature values, MP+ and 
MP−, which represent the limiting values of the mean curvature 
as we approach the point P from the “left” and from the “right” 
along the chosen path. The continuous variation of M then 
implies that

 M M MP P P= ++ −
1
2

( ). (5.47)

For a smooth surface, we could also use the more general expres-
sion M M MP P P= + −+ −ζ ζ(1 )  with 0 1≤ ≤ζ  corresponding 
to different weights for the left-sided and the right-sided limit. 
However, because the assignment of “left” and “right” is com-
pletely arbitrary, we want the expression to remain unchanged 
when we interchange “left” and “right,” which implies ζ = 1/2. 
We now interpret the expression Eq. 5.47 as an interpolation 
formula and extend it to closed necks, i.e., to points on the mem-
brane surface at which the mean curvature develops a discontinu-
ity. Thus, if the two membrane segments, 1 and 2, adjacent to the 
closed neck have the mean curvatures M1 and M2, we define the 
effective curvature of the closed neck by

 M M Mne ≡ +1
2

( ).1 2  (5.48)

This definition is analogous to the value H(0) 1
2=  of the Heaviside 

step function H(x) as obtained from smooth approximations 
for H(x).

The numerical studies of membrane necks also showed that 
the neck closure makes no contributions to the bending energy. 
Because the energy density at the neck is given by

 ε κbe ne ne( ) 2 [ ] ,2M M m≡ −  (5.49)

we conclude that the neck closes in such a way that

 M M M mne (neck closure).= + =1
2

( )1 2  (5.50)

It follows from this condition that the two membrane segments 
1 and 2 have the same bending energy density, i.e., that

 ε εbe be( ) ( ).1 2M M=  (5.51)

In fact, we could also start from the requirement that the bending 
energy density is continuous across the closed neck which leads to 
M1 − m = ±(M2 − m). For the root with the plus sign, we obtain 
the relation M1 = M2, i.e., a continuous variation of M and, thus, 
no neck but, for the root with the minus sign, we recover the neck 
closure condition Eq. 5.50.

The neck closure condition Eq. 5.50 has been confirmed for a 
large number of axisymmetric shapes as obtained by minimizing 
the bending energy numerically (Seifert et al., 1991). So far, necks 

between non-axisymmetric membrane segments have not been 
studied in a systematic manner but the continuity arguments 
given above also apply to such non-axisymmetric situations and 
then lead to the same closure condition.

Neck closure of membrane buds
It is instructive to apply the condition Eq. 5.50 to the neck 
closure of membrane buds as frequently observed in experiments. 
Two cases can be distinguished corresponding to in- and out-
buds that point towards the interior and exterior compartment, 
respectively, see Figure 5.14.

First, consider spherical out-buds as shown in Figure 5.14a–c. 
For such a bud with radius R2, the bud membrane adjacent to the 
neck has positive mean curvature M2 = 1/R2. The 1-segment on 
the other side of the neck must satisfy M1 ≥ −M2 because the two 
membrane segments cannot intersect each other. Combining this 
geometric constraint with the neck closure condition Eq 5.50, we 
obtain the inequality

 m M M= + ≥1
2

( ) 01 2 (neck closure of out-bud) (5.52)

for the spontaneous curvature m. Thus, whenever we observe 
the neck closure of an out-bud, we can conclude that the spon-
taneous curvature must be positive or zero. Furthermore, for 
m = 0, neck closure of an out-bud implies M1 = −M2, i.e., the 
1-segment partially engulfs the bud membrane in the vicinity 
of the neck. Therefore, for a 1-segment with mean curvature 
M1 > −M2 = −1/R2, neck closure of an out-bud implies a positive 
spontaneous curvature.
Next, consider spherical in-buds as shown in Figure 5.14d–f. For a 
spherical in-bud with radius R2, the bud membrane adjacent to the 
neck has negative mean curvature M2 = −1/R2. The 1-segment on 
the other side of the neck must satisfy M1 ≤ − M2 = |M2| because 
the two membrane segments should not intersect each other. 
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Figure 5.14 (a–c) Out-buds with closed necks, formed as limit shapes 
by a membrane with positive spontaneous curvature: the out-buds 
are filled with interior medium (gray) and point towards the exterior 
medium (white). the three membranes (blue) in (a–c) have the same 
spontaneous curvature m > 0 but differ in the mean curvatures of the 
1- and 2-segments; (d–f) In-buds with closed necks, formed as limit 
shapes by a membrane with negative spontaneous curvature: the in-
buds are filled with exterior medium (white) and point towards the 
interior medium (gray). the three membranes (blue) in (d–f) have the 
same spontaneous curvature m < 0 but differ in the mean curvatures 
of the two membrane segments. the two segments have mean curva-
ture M1 = m and M2 = m in (a) and (d), M1 = 0 and M2 = 2m in (b) and 
(e), and M1 = −m and M2 = 3m in (c) and (f).
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A combination of the latter inequality with the neck closure con-
dition Eq. 5.50 now leads to the condition

 m M M= + ≤1
2

( ) 01 2 (neck closure of in-bud) (5.53)

for the spontaneous curvature m. Thus, whenever we observe the 
neck closure of an in-bud, we can conclude that the spontaneous 
curvature must be negative or zero. For m = 0, neck closure of an 
in-bud now implies M1 = −M2 = |M2| as for the limit shape Lsto 
in Figure 5.12. Therefore, for a 1-segment with mean curvature 
M1 < |M2| = 1/R2, neck closure of an in-bud implies a negative 
spontaneous curvature.

Stability of closed necks
The neck closure condition Eq. 5.50 applies to limit shapes as 
obtained from smooth solutions of the local shape Eq. 5.23 or the 
corresponding set of ordinary differential equations for axisym-
metric shapes. One may also consider a closed neck and ask under 
what conditions this neck is locally stable. This problem has been 
addressed for axisymmetric vesicles consisting of two almost 
spherical vesicles that are connected by a narrow neck with radius 
Rne. More precisely, these vesicle shapes consist of two spherical 
caps which are connected by two unduloid segments which form 
a membrane neck of radius Rne. The shapes are parametrized in 
such a way that one can study the closure of the neck keeping the 
total membrane area constant. For vanishing neck radius Rne, the 
shapes approach the two-sphere shapes Θout and Θin.9 The two-
sphere shape Θout consists of a sphere with radius R1 and mean 
curvature M1 = 1/R1 connected, via a closed neck, to a spherical 
out-bud with radius R2 ≤ R1 and mean curvature M2 = 1/R2 as in 
Figure 5.14a. The two-sphere shape Θin again consists of a sphere 
of radius R1 and mean curvature M1 = 1/R1 but now connected, 
via a closed membrane neck, to a spherical in-bud with radius 
R2 ≤ R1 and mean curvature M2 = −1/R2 as in Figure 5.14f. 
For small but nonzero Rne, the bending energy of these vesicle 
shapes can then be expanded in powers of the neck radius Rne.

If the two membrane segments 1 and 2 adjacent to the neck 
have positive mean curvatures as in Figure 5.14a, the bending 
energy is found to behave as (Fourcade et al., 1994)

E E M m M mbe ne be ne nefor small( ) (0) 4 ( ) .1 2R R R≈ − − + −πκ  (5.54)

On the other hand, if the 1-segment has positive mean curva-
ture whereas the 2-segment has negative mean curvature as in 
Figure 5.14f, the bending energy has the asymptotic behavior 
(Lipowsky, 2014a)

E E M m M mbe ne be ne nefor small( ) (0) 4 ( )1 2R R R≈ + − + −πκ  (5.55)

with a plus instead of a minus sign in front of the linear term. 
In both cases, the bending energy Ebe(0) of the two-sphere shapes 
Θout and Θin, which are characterized by vanishing neck radius 
Rne = 0, does not involve any contribution from the neck itself.

The asymptotic behavior as given by Eq. 5.54 implies that the 
closed neck in Figure 5.14a, corresponding to an out-bud, is stable 
provided the average neck curvature Mne satisfies 

 M M M m M Mne with and= + ≤1
2

( ) > 0 > 01 2 1 2  (5.56)

but opens up if Mne > m. The marginal case with Mne = m 
 corresponds to the neck closure condition Eq. 5.52 with positive 
spontaneous curvature. Therefore, when a membrane with m > 0 
forms a closed neck with M1 > 0 and M2 > 0 as in Figure 5.14a, 
this neck remains closed if the effective neck curvature Mne 
decreases below the spontaneous curvature m.

On the other hand, the small Rne-behavior in Eq. 5.55 implies 
that the closed neck of the in-bud in Figure 5.14f is stable provided

 M M M m M Mne with and= + ≥1
2

( ) > 0 < 01 2 1 2  (5.57)

but opens up if Mne < m. Now, the marginal case with Mne = m 
corresponds to the neck closure condition Eq. 5.53 with negative 
spontaneous curvature. Therefore, when a membrane with m < 0 
forms a closed neck with M1 > 0 and M2 < 0 as in Figure 5.14f, 
this neck remains stable if the effective neck curvature Mne increases 
above the spontaneous curvature m, i.e., if the absolute value |Mne| 
of the effective neck curvature decreases below the absolute value 
|m| of the spontaneous curvature.

The stability of a closed neck must not depend on our choice 
for the direction of the normal vectors. When we reverse the 
normal vectors, we change both the sign of the mean curvatures 
and the sign of the spontaneous curvature. Let us first apply this 
transformation to the neck configuration in Figure 5.14a which 
leads to the neck configuration in Figure 5.14d. The correspond-
ing stability relation now becomes

 M M M m M M mne with and= + ≥1
2

( ) < 0, < 0, < 0.1 2 1 2  (5.58)

Furthermore, if we reverse the normal vectors of the neck con-
figuration in Figure 5.14f, we obtain the neck configuration in 
Figure 5.14c and the associated stability relation

 M M M m M M mne with and= + ≤1
2

( ) < 0, > 0, > 0.1 2 1 2  (5.59)

In summary, we obtain essentially two different stability relations 
for the closed necks depicted in Figure 5.14. Closed necks with 
non-negative neck curvature Mne can only exist for non-negative 
spontaneous curvature m ≥ 0 and the neck curvature can then 
attain a value within the interval

 0 0)≤ ≤ ≥M m mne (out-bud, spontaneous curvature  (5.60)

9 In the next Section 5.5 we will study such two-sphere vesicles in a systematic 
manner and distinguish limit shapes from persistent shapes. The two-sphere 
shapes Θout then correspond to the limit shapes Lpea and L =

out as well as to the 
persistent shapes Φpea. Likewise, the two-sphere shapes Θin represent both the 
limit shapes Lsto and L =

in  as well as the persistent shapes Φsto. 
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which includes the neck configurations in Figure 5.14(a–c). 
The limiting case Mne = 0 applies to an out-bud that is partially 
enclosed by the adjacent 1-segment of the mother vesicle whereas 
the equality Mne = m corresponds to the neck closure condition of 
the limit shape. An example for Mne = 0 is provided by a disco-
cyte with a membrane neck that connects the discocyte’s north 
pole with mean curvature M1 < 0 to a spherical out-bud with 
mean curvature M2 = −M1 > 0.

Closed necks with non-positive neck curvature Mne, on the other 
hand, can only exist for non-positive spontaneous curvature m ≤ 0 
and the neck curvature can then have a value within the interval

 0 0)≥ ≥ ≤M m mne (in-bud, spontaneous curvature  (5.61)

which includes the neck configurations in Figure 5.14(d–f). Now, 
the neck closure condition Mne = m and the enclosed bud condi-
tion Mne = 0 provide lower and upper bounds for the range of 
possible Mne-values.

 Mismatch between neck curvature and 
spontaneous curvature
For a stably closed neck that satisfies the inequalities Mne < m 
and m < Mne in Eqs 5.60 and 5.61, the bending energy  density 
εbe = 2κ[Mne − m]2 as given by Eq. 5.49 does not vanish. 
The closed neck may just be considered as a curvature “defect” as 
discussed in Appendix 5.C.2. In the continuum description used 
here, this defect is point-like and has vanishing area which implies 
that its bending energy vanishes as well. The latter property is 
explicitly borne out in the derivation of the relations Eqs 5.54 and 
5.55 because the energies Ebe(0) obtained for vanishing neck radius 
Rne = 0 do not contain any contribution from the neck.

However, a large mismatch between the neck curvature and 
the spontaneous curvature as obtained for stable necks with 
0 < Mne = m and m = Mne < 0 does have an important consequence 
for the morphology of the vesicle. Indeed, a sufficiently large mis-
match leads to an effective, curvature-induced constriction force 
that cleaves the membrane neck and thus leads to membrane 
fission, see Section 5.5.4 below.

5.4.7 AREA DIFFERENCE ELASTICITY

As mentioned at the beginning of this section, the spontane-
ous curvature model provides a quantitative description for the 
morphology of vesicles as long as the membrane curvatures are 
large compared to the inverse membrane thickness. Thus, highly 
curved membrane structures such as nanobuds or nanotubes may 
involve higher order curvature terms as discussed in Appendix 5.E. 
In addition, the spontaneous curvature model implicitly assumes 
that the area difference between the two bilayer leaflets can change 
via fast flip-flops of at least one molecular membrane component. 
If flip-flops can be ignored on the experimentally relevant time 
scales, the spontaneous curvature model should be supplemented 
by an additional energy term as described in this subsection.

Nonlocal energy term for preferred area difference
The bending energy functional Eq. 5.12 represents the area 
integral over a local energy density. In general, the bending of a 
bilayer membrane consisting of two leaflets may be constrained in 
a nonlocal or global manner. Indeed, if the membrane molecules 

cannot undergo flip-flops between the two leaflets, the num-
ber of molecules are fixed within each leaflet and the quenched 
difference between these two numbers leads to a preferred area 
difference between these leaflets. This constraint was originally 
considered by Evans (1974), incorporated into the bilayer-coupling 
model by (Svetina and Zeks, 1989; Seifert et al., 1991), and gener-
alized in terms of the area-difference-elasticity model (Miao et al., 
1994; Döbereiner et al., 1997; Seifert, 1997).

The area difference ΔA between the area of the outer leaflet 
and the area of the inner leaflet is given by

 ∆A d IM=  2 mo  (5.62)

with the molecular length scale dmo, which corresponds to the distance 
between the neutral surfaces of the two monolayers or leaflets, and 
the integrated mean curvature I AMM = ∫  d  as in Eq 5.43. The area-
difference-elasticity model is defined by the energy functional

 E E DADE be ADE{ } { } { }S S S= +  (5.63)

with the local energy functional Ɛbe{S} as defined by Eq. 5.12 
corresponding to the spontaneous curvature model and the 
nonlocal area-difference-elasticity term (Miao et al., 1994; 
Döbereiner et al., 1997)
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 (5.64)

where Δ{S} represents the area difference of the vesicle shape S and 
M S{ } the integrated mean curvature of this shape. The additional 
energy term ADE introduces two new parameters, the second bend-
ing rigidity κΔ and the integrated mean curvature IM, 0 = ΔA0/2dmo, 
corresponding to optimal molecular areas in both leaflets (Seifert, 
1997). These molecular areas are, however, not accessible to current 
experimental methods and depend on the mechanical membrane 
tension. If the leaflets of a large spherical vesicle with radius Rve had 
optimal molecular areas, we would obtain

 I AM ,0
1 4 .= =∫d
ve

ve
R

Rπ  (5.65)

Local and nonlocal spontaneous curvature
The stationary shapes with fixed membrane area A and fixed 
vesicle volume V are now more difficult to calculate because of 
the nonlocal character of the area-elasticity-difference but can be 
obtained using a two-step variational procedure, see Appendix 5.E. 
This procedure shows that all stationary shapes of the area-
difference-elasticity model are also stationary shapes of the 
spontaneous curvature model with the shape functional {S} 
as given by Eq. 5.22 and the effective spontaneous curvature 
(Döbereiner et al., 1997)

 m m meff nlo≡ +  (5.66)
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with the spontaneous curvature m, which is determined locally by 
the molecular interactions as considered in the previous subsec-
tions, and the nonlocal spontaneous curvature

 m I S
A

M M
j

nlo ≡
−π κ

κ
∆ ,0 { }  (5.67)

which depends on the stationary shape S j via the integrated mean 
curvature M jS{ }.

As mentioned before, area-difference-elasticity is only relevant 
if the membrane contains no molecular components that undergo 
flip-flops on the experimentally relevant time scales. Therefore, 
as far as the effective spontaneous curvature meff is concerned, we 
need to distinguish two cases: (i) For relatively fast flip-flops of 
some membrane components such as cholesterol, we can ignore 
the nonlocal spontaneous curvature mnlo which implies that the 
effective spontaneous curvature meff becomes equal to the sponta-
neous curvature m, i.e., the area-difference-elasticity model reduces 
to the spontaneous curvature model; and (ii) For relatively slow 
flip-flops of all molecular membrane components, we will, in 
general, have a nonlocal spontaneous curvature mnlo contributing 
to the effective spontaneous curvature meff  = m + mnlo. In order to 
examine whether this nonlocal spontaneous curvature mnlo is rel-
evant for a given vesicle shape, we need to determine its magnitude 
and to compare it with the local spontaneous  curvature m.

Generalized stability relations for membrane necks
The latter approach can be applied, in particular, to two-sphere 
shapes with closed membrane necks. The stability of these necks 
can also be examined for the area-difference-elasticity model 
using the shape parametrization described in Section 5.4.6. 
Thus, we again consider axisymmetric shapes with membrane 
necks, parametrized in such a way that they approach the 
two-sphere shapes Θout and Θin in the limit of small neck radii. 
As before, the two-sphere shape Θout consist of a sphere with 
a spherical out-bud and the two-sphere shape Θin of a sphere 
with a spherical in-bud. We now use the energy functional 
Eq. 5.63 of the area-difference-elasticity model to calculate 
the  elastic energy of the vesicle shapes up to first order in the 
neck radius Rne. One then finds that closed necks with positive 
 curvature Mne are stable if

 
0 < { }

( )

,0M m m I I
Aeff

M M
ne

out

outstable shapes

≤ = +
−π κ

κ
∆ Θ

Θ

 (5.68)

and necks with negative curvature Mne are stable if

 

0 { }

.

,0≥ ≥ = +
−M m m I
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∆ Θ

Θ
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(5.69)

These stability conditions involve three different types of quanti-
ties: (i) the neck curvature, a purely geometric quantity that can be 
directly deduced from the two-sphere shapes; (ii) the local sponta-
neous curvature m, a material parameter determined by the molec-
ular interactions, and (iii) the non-local spontaneous curvature mnlo 

that depends both on the geometry of the shape via the integrated 
mean curvature and on the bending rigidity ratio κΔ/κ. In subsec-
tion 5.5.3 further below, we will discuss the consequences of the 
stability conditions Eqs 5.68 and 5.69 for multi-sphere vesicles.

5.5  MULTI-SPHERE SHAPES OF 
UNIFORM MEMBRANES

In this section, we will consider a variety of multi-sphere shapes 
for vesicles with uniform membranes, i.e., membranes that have 
laterally uniform compositions and curvature-elastic properties. 
This section should be considered as a case study which nicely 
illustrates the polymorphism and multi-responsive behavior of 
giant vesicles.

We will focus on multi-component membranes that contain at 
least one membrane component such as cholesterol that under-
goes relatively fast flip-flops. As mentioned, these membranes 
are appealing from a theoretical point of view because we can 
study their shapes within the spontaneous curvature model which 
depends only on two dimensionless parameters, the volume-
to-area ratio (or reduced volume) v and the (local) spontaneous 
curvature m . These two parameters can be controlled experi-
mentally, e.g., by the osmotic conditions and by the adsorption 
of small solutes. In addition, three-component membranes with 
cholesterol have been of particular interest recently because they 
can form liquid-ordered and liquid-disordered phases. For both 
types of intramembrane phases, multi-sphere shapes have indeed 
been observed experimentally (Liu et al., 2016).

We will start with the Euler-Lagrange equations for spherical 
shapes which reveal the coexistence of two different sphere radii. 
When combined with the stability relations for the individual 
spheres and for the closed necks, we obtain multi-sphere vesicles 
that consist of several spheres with two different radii. We first 
consider two-sphere shapes and show that these shapes can be 
found in extended regions of the ( , )v m -plane and that these 
regions are bounded by two types of limit shapes. We also exam-
ine the changes of the morphology diagram when area difference 
elasticity is taken into account. We conclude that these changes 
are negligible both for large spontaneous curvatures and for small 
bud sizes.

Multi-sphere shapes consisting of more than two spheres will 
also be discussed. One interesting example is provided by one 
sphere with radius R1 and N spherical buds with radius R2, all 
connected by closed necks that have the same neck curvature. 
For N > 1, the morphology diagram exhibits a more complex 
bifurcation structure with two bifurcation points and three 
types of limit shapes. The multi-sphere shapes with N > 1 buds 
described in this section are intimately related to the necklace-
like tubes with N > 1 spherules as considered in the next 
Section 5.6.

5.5.1  SPHERICAL VESICLES AND SPHERICAL 
SEGMENTS

We now specify the local shape Eq. 5.23, which represents the 
Euler-Lagrange equation of the bending energy functional, and 
the global shape Eq. 5.45, which follows from the invariance of 
the bending energy under infinitesimal scale transformations, 
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to a spherical membrane segment with constant mean curvature 
M = Msp. It turns out that both shape equations lead to the same 
quadratic equation for Msp as given by

 ∆ ΣP P P M mM= − = −in ex sp sp2 4 2
 κ  (5.70)

with the total membrane tension Σ Σ = +σ . For a symmetric 
bilayer membrane with m = 0, the relation Eq. 5.70 further sim-
plifies and becomes

 ∆ ΣP M m= =2 0sp ( ) (5.71)

which has the same form as the Laplace equation for liquid drop-
lets. The Euler-Lagrange Eq. 5.70 can be derived in a more intuitive 
manner if one parametrizes the spherical shape by its radius Rsp and 
minimizes the shape energy with respect to Rsp (Lipowsky, 2013).

It follows from Eqs 5.70 and 5.71 that each value of Msp = ±1/Rsp 
defines a straight Msp-line in the (Σ,ΔP)-plane. For m = 0, these Msp-
lines cover the whole (Σ,ΔP)-plane. For m ≠ 0, on the other hand, 
the straight M-lines do not cover the whole ( , )Σ ∆ P -plane as follows 
from the solution of the quadratic Eq. 5.70 which has the form

 M
m m

P
m1 2

2 1 2

4 4 4/

/

.= ±








 −















Σ Σ ∆ 

κ κ κ
 (5.72)

Because the mean curvature must be real-valued, spherical seg-
ments are not possible for those values of Σ  and ΔP for which 
the expression under the square root (or discriminant) becomes 
negative. Therefore, a certain choice of Σ  and ΔP leads to spheri-
cal segments if

 ∆ ΣP
m

m≥ −


2

4 | |
< 0

κ
for  (5.73)

and if

 ∆ ΣP
m

m≤


2

4
> 0.

κ
for  (5.74)

Along the parabolic boundaries ∆ ΣP m= 
2

4/( )κ  of these regions, 
we have only one solution as given by

 M M
m

m
m1 2

2

4
2

4
.= = = +Σ Σ

κ
κ

κ
 (5.75)

For all other possible values of Σ  and ΔP, we have two different 
solutions as in Eq. 5.72 with M1 ≠ M2, corresponding to two 
different spherical segments. In general, the mean curvatures M1 
and M2 may be positive or negative depending on the signs of the 
pressure difference ΔP, the membrane tension Σ, and the sponta-
neous curvature m.

Coexistence of two spherical segments
The two solutions M1 and M2 are characterized by the same values 
of the pressure difference ΔP and the mechanical tension Σ. 
Therefore, the two membrane segments can coexist for these val-
ues of ΔP and Σ. Vice versa, when we observe the coexistence of 

two spherical membrane segments with mean curvatures M1 and 
M2, we can use the two Euler-Lagrange equations to conclude 
that the membrane tension is given by

 Σ = + −2 ( ) 21 2
2κ κm M M m  (5.76)

and the pressure difference by

 ∆P mM M= 4 1 2κ . (5.77)

The coexistence of two spherical shapes is indeed observed when 
out- and in-buds are formed from larger mother vesicles as shown 
in Figure 5.2 through Figure 5.6 and discussed in more detail in 
the next subsection.

On the other hand, the coexistence of more than two spheri-
cal segments with pair-wise different mean curvatures Mi and 
Mj is not possible for a uniform membrane. Indeed, if N ≥ 
3 different types of spherical segments coexisted on the same 
vesicle, we would have N Euler-Lagrange equations of the form 
Eq. 5.70. When we now choose a pair of spherical segments with 
mean curvatures Mi and Mj, we obtain the relations Eqs 5.76 
and 5.77 with M1 and M2 replaced by Mi and Mj. For fixed i, 
we can choose N − 1 different values for j and obtain N − 1 
different relations of the form Eqs 5.76 and 5.77. These relations 
immediately imply that all mean curvatures Mj must be identi-
cal. Because we can repeat this procedure for each value of i, we 
conclude that the shape equations for spherical segments allow 
only two different values of the mean curvature to coexist for 
uniform membranes.

Multi-component membranes can lead to the coexistence of 
several lipid phases and several types of intramembrane domains 
that differ in their composition, see Section 5.8 below. For two 
types of domains, the membrane can form coexisting spheri-
cal segments with four different mean curvatures. In general, a 
membrane with K types of domains can form coexisting spherical 
segments with 2K different mean curvatures as follows from the 
Euler-Lagrange equations for the different membrane domains. 
This morphological complexity remains to be explored.

Stability of individual spheres
Now, consider a single sphere which experiences the pressure 
difference Psp = Psp,in − Psp,ex where Psp,in is the osmotic pressure 
acting within the volume enclosed by the sphere. The second 
variation of the shape functional shows that a sphere with radius 
Rsp and mean curvature M = 1/Rsp is (locally) stable provided 
this pressure difference Psp satisfies (Ou-Yang and Helfrich, 1989; 
Seifert et al., 1991; Miao et al., 1991)

 P P m Msp p
sp

sp sp sp> ≡ − =+
s
* ( ) ( / )4 3 13

κ
R

R R  (5.78)

When we reverse the normal vector of the sphere, we change the 
signs of both the mean curvature M and the spontaneous curvature 
m. For such an inverted sphere, we obtain the stability condition

 P P m Msp sp
sp

sp sp sp> 4 ( 3) ( 1/ ).*
3

− ≡ − − = −κ
R

R R  (5.79)
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One example for an inverted sphere in real systems is provided 
by an in-bud protruding into a giant vesicle which is a possible 
shape for negative spontaneous curvature m < 0. The in-bud 
with radius Rsp = R2 and mean curvature M2 = −1/R2 is attached 
to a spherical mother vesicle with radius Rsp = R1 ≥ R2 and mean 
curvature M1 = 1/R1. In this case, the volume enclosed by the 
in-bud is a subvolume of the exterior solution. Therefore, the 
membrane of the in-bud experiences the pressure difference Psp = 
−ΔP whereas the membrane of the mother vesicle is exposed to 
Psp = ΔP.

Because the mother vesicle and the in-bud experience two dif-
ferent pressure differences, the two spherical membrane segments 
are then governed by two different stability conditions. Indeed, 
using the stability relations Eqs 5.78 and 5.79 as well as the gen-
eral expression Eq. 5.77 for ΔP, the spherical shape of the mother 
vesicle is found to be stable if

 ∆P m m m m= − − −4 > 4 ( 3) < 3
1 2 1

3 1
2

1

1
2

κ κ
R R R

R
R

R

R
or  (5.80)

whereas the stability condition for the spherical in-bud has the 
form

 − = > − − > − −∆P m m m m4 4 3 3
1 2 2

3 2
1

2

2
2

κ κ
R R R

R
R

R

R
( ) or  (5.81)

At the critical pressures P Psp sp= ±* , the spherical shape undergoes 
a bifurcation which generates the branches of prolate and oblate 
shapes. For conventional spheres with Msp > 0, the prolate shape 
has the lowest bending energy for small |m|/Msp-values whereas 
the oblate shape represents the lower energy shape for sufficiently 
large negative values of m/Msp, see the morphology diagram in 
Figure 5.16 (Seifert et al., 1991).

5.5.2 TWO-SPHERE VESICLES

Giant vesicles frequently form shapes that consist of two spheres 
connected by a narrow membrane neck. Within the spontane-
ous curvature model, such shapes arise quite naturally and can be 
reached by deflation of smoothly curved shapes. Two such limit 
shapes have been obtained from a systematic numerical study of 
axisymmetric shapes (Berndl, 1990; Seifert et al., 1991): the limit 
shapes Lpea with a spherical out-bud and the limit shapes Lsto with a 
spherical in-bud. These limit shapes represent two-sphere shapes and 
have the geometries displayed in Figure 5.15. The limit shapes Lpea 
are reached, for positive spontaneous curvature, by the deflation of 
pear-like vesicles, the limit shapes Lsto for negative spontaneous cur-
vature by the deflation of stomatocytes, see the morphology diagram 
in Figure 5.16. Inspection of this diagram shows that these limit 
shapes are found along two lines within the ( , )v m -plane.

Closer inspection of this morphology diagram also reveals that 
the deflation of a spherical vesicle with v = 1 and m > 0 leads to 
a prolate-pear bifurcation before the limit shape Lpea is reached. 
Because the latter bifurcation is discontinuous and exhibits hys-
teresis, the experimental observation of the true limit shape will 
be facilitated if one studies both the deflation and the subsequent 
inflation of the GUV. Likewise, the deflation of a spherical vesicle 
with v = 1 and m < 0 leads to an oblate-stomatocyte bifurcation 

before the limit shape Lsto is reached. The latter bifurcation is 
again discontinuous (Seifert et al., 1991).

The following analysis of two-sphere vesicles involves several 
steps (Lipowsky, 2018b). First, the geometric properties of the 
two-sphere shapes lead to other types of limit shapes, L =

out and 

1 1

2
2

(a) (b)

Figure 5.15 Geometry of shapes consisting of two spheres with 
radii r1 = R1/Rve and r2 = R2/Rve ≤ r1 connected by a closed neck: (a) 
two-sphere shape Θout with an out-bud and positive neck curva-
ture M r rne = ( ) > 01

2
1 1
1 2

+  which can only form for positive spontane-
ous curvature m ≥ 2 and (b) two-sphere shape Θin with an in-bud 
and non-positive neck curvature M r rne = ( ) 01

2
1 1
1 2

− ≤  which can only 
form for non-positive spontaneous curvature m ≤  0. the stability of 
the membrane neck in (a) and (b) is governed by Eqs 5.60 and 5.61, 
respectively. M mne = , the shape Θout in (a) represents a limit shape 
Lpea as obtained by neck closure from a stationary pear-like shape 
of the Euler-Lagrange equation while it represents a persistent 
shape Φpea with a stably closed neck for M mne < . Likewise, the shape 
Θin may  represent a limit shape Lsto as obtained by neck closure from 
a  stationary stomatocyte or a persistent shape Φsto. the limit shapes 
are found along certain lines within the ( , )v m -plane whereas the per-
sistent shapes are stable within two-dimensional regions of this plane, 
see the morphology diagrams in Figures 5.16 and 5.17.

Figure 5.16 Morphology diagram as a function of volume-to-area 
ratio v and spontaneous curvature c m0 2≡  which exhibits two lines of 
limit shapes. the limit shapes Lpea with an out-bud as in Figure 5.15a 
are found for m s≥ 2  along the upper line which is truncated at the 
end point ( , ) = (1/ 2, 2 )* *v m+ +  corresponding to two equal spheres. 
as we move along the Lpea-line by increasing the spontaneous curva-
ture m and the volume-to-area-ratio v, the out-bud becomes smaller 
and smaller until the whole membrane area is taken up by the larger 
sphere. the limit shapes Lsto with an out-bud, see Figure 5.15b, are 
found for m ≤  0  along the lower line which is truncated at the end 
point ( , ) = (0,0)* *v m− −  corresponding to two nested spheres of equal 
size. as we move along the Lsto-line by decreasing m < 0  and increas-
ing v, the in-bud becomes smaller and smaller until the vesicle forms 
a single sphere with v = 1 (Berndl, 1990). (reproduced from Seifert, 
U. et al., Phys. Rev. A, 44, 1182–1202, 1991; Berndl, K. Formen Von 
Vesikeln Diplomarbeit, Ludwig–Maximilians–Universität München, 
1990.)



Understanding giant vesicles: A theoretical perspective96
G

ia
nt

 v
es

ic
le

s 
th

eo
re

ti
ca

lly
 a

nd
 in

 s
ili

co

L=
in, consisting of two identical spheres. Second, the neck closure 

condition determines the limit shapes Lpea and Lsto. Finally, we 
must examine the stability of the two individual spheres in order 
to find instability lines at which the two-sphere vesicles transform 
into other types of shapes. We will also emphasize two-sphere 
vesicles with buds that have zero bending energy and consider the 
two-sphere limit shapes obtained in the presence of area differ-
ence elasticity.

Geometric properties
The geometry of any two-sphere vesicle is determined by the radii 
R1 and R2 of the two spheres. In the following, we will consider 
vesicles with fixed area A and vesicle size Rve =  A /(4 )π  but 
variable volume V as controlled by the osmotic conditions. We 
then measure the radii of the two spheres in units of Rve and 
define the dimensionless radii

 r r1 1 2 2/ /≡ ≡R R R Rve veand . (5.82)

These two radii satisfy the implicit equations

 r r A
1
2

2
2

24
1+ = =

π Rve
 (5.83)

and

 r r V v1
3

2
3

34
3

± = =π
Rve

 (5.84)

where the plus and minus sign in Eq. 5.84 correspond to two-
sphere shapes with an out- and in-bud, respectively. Therefore, 
the geometry of any two-sphere vesicle is determined by its area A 
and its volume V and depends only on the volume-to-area ratio v. 
As in Figure 5.15, we use the notation Θout and Θin for two-sphere 
shapes for which we have not examined the stability of their 
necks.

For a two-sphere vesicle with an in-bud, the radius r2 of this 
bud must satisfy r2 ≤ r1 because the membrane segments of the 
two spheres should not intersect. For a two-sphere vesicle with 
an out-bud, the shapes for r1 < r2 are identical with the shapes 
for r1 > r2. In order to avoid this degeneracy, we will impose the 
restriction r2 ≤ r1 for out-buds as well. Because r r1

2
2
2 1+ =  as in 

Eq 5.83, the inequality r r r1 2 1
21≥ = −  implies

 r r1 2
1
2

1
2

.≥ ≤and  (5.85)

The limiting cases with r r2 1 1/ 2= =  corresponds to two spheres 
with the same size and defines two other types of limit shapes, 
denoted by L=

out and L=
in. The limit shape L=

out consists of two 
equal spheres with positive mean curvature whereas the limit 
shape L=

in consists of two nested spheres which have the same size 
but opposite mean curvatures. In addition, these limit shapes have 
the smallest possible volume of two-sphere vesicles as given by

 min( ) 1/ 2 =v v L= ≡=
out outfor  (5.86)

and

 min( ) 0 .= =v v L= ≡in infor  (5.87)

A related property of these limit shapes is that their neck curva-
tures have the smallest absolute values. When expressed in terms 
of the dimensionless neck curvature

 M M
r rne ne ve≡ = ±







R

1
2

1 1 ,
1 2

 (5.88)

these minimal neck curvatures have the values

 min( ) 2M Lne
outfor= =  (5.89)

and

 min max )(| |) ( 0 .M M Lne ne
infor= = =  (5.90)

Neck closure and neck stability
A necessary prerequisite for a stable two-sphere vesicle is the stabil-
ity of the closed neck connecting the two spheres. The stability 
of closed necks was already studied in subsection 5.4.6 where we 
distinguished neck closure from closed neck conditions. The  closure 
condition has the dimensionless form

 M
r r

mne (neck closure)= ±







 =

1
2

1 1
1 2

 (5.91)

where the plus and minus sign again corresponds to two-sphere 
shapes with out- and in-buds, respectively. In addition, the closed 
neck condition is given by

 0 < 1
2

1 1 <
1 2

M
r r

mne for out-buds= +







  (5.92)

and by

 0 > 1
2

1 1 >
1 2

M
r r

mne for in-buds.= −







  (5.93)

Limit shapes related to neck closure
The combination of the geometric relations Eqs 5.83 and 5.84 
with the neck closure condition Eq. 5.91 determines the limit 
shapes Lpea and Lsto. When we eliminate the two radii from these 
three equations, we obtain the functional relationships

 v v m L= pea peafor the line of shapes( )  (5.94)

and

 v v m L= sto stofor the line of shapes.( )  (5.95)

The function v mpea( ) has the explicit form (Seifert et al., 1991)
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 + ≥pea for( ) 1
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2
1 1

4
2 ,3 2 2  (5.96)

which behaves as

 v m
m

mpea for large( ) 1 3
8

.2≈ −  (5.97)

The function v msto( ) has the same m-dependence as v mpea( ) but 
applies to m ≤  0 .

Both lines of limit shapes Lpea and Lsto extend down to the 
smallest possible volumes which they reach when both spheres 
have the same size. The corresponding values of the spontaneous 
curvature m  are given by

 min( ) 2m m L= ≡=
out peafor  (5.98)

and by

 max( ) 0 ,m m L= ≡=
in stofor  (5.99)

see the Lpea and Lsto lines in Figure 5.16. In the following subsection, 
the region of the morphology diagram with m > 0, which contains 
the limit shapes Lpea and L=

out, will be discussed in more detail.

Buds with zero bending energy
It is useful to distinguish another special case of budded vesicle 
shapes, denoted by Zout and Z in. The spherical buds of these 
shapes have radius r m2 1/| |=  and thus zero bending energy. 
Because of the inequality r2 1/ 2≤   as in Eq. 5.85, we then have

 r
m

r
m

2 1 2
1

| |
1
2

1 1 1
2

.= ≤ = − ≥and  (5.100)

Both relations lead to the same inequality | | 2m ≥  which implies

 m ≥ 2 for out-buds (5.101)

and

 m ≤ − 2 for in-buds. (5.102)

For these vesicles, the buds have vanishing bending energy and 
the whole bending energy is provided by the bending energy of 
the mother vesicle with radius r1. The neck mean curvature is then 
given by

 M M m
m

mne ne= ≡
−

+












0
2

( ) 1
2

1

1 1/
 (5.103)

which satisfies

 M m m mne for out-buds with0 ( ) 2≤ ≥  (5.104)

and

 M m m mne for in-buds with0 ( ) 2 .≥ ≤ −  (5.105)

Comparison with the stability relations as given by Eqs 5.92 
and 5.93 then shows that the closed necks between the zero-
energy buds and the mother vesicles are stable for both positive 
and negative spontaneous curvatures. For out-buds, the equal-
ity M M m mne ne= =0 ( )  describes the neck closure condition and 
applies to r r m1 2 1/= = , i.e., to the case of two identical spheres. 
This special morphology represents a limit shape for which the 
whole bending energy vanishes.

The volume of the two-sphere vesicles Zout and Z in with zero-
energy buds is given by

 v v
m m

= ≡ −





 ±zeb 1 1 1

2

3/2

3  (5.106)

where the plus and minus sign applies to out- and in-buds, respec-
tively. This volume behaves as

 v
m

mzeb for large≈ −1 3
2

| |2  (5.107)

which applies to both out-buds with m > 0 and in-buds with m < 0.

 Morphology diagram for positive spontaneous curvature
As displayed in Figure 5.17, the morphology diagram for 
positive spontaneous curvature contains two lines of limit 
shapes, Lpea and L=

out, that have a common end point at 
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Figure 5.17 Morphology diagram for two-sphere vesicles with an out-
bud (inset) and positive spontaneous curvature: Such vesicles have 
positive neck curvature and can be formed for spontaneous curvature 
m ≥ 2 as well as reduced volume v in the interval 1/ 2 ( )≤ ≤  v v mpea  
corresponding to the shaded (yellow) region. the lower boundary of 
this region (horizontal line) is provided by the limit shapes L=

out  that 
consist of two identical spheres and have the volume v = =out 1/ 2 , the 
upper boundary (curved line) by the limit shapes Lpea as described by 
v v m= pea( ) in Eq. 5.96. the two boundary lines have a common end 
point at ( , ) ( 2,1/ 2 )m v= = =out out . When a limit shape Lpea is deflated for 
constant spontaneous curvature m > 2, the larger sphere shrinks 
whereas the smaller sphere (or out-bud) grows transforming the limit 
shape Lpea into a persistent shape Φpea with neck curvature M mne < . 
the closed neck persists during further deflation until the lower limit 
shape L=

out  with two identical spheres is reached. all two-sphere 
 vesicles with the same volume v (broken horizontal lines) have the 
same neck curvature and the same shape but differ in their bending 
energy, see text. the upper broken line corresponds to the two-
sphere geometry with v = 0.941 and Mne = 2 2, the intermediate 
broken line to v = 0.871 and Mne = 2.
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( , ) ( , ) ( 2 ,1/ 2 )m v m v= == =
out out . Thus, the limit shapes Lpea are 

located at

 v v m m m= ≥ ==
pea outand( ) 2  (5.108)

while the L=
out shapes are located at

 v v m m= = ≥ == =1/ 2 2 .out outand  (5.109)

Note that all L=
out shapes have the same geometry but differ in 

their bending energy which has the m-dependent form

 E L E L r m rbe
out be

out
with{ } { }

8
2(1 ) 1/ 2.1

2
1=

== = − =
πκ

 (5.110)

which vanishes for m m= == 2out  and increases as  m2 for 
large m .

Inspection of Figure 5.17 shows that the two lines of limit 
shapes enclose an extended region of two-sphere shapes, Φpea, with 
stably closed necks. This region can be entered by deflation of the 
Lpea shapes, by inflation of the L=

out shapes, and by increasing the 
spontaneous curvature of the Lpea shapes. All Φpea shapes that are 
produced by one of these processes are persistent in the sense that 
their necks remain stably closed during both deflation and inflation 
as well as under small changes of the spontaneous curvature.

Stability of individual spheres
A second requirement for the stability of two-sphere vesicles is the 
shape stability of both spheres. Thus, in order to examine the sta-
bility of the individual spheres, we now use the stability criterion 
Eq. 5.78 together with the pressure difference Psp = ΔP and ΔP 
as given by Eq. 5.77. We then conclude that the spherical mother 
vesicle with radius R1 is stable if

 ∆P m m m
r

mr
r

= − −4 > 4 ( 3) > 3
1 2 1

3 1
2

1

1
2

κ κ
R R R

R or  (5.111)

whereas the out-bud with radius R2 is stable if

 ∆P m m m
r

mr
r

= − −4 > 4 ( 3) > 3.
1 2 2

3 2
1

2

2
2

κ κ
R R R

R or  (5.112)

Because the two radii r1 = R1/Rve and r2 = R2/Rve satisfy the 
geometric relation r r1

2
2
2 1+ = , we can express both stability rela-

tions in terms of a single radius, say r2. One then finds that both 
individual spheres are stable for all limit shapes Lpea and L=

out as 
well as for the shapes Zout with zero-energy buds. Furthermore, 
the larger sphere of the intermediate persistent shapes Φpea is 
always stable whereas the spherical out-bud may become unstable 
for sufficiently large values of the spontaneous curvature and a 
certain range of v-values. More precisely, the spherical out-bud 
with radius r2 is stable if

 r r

r m2
2
2

2
21

< 3−
−

 (5.113)

and unstable if

 r r

r m2
2
2

2
21

> 3 .−
−

 (5.114)

Therefore, the instability line between the stable and unstable out-
buds follows from the solutions of the equation

 r r

r m2
2
2

2
21

3 .−
−

=  (5.115)

This equation has no solution for m m< 13.29ss = , one solution for 
m m= ss and two solutions for m m> ss.

Therefore, the out-buds of the persistent shapes Φpea are 
stable for m m< ss but become unstable for m m≥ ss and a certain 
m-dependent range of v-values. At m m= ss, the instability consists 
of the single point ( , ) (13.29,0.8259)m vss ss =  which opens up into 
a parabola-like curve for m m> ss. For large m , the upper and 
lower branches of the parabola-like curve approach the Zout line 
and the L=

out line, respectively. Because mss = 13.29, this bifurca-
tion structure is located outside of the ( , )m v -region displayed in 
Figure 5.17.

Thus, we conclude that two-sphere vesicles with out-buds 
can be found in a large region of the morphology diagram 
for m > 0. In particular, when we def late a limit shape Lpea 
for 2 < < 13.29m mss  , we obtain a family of stable persis-
tent shapes Φpea with decreasing neck curvatures Mne until 
we reach the limit shape L=

out with the smallest possible neck 
curvature M mne = =+

* 2 . Further def lation of the limit shape 
L=

out leads back to a dumbbell-like shape with an open neck.

5.5.3  MODIFICATIONS BY AREA DIFFERENCE 
ELASTICITY

So far, two-sphere vesicles have been discussed in the context of 
the spontaneous curvature model which depends on the locally 
generated spontaneous curvature m and assumes that one molecu-
lar component of the bilayer membrane can undergo frequent 
flip-flops between the two bilayer leaflets. It is instructive to 
see how the morphology diagram is changed when we consider 
bilayer membranes with slow flip-flops between the leaflets. In the 
latter situation, the area difference ΔA between the two leaflets 
is constrained as described by the nonlocal energy term in the 
area-difference-elasticity model, see the nonlocal expression in 
Eq. 5.64 that contributes to the energy functional Eq. 5.63 of this 
model.

As explained in Section 4.7.1, the shapes that minimize this 
energy functional also minimize the energy functional of the 
spontaneous curvature model as in Eq. 5.12, provided we use 
the effective spontaneous curvature meff ≡ m + mnlo as given 
by Eq. 5.66 which represents the sum of the local spontaneous 
 curvature m and the nonlocal spontaneous curvature 

 
m I S

A
M M

nlo ≡
−π κ

κ
∆ ,0 { }
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as in Eq. 5.67. If the leaf lets of a sphere with radius Rve have 
optimal molecular areas, one has IM, 0 = 4πRve and the geometric 
factor of the nonlocal spontaneous curvature becomes

 I S
A

SM M M,0
2

{ } 4 { }
4

.−
= − π

π
R

R
ve

ve
 (5.116)

Now, consider again the two-sphere vesicles Θout and Θin with 
radii R1 and R2 connected by a closed membrane neck as shown in 
Figure 5.15. The integrated mean curvature M of these shapes is 
given by

 M M{ } 4 ( ) { } 4 ( )1 2 1 2Θ Θout inand= + = −π πR R R R  (5.117)

which leads to the geometric factors

 4 { }
4

1 (1 )2 1 2
π

π
R

R R
ve

ve ve

− = −M S r r  (5.118)

and to the nonlocal spontaneous curvatures

 m m r rnlo nlo ve= = −R π κ
κ
∆ (1 )1 2  (5.119)

where the minus and plus sign applies to out- and in-buds, respec-
tively. The nonlocal spontaneous curvature involves the geometric 
factor

 1 1 11 2 1 1
2− = − −r r r r   (5.120)

where we used the area relation r r1
2

2
2 1+ = . For the shape Θout 

with an out-bud, this expression is negative and bounded by

 1 2 1 1 0 0 11 1
2

1− ≤ − − − ≤ ≤ ≤r r rfor (out-bud). (5.121)

For the shape Θin with an in-bud, on the other hand, the corre-
sponding expression is positive and satisfies the bounds

 0 1 1 2 1 0 11 1
2

1≤ − + − ≤ + ≤ ≤r r rfor (in-bud). (5.122)

Therefore, the absolute value of the nonlocal spontaneous curva-
ture satisfies the bounds

 | | ( 2 1)mnlo
outfor≤ −π κ

κ
∆ Θ  (5.123)

and

 | | ( 2 1) .mnlo
infor≤ +π κ

κ
∆ Θ  (5.124)

These bounds can be used to estimate the relative magnitude of 
the nonlocal and local contributions to the spontaneous curva-
ture, see further below.

When we include area-difference-elasticity, the stability condi-
tions for the closed neck are given by Eqs 5.68 and 5.69 which 
imply the neck closure condition

 M
r r

m m m r rne nlo= ±







 = + = + −

1
2

1 1 (1 )
1 2

1 2π κ
κ
∆

  (5.125)

where the last equality follows from Eq. 5.119. In order to 
determine the location of the limit shapes Lpea and Lsto in the 
( , )v m -plane, we must now combine the neck closure relation 
Eq 5.125 with the geometric relations r r1

2
2
2 1+ =  and r r v1

3
2
3± = .

In general, the κΔ-term will shift the Lpea- and Lsto-lines in the 
( , )v m -plane, a shift that can be easily calculated for any value of 
κΔ/κ. For positive spontaneous curvature, for example, one then 
finds that the lines of limit shapes Lpea are shifted towards higher 
m -values as we increase the rigidity ratio κΔ/κ. Furthermore, 
when we describe the shifted Lpea lines by m f vpea = ( ). the func-
tion f(v) develops a minimum for κΔ/κ > 1.

In addition, we can draw some general conclusions about 
the morphology diagram when we include the area-difference- 
elasticity term proportional to κΔ. First, the limit shapes L=

out and L=
in, 

consisting of two spheres with the same radius, are again located 
at v v= ==

out 1/ 2  for m > 0 and at v v= ==
in 0 for m < 0 as follows 

from the two geometric relations alone. Therefore, the morphology 
diagram in the ( , )v m -plane will always  contain extended regions 
with (meta)stable two-sphere shapes as in Figure 5.17, irrespective 
of the value of κΔ/κ.

Second, we can conclude from the neck closure condition in 
Eq. 5.125 and from the bounds provided by Eqs 5.123 and 5.124 
that the nonlocal contributions mnlo arising from area difference 
elasticity can be neglected for sufficiently large local contributions m . 
More precisely, we obtain from Eqs 5.125 and 5.123 that the 
nonlocal spontaneous curvature can be ignored for the shape Θout 
if the local spontaneous curvature is sufficiently large and positive 
with

 m  π κ
κ

( 2 1)− ∆ (out-bud). (5.126)

Likewise, combining Eq. 5.125 with Eq. 5.124, we conclude that 
the nonlocal contribution can be ignored for the shape Θin if the 
local spontaneous curvature is large and negative with

 m − +π κ
κ

( 2 1) ∆ (in-bud). (5.127)

The ratio κΔ/κ of the bending rigidities is expected to be of 
the order of one (Döbereiner et al., 1997). Therefore, both for 
out- and for in-buds, the nonlocal contribution can be ignored 
compared to the local one if | | 1 | | 1m m or /Rve.

Finally, assume that we were able to measure the radii r1 and r2 of 
a vesicle during neck closure. We can then use the neck closure condi-
tion in Eq. 5.125 to estimate the local spontaneous  curvature  m via

 m
r r

r r= ±







 + ± −1

2
1 1 ( 1)
1 2

1 2π κ
κ
∆  (5.128)
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where the plus and minus sign applies to an out- and in-bud, 
respectively. For small bud radius r2, the radius r r r1 2

2
2
21 1= − ≈ − . 

When we use this asymptotic equality in Eq. 5.128, we obtain the 
local spontaneous curvature which implies

 m
r r

r r≈ ±







 ±

1
2

1 1 1.
1 2

2 2π κ
κ
∆ for small buds with   (5.129)

The asymptotic behavior as given by Eq. 5.129 implies that the κΔ-
term can also be ignored for sufficiently small buds. This behavior 
for small buds is consistent with the behavior for large spontaneous 
curvatures m  because large m  implies limit shapes with small buds.

The influence of area difference elasticity on two-sphere 
vesicles has been recently studied for giant vesicles that contained 
lipids with photoresponsive F-Azo groups and underwent light-
induced budding (Georgiev et al., 2018). A theoretical analysis 
of the experimental data based on Eq. 5.128 showed that the 
spontaneous curvature can indeed be decomposed into a local 
and a nonlocal contribution, that all vesicles were governed by the 
same rigidity ratio κΔ/κ, and that the local spontaneous curvature 
m mR= ve was about 1/(2.5 µm).

5.5.4  EFFECTIVE CONSTRICTION FORCES AND 
CLEAVAGE OF MEMBRANE NECKS

As explained in the previous subsections, the persistent shapes 
Φpea have the same geometry, for a given volume v, as the limit 
shapes Lpea but an increased spontaneous curvature m  compared 
to the spontaneous curvature of Lpea. When expressed in terms of 
dimensionful variables, the spontaneous curvature m then satis-
fies the stability condition m M M M> = 1

2 1 2ne +( ) for the closed 
necks of out-buds as in Eqs 5.60 and 5.92. Now, consider an 
explicit constriction force f that acts on the neck radius Rne, which 
we take into account by adding the term fRne to the bending 
energy in Eq. 5.54.10 We then obtain the generalized condition

 f M M m− + −4 ( 2 ) > 01 2πκ  (5.130)

for a closed membrane neck which may be rewritten in the form

 f f+ eff
out > 0 (5.131)

with the effective constriction force

 f m M M meff
out (out-buds with≡ − − ≥4 (2 ) 0 > 0).1 2πκ  (5.132)

This constriction force vanishes when the neck satisfies the neck 
closure condition M1 + M2 = 2m.

Now, let us consider a persistent shape Φpea close to the line 
of limit shapes L=

out which consist of two identical spheres. These 
persistent shapes have a volume v  1/ 2  and are characterized 
by two spheres with small mean curvatures M1 and M2, both of 
which are of the order of 2/Rve. Furthermore, the individual 
spheres of these persistent shapes are stable up to fairly high 
m-values because the individual spheres of the limit shapes L=

out 
are stable for all values of m. If the spontaneous curvature m 

is large compared to both M1 and M2, the expression for the 
curvature-induced constriction force as given by Eq. 5.132 simpli-
fies and becomes asymptotically equal to

 f f f m m M Mm meff
out out outwith for≈ ≡ +8 2 ,1 2πκ   (5.133)

where fmout represents the curvature-induced constriction force. 
Thus, for the bending rigidities κ = 10−19 J and κ = 4 × 10−19 J, 
the spontaneous curvature m = 1/(100nm) generates the constric-
tion forces fmout

 25  pN and fmout
 100  pN, respectively.

In the absence of flip-flops between the bilayer leaflets, we 
should include the effects of area-difference-elasticity as discussed 
in the previous subsection. In this case, the effective constriction 
force has the form

 f m m M Meff
out

nlo
out≡ + − − ≥4 (2 2 ) 01 2πκ  (5.134)

with the nonlocal spontaneous curvature

 m I
A

r rM M
nlo
out

out

ve
=

−
= − −π κ

κ
π κ

κ
∆ ∆Θ,0 1 2{ } 1

R
 (5.135)

as in Eq. 5.119. This term is negative, see Eq. 5.121, which implies 
that area-difference-elasticity acts to weaken the curvature-
induced constriction forces for out-buds.

In-buds with closed necks are formed for negative spontaneous 
curvatures. In the latter case, we obtain the effective constriction force

 f M M m meff
in (in-buds with≡ + −4 ( 2 ) > 0 < 0)1 2πκ  (5.136)

which behaves as f fmeff
in in≈   with the curvature-induced constric-

tion force

 f m m M Mm
in for≡ − +8 2 < 0.1 2πκ   (5.137)

In the absence of molecular flip-flops between the bilayer leaflets, 
the effective constriction force is

 f M M m meff
in

nlo
in≡ + − −4 ( 2 2 )1 2πκ  (5.138)

with the nonlocal spontaneous curvature

 m I
A

r rM M
nlo
in

in

ve
=

−
= − +π κ

κ
π κ

κ
∆ ∆Θ,0 1 2{ } 1

R
 (5.139)

as in Eq. 5.119. This term is positive, see Eq. 5.122, which implies 
that area-difference-elasticity also acts to weaken the effective 
constriction forces for in-buds.

In the curvature models, a closed membrane neck is described 
by a point-like discontinuity of the membrane curvature. Because 
of the finite membrane thickness me, the radius Rne of the mem-
brane neck is necessarily restricted to Rne me  . Therefore, strictly 
speaking, the above derivation of the effective constriction forces 
feff

out and feff
in  implicitly assumed that Rne me  . However, we 

will now argue that these constriction forces may also be used to 
obtain a simple criterion for the cleavage of the membrane neck.

10 The same approach has been used for the endocytosis and exocytosis of 
nanoparticles in (Agudo-Canalejo and Lipowsky, 2016).
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Neck cleavage represents a topological transformation from 
a budded vesicle that has the same topology as a single sphere to 
a cleaved state with the topology of two spheres. The free energy 
difference between the budded and the cleaved state involves 
a contribution from the Gaussian curvature modulus κG, see 
Section 5.10 at the end of this chapter. Furthermore, this free 
energy difference depends strongly on the magnitude of the 
spontaneous curvature. For large values of |m|, the fission process 
is exergonic and reduces the free energy of the vesicle as explained 
in Section 5.10.3. Therefore, in the presence of a large spontane-
ous curvature, thermodynamics allows fission to occur spontane-
ously, i.e., without any free energy input from a chemical reaction 
such as ATP hydrolysis. How fast this exergonic process occurs 
depends, however, on the free energy barrier between the budded 
and the cleaved state of the vesicle membrane.

In order to cleave the membrane neck, we have to create two 
bilayer edges. For a neck with radius Rne, these two bilayer edges 
have the combined length 4πRne. The associated edge energy Eed 
depends on the edge tension λed and has the form

 Eed ne ed ne mewith= 4π λR R    (5.140)

where the latter inequality reminds us that the neck radius should 
exceed the membrane thickness me. The edge energy provides 
a simple estimate for the free energy barrier between the bud-
ded and the cleaved state of the vesicle membrane. This barrier 
has to be overcome by the mechanical work fmRne expended by 
the curvature-induced constriction force f fm m= out or fmin from 
Rne me=   to Rne = 0. Therefore, we obtain the cleavage criterion 
fmRne ≫ Eed which is equivalent to

 | | | |
2

| |.m m m

cl ed for large≡ λ
κ

 (5.141)

This criterion predicts that the membrane neck is cleaved and 
undergoes fission if the absolute value |m| of the spontaneous 
curvature is sufficiently large and exceeds the threshold value 
|mcl| = λed/(2κ).

The main contribution to the edge tension λed comes from the 
interface between the hydrophobic core of the bilayer and the 
aqueous solution. The corresponding interfacial tension Σhc may be 
reduced by a rearrangement of the head groups along the bilayer 
edge or by the adsorption of edge-active molecules. For an inter-
facial tension Σhc  1 mN/m and a thickness hc  2 nm of the 
hydrophobic core, we obtain the estimate λed hc hc= 2Σ    pN. 
Using the typical bending rigidity κ = 10−19 J, neck cleavage 
requires the spontaneous curvature m to exceed the threshold 
value | | 1/(100mcl   nm). As we will see in Section 7.5 below, 
neck cleavage is further facilitated by the adhesion of membranes 
to solid substrates and nanoparticles.

Curvature-induced budding and fission has been recently 
observed in molecular dynamics simulations of nanovesicles 
(Ghosh et al., in preparation). In this case, the spontaneous curva-
ture was generated by the adsorption of small solute particles. 
Combined budding and fission has also been observed experi-
mentally for giant vesicles exposed to polyhistidine-tagged GFP 
proteins that were bound to certain lipid components within the 
vesicle membranes (Steinkühler et al., in preparation).

5.5.5  VESICLE SHAPES WITH SEVERAL BUDS

Let us now consider multi-sphere vesicles that consist of more 
than two spheres connected by more than one closed neck, see 
also Box 5.2. The Euler-Lagrange Eq. 5.70, which applies to all 
membrane segments of such a multi-sphere vesicle apart from the 
closed necks, implies that at most two different types of spheres 
with two distinct radii, r1 = R1/Rve and r2 = R2/Rve, can coexist on 
the same vesicle.

These two radii are determined by the membrane area 
A = 4 2π Rve, by the vesicle volume V v= (4 /3) 3π Rve, and by the 
numbers N1 and N2 of the two types of spheres. If both types of 
spheres have a positive mean curvature, the two radii r1 and r2 
satisfy the geometric relations

 N r N r1 1
2

2 2
2 1+ =  (5.142)

and

 N r N r v M M1 1
3

2 2
3

1 2( > 0 > 0).+ = and  (5.143)

If we define the volumes v1 and v2 of the individual spheres via

 4
3

4
3

4
3

4
3

,1
3

1
3

2
3

2
3π π π π

R R R R= =v vve veand  (5.144)

the relation Eq. 5.143 can be rewritten in the form

 N v N v v1 1 2 2 .+ =  (5.145)

Simple examples for such multi-sphere shapes with N1 = 1 are 
shown in Figure 5.18a–c. If the r1- and r2-spheres have positive 
and negative mean curvature, respectively, multi-sphere shapes 
with N1 > 1 are impossible because they would require differ-
ent types of necks with positive and negative neck curvature. 
Therefore, we are left with N1 = 1, i.e., one large sphere with 
N2 in-buds as illustrated in Figure 5.18d. In the latter case, the 
second geometric relation Eq. 5.143 is replaced by

 r N r v N v v M M1
3

2 2
3

1 2 2 1 2( > 0 < 0).− = − = and  (5.146)

In contrast to these geometric relations, the stability relations for 
the membrane necks are local and do not depend on the sphere 

1
1 1 1

2

2 2

2 2

2 2

2

2
2

(a) (b) (c) (d)

Figure 5.18 (a–c) Examples for vesicles consisting of 1 + N spheres 
with positive neck curvature: (a) Large r1-sphere with two smaller 
r2-spheres; (b) Small r1-sphere with two larger r2-spheres as observed 
in (Lipowsky and Dimova, 2003); (c) Large r1-sphere with three smaller 
r2-spheres; and (d) Example for a vesicle consisting of 1 + 3 spheres 
with negative neck curvature. For simplicity, all membrane necks have 
been placed in the plane of the figure. the positions of these necks 
are, however, arbitrary and can be shifted along the surface of the 
large sphere as long as the buds do not intersect each other.
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numbers N1 and N2. Therefore, both the neck closure condition 
Eq. 5.91 as well as the closed neck conditions Eqs 5.92 and 5.93 are 
valid for arbitrary numbers N1 and N2 of r1- and r2-spheres, where 
we implicitly assume that these spheres do not intersect each other.

However, a multi-sphere vesicles built up from several 
r1-spheres and r2-spheres may exhibit different types of closed 
necks. Indeed, we can distinguish necks between two r1-spheres 
from necks between two r2-spheres and from necks between 
an r1- and an r2-sphere. These three types of necks have differ-
ent neck curvatures Mne as long as r1 ≠ r2. In this section, we 
will focus on the simplest case in which all necks have the same 
curvature as in Figure 5.18 and again focus on the case with 
out-buds. Multi-sphere shapes with two types of necks will be 
discussed in the next section in the context of necklace-like 
tubes.

 Multi-sphere vesicles with N out-buds
The simplest multi-sphere shapes with more than two spheres 
consist of one r1-sphere and N r2-spheres which are connected by 
N closed necks with the same neck curvature Mve. All examples 
in Figure 5.18 belong to this category. If the neck curvature is 
positive, the r2-spheres form N out-buds of the r1-sphere as in 
Figure 5.18a–c. The latter shapes lead to a morphology diagram 
with two bifurcation points B*

+ and B◊
+ as displayed in Figure 5.19.

 Bifurcation of L1
++ and L2

++ shapes
Inspection of Figure 5.19 reveals that membranes with sufficiently 
small spontaneous curvatures do not form stable multi-sphere 
shapes. As we increase the spontaneous curvature, we encounter 
the bifurcation points B*

+ at which a single multi-sphere shape, L*
+, 

appears with spontaneous curvature

 m m N N= ≡ ++
*

1/3 3/2( ) 1
2

(1 )  (5.147)

and volume

 v v N
N

= ≡
+

+
* 1/3 3/2( ) 2

(1 )
. (5.148)

It is interesting to note that m N v N* *( ) ( ) 1+ + =  for all values of N. 
The limit shape L*

+ has a balanced volume in the sense that

 v r Nr Nv1 1
3

2
3

2= = = (balanced volume). (5.149)

i.e., the volume of the r1-sphere is equal to the combined volume 
of all r2-spheres.

For m m N> ( )*
+ , the limit shape L*

+ bifurcates into two differ-
ent branches of limit shapes, L1

+ and L2
+, as shown in Figure 5.19. 

For the upper branch with the limit shapes L1
+, the volume v1 of the 

r1-sphere exceeds the combined volume Nv2 of the r2-spheres. For the 
lower branch with the limit shapes L2

+, on the other hand, the r2-
spheres dominate in the sense that Nv2 > v1. Thus, the volume ratio

 ρ1
1

2
1> 1≡ +v

Nv
Lfor the shapes (5.150)

but

 ρ1 2< 1 for the shapes.L+  (5.151)

As we move along the line of L1
+-shapes by increasing the sponta-

neous curvature m , both the total volume v and the volume ratio 
ρ1 increase monotonically until the r1-sphere has taken up the 
whole volume in the limit of large m . More precisely, the volume 
{ }1L+  of the L1

+-shapes increases monotonically with increasing 
spontaneous curvature m  and behaves as

 { } 4
3

1 3
8 4

.1
3

2 3L N
m

N
m

m+ ≈ − −





π
Rve for large  (5.152)

On the other hand, we can also move along the lower branch of 
the L2

+-shapes by increasing L2
+ which leads to a monotonic decay 

of the volume ratio ρ1 until the N r2-spheres have taken up the 
whole volume and v Nr N≈ ≈  2

3 1/ , see Figure 5.19.
As a consequence, the two limit shapes L1

+ and L2
+ look rather 

different for large m . In this limit, the L1
+-shapes consist of a large 

r1-sphere and N small r2-spheres with radii

 r r
m

L m1 2 11 1
2

( , ).≈ ≈ +and large  (5.153)
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Figure 5.19 Morphology diagram for (1 + N)-sphere vesicles with 
positive spontaneous curvature: the vesicles consist of one r1-sphere 
and N r2-spheres as illustrated in Figure 5.18a–c. these vesicles are 
(meta)stable within the yellow (dark and light) parameter region 
bounded by three types of limit shapes (red lines), denoted by L1

+ , 
L2

+ , and L=
+  . the limit shapes L1

+ and L2
+ have variable neck curvature 

M mne =  whereas the limit shapes L=
+  have the constant neck curva-

ture M Nne = 1+ . the limit shapes involve two types of bifurcation 
points (black stars). at the bifurcation point B*

+ with coordinates 
( , ) ( , )* *m v m v= + +  as given by Eqs 5.147 and 5.148, the limit shape L*

+ 
bifurcates into the shapes L1

+ and L2
+. the limit shape L*

+ has a balanced 
geometry in the sense that the volume of the r1-sphere is equal to 
the combined volume of all r2-spheres. the same geometry applies 
to the persistent shapes Φ*

+ along the horizontal broken line (blue) 
that emanates from the bifurcation point B*

+. at the bifurcation point 
B◊

+ with ( , ) ( , ) ( 1 ,1/ 1 )m v m v N N= = + +◊
+

◊
+  corresponding to the limit 

shape L◊
+, the limit shapes L=

+  bifurcate off from the line of L2
+ shapes. 

the limit shapes L◊
+ and L=

+  consist of 1 + N spheres with the same size. 
the region between the L=

+ -line and the L2
+-line with m m> ◊

+ (dark yellow) 
is special because two different Φ2

+ shapes can be formed at each 
point within this region: one of these shapes is characterized by r1 > r2, 
the other by r1 < r2. Both shapes can be reached by inflation of the 
limit shape L=

+  as illustrated in Figure 5.20 for N = 3.

rl10
Notiz
2nd line below equation (5.152): 
replace "increasing $L_2^+$" by 
"increasing ${\bar m}$"
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In contrast, the L2
+-shapes consist of a small r1-sphere and N large 

r2-spheres with radii

 r
m

r
N

L m1 2 2
1

2
1 ( , ).≈ ≈ +and large  (5.154)

For N = 2, these two limit shapes are illustrated in Figure 5.18a,b.

Bifurcation of L=
++  from L2

++ shapes
When we inspect the morphology diagram in Figure 5.19 more 
closely, we discover an additional complication related to the 
L2

+-branch. In contrast to the volume ratio ρ1 that decreases 
monotonically along this branch, the total volume { }2L+  of 
the L2

+-shapes exhibits a minimum as a function of m . At this 
minimum, the L2

+-shape consists of 1 + N spheres of equal size 
with r r N1 2 1/ 1= = + , and provides the end point for the line 
of limit shapes L=

+, see Figure 5.19. Therefore, the limit shape L◊
+ 

with

 m m N N v v N
N

= ≡ + = ≡
+◊

+
◊
+( ) 1 ( ) 1

1
and  (5.155)

represents a second bifurcation point, B◊
+, at which the L=

+ 
shapes split off from the L2

+ shapes. Note that the limit shape 
L◊

+ is built up from 1 + N spheres of equal size with radius 
r r N m1 2 1/ 1 1/= = + = ◊

+ . As a consequence, the bending energy 
vanishes for each of these spheres and, thus, for the whole limit 
shape L◊

+.
For m m N> ( )◊

+ , the volume { }2L+  increases again and 
behaves as

 { } 4
3

1 3
8

1
8

.2
3

2 3L
N Nm m

m+ ≈ − +










π
Rve for large  (5.156)

In contrast, all L=
+ shapes have the same geometry and, thus, the 

same volume { } (4 /3) / 13L N=
+ = +π Rve . The latter shapes are 

distinguished by their bending energies which depend on m . It is 
again interesting to note that m N v N◊

+
◊
+ =( ) ( ) 1 for all values of N.

As shown in Figure 5.19, the lines of limit shapes L1
+, L2

+, and 
L=

+ enclose an extended region of two-sphere shapes Φ+ with 
stably closed necks. This region can be entered by deflation of L1

+ 
or L2

+ shapes, by inflation of L2
+ or L=

+ shapes, and by increasing 
the spontaneous curvature of L1

+ or L2
+ shapes. All Φ+ shapes 

that are produced by one of these processes are persistent in the 
sense that their neck remains stably closed during both deflation 
and inflation as well as under small changes of the spontaneous 
curvature.

It is interesting to note that all bifurcation points B*
+ and B◊

+
 

are located on the line v m= 1/  within the ( , )m v -plane. Indeed, it 
 follows from Eqs 5.147 and 5.148 that v N m N* *( ) = 1/ ( )+ +  and from 
Eq. 5.155 that v N m N◊

+
◊
+=( ) 1/ ( ) for all values of N. Furthermore, for 

large N, the m-coordinates behave as m N N*
1
2

1/2( )+ ≈  for the bifur-
cation points B*

+ and as m N N◊
+ ≈( ) 1/2 for the bifurcation points B◊

+ 
which implies that the points B◊

+ are more widely spaced compared to 
the points B*

+.

Stability of individual spheres
When we apply the stability criterion Eq. 5.78 to examine the 
stability of the individual spheres, we find that both spheres 
are stable for all limit shapes L1

+ , L 2
+ , and L=

+ . Furthermore, 
the larger sphere of the intermediate persistent shapes Φ+ is 
always stable whereas the smaller sphere becomes unstable for 
sufficiently large values of the spontaneous curvature. The cor-
responding instability lines now follow from the solutions of the 
equation

 r r

Nr m2
2
2

2
21

3
−

−
=  (5.157)

This equation has no solution for m m N< ( )ss , one solution for 
m m N= ss( ) and two solutions for m m N> ( )ss . The critical value 
m Nss( ) for the instability of the small spheres is found to be 
mss = 14.3,15.2, and 19.6 for N = 2, 3, 10, respectively.

For large m , the right hand side of Eq. 5.157 becomes small 
which implies the two asymptotic solutions

 r
m

r
N

m2 2
3 1

1
)≈ ≈

+
and (large  (5.158)

for the bud radius r2. In the same limit, the reduced volume

 v r Nr Nr Nr= + = −( ) +1
3

2
3

2
2 3/2

2
31  (5.159)

behaves as

 v N
m

N
m

r m≈ − + ≈1 27
2

27 3/2 3 2for  (5.160)

and as

 v
N

v r N≈
+

= ≈ +◊
+1

1
1/ 1 .2for  (5.161)

Therefore, the two branches of the instability line approach the 
straight lines v = 1 and v v= ◊

+ corresponding to a single sphere 
and to a multi-sphere consisting of (1 + N ) spheres of equal size, 
respectively, compare Figure 5.19.

Along the instability line that approaches v v N= = +◊
+ 1/ 1  

for large m , the N buds are smaller than or equal to the central 
sphere, i.e., r2 ≤ r1, as illustrated in Figure 5.18a and Figure 5.20a. 
In contrast, the shapes along the L2

+ line with m m> ◊
+ are charac-

terized by N buds that are larger than the central sphere, i.e., r2 > r1, 
as illustrated in Figure 5.18b and Figure 5.20c. As a consequence, 
the instability line that approaches v v N= = +◊

+ 1/ 1  for large m  
does not cross the L2

+ line obtained for m m> ◊
+. Indeed, for the 

dark yellow region in Figure 5.19, we obtain a stack of two different 
sheets of (1 + N)-spheres, the two sheets being connected via 
the L=

+ line. This bifurcation structure will be discussed in more 
detail in the next paragraphs.
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 Persistent shapes and deflation behavior
As for two-sphere vesicles, the geometry of the persistent 
shapes Φ+ is fully determined by the volume v. Thus, if we 
consider any point ( , )m vo o  within the region bounded by the 
limit shapes, see the yellow region in Figure 5.19, the persis-
tent shape at this point has the same geometry as the limit 
shape with the same volume v = vo, i.e., as the limit shape 
obtained by projecting the point ( , )m vo o  parallel to the m -axis 
onto the line of limit shapes. Using this constant-volume pro-
jection, we can then distinguish persistent shapes Φ1

+, Φ*
+, and 

Φ2
+ which have the same geometry as the limit shapes L1

+, L*
+ , 

and L2
+ , respectively.

Now, consider a point ( , )m vo o  within the region between the 
L=

+-line and the L2
+-line with m m> ◊

+, corresponding to the dark 
yellow region in Figure 5.19. The constant-volume projection of 
this point onto the lines of limit shapes leads to two such shapes. 
One of these L2

+ shapes is located at m m< ◊
+ and characterized 

by r1 > r2 whereas the other L2
+ shape is located at m m> ◊

+ which 
implies r1 < r2. As a consequence, for each point ( , )m vo o  within 
the dark yellow region in Figure 5.19, we obtain two different per-
sistent shapes Φ2

+ with r2 < r1 and r2 > r1, respectively. Therefore, 
the dark yellow region in Figure 5.19 is characterized by a stack 
of two different sheets of shapes, two sheets that merge along the 
line of limit shapes L=

+ .
This two-sheet structure of the morphology diagram has 

interesting consequences for the deflation and inflation behav-
ior of the multi-sphere vesicles considered here. Starting from 
a “balanced” persistent shape Φ*

+, deflation eventually leads 
to a limit shape L=

+, consisting of 1 + N spheres of equal size. 
Further deflation of the latter shape will open up the necks of the 
L=

+-shapes. However, inflation of the L=
+-shape will not necessar-

ily lead back to the Φ2
+-shapes that were obtained by deflation 

of the balanced Φ*
+-shapes. Indeed, the whole L=

+-line should 
be regarded as another bifurcation line from which two sheets of 
Φ2

+-shapes emanate, both of which are accessible via inflation of 
the L=

+-shapes. Inflation along one of these two sheets leads back 
to the balanced Φ*

+-shapes, inflation along the other sheet leads 
to the limit shapes L2

+ with m m> ◊
+. This behavior is illustrated in 

Figure 5.20 for N = 3.

 Out-buds with zero bending energy
The persistent shapes Φ+ include the special shapes ZNout  with N 
out-buds that have radius r m2 1/=  and, thus, vanishing bending 
energy. The reduced volume of these latter shapes is given by

 v N
m

N
m

N
m

N
m

m= −





 + ≈ − +1 1 3

2
.2

3/2

3 2 2 for large  (5.162)

Therefore, the line of special shapes ZNout  with zero-energy 
buds also approaches the straight line v = 1 for a single sphere. 
Comparison with Eqs 5.152 and 5.160 shows that the line of ZNout  
shapes is located between the line of limit shapes L1

+ as described 
by Eq. 5.152 and the upper branch of the instability line for 
individual spheres as given by Eq. 5.160. As a consequence, the 
special shapes ZNout  are stable for large m . Furthermore, the line of 
ZNout  shapes with zero-energy buds includes the limit shape L◊

+, see 
Figure 5.19, because

v N
m

N
m N

v m m N= −





 + =

+
= = = +◊

+
◊
+1 1

1
1 .2

3/2

3 for  (5.163)

In the latter case, the N out-buds have the same size as the mother 
vesicle which implies that the whole limit shape L◊

+ has vanish-
ing bending energy as mentioned previously. Therefore, the ZNout  
shapes with zero-energy buds have stably closed necks connect-
ing stable individual spheres, and the corresponding ZNout  line in 
the morphology diagram emanates from the limit shape L◊

+ with 
m m N= = +◊

+ 1  and approaches the straight line v = 1, corre-
sponding to a single sphere, for large m .

 Corrections arising from area-difference-elasticity
When we include area-difference-elasticity, the shapes with a 
large mother vesicle of radius r1 and N spherical out-buds of 
radius r2 generate the nonlocal spontaneous curvature

 m r Nr r N rnlo = − − = − − −( )





π κ

κ
π κ

κ
∆ ∆(1 ) 1 11 2 1 1

2
 (5.164)

Deflation Deflation

Inflation Inflation

(a) (b) (c)

Figure 5.20 three multi-sphere vesicles that can be transformed into each other by deflation or inflation. all three vesicles consist of a single 
r1-sphere and three r2-spheres: (a) Persistent shape Φ1

+ with one large r1-sphere with volume v1 and N = 3 smaller r2-spheres with combined 
volume 3v2 < v1; (b) Limit shape L =

+  for which the r1-sphere and the three r2-spheres have the same size; and (c) Persistent shape Φ2
+ with a small 

r1-sphere and three larger r2-spheres. Deflation of Φ1
+ in (a) leads, via an intermediate shape Φ2

+, to L =
+ as in (b) but inflation of L=

+  can lead either 
back to (a) or to (c). Such deflation and inflation processes are possible for m m> (3) 2◊

+ = , see Figure 5.19.
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which generalizes Eq. 5.119 from N = 1 to N ≥ 1. The last 
equality in Eq. 5.164 follows from the area relation r Nr1

2
2
2 1+ = . 

The geometric factor in Eq. 5.164 is negative and bounded by

 1 1 1 1 01 1
2− + ≤ − − −( ) ≤N r N r  (5.165)

which implies that the absolute value of the nonlocal spontaneous 
curvature satisfies

 | | 1 1 .m Nnlo ≤ + −( )π κ
κ
∆  (5.166)

The neck closure condition is now given by

 M
r r

m m m r Nrne nlo= +







 = + = + − −

1
2

1 1 (1 )
1 2

1 2π κ
κ
∆  (5.167)

Using the inequality in Eq. 5.166, we can ignore the nonlocal con-
tribution mnlo in the neck closure condition as given by Eq 5.167 for

 m N π κ
κ

( 1 1)+ − ∆  (5.168)

which generalizes Eq. 5.126 for two-sphere shapes with N = 1 to 
arbitrary values of N.

Alternatively, we can consider the limit of small out-buds and, 
thus, small bud radii r2. In this limit, the radius r1 of the mother 
vesicle behaves as r Nr1

1
2 2

21≈ −  for small Nr22 as follows from the 
area relation r Nr1

2
2
2 1+ = . As a consequence, the neck closure 

condition in Eq. 5.167 leads to the local spontaneous curvature

 
m

r r
Nr r N≈ +







 +

1
2

1 1 1/
1 2

2 2π κ
κ
∆ for small buds with 

 
(5.169)

which shows that we can ignore the κΔ term arising from area-
difference-elasticity for small r N2 1/ .

Mutual exclusion of out-buds
Because all out-buds or r2-spheres are attached to the r1-sphere, 
they may become closely packed when they reach a certain size. 
For N = 2 as shown in Figures 5.18a, b, the two r2-spheres can 
become arbitrarily large without getting into contact. Therefore, 
mutual exclusion of the two r2-spheres does not affect the mor-
phology diagram in Figure 5.19. For N = 3, mutual exclusion of 
the three r2-spheres starts to play a role when the radius of the 
r2-spheres becomes sufficiently large compared to the radius of 
the r1-sphere, compare Figure 5.20c. Indeed, the three r2-spheres 
come into contact when r r r2

3
2 3 1 1= 6.46=

−
 corresponding to 

the contact volume vco
+ = 0.5712 for N = 3. As a consequence, 

(1 + 3)-sphere shapes with r2 > r1 can no longer be formed for the 
volume range 0.5712 < < 1/ 3 0.5774v = .

In general, the mutual exclusion of the r2-spheres acts to 
reduce the parameter region in which (1 + N)-sphere shapes 
can be formed for all N ≥ 3. The corresponding contact volume 
v Nco

+ ( ) decreases with increasing N. For N = 12, the r2-spheres 

come into contact along the L=
+ -line where the r2-spheres have 

the same size as the r1-sphere. The corresponding contact vol-
ume v vco

+
◊
+= = =(12) (12) 1/ 13 0.2774. As a consequence, 

(1 + 12)-sphere shapes, for which each r2-sphere is larger than the 
r1-sphere can no longer be formed when we take mutual exclusion 
of the r2-spheres into account. On the other hand, we can also 
conclude that the morphology diagram exhibits both bifurcation 
points B*

+ and B◊
+ as well as the limit shapes L1

+, L2
+ with r1 > r2, 

and L=
+ up to bud number N = 11. Thus, for 3 ≤ N ≤ 11, the 

mutual exclusion of the out-buds will only affect the (1 +  N)-
spheres for which the bud radius r2 exceeds the radius r1 of the 
central sphere, as illustrated in Figure 5.20c for N = 3.

5.5.6 N-DEPENDENT ENERGY LANDSCAPE

Optimal bud number
In the previous subsections, we focused on the stability of dif-
ferent multi-sphere shapes and found certain stability regions 
within the ( , )m v -plane for each of these shapes. When we vary 
the spontaneous curvature m  and the volume v within such a 
stability region, the bending energy of the corresponding multi-
sphere shape changes smoothly and defines an energy surface 
over this region. Because the different stability regions overlap 
with each other in the ( , )m v -plane, we often find many energy 
surfaces stacked above one another, when we consider the vicin-
ity of a certain point in the ( , )m v -plane. These energy surfaces of 
the multi-sphere shapes should be regarded as partial branches 
that supplement the branches of stationary solutions obtained 
from the Euler-Lagrange equations. Therefore, the overall 
energy landscape of the vesicle shapes is rather complex.

In order to determine the shape of lowest bending energy for 
given values of m  and v, we need to compare the different branches 
of shapes. As an example, let us again consider multi-sphere shapes 
with N out-buds which have the dimensionless bending energy

E m N m N m m r Nrbe = − + − = + + − +(1 ) (1 ) 1 2 ( )1
2

2
2 2

1 2R R  (5.170)

where the radii r1 and r2 satisfy the geometric relations in Eqs 5.142 
and 5.143 with N1 = 1 and N2 = N. When we minimize this bend-
ing energy with respect to N, we find the optimal bud number

 N v m mopt for large≈ −2(1 )
3

.2  (5.171)

For N = Nopt, the radius of the out-buds has the value r2 ≈ 1/m– 
which implies that shapes with an optimal bud number are 
identical with the shapes ZNout  possessing N zero-energy out-buds. 
The asymptotic equality as given by Eq. 5.171 implies that the 
optimal number N = Nopt of out-buds increases with the spon-
taneous curvature m  when we consider a fixed volume v < 1 as 
obtained by the osmotic deflation of a single sphere. The actual 
shape transition from a shape with N out-buds to a shape with 
N + 1 out-buds necessarily involves smooth vesicle shapes with 
open necks. For small values of N, the corresponding bifurcations 
have been calculated by numerical energy minimization in (Seifert 
et al., 1991; Liu et al., 2016). For large values of N, we need to 
consider sufficiently large GUVs with radius r1 ≫ r2 = 1/m so that 
we can ignore the mutual exclusion of the out-buds.

rl8
Durchstreichen

rl8
Eingefügter Text
${\bar m}$



Understanding giant vesicles: A theoretical perspective106
G

ia
nt

 v
es

ic
le

s 
th

eo
re

ti
ca

lly
 a

nd
 in

 s
ili

co

Box 5.2 Membrane necks of vesicles with laterally uniform composition

Membrane necks are funnel-like membrane structures that connect two different membrane compartments. The mean 
curvatures, M1 and M2, of the two membrane segments adjacent to the neck define the neck curvature M M Mne = ( )1

2 1 2+  as 
introduced in Eq. 5.48.

• GUV and out-bud connected by a narrow membrane neck (from Figure 5.2). The mother 
vesicle has the radius R1 = 19 µm, the out-bud has the radius R2 = 7.2 µm. The neck cur-

vature Mne then has the positive value M R Rne m= ( ) =1
2

1 1 1
10.41 2

+ µ .

• GUV and in-bud connected by a narrow membrane neck (from Figure 5.6). The mother 
vesicle has the radius R1 = 10.4 µm, the in-bud has the radius R2 = 4.7 µm, which leads to 
the negative neck curvature M R Rne m= ( ) =1

2
1 1 1

8.61 2
− − µ .

When we observe the closure of a neck, the neck curvature Mne is equal to the spontaneous curvature meff, which may 
include a non-local contribution from area-difference-elasticity as in Eq. 5.68. Thus, the observation of neck closure leads 
to an estimate for meff. Furthermore, sufficiently large values of meff lead to the cleavage of the membrane neck and thus to 
complete membrane fission, see Section 5.5.4.

• A spherical vesicle may form several spherical buds with closed membrane necks. 
In equilibrium, all buds must have the same mean curvature as follows from the Euler-
Lagrange Eq. 5.70 for spherical membrane segments. Therefore, the necks of all buds 
must have the same neck curvature Mne.

• (Top) A vesicle with four out-buds and positive neck curvature.

• (Bottom) A vesicle with four in-buds and negative neck curvature.

• (Top) A vesicle membrane with positive spontaneous curvature forming a necklace-like 
out-tube consisting of four out-beads with the same positive mean curvature.

• (Bottom) A vesicle membrane with negative spontaneous curvature forming a necklace-
like in-tube consisting of four in-beads with the same negative mean curvature.

• In both cases, the neck curvature Mne attains two different values (i) for the necks con-
necting the necklace-like tube with the mother vesicle and (ii) for the necks between two 
neighboring beads within the tube.

• Five different morphologies of a vesicle with four in-beads or in-buds of equal size. All 
five morphologies have the same membrane area, the same vesicle volume, the same 
integrated mean curvature, and the same bending energy. This degeneracy illustrates 
the morphological complexity of membranes, see Section 6.4 further below.

• Apart from the 4-bud morphology, all morphologies involve two types of necks that dif-
fer in their neck curvature.

GUVs with buds and necklace-like tubes stabilized by membrane necks have some interesting properties. On the one 
hand, they provide aqueous subcompartments that could be used for the confinement of nanoparticles or microspheres. 
The closed necks represent diffusion barriers that can, however, be removed relatively easily, e.g., by osmotic inflation 
which leads to neck opening for all morphologies displayed in this box. On the other hand, the formation of many buds 
and necklace-like tubes provides an area reservoir to the mother vesicle which increases the vesicle’s robustness against 
mechanical perturbation as shown by micropipette aspiration (Bhatia et al., 2018). The stability of membrane necks can be 
further enhanced by adhesion and constriction forces (Agudo-Canalejo and Lipowsky, 2016), see Chapter 8 of this book.
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5.6  NANOTUBES OF UNIFORM 
MEMBRANES

Giant vesicles can spontaneously form long nanotubes that 
emanate from the vesicle membrane. Such a tubulation process 
provides direct evidence that the vesicle membrane has a 
relatively large spontaneous curvature m. In-tubes pointing 
towards the interior of the vesicle are formed for large nega-
tive m-values, see Figure 5.21, out-tubes pointing towards the 
exterior solution for large positive values of m. Therefore, a 
uniform membrane with constant spontaneous curvature will 
form either in-tubes or out-tubes but not both types of tubes 
simultaneously.

In general, in- and out-tubes differ in several important aspects. 
First, the in- and out-tubes are connected to different volume 
reservoirs: the in-tubes exchange volume with the exterior aqueous 
compartment, which represents an effectively unlimited volume 
reservoir, whereas the out-tubes exchange aqueous solution with 
the interior vesicle compartment. Second, the membranes of out- 
and in-tubes experience different osmotic pressure differences: the 
membrane of an out-tube is subject to the same pressure differ-
ence ΔP as the membrane of the large spherical segment whereas 
an in-tube feels the opposite pressure difference −ΔP. Third, the 
membrane segments that form in- and out-tubes differ in the sign 
of their mean curvature which is negative for in-tubes and positive 
for out-tubes.

As shown in Figure 5.21, membrane nanotubes can have 
two different morphologies: necklace-like tubes consisting of 
small quasi-spherical beads connected by closed membrane 
necks as well as cylindrical tubes. From a theoretical point of 
view, necklace-like tubes represent multi-sphere vesicles with 
two types of necks whereas cylinders are governed by differ-
ent shape equations. For cylindrical tubes, we include a pulling 
force that is applied locally to the tip of the tubes. For both tube 
morphologies, the mechanical tension is relatively small, reflect-
ing the large area reservoir provided by the tubes, and the total 
membrane tension is dominated by the spontaneous tension, 
σ = 2κm2 (Lipowsky, 2013). At the end, we briefly discuss the 
transformation of necklace-like tubes into cylindrical ones, a 
transformation that occurs when the tube length has reached a 
certain critical value.

5.6.1 NECKLACE-LIKE NANOTUBES

Necklace-like nanotubes as observed experimentally consist of 
identical quasi-spherical beads that are connected by closed mem-
brane necks. One such necklace consisting of three beads is visible 
in Figure 5.21a. If one ignores thermally excited fluctuations, such 
a necklace can be described, in the context of curvature models, 
by a multi-sphere vesicle with two different types of closed necks 
as shown in Figure 5.22. Indeed, we now have to distinguish the 
necks between the large sphere and a necklace from the necks 
between two small spheres within the same necklace. In the fol-
lowing, we will use three terms for the sake of clarity. First, we will 
distinguish “buds” that are directly connected to the mother vesicle 
from “beads” that are connected to buds or other beads. Second, 
both buds and beads will be collectively called “spherules.”

Necklace geometry and neck stability
Geometry of vesicle with necklace-like nanotubes. Consider 
a GUV consisting of a large spherical mother vesicle and one 
or several necklace-like nanotubes as displayed in Figure 5.22. 
The tubes contain a total number N of spherules. For a vesicle 
membrane with area A, we will again use the vesicle size 

Rve = A /(4 )π  as the basic length scale and use the rescaled 
radii r1 = R1/Rve and r2 = R2/Rve < r1 of the mother vesicle and the 
spherules. These radii satisfy the relations

 r Nr1
2

2
2 1+ =  (5.172)

corresponding to the total membrane area A and

 r Nr v1
3

2
3± =  (5.173)

corresponding to the vesicle volume V where the plus and minus 
sign applies to out- and in-necklaces. Note that the same geomet-
ric relations apply to a GUV with N out- or in-buds as described 
in Section 5.5.
Stability of membrane necks. As mentioned, each necklace con-
nected to a giant vesicle is characterized by two types of necks, 
12- and 22-necks, see Figure 5.22. These two necks have two 
different neck curvatures as given by

 M M M12 1 2
1
2

( )= +  (5.174)

Figure 5.21 Giant vesicles with in-tubes, i.e., with membrane nano-
tubes that point towards the vesicle interior: (a) one necklace-like 
tube and several buds and (b) several necklace-like tubes and two 
cylindrical tube segments (white arrows). (reproduced with permis-
sion from Liu, Y. et al., ACS Nano, 10, 463–474, 2016.)

out-necklacesin-necklaces

12 22

12
22

(a) (b)

Figure 5.22 Necklace-like nanotubes consisting of spherules with 
radius r2 emanating from a giant spherical vesicle with radius r1. these 
shapes involve two different types of closed necks, 12-necks and 
22-necks, that differ in their neck curvatures: (a) Necklace-like in-
tubes with negative neck curvatures M12 and M22 < M12 are formed for 
negative spontaneous curvature; and (b) Necklace-like out-tubes with 
positive neck curvatures M12 and M22 > M12 require a membrane with 
positive spontaneous curvature.
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and

 M M M M22 2 2 2
1
2

( ) .= + =  (5.175)

We will now examine the stability of these two types of necks.
Out-necklaces require positive spontaneous curvature m > 0 
and are characterized by positive mean curvature M2 = 1/R2 of 
the spherules. For such a necklace, the 22-necks connecting two 
neighboring spherules, see Figure 5.22, are stable if the neck 
curvature M22

 0 < 22 2M M m= ≤ (stable 22-neck of out-necklace). (5.176)

Furthermore, the stability condition for the 12-necks, connecting 
the mother vesicle with the out-necklace, has the form

 M M m1 2 2+ ≤  (5.177)

which follows from the stability condition Eq. 5.176 for the 
22-necks because

 M M M m1 2 2< 2 2 .+ ≤  (5.178)

In-necklaces, on the other hand, can form for negative sponta-
neous curvature m < 0 and are characterized by negative mean 
curvature M2 = −1/R2 of the spherules. The stability condition for 
the 22-necks is now given by

 m M M≤ =22 2 < 0 (stable 22-neck of in-necklace). (5.179)

Furthermore, the stability condition for the 12-necks, connecting 
the mother vesicle with the out-necklace, has the form

 M M m1 2 2+ ≥  (5.180)

which follows from the stability condition Eq. 5.179 for the 
22-necks because

 M M M m1 2 2> 2 2 .+ ≥  (5.181)

Necklaces of zero-energy spherules
We now consider necklaces that consist of zero-energy spherules 
with radius R R2 11/| |= m   and denote the shapes with N zero-
energy spherules by LNin  and LNout.11 In contrast to the persistent 
shapes ZNin and ZNout  with N zero-energy in- and out-buds as 
discussed in Section Multi-sphere vesicles with N out-buds, the 
shapes LNin  and LNout are limit shapes because the closed 22-necks 
between neighboring spherules fulfill the neck closure condition 
M22 = m, compare Eqs 5.176 and 5.179.

For the limit shapes LNin  and LNout with spherules of radius 
r m2 1/| | 1=  , the mother vesicle has the radius

 r r N N
m

1 1 2( ) 1= = −  (5.182)

and the volume is given by

 v v N N
m

N
m

= = −





( ) 1
| |

,2

3/2

3  (5.183)

where the minus and plus sign applies to in- and out-necklaces, 
respectively.

Because the spherules have the radius r m2 1/| |= , the in- and 
out-necklaces do not contribute to the bending energies of the LNin  
and LNout shapes. The latter energies are then equal to the bending 
energies of the mother vesicle with radius r1 and mean curvature 
M r1 11/= . These bending energies have the form

 E r mrbe for both in- and out-necklaces( ) 8 (1 )1 1
2= −πκ  (5.184)

corresponding to m < 0 and m > 0, respectively. Using Eq. 5.182, 
the latter bending energy can be rewritten as

 E r E r m m N
m

Nbe
be( ) ( )
8

1 2 11
1 2

2= = + − − −
πκ

 (5.185)

which behaves as

 E r m N
m

mbe for large( ) (1 ) 1 1 | |.1
2≈ − − −






  (5.186)

The first term of this expression represents the bending energy of 
a single sphere with spontaneous curvature m . The second term 
proportional to N is negative for m < 0 or m > 1. Thus, for large 
negative or positive values of m , the bending energies of the two 
limit shapes LNin  and LNout decrease with increasing N. Therefore, 
these limit shapes provide possible low-energy pathways for the 
osmotic deflation of giant vesicles with large negative and large 
positive spontaneous curvatures, respectively.

The low-energy pathway provided by the sequence of LNin  shapes 
has been studied in detail by numerical minimization of the shape 
functional { }S  in Eq. 5.22 (Liu et al., 2016). As a result, it was 
found that each limit shape LNin  belongs to a different branch of 
(meta)stable shapes. When we start from such a limit shape with a 
certain value of N, an increase in vesicle volume via osmotic infla-
tion leads to an opening of the necks and the necklaces then resem-
ble unduloids as shown in Figure 5.23b, compare also Figure 5.28 
further below. On the other hand, decreasing the vesicle volume 
by osmotic deflation does not open the closed necks connecting 
neighboring spherules but increases the radius of the spherules to 
r m2 > 1/| |, see Figure 5.23b. The corresponding metastable branch 
extends up to r m2 3/| |=  at which point the spherules become 
unstable and undergo a sphere-prolate bifurcation.

5.6.2 DOMINANCE OF SPONTANEOUS TENSION

The mechanical equilibrium between the spherical mother vesicle 
and the spherules implies the two shape equations 

 
∆ ΣP M mM M M M= − = = ±2 4 = 1 12

1
1

2
2

 sp sp spwith orκ
R R11 In (Liu et al., 2016), the shapes LN

in  have been denoted by L[N ].
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as in Eq. 5.70 with the total membrane tension Σ Σ = 2 2+ κm . 
Combining these two equations to eliminate the pressure differ-
ence ΔP, we obtain the mechanical tension

 Σ = + − = −2 ( ) 2 4 21 2
2

12
2κ κ κ κm M M m mM m  (5.187)

where the first equality is equal to Eq. 5.76 and the second equal-
ity follows from the mean curvature M12 of the 12-neck as given 
by Eq. 5.174. Therefore, the mechanical tension Σ depends on the 
neck curvature M12 whereas the stability of the multi-sphere shape 
is determined by the neck curvature M22 of the 22-necks.

For the limit shapes LNin  and LNout, the spherules have the mean 
curvature M2 = m and the mean curvature of the 12-necks is 
given by M M m12

1
2 1= ( )+ . As a consequence, the mechanical 

tension in Eq. 5.187 becomes

 Σ = = =2 1
1

2

1
κ σ σmM

mR
R
R

  (5.188)

where the minus and plus sign applies to the limit shapes LNin  
and LNout, respectively. Because the radius R1 of the mother vesicle 
is much larger than the radius R2 = 1/|m| of the spherules, the 
absolute value |Σ| of the mechanical tension in Eq. 5.188 is much 
smaller than the spontaneous tension σ = 2κm2.

The limit shapes LNin  and LNout represent the equilibrium shapes 
of the tubulated vesicle for certain vesicle volumes or, equiva-
lently, for certain values of the membrane area

 A A N m L LN N Nnt nt
in out(limit shapes and= ≡,

24 / )π  (5.189)

stored in the tubes (Liu et al., 2016; Bhatia et al., 2018). Each 
of these limit shapes belongs to a whole branch of shapes, as 
illustrated for in-necklaces by the energy branches in Figures 5.23 
and 5.24. The latter figure displays the bending energy landscape 
Ent for the necklace-like tubes that grow as we reduce the volume 
of the GUV. The deflation process decreases the membrane area 
A1 of the mother vesicle and increases the area Ant stored in the 
tubes, for fixed total area A = A1 + Ant. The bending energy of 
the tubulated GUV is equal to E1 + Ent where the bending energy 
E1 of the mother vesicle is a monotonically decreasing function 

Figure 5.23 Osmotic deflation and inflation of a lipid vesicle with size 
Rve = 20.7 µm and spontaneous curvature m = −1/(599nm): (a) Energy 
landscape of the vesicle as a function of the reduced volume v with the 
limit shapes L LN

N
[ ] ≡ in . the energy difference ΔE describes the deflation-

induced reduction in bending energy compared to the initial spherical 
vesicle, in units of 8πκ. the eight vertical lines labeled from 1 to 8 (top) 
correspond to eight v-values obtained via eight discrete deflation 
steps; and (b) tube shapes for the global energy minima at these eight 
v-values. the short vertical line on the left end of the tubes represents 
a short segment of the mother vesicle which is connected to each 
tube by a closed membrane neck. as we deflate the initial vesicle 
with v = 1, we move along the 1-necklace branch (red) that begins 
at the limit shape Lsto with bud radius R2 ≈ 1/(2|m|) and v = 0.9997. 
after passing the shape L L[1]

1= in with R2 = 1/|m| and v = 0.9987, we 
reach the reduced volume v = 0.9982 at which the 1-necklace branch 
crosses the 2- necklace branch (blue). For the latter v-value, a bud with 
radius R2 > 1/|m| coexists with a 2-necklace that has an open 22-neck. 
Further deflation leads to the 2-necklace L L[2]

2= in with a closed neck at 
v = 0.9975 and, subsequently, to the 3-necklace branch (orange) and 
the 4-necklace branch (green). the dashed and solid segments of the 
free energy landscape in panel (a) correspond to tubes with closed 
and open necks, respectively. (reproduced with permission from Liu, 
Y. et al., ACS Nano, 10, 463–474, 2016.)

Figure 5.24 Energy landscape Ent of a necklace-like nanotube 
protruding into a GUV as a function of membrane area Ant stored 
in the tube. the size of the GUV is much larger than the width of 
the nanotube. the energy landscape is built up from a discrete set 
of [N]-branches with N ≥ 1. the different branches are distinguished 
by different colors. Each [N]-branch attains its energy minimum for the 
limit shape L LN

N
[ ] = in  which consists of N spherules with radius R2 = 1/|m| 

and area 4π/m2. When we deflate the limit shape L[N], i.e., when we 
reduce the vesicle volume for fixed membrane area, we move towards 
larger values of the tube area Ant along the dotted lines which repre-
sent necklace-like tubes with N small spheres of radius R2 > 1/|m| and 
N − 1 closed necks. When R2 reaches the limiting value R2 = 3/|m|, the 
spherules undergo a sphere-prolate bifurcation (outside of the figure). 
When we inflate the limit shape L LN

N
[ ] = in , we move towards smaller val-

ues of Ant along the full lines that represent necklace-like tubes with N 
bellies and N − 1 open necks. the dash-dotted lines represent unsta-
ble necklace-like tubes corresponding to transition states [N, N + 1] 
between the (meta)stable [N] and [N + 1] states. the red circles mark 
the nanotube morphologies displayed in Figure 5.25. (From Bhatia, t. 
et al., ACS Nano, 12, 4478–4485, 2018.)
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of Ant. Examples for the morphologies of the necklace-like tubes 
along several branches of the energy landscape are displayed in 
Figure 5.25.

Inspection of the energy landscape in Figure 5.24 reveals 
that the equilibrium shapes with the lowest bending energy Ent 
are provided by short segments of the [N ]-branches as obtained 
by slight deflation and slight inflation of the limit shapes LNin . 
Slight deflation of LNin  reduces the vesicle volume and increases 
the area Ant of the necklace-like tubes until we reach the inter-
section point of the [N ]-branch with the [N + 1]-branch at tube 
area Ant = (N + εN )4π/m2 with a dimensionless coefficient εN 
that satisfies 0 < εN < 1. We now consider the increase in tube 
area as given by

 A A
m

N N N Nnt nt with− ≡ ≤ ≤, 2
4 0δ π δ ε  (5.190)

which leads to the mean curvature

 M m
N

m
N

N
N

N
2

1 /
1

2
.=

+
≈ −






δ

δ for large  (5.191)

The number N of spherules is directly related to the length Lnt 
of the necklace-like nanotubes via Lnt = 2NR2 = 2N/|M2| which 
implies

 M m
L

LN
2 2 ,≈ + δ

nt
ntfor large  R  (5.192)

i.e., for a tube length Lnt that is large compared to the radius R2 of 
the spherules, with 0 < δN < 1. Using again the general expres-
sion for the mechanical tension Σ of necklace-like tubes as given 
by Eq. 5.187, we obtain

 Σ ≈ +







 = +







2 1

1
1

κ δ δ σm M
L m mL
N N

nt ntR
 (5.193)

Therefore, the absolute value |Σ| of a necklace-like tube is much 
smaller than the spontaneous tension σ if both the mother vesicle 
radius R1 and the tube length Lnt are much larger than the small 
sphere radius R2 ≈ 1/|m|. In such a situation, the total mem-
brane tension Σ Σ = +σ  of a GUV with necklace-like nanotubes 
becomes

 Σ Σ = + ≈ +







 + ≈σ δ σ σ σ1 | |

1m mL
mN

R nt
(large ) (5.194)

and is, thus dominated by the spontaneous tension σ. The small 
mechanical tension reflects the large area reservoirs as provided by 
the nanotubes. Indeed, when the tubulated vesicle is exposed to 
external forces or constraints, it can adapt to these perturbations, 
for fixed vesicle volume and membrane area, by simply shortening 
the nanotubes. This increased robustness of tubulated vesicles has 
been recently demonstrated by micropipette aspiration of tubu-
lated GUVs (Bhatia et al., 2018).

5.6.3  MORPHOLOGICAL COMPLEXITY AND RUGGED 
ENERGY LANDSCAPE

As previously mentioned, the limit shapes LNin  displayed in 
Figure 5.23 provide a low-energy pathway for the growth of a 
single necklace-like tube. The elongation of this tube from L[N ] 
to L[N+1] proceeds via a sphere-prolate bifurcation. Inspection of 
the microscopy images displayed in Figure 5.21 and Figure 5.4 
reveals however that giant vesicles can form much more complex 
shapes consisting of many buds and tubes. This morphological 
complexity emerges from the presence of a second low-energy 
pathway provided by the nucleation of another bud via an oblate-
stomatocyte bifurcation (Liu et al., 2016). The competition of 
these two pathways—elongation of an existing bud or necklace 
and nucleation of another bud—can lead to many different mor-
phologies (Lipowsky, 2018b).

In order to illustrate the morphological complexity, let us 
consider a monodisperse batch of vesicles with a certain spontane-
ous curvature m. These vesicles are now osmotically deflated by 
the same deflation steps as in Figures 5.23–5.25. As a result, we 
obtain the same sequence of vesicle volumes VN that lead to the 
limit shapes LNin , but let us now include the possibilities (i) that 
the vesicle membrane can also form, at each step, a new bud and 
(ii) that the same deflation step can elongate any of the existing 
buds and necklaces. As a result, we obtain a complex sequence of 
morphologies as shown in Figure 5.26.

In Figure 5.26, all morphologies with the same number N of 
spherules have the same bending energy (Lipowsky, 2014a; Liu 
et al., 2016) and represent, in fact, the states of lowest bending 
energy for given area A and volume VN. The N-bead morphologies 

2.5 3 4

3

1.86

2.13 2.36 3

(a)

(b) (c)

inL 3

Figure 5.25 Morphologies of necklace-like nanotubes corresponding 
to the red circles in Figure 5.24. the number at the top of each tube 
represents the tube area Ant in units of 4π/m2: (a) Four shapes along 
the (meta)stable [3]-branch. the shape with Ant = 1.86 represents 
the bifurcation point between the [3]-branch and the unstable [2, 
3]-branch of transition states. the shape with Ant = 3 is the limit shape 
L3

in; (b) three shapes along the unstable [2, 3]-branch of transition 
states. the shape with Ant = 2.13 is located at the energy minimum 
of the [2, 3]-branch, see Figure 5.24, the shape with Ant = 2.36 
separates transition states with three from those with two bellies; 
and (c) Metastable shape of the [2]-branch that decays into the limit 
shape L L[3]

3= in via the rightmost transition state in (b) with Ant = 3 (two 
arrows). (From Bhatia, t. et al., ACS Nano, 12, 4478–4485, 2018.)
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differ, however, in the detailed arrangement of the spherules 
and belong to different energy branches that cross each other at 
 volume V = VN. Note also that all spherules connected to the 
same mother vesicle must have the same size. The latter feature 
follows directly from the Euler-Lagrange equation for uniform 
membranes because this equation allows only spherical segments 
with two different radii to coexist on the same vesicle.

What happens when we continue to deflate the vesicles 
displayed at the bottom of Figure 5.26a? It turns out that the 
number |Ω| of distinct N-spherule morphologies grows quite rap-
idly for N > 4. This is illustrated in Figure 5.26b by the |Ω| = 11 
distinct states of lowest bending energy for N = 6. Each of these 
11 states has again the same area, volume, and bending energy. 
Therefore, we have 11 different branches of shapes that cross each 
other at volume V = V6. For even larger values of N, the number 
|Ω| of distinct N-spherule morphologies grows exponentially with 

N  as follows from known results about partitions in the sense 
of mathematical number theory. Furthermore, when we reach a 
certain volume VN after the Nth deflation step, many n-spherule 
morphologies with n < N can still exist as metastable states with 
larger spherule sizes. As a consequence, the energy landscape 
becomes more and more rugged as the volume decreases and the 
largest possible bead number N increases.

The morphological complexity described above has been 
recently studied experimentally by optical microscopy of giant 
vesicles (Bhatia et al., in preparation). These vesicles were exposed 
to aqueous solutions of two monosaccharides, sucrose and 
glucose. Varying the two sugar concentrations, one can inde-
pendently change the volume-to-area ratio v and the spontaneous 
curvature m. As a result, a large variety of different morphologies 
has been observed, in agreement with the theoretical predictions.

5.6.4 CYLINDRICAL NANOTUBES

As shown in Figure 5.21b, the spontaneous tubulation of giant 
vesicles can also lead to cylindrical nanotubes. Cylindrical shapes 

are described by two shape equations, both of which differ from 
the shape equation for spherical shapes. In the next subsection, we 
will first derive the shape equations for cylinders. In the subse-
quent subsection, we will then combine the shape equations for 
cylinders and spheres in order to describe giant vesicles with 
cylindrical nanotubes.

5.6.5  SHAPE EQUATIONS FOR CYLINDRICAL 
TUBES

A cylindrical membrane segment is characterized by constant 
mean curvature M = Mcy and vanishing Gaussian curvature G = 0. 
It then follows from the Euler-Lagrange Eq. 5.23 that the mean 
curvature Mcy satisfies the cubic equation

 ∆ Σ ΣP M M M m M M= − − = −2 4 ( ) 2 42 2 3
cy cy cy cy cyκ κ  (5.195)

with the total membrane tension Σ Σ = + 2 2κm  as before. In con-
trast to spherical shapes, an infinitesimal scale transformation 
of cylindrical shapes leads to a global shape Eq. 5.45 that differs 
from the Euler-Lagrange Eq. 5.195. Indeed, the global shape 
equation has the form

 3 8 16 2∆ ΣP M mM= − cy cyκ  (5.196)

for both in- and out-tubes. The Euler-Lagrange Eq. 5.195 and 
the global shape Eq. 5.196 can be derived in a more intui-
tive manner if one parametrizes the cylindrical shape by its 
radius Rcy and its length Lcy and minimizes the corresponding 
shape energy both with respect to Rcy and with respect to Lcy 
(Lipowsky, 2013).

We can now eliminate the term proportional to Σ  by a 
combination of Eqs 5.195 and 5.196 which leads to the pressure 
difference

 ∆P M m M= −16 ( ).2κ cy cy  (5.197)

When we insert the latter equation into Eq. 5.195, we obtain the 
total tension

 Σ = 8 6 2κ κmM Mcy cy−  (5.198)

and the mechanical tension

 Σ Σ= − = − − − 2 6 ( )( 1
3

)2κ κm M m M mcy cy  (5.199)

as a function of mean curvature Mcy.
The two relations in Eqs 5.197 and 5.199 have two immedi-

ate consequences: (i) For fixed curvature-elastic parameters κ 
and m  , each possible value of Mcy leads to unique values of ΔP 
and Σ. Thus, as we vary the value of Mcy, we move along a certain 
line in the (Σ, ΔP)-plane; and (ii) Vice versa, for each point in the 
(Σ, ΔP)-plane, we find only a single solution for Mcy. Taken sepa-
rately, both the cubic relationship Eq. 5.197 between the pressure 
 difference ΔP and the mean curvature Mcy as well as the quadratic 

(a) (b)

Figure 5.26 (a) the deflation of the limit shape L L[1]
1= in in with a single 

in-bud (top) can lead to the shape L L[2]
2= in with a necklace consisting of 

two spherules or to another shape with two in-buds. Further deflation 
steps (arrows) lead to an increasing number |Ω| of distinct N-bead 
morphologies which all have the same area, volume, and bending 
energy and represent, in fact, the states of lowest bending energy. 
Note that we have |Ω| = 5 distinct morphologies with N = 4 spherules; 
and (b) For N = 6, the vesicle can attain |Ω| = 11 different morpholo-
gies, all having the same volume, area, and bending energy as L L[6]

6= in. 
Neighboring morphologies differ in the location of only one bead and 
can be obtained by a “cut and paste” operation (Lipowsky, 2014a). 
In both (a) and (b), all contact zones between two spherical mem-
brane segments contain a closed membrane neck which implies that 
all beads are filled with exterior solution (white).

rl8
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relationship Eq. 5.199 between the mechanical tension Σ and Mcy 
can lead to several solutions for Mcy. However, one cannot find two 
different values for Mcy that satisfy both relationships simultane-
ously. Therefore, these equations do not allow the coexistence of 
two cylinders with different radii.

5.6.6  SPONTANEOUS AND FORCE-INDUCED 
TUBULATION

To proceed, let us now consider a vesicle as shown in Figures 5.5 
and 5.27 that has the shape of a large sphere with radius Rsp and 
a cylindrical tube with radius Rcy and length Lcy. As in the case of 
necklace-like tubes, we must distinguish cylindrical in-tubes as 
in Figure 5.27a from cylindrical out-tubes as in Figure 5.27b. To 
study the interplay of spontaneous and force-induced tubulation, 
a locally applied external force will be included that acts at the tip 
of the cylinder as shown in Figure 5.27. The force f is taken to be 
positive and negative if it points towards the exterior and interior 
aqueous solution, respectively, see Figure 5.27 (this convention is 
different from the one used in (Lipowsky, 2013), where f described 
the absolute value of the pulling force for both pulling directions). 
As shown in (Lipowsky, 2013), minimization with respect to 
Rcy and Lcy then leads to two equations that have the same form 
as Eqs 5.197 and 5.199 but with the spontaneous curvature m 
replaced by the composite curvature

 m m f
com ≡ +

4πκ
 (5.200)

which represents the superposition of the spontaneous curvature 
m and the rescaled pulling force f/(4πκ).

Next, we take into account that the cylindrical tubes emanate 
from a giant spherical vesicle as in Figure 5.27. The different 
membrane segments that form the tubes and the giant vesicle 
experience the same pressure difference ΔP and the same mem-
brane tension Σ . These two quantities are related to the mean 
curvature of the giant vesicle via the Euler-Lagrange equation 

 ∆ ΣP M mM= −2 4 2
 sp spκ

as given by Eq. 5.70 with Msp = 1/Rsp.
If we insert the expressions Eqs 5.197 and 5.199 for the cylin-

der, with m replaced by mcom, into the Euler-Lagrange Eq. 5.70 for 

the sphere, we obtain a cubic equation for the mean curvature Mcy 
which has the form (Lipowsky, 2013)

 g M( ) 0cy =  (5.201)

with the polynomial

 g x x m M x m M x mM( ) 4 4 3 4 .3 2 2≡ − +( ) + −com sp com sp sp  (5.202)

A cylindrical nanotube that emanates from a large mother 
vesicle must have a radius Rcy that is much smaller than the 
radius Rsp of the large mother vesicle. This separation of length 
scales is corroborated by the experimental observations, com-
pare Figure 5.21b, and implies that the curvature |Mcy| = 1/
(2Rcy) of the cylindrical tube is much larger than the curvature 
Msp = 1/Rsp of the giant vesicle. In this limit, the cubic equa-
tion Eq. 5.201 has the solution

 M m m f
cy com

sp sp
sp cyfor≈ − = + −1

4 4
1

4
.

R R
R R

πκ
  (5.203)

Therefore, to leading order, the mean curvature of the cylindrical 
nanotube is equal to the composite curvature mcom = m + f/(4πκ). 
For spontaneous tubulation with f = 0, the relation Eq. 5.203 
also implies that the limit of large R1/Rcy is equivalent to the 
limit of large |m|R1 which is of the same order of magnitude as 
| | | |m m R= ve.

Composite curvature and total membrane tension
Alternatively, we may also combine the Euler-Lagrange 
Eq 5.70 for the large sphere with the Euler-Lagrange Eq. 5.195 for 
the cylindrical nanotube to eliminate only the pressure differ-
ence. In the limit of giant vesicles, we then obtain the asymptotic 
equality

 M mcy
sp

spfor≈ ± −Σ� �/(2 ) 1
2

| | 1/κ
R

R  (5.204)

with the total membrane tension Σ Σ Σ = + = +σ κ2 2m  as in 
Eq. 5.26, where the plus and minus sign in Eq. 5.204 applies to 
out- and in-tubes, respectively. Note that the latter relation does 
not depend explicitly on the locally applied force f. A combination 
of the two asymptotic equalities Eqs 5.203 and 5.204 then leads 
to the relation

 m m f
com

sp
sp cyfor= + ≈ ± −

4
/(2 ) 1

4πκ
κΣ� �

R
R R  (5.205)

between the spontaneous curvature m, the locally applied force 
f, and the total membrane tension Σ Σ = +σ  which includes the 
spontaneous tension σ = 2κm2 and, thus, depends on the sponta-
neous curvature m as well.

It is also possible to pull both out- and in-tubes via an optical 
trap from the same aspirated GUV (Dasgupta and Dimova, 2014; 
Dasgupta et al., 2018). One can then measure the two forces fex 
and fin that generate out- and in-tubes for the same aspiration 

f = f   > 0ex
f = f   < 0in

(a) (b)

Figure 5.27 Giant vesicles with cylindrical nanotubes formed by 
spontaneous or force-induced tubulation: (a) Cylindrical in-tube in 
the presence of a pulling force f = fin that points towards the interior 
solution; and (b) Cylindrical out-tube in the presence of a pulling force 
f = fex that points towards the exterior solution. the pulling forces fin 
and fex are taken to be negative and positive, respectively.
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pressure and, thus, for the same mechanical membrane tension Σ. 
Both cases are described by Eq. 5.205 with f replaced by fex for 
the plus sign and by fin for the minus sign. The sum of these two 
relations leads to the simple expression

 m f f≈ − + −ex in

sp
sp cy8

1
4

( )
πκ R

R R  (5.206)

for the spontaneous curvature m. The term −1/(4Rsp) represents 
again a small correction term because |m| >> 1/Rsp as in Eq. 5.204. 
Therefore, one can determine the spontaneous curvature m by 
measuring the forces fex and fin, irrespective of the membrane tension. 
For symmetric bilayers as studied in (Dasgupta and Dimova, 2014), 
the spontaneous curvature vanishes and the relation Eq. 5.206 implies 
that fin = −fex. For GUVs containing a binary mixture of POPC and 
GM1, on the other hand, the out- and in-pulling forces, fex and fin, 
were observed to have different magnitudes, i.e., fin ≠ −fex which 
implies a nonzero spontaneous curvature (Dasgupta et al., 2018).

Total membrane tension and aspiration tension
The relationship between the composite curvature and the total 
membrane tension as given by Eq. 5.205 depends on the total 
membrane tension L1

+. In some experimental studies of force-
induced out-tubes, (Sorre et al., 2012; Simunovic et al., 2015) 
the relation in Eq. 5.205 was used with the total membrane 
tension Σ  replaced by the aspiration tension Σasp as obtained 
from the spherical end cap of the membrane tongue within the 
micropipette. Thus, consider the membrane tongue of a GUV 
that is aspirated by a cylindrical micropipette with radius Rpip. 
The spherical end cap of this tongue has the mean curvature Mto 
≤ 1/Rpip which increases initially from the value Mto = 1/Rve, i.e., 
the mean curvature of the initial mother vesicle, up to Mto = 
1/Rpip and then remains constant during further aspiration. Thus, 
it is useful to distinguish initial aspiration with 1/Rve < Mto < 
1/Rpip from prolonged aspiration with Mto = 1/Rpip.

If the pressures within the interior vesicle compartment and 
within the pipette are denoted by Pin and Ppip, the spherical end 
cap of the tongue is then described by the shape equation

 P P M mMin pip to to− = −2 4 2Σ κ  (5.207)

as follows from Eq. 5.70 for spherical segments with Msp replaced 
by Mto. In addition, the spherical mother vesicle with curvature 
radius Rsp and mean curvature Msp = 1/Rsp leads to the second 
shape equation

 P P M mMin ex sp sp− = −2 4 2Σ κ

as in Eq. 5.70. Subtracting the latter equation from Eq. 5.207, we 
obtain the suction pressure

 P P M M m M Mex pip to sp to sp− = − − +



2[ ] 2 ( ) .Σ κ  (5.208)

Note that the suction pressure Pex − Ppip vanishes for Mto = Msp 
which corresponds to the initial contact between GUV and 
pipette.

Solving Eq. 5.208 for the total membrane tension Σ , we obtain

 Σ Σ ∆Σ = asp +  (5.209)

with the aspiration tension

 Σasp
ex pip

to sp
to spfor≡

−
−

P P
M M

M M
2( )

>  (5.210)

and the additional tension term

 ∆Σ ≡ +2 ( ).κm M Msp to  (5.211)

When the mean curvature Mto of the tongue’s end cap has 
reached its maximal value 1/Rpip, the aspiration tension and the 
additional tension term become

 Σasp
ex pip pip

pip sp
=

−
−

( )
2(1 / )
P P R

R R
 (5.212)

and

 ∆Σ = +2 ( 1/ ).κm Msp pipR  (5.213)

The expression in Eq. 5.212 has been widely used to obtain the 
aspiration tension from micropipette experiments by control-
ling the suction pressure Pex − Ppip and by measuring the pipette 
radius Rpip as well as the radius Rsp of the mother vesicle by opti-
cal microscopy. The approximation used in (Sorre et al., 2012; 
Simunovic et al., 2015; Dasgupta et al., 2018) was to ignore the 
additional tension term ∆Σ and to replace the total tension Σ  in 
Eq 5.205 by the aspiration tension Σasp as given by Eq. 5.212.

The accuracy of this approximation depends on the magni-
tude of the suction pressure and of the spontaneous curvature. 
As an example, let us consider a GUV membrane with bend-
ing rigidity κ = 10−19 J and spontaneous curvature m m= /µm 
and let us assume that the GUV is aspirated by a micropipette of 
radius Rpip = 3 µm and then forms a larger spherical segment of 
radius Rsp = 6 µm. The additional tension term ∆Σ then has the 
magnitude 2 ( 1/ ) 0.1κm M msp pip+ =R  µN/m which is equal to 
1 µN/m for m = 10 or m = 1/(100 nm). This inaccuracy should be 
compared to the smallest values of the aspiration tension which 
are also of the order of 1 µN/m for the considered geometry, cor-
responding to the smallest accessible suction pressures of about 
1 Pa. Therefore, we conclude that the additional tension term ∆Σ 
should not be neglected if the spontaneous curvature is large and/
or if the suction pressure is small.

Dominance of spontaneous tension
In the absence of locally applied pulling forces, the total ten-
sion Σ Σ = +σ  of a cylindrical nanotube is given by the relation 
Eq 5.198, which depends on the bending rigidity κ, the spontane-
ous curvature m, and the tube’s mean curvature Mcy. Inserting the 
asymptotic equality Eq. 5.203 for Mcy with f = 0 into Eq 5.198, 
the total tension becomes

rl8
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rl8
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rl8
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 Σ ≈ + = +








2 1 1 | |2κ κ σm m

m
m

R R
R

sp sp
spfor large  (5.214)

with the spontaneous tension σ = 2κm2. It then follows that the 
total membrane tension is again dominated by the spontaneous 
tension and that the mechanical tension Σ Σ= − σ  behaves as 
(Lipowsky, 2013)

 Σ ≈ = ±κ σ σm
m

m
R R

R

R
R

sp sp

cy

sp
spfor large= 1

2
| |  (5.215)

where the plus and minus sign applies to out- and in-tubes, 
respectively. Thus, in the limit of large Rsp/Rcy or large 
Rsp| | | |m m  corresponding to large spherical segments or narrow 
tubes, the total tension Σ  approaches the spontaneous tension σ 
whereas the mechanical tension goes to zero as Σ ≈ κm/Rsp.

It is interesting to note that the relation Eq. 5.215 is equiva-
lent to 1/Rsp ≈ Σ/(κm). A combination of this latter relation with 
Eq 5.203 leads to

 M m
m

fcy sp cyfor and≈ − =Σ
4

0.
κ

R R  (5.216)

Thus, for fixed values of the curvature-elastic parameters κ and m, 
an increase in the mechanical membrane tension Σ leads to a 
reduction of |Mcy| and, thus, to an increase in the tube radius 
Rcy. This conclusion, which applies to both m > 0 and m < 0, is 
somewhat counterintuitive but also follows from the quadratic 
expression Eq. 5.199 for the mechanical tension Σ as a function of 
Mcy. A closer look at this latter expression reveals that cylindrical 
tubes do not exist for

 Σ Σ> 2
3 3

2
max (no cylindrical tubes).≡ =κ σm  (5.217)

Furthermore, starting from a cylinder with Mcy = m, correspond-
ing to Σ = 0 and zero bending energy, an increase in the mechan-
ical tension Σ decreases the mean curvature |Mcy| and increases 
the cylinder radius Rcy = 1/(2|Mcy|) until we reach Σ = Σmax = σ/3 
corresponding to a cylindrical tube with mean curvature 
Mcy = 2|m|/3 and radius Rcy = 3/(4|m|).

5.6.7 NECKLACE-TO-CYLINDER TRANSFORMATIONS

As shown in Figure 5.21b, necklace-like and cylindrical nano-
tubes have been observed to coexist on the same vesicle. These 
observations can be understood from the competition of differ-
ent energy contributions which favor necklace-like tubes below a 
certain critical tube length but cylindrical tubes above this length 
(Lipowsky, 2013; Liu et al., 2016). At the critical tube length, the 
necklace-like tube transforms into a cylindrical one. Such a trans-
formation can proceed in a continuous manner via intermediate 
unduloids as shown in Figure 5.28.

The existence of a critical tube length can be understood intu-
itively from the following simple argument (Lipowsky, 2013). 
If the membrane has spontaneous curvature m, a necklace-like 

tube consisting of spherules with radius R2 = 1/|m| connected 
by closed membrane necks has vanishing bending energy. For a 
cylindrical tube with radius Rcy = 1/(2|m|), the main body of 
the cylinder also has vanishing bending energy but such a tube 
must be closed by two end caps which have the finite bend-
ing energy 2πκ. Therefore, the bending energy of the end caps 
disfavors the cylindrical tube. On the other hand, the necklace-
like tube has a larger volume compared to the cylindrical one 
and the osmotic pressure difference across the membranes acts to 
compress the tubes when they protrude into the interior solu-
tion within the vesicles. Therefore, such a tube can lower its free 
energy by reducing its volume which favors the cylindrical tube. 
The volume work is proportional to the tube length whereas the 
bending energy of the end caps is independent of this length. 
The competition between these two energies then implies that 
short tubes are necklace-like whereas long tubes are cylindrical.

The same conclusion is obtained by minimizing the bending 
energy of the whole vesicle membrane (Liu et al., 2016). One 
then finds that, for fixed vesicle volume and membrane area, 
the mother vesicle has a smaller bending energy when it forms 
a cylindrical tube and that this energy decrease of the mother 
vesicle overcompensates the bending energy increase from the end 
caps of the cylinder when the tube is sufficiently long. The criti-
cal tube length at which the necklace-like tube transforms into a 
cylindrical one is about three times the vesicle radius.

5.7 ADHESION OF VESICLES
When a vesicle is in contact with an adhesive substrate surface 
as in Figure 5.29, it can gain adhesion energy by spreading onto 
this surface but must then increase its bending energy to adapt 
its shape to the adhesive surface. For large vesicles, the adhesion 
energy must dominate because it is proportional to the contact 
area of the vesicle and thus grows quadratically with the size of 
the vesicle whereas the increased bending energy is concentrated 

Figure 5.28 Low energy transformation of a necklace-like tube into 
a capped cylinder: all three tubes have the same surface area and, 
apart from the end caps, the same mean curvature M which is equal 
to the spontaneous curvature m. (a) Necklace-like tube L6

in with vanish-
ing bending energy consisting of six spherules connected by closed 
membrane necks. the spherules have the radius R2 = 1/|m| and mean 
curvature M = −1/R2 = m; (b) Capped unduloid with neck radius Rne, 
bulge radius Rbu, and mean curvature M = −1/(Rne + Rbu) = m; and 
(c) Capped cylinder with radius Rcy = 1/(2|m|) and mean curvature 
M = −1/(2Rcy) = m. the transformation of the sphere-necklace into the 
cylinder proceeds via a continuous family of intermediate unduloids. 
During this transformation, the tube volume is reduced by a factor 
3/4. If we ignore the end caps of the unduloids in (b) and the cylin-
der in (c), both types of tubes have zero bending energy as does the 
necklace-like tube in (a). (reproduced with permission from Liu, Y. 
et al., ACS Nano, 10, 463–474, 2016.)
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along the contact line of the vesicle with the surface and thus 
grows only linearly with the size of the vesicle.

Within the contact area, the membrane experiences a variety 
of molecular forces. In order to study the overall shape of the 
adhering vesicle, one may ignore the molecular details and 
focus on the adhesive strength |W | of the membrane-surface 
interactions which corresponds to the adhesion (free) energy 
per area (Seifert and Lipowsky, 1990). This coarse-grained 
description of the membrane-surface interactions in terms 
of the single parameter |W | is consistent with the separation 
of length scales that has been used to construct the different 
curvature models.

Because the bound and the unbound membrane segments 
are exposed to different environments and, thus, to differ-
ent molecular interactions, they can differ in their molecular 
composition and, thus, in their curvature-elastic properties 
(Rouhiparkouhi et al., 2013; Lipowsky et al., 2013; Lipowsky, 
2014b). In order to reduce the number of parameters, we will 
first assume that this ambience-induced segmentation of the 
vesicle membranes can be ignored and that the bound and 
unbound membrane segments have the same curvature-elastic 
properties. Adhesion-induced segmentation of multi-compo-
nent membranes will be discussed at the end of this section and 
at the end of Section 5.8.

Furthermore, we will again focus on the spontaneous curva-
ture model which depends on only two dimensionless param-
eters, the volume v and the spontaneous curvature m . When we 
parametrize the adhesion energy in terms of the dimensionless 
adhesive strength |w| proportional to |W |/κ, vesicles adhering to 
planar surfaces are described by only three parameters. On the 
one hand, this parametrization is convenient from a theoretical 
point of view because it allows us to explore large regions of the 
parameter space. On the other hand, the additional parameter 
|W | can be directly deduced from experimental observations of 
adhering vesicles. At the end of this section, more complex adhe-
sion geometries will be briefly discussed corresponding to curved 
and/or chemically patterned substrate surfaces. The extension of 
the theory described here to the interactions of membranes with 
adhesive nanoparticles is described in Chapter 8 of this book. 
The experimental methods used to study the adhesion of GUVs 
are reviewed in Chapter 17.

5.7.1 INTERPLAY OF ADHESION AND BENDING

First, let us consider a planar substrate surface and focus on the 
competition between bending rigidity κ and adhesive strength 
|W | for the simple case of a vesicle that is free to adapt its volume, 
corresponding to the osmotic pressure difference ΔP = 0, and is 
bounded by a symmetric membrane with vanishing spontaneous 
curvature, m = 0. We are then left with only three dimensionful 
parameters, the membrane area A, the bending rigidity κ, and the 
adhesive strength |W |.

The non-adhering or free vesicle forms a spherical shape Sfr 
with bending energy be fr{ } 8S = πκ . When the vesicle membrane 
spreads onto an adhesive surface, the vesicle attains the shape Sad 
with contact area Abo of the bound membrane segment and gains 
the adhesion energy

 E W Aad bo≡ −| | . (5.218)

For a planar surface, this adhesion energy is the only energy 
contribution from the bound membrane segment. The unbound 
membrane segment, on the other hand, has to adapt its shape to 
the presence of the substrate surface which leads to the bending 
energy increase

 ∆ ∆E S S Ebe be ad be fr be= − = { } { } 8 .πκ  (5.219)

Adhesion is favored if

 E E E W Aad be be boor+ ∆ ∆< 0 8 <| | .πκ  (5.220)

Because ∆Ebe  is a dimensionless number, we can immediately 
conclude from this relation that the vesicle adheres to the surface 
if the adhesive strength |W | is sufficiently large or if the bending 
rigidity κ is sufficiently small.

In general, the adhesion of vesicles involves three additional 
parameters: the osmotic conditions that determine the volume-to-
area ratio, the spontaneous curvature m of asymmetric bilayers, 
and the mean curvature Mbo of the bound membrane segment 
arising from a curved adhesive surface. In order to take these 
additional parameters into account, we need a systematic theory 
based on an appropriate energy functional.

5.7.2 THEORY OF VESICLE ADHESION

The shape S of a vesicle that adheres to a rigid substrate surface 
can be decomposed into two membrane segments, a bound seg-
ment with shape Sbo in contact with the surface and an unbound 
segment with shape Sun not in contact with this surface. The total 
membrane area A can then be decomposed according to

 A A A S S= + = +bo un bo un { } { } (5.221)

where A Sbo bo={ } and A Sun un={ } are the partial areas of 
the bound and unbound membrane segments Sbo and Sun, respec-
tively. In general, the two partial areas also depend on the shape 
of the adhesive surface. The combined bending and adhesion 
energy of the vesicle leads to the energy functional (Seifert and 
Lipowsky, 1990)

Figure 5.29 (a) Optical micrograph of two vesicles adhering to a pure 
glass surface that reflects the light and creates two mirror images; 
and (b) Shape of the larger vesicle consisting of a bound (gray region) 
and an unbound (white region) membrane segment. the two seg-
ments join along the contact line (red) which represents the bound-
ary of the bound membrane segment. (reproduced with permission 
from Gruhn, t. et al., Langmuir, 23, 5423–5429, 2007. Copyright 2007 
american Chemical Society.)
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  AV add{ } 2 ( ) { }2S A M m S= − +∫κ  (5.222)

with the adhesion (free) energy functional

 E Aad bo{ } | | { }S W S= −  (5.223)

where the subscript “AV” stands for “adhering vesicle.” The first 
term on the right hand side of Eq. 5.222, which represents the 
bending energy functional of the spontaneous curvature model, 
can be decomposed into the bending energies of the unbound and 
the bound membrane segments according to

 be un bo bod d{ } 2 ( ) 2 ( )2 2S A M m A M m= − + −∫ ∫κ κ  (5.224)

where the mean curvature Mbo of the bound segment is imposed 
onto the latter segment by the shape of the rigid substrate.

The stationary states of the adhering vesicle are then obtained 
by minimizing the shape functional

 F V A EAV AV{ } { } { } { }S P S S S= − + +∆ Σ  (5.225)

with the constraints that { }S V=  and { }S A=  where V and 
A are the prescribed vesicle volume and membrane area as before. 
It is important to note that the value of the contact area Abo of the 
bound membrane segment is not prescribed here which implies that 
the contact line is not pinned but free to find its optimal position.

Additional parameters related to adhesion
As before, it is again convenient to choose the vesicle size 
Rve = A /(4 )π  as the basic length scale and the bending rigidity 
κ as the basic energy scale. The shape of the adhering vesicle then 
depends on the dimensionless volume v V A= 6 / 3/2π  and on 
the dimensionless spontaneous curvature m m= Rve , both of which 
also determine the shape of free vesicles. In addition, the adhering 
shape also depends on the dimensionless adhesion strength

 | | | | /2w W≡ Rve κ  (5.226)

and on the dimensionless curvatures M Mbo bo ve= R  that the sub-
strate surface imposes on the bound membrane segment.

The simplest substrate geometry is provided by a planar sur-
face with Mbo = 0 which reduces the parameter space to the three 
dimensionless parameters v, m , and |w|. The next-to-simplest 
substrate geometry is obtained for constant-mean-curvature surfaces 
such as spherical surfaces or cavities. In the latter case, the mean 
curvature Mbo of the bound membrane segment is constant and the 
parameter space becomes four-dimensional. In the following subsec-
tions, we will first discuss the planar case and subsequently summa-
rize the modifications arising from spherical surfaces and cavities.

5.7.3 VESICLES ADHERING TO PLANAR SURFACES

Contact curvature and contact mean curvature
For a planar substrate surface as in Figure 5.29, the bound mem-
brane segment of the adhering vesicle is planar as well. We require 
the bound and the unbound membrane segments to join along 

the contact line in a smooth manner, i.e., that the two membrane 
segments have a common tangent plane or, equivalently, that the 
normal vector of the unbound membrane segment is also normal 
to the planar substrate along the contact line. In other words, the 
membrane shape should not exhibit any kink along the contact 
line. This geometric requirement is equivalent to the condi-
tion that the membrane has a finite bending energy (Seifert and 
Lipowsky, 1990).

Because the normal vector is required to vary continuously 
across the contact line, the principal curvature C||co tangential to 
the contact line vanishes. In addition, the principal curvature C⊥co 
of the unbound membrane segment perpendicular to the contact 
line is given by

 C W⊥co = 2| |/κ  (5.227)

as follows from the first variation of the shape functional 
Eq 5.225, both for axisymmetric (Seifert and Lipowsky, 1990) 
and for non-axisymmetric (Deserno et al., 2007) shapes. 
Therefore, the contact mean curvature becomes

 
M C C C Wco co co co (planar substrate).= + =⊥ ⊥

1
2

( ) 1
2

| |/(2 )


= κ
 

(5.228)

Because the mean curvature of the bound segment vanishes, the 
mean curvature of the membrane jumps from M = Mco to M = 0 
when we cross the planar contact line.

It is interesting to note that the contact mean curvature Mco 
does not depend on the spontaneous curvature m, which is 
somewhat counterintuitive. This m-independence also applies 
when the vesicle adheres to a curved surface, see further below. 
However, the shape and the contact area of an adhering vesicle do 
depend quite significantly on the spontaneous curvature (Agudo-
Canalejo and Lipowsky, in preparation).

One should also note that the principal curvature C⊥co 
jumps along the contact line from C⊥co = 0 within the bound 
membrane segment to C W⊥ =co 2| |/κ  within the unbound 
segment. Likewise, as mentioned, the mean curvature jumps 
from M = 0 within the bound membrane segment to M M= co 
within the unbound segment. In the following sections, we 
will see that analogous curvature discontinuities are also 
 present along domain boundaries separating two intramem-
brane domains and along three phase contact lines arising 
from membrane wetting.

Adhesion length
The contact mean curvature M Wco = | |/(2 )κ  as given by 
Eq 5.228 is a material parameter that directly encodes the com-
petition between membrane bending as governed by the bending 
rigidity κ and membrane-surface adhesion as described by the 
adhesive strength |W |. For planar substrate surfaces as considered 
here, the inverse of the contact mean curvature is equal to the 
adhesion length

 R RW W w≡ =2 /| | 2/| | .κ ve  (5.229)
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Depending on the lipid composition of the bilayer membrane 
and on the adhesive material, the adhesion length RW can vary 
between about 10 nanometers for strong adhesion and a few 
micrometers for ultraweak adhesion as illustrated by the examples 
in Table 5.2. For the adhering vesicle displayed in Figure 5.29, the 
adhesion length was estimated to be 2.8 µm corresponding to the 
ultra-weak adhesion regime, see bottom row of Table 5.2. In this 
case, the contact curvature radius

 R R⊥ ⊥≡ = =co co1/ 1
2

/(2| |)C WW κ  (5.230)

can be directly read off from the optical image displayed in 
Figure 5.29a.

When the adhesion length becomes of the order of 10 nano-
meter as in the first two rows of Table 5.2, we start to “see” 
the molecular structure of the lipid bilayers. As a consequence, 
higher-order curvature terms as discussed in Section C.1 may 
start to play a role. On the other hand, the estimates in the latter 
section also imply that we can certainly ignore such terms for 
RW  80nm.

Shapes of adhering vesicles
The shape of the unbound membrane segment of the adhering 
vesicle is obtained by solving the Euler-Lagrange Eq. 5.23 with 
the boundary condition as given by Eq. 5.228. If the shape is 
axisymmetric with respect to the normal vector of the planar 
surface, the Euler-Lagrange equation leads to a set of ordinary 
differential equations that can be solved numerically, see the 
examples in Figure 5.30 (Seifert and Lipowsky, 1990). In all 
panels of this figure, the membrane has the same area and the 
same bending rigidity as well as vanishing spontaneous curva-
ture. In Figure 5.30a, we see the shapes of five vesicles that can 
freely adapt their volume corresponding to ΔP = 0. The five 
vesicle shapes are obtained for five different values of the adhe-
sive strength |w|.

Inspection of Figure 5.30a shows that the contact area of the 
bound membrane segment increases with increasing |w| as one 
would expect intuitively. However, as we decrease the adhesive 
strength |w|, the contact area vanishes already at the threshold value

 | | | | 2 ( 0),w w P= = =ad ∆  (5.231)

corresponding to the spherical shape in Figure 5.30a. Thus, the 
vesicle starts to spread over the substrate surface provided (Seifert 
and Lipowsky, 1990)

 | | | | / >| | 2 0.2w W w P= = =Rve ad forκ ∆  (5.232)

The relation |w| > 2 is equivalent to the intuitive relations

 R Rve or> | |> 8 ( 0),W A W Pπκ ∆ =  (5.233)

i.e., the membrane starts to spread over the substrate surface when 
the vesicle size Rve exceeds the adhesion length RW. The latter 
criterion directly reflects the competition between the adhesive 
strength |W | and the bending rigidity κ which favors and disfa-
vors the onset of spreading, respectively.

The shapes in Figure 5.30a have been obtained for spon-
taneous curvature m = 0 but the threshold value |wad| = 2 

Figure 5.30 Vesicles with identical membrane area and vanishing 
spontaneous curvature adhering to substrate surfaces (shaded) with 
variable adhesive strength: (a) Vesicle shapes and five different values 
of the adhesive strength, |w| = 2, 2.9, 4.1, 6.4, and 10.2, in the absence 
of a volume constraint, corresponding to pressure difference ΔP = 0. 
as |w| decreases, so does the contact area of the bound membrane 
segment. the spherical shape with vanishing contact area is obtained 
for the finite value |w| = 2; (b) adhering discocyte vesicles for differ-
ent values of the adhesive strength |w| and the pressure difference 
ΔP < 0; and (c) In the strong adhesion regime with |w| ≫ 2, the vesicle 
shape approaches a spherical cap, characterized by the effective 
(or apparent) contact angle θeff. (reproduced from Seifert, U. and 
Lipowsky, r., Phys. Rev., A 42, 4768–4771, 1990.)

Table 5.2 Five combinations of lipid bilayers and adhesive materials, with estimates of the bending rigidity κ, the adhesive strength |W|, and 
the adhesion length RW; see Appendix 1 of the book for structure and data on the lipids

ADHESION 
REGIME

LIPID 
BILAYER

ADHESIVE 
MATERIAL

κ 
[10−19 J]

|W | 
[mJ/m2]

RW 
[nm]

Strong DMPC Silica 0.8a 0.5−1b 13–18
Strong EggPC Glass ≃1 0.15c 26
Intermediate DMPC Receptor-ligand 0.8a 0.03d 73
Weak DOPC/DOPG Coated glass 0.4e 3 × 10−4 e 510
Ultraweak DOPC/DOPG Glass 0.4e 10−5 e 2800

a  Brüning, B.A. et al., Biochim. Biophys. Acta, 1838, 2412–2419, 2014.
b  Anderson, T.H. et al., Langmuir, 25, 6997–7005, 2009.
c  Schönherr, H. et al., Langmuir, 20, 11600–11606, 2004.
d  Moy, V.T. et al., Biophys. J., 76, 1632–1638, 1999.
e  Gruhn, T. et al., Langmuir, 23, 5423–5429, 2007.
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or | | 2 / 2W Rad ve= κ  should apply as long as the spherical shape of 
the free vesicle remains stable. Because a sphere with ΔP = 0 is 
stable for m < 3/Rve, the threshold value |wad| = 2 for the onset 
of spreading is expected to apply for this range of m-values 
as well. This expectation is confirmed by numerical energy 
minimization for axisymmetric shapes (Agudo-Canalejo and 
Lipowsky, in preparation). The latter calculations also show 
that the contact area increases with increasing spontaneous 
curvature m > 0 even though the contact mean curvature Mco 
does not depend on m.

If the vesicle volume is constrained by the osmotic conditions, 
the spreading of the vesicle membrane onto the adhesive surface 
sets in for (Lipowsky and Seifert, 1991)

 | |>| ( )| / 2W w v Rad veκ  (5.234)

where the dimensionless parameter |wad| depends on the dimen-
sionless volume v, approaches the value |wad(v)| ≈ 2 for small 
1 − v, and stays of order one for arbitrary values of v. For an 
ensemble of vesicles with different sizes, the relation Eq. 5.234 
implies that large vesicles with

 Rve ad (bound vesicle)> | ( )| /| |w v Wκ  (5.235)

adhere to the adhesive surface whereas small vesicles do not. 
This difference in the size distribution of bound and free vesicles 
should be accessible to experiment.

General criterion for the onset of adhesion
The contact mean curvature Mco characterizes the membrane 
shape along the contact line between the bound and unbound 
membrane segment as described by Eq. 5.228. It turns out that 
this curvature also provides a general stability criterion for the 
onset of adhesion, i.e., for the initial spreading of the membrane 
onto the adhesive surface. This criterion is based on the com-
parison between the contact mean curvature Mco and the mean 
curvature Mms of the membrane segment that comes initially into 
contact with the adhesive surface. Indeed, the membrane segment 
starts to spread onto the adhesive surface if (Agudo-Canalejo and 
Lipowsky, 2015a,b)

 M Mms co (onset of adhesion)< , (5.236)

i.e., if the mean curvature Mms of the adjacent membrane segment 
is smaller than the contact mean curvature Mco.

For a spherical vesicle with radius Rve, all membrane 
segments have the same mean curvature, Mms = 1/Rve. 
Furthermore, for a planar surface as considered here, the 
contact mean curvature is given by M Wco = | | /(2 )κ  as in 
Eq 5.228. The general criterion Eq. 5.236 then assumes the 
form | | > 2 / 2W Rκ ve or |w| > 2 in agreement with the inequal-
ity Eq. 5.232. The general criterion for the onset of adhesion 
as given by Eq. 5.236 will be discussed further below for the 
adhesion of vesicles to spherical beads and cavities, and plays 
a prominent role for the engulfment of nanoparticles, see 
Chapter 8 of this book.

 Strong adhesion regime and effective contact angle
The strong adhesion regime corresponds to the situation in 
which the adhesion length RW is much smaller than the vesicle 
size, i.e.,

 R Rve or or  W W A w| | 8 | | 2.πκ  (5.237)

For a given value of the adhesion strength |W |, the strong 
 adhesion regime corresponds to the limit of small bending 
rigidity κ. Thus, the limiting case RW/Rve = 0 can be obtained 
for a hypothetical membrane with vanishing bending rigid-
ity κ = 0. In this limit, the shape functional Eq. 5.225 for the 
adhering vesicle reduces to

 F V A AAV bo{ } { } { } | | { }S P S S W S= − + −∆ Σ  (5.238)

with the bound membrane segment Sbo. The shape functional 
in (5.238) is identical with the shape functional of a liquid 
droplet in contact with a planar surface (Lipowsky et al., 2005). 
This shape functional for κ = 0 is minimized by vesicle shapes 
which correspond to spherical caps in complete analogy to 
liquid droplets.

For κ = 0, the contact curvature radius Rco vanishes, and 
the vesicle forms a sharp “microscopic” contact angle with 
the surface along the contact line. For κ > 0 but small Rco/Rve, 
the shape of the vesicle consists of a spherical cap, a strongly 
curved membrane segment along the contact line, and a bound 
membrane segment with area A Abo < 1

2 . The strongly curved 
membrane segment has a mean curvature of the order of Mco = 
(|W |/2κ)1/2 and provides the connection between the unbound 
spherical cap and the bound membrane segment. On length 
scales which are large compared to 1/Mco, the adhering vesicle 
can be characterized by an effective (or apparent) contact angle 
θeff as in Figure 5.30c (Seifert and Lipowsky, 1990). The effec-
tive contact angle does not represent a material parameter but is 
determined by the spherical cap geometry and the volume-to-
area ratio v via the geometric relation

 v = − +
+

2[1 ( )] [2 ( )]
[3 ( )]

.
1/2

3/2
cos cos

cos
θ θ

θ
eff eff

eff
 (5.239)

Furthermore, in the strong adhesion regime corresponding to the 
limit of large |w|, the combined bending and adhesion energy 
E EAV AV≡ /(8 )πκ  of the vesicle can be expanded in powers of the 
dimensionless adhesive strength |w| (Lipowsky and Seifert, 1991; 
Tordeux et al., 2002; Steinkühler et al., 2016). One then finds
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(5.240)

When we rewrite this expression in terms of dimensionful param-
eters, we obtain

 E A W W AAV bo
eff

eff
≈ − + −

+
| | 8 1 ( / 2)

3
| | .π θ

θ
κsin

cos
 (5.241)
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The first-order term represents the adhesion energy of the bound 
membrane segment with area

 A Abo
eff

eff
= +

+
1
3

.cos
cos

θ
θ

 (5.242)

The second-order term in Eq. 5.241 is proportional to

 κ κ| | 2W A A M R⊥co bo co (5.243)

where the right hand side represents an estimate for the bend-
ing energy of the strongly curved membrane segment close to 
the contact line because this segment has an area of the order 
of R⊥co boA  and the mean curvature Mco. Therefore, the 
second-order term can be regarded as a line energy term that 
depends, however, on the effective contact angle θeff and, thus, 
on the volume-to-area ratio v via the relation Eq. 5.239. In the 
absence of a volume constraint, i.e., for pressure difference ΔP = 0, 
the strong adhesion regime leads to a pancake-like shape with 
θeff = 0 and A Abo = 1

2 . In this case, the expression Eq. 5.241 
for the combined bending and adhesion energy simplifies and 
becomes

 
E A W W A

w W R

AV

vefor large

≈ − +1
2

| | 4 | |

| |=| | / .2

π κ

κ

 (5.244)

5.7.4 MORE COMPLEX ADHESION GEOMETRIES

In the present subsection, we will discuss the contact mean 
curvature Mco for more complex adhesion systems as provided by 
curved surfaces and chemically patterned substrates.

Adhesion of vesicle to large spherical particle
When the vesicle adheres to a large spherical particle with radius Rpa, 
the bound membrane segment has the mean curvature Mbo = −1/Rpa 
which implies the membrane curvature C||co = −1/Rpa parallel to 
the contact line. Within the unbound membrane segment, the 
second principal curvature C⊥co perpendicular to the contact line 
is given by

 C W⊥ = −co pa2| |/ 1/κ R  (5.245)

as obtained by minimization of the bending energy (Seifert and 
Lipowsky, 1990). As a consequence, the contact mean curvature 
has the form

 M C C W
co co co

pa
= + = 






 −⊥

1
2

( ) | |
2

11/2

 κ R
 (5.246)

or

 M
W

co
pa

pa(spherical particle of radius= −1 1 )
R R

R  (5.247)

where we used the definition of the adhesion length RW as given 
by Eq. 5.229. The general criterion Eq. 5.236 for the onset of 

membrane adhesion now assumes the form (Agudo-Canalejo and 
Lipowsky, 2015a)

 M M
W

ms co
pa

(adhesion to spherical particle)< 1 1= −
R R

 (5.248)

where Mms is the mean curvature of the membrane segment that 
comes initially in contact with the particle. The contact mean 
curvature is positive for large particles with Rpa > RW and negative 
for small particles with Rpa < RW.12

Note that the principal curvature C⊥co and the mean 
curvature M are again discontinuous along the contact 
line. The principal curvature C⊥co jumps from the value 
C⊥co = −1/Rpa within the bound membrane segment to the value 
C W⊥ = −co pa2| |/ 1/κ R  within the unbound membrane seg-
ment. In fact, the curvature discontinuity as given by 2| |/W κ  
is independent of the particle size and thus applies also to the 
limit of a large Rpa corresponding to a planar surface. Likewise, 
as we move across the contact line, the mean curvature jumps 
from M = −1/Rpa within the bound membrane segment to 
M = Mco = 1/RW − 1/Rpa. Therefore, the discontinuity of the 
mean curvature is always equal to the inverse adhesion length, 
irrespective of the particle size Rpa.

Adhesion of vesicle to large spherical cavity
When the vesicle adheres to a large spherical cavity with radius Rcav, 
the bound membrane segment has the mean curvature Mbo = 1/Rcav 
which also applies to the membrane curvature C||co parallel to the 
contact line. The membrane curvature C⊥co perpendicular to the 
contact line is given by

 C W⊥ = +co cav2| |/ 1/κ R  (5.249)

as obtained by minimization of the energy functional. As a conse-
quence, the contact mean curvature now has the form

 

M C C W
co co co
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 (5.250)

It now follows from the general adhesion criterion Eq. 5.236 that 
a membrane segment with mean curvature Mms starts to adhere to 
the cavity wall if

 
M M

W
ms co

cav
(adhesion to a spherical cavity)< 1 1= +

R R  
(5.251)

with the adhesion length RW as defined by Eq. 5.229. Therefore, as 
we move across the contact line, the mean curvature now jumps 
from M = 1/Rcav within the bound membrane  segment to 
M = Mco = 1/RW + 1/Rcav within the unbound  membrane seg-
ment, with the curvature discontinuity being again equal to 1/RW.

12 The limiting case with Mms = Mco can be further elucidated for nanoparticles 
with Rpa≪Rve, see Eq. 5.257 below.
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 Adhesion of vesicle to chemically patterned surface
Finally, let us consider the adhesion of vesicles to a planar but 
chemically structured surface which contains two types of 
surface domains, D1 and D2. These two types of domains are 
characterized by two different adhesive strengths, W1 and W2, 
with |W2| < |W1|, i.e., the D2 domain is less adhesive than the 
D1 domain.

If the contact line of an adhering vesicle is located within the 
D1 domain, the contact mean curvature is given by

 M W
co
[1] 1

1/2| |
2

.= 





κ

 (5.252)

Likewise, for a contact line within the D2 domain, the contact 
mean curvature is

 M W Mco co
[2] 2

1/2

,1
| |

2
< .= 






κ

 (5.253)

On the other hand, if a contact line segment (CLS) of the vesicle 
is pinned to the boundary between the two surface domains, the 
contact curvature radius M Mco co

pin=  is not fixed but can vary 
within the range (Lipowsky et al., 2005)

 M M Mco co
pin

co pinned CLS[2] [1] ( ).≤ ≤   (5.254)

This freedom of the contact mean curvature Mco
pin  along the 

boundaries of surface domains leads to transitions between dif-
ferent shapes of adhering vesicles (Lipowsky et al., 2005). One 
example is provided by a vesicle on a striped surface domain 
that is strongly adhesive and surrounded by another surface 
domain that is non-adhesive or only weakly adhesive. When the 
volume-to-area ratio v is close to a sphere, the adhering vesicle 
has a fairly compact shape and a relatively small contact area. 
During deflation, the vesicle then undergoes a morphological 
transition from this compact shape to a thin tube-like state with 
a large contact area.

5.7.5 ENDOCYTOSIS OF NANOPARTICLES

The adhesion of nanoparticles to cell membranes represents the 
first step for the process of endocytosis which is essential for the 
cellular uptake of such particles, see Chapter 8 of this book. 
In general, the endocytosis of a nanoparticle that comes into 
contact with the outer leaflet of the membrane consists of three 
steps: Onset of particle adhesion, spreading of the membrane over 
the particle surface until the particle is completely engulfed by 
the membrane, and cleavage (or scission) of the membrane neck 
connecting the completely engulfed particle with the mother 
membrane.

Completely engulfed particle
When a particle in contact with the outer leaflet becomes com-
pletely engulfed, the membrane forms a limit shape with a closed 
membrane neck. For this limit shape, the mean curvature ′Mms 
of the unbound membrane segment adjacent to the membrane 
neck satisfies the neck closure condition (Agudo-Canalejo and 
Lipowsky, 2015a)

 ′ + = ′ + − =M M M m
W

ms co ms
pa

1 1 2
R R

 (5.255)

with the contact mean curvature Mco as given by Eq. 5.247. 
Comparison with the neck closure condition for spherical in- and 
out-buds as described by Eq. 5.50 and Figure 5.14 shows that the 
mean curvature of the bud is now replaced by the contact mean 
curvature Mco of the adhesive nanoparticle. Furthermore, the 
closed neck is stable provided

 ′ + − ≥M M mms co (stable neck, endocytosis).2 0  (5.256)

in close analogy to the case of an in-bud with a stably closed neck 
as described by Eq. 5.61.

The presumably simplest way to derive the neck closure 
condition in Eq. 5.255 is to require that the bending energy 
density of the membrane as given by 2κ(M − m)2, see Eq. 5.12, 
is continuous across the neck. The latter requirement implies 
( ) ( )2 2M m M mco ms− = ′ −  or M m M mco ms− = ± ′ −( ). The root 
with the plus sign leads to M Mco ms= ′  and thus to a continuous 
variation of the mean curvature. The root with the minus sign, 
on the other hand, is equivalent to the neck closure condition in 
Eq. 5.255. In (Agudo-Canalejo and Lipowsky, 2016), the two 
relations in Eqs 5.255 and 5.256 have been derived in a system-
atic manner by calculating the free energy of certain membrane 
shapes with small neck radii Rne and taking the limit of zero Rne.

Energy landscape for small particles
In the limit of small particles with R Rpa ve , one can identify 
the mean curvature ′Mms of the unbound membrane segment 
adjacent to the closed neck for the completely engulfed particle 
with the mean curvature Mms of the membrane segment that 
comes initially into contact with the particle, see Eq. 5.248 
(Agudo-Canalejo and Lipowsky, 2015b). One can then explicitly 
calculate the local (free) energy landscape E as a function of the 
area fraction q of the particle surface that is covered by the vesicle 
membrane. The physically meaningful range of q-values corre-
sponds to 0 ≤ q ≤ 1. For small particles, the energy landscape is 
then found to have the simple quadratic form (Agudo-Canalejo 
and Lipowsky, 2017)

 E q E M M q m M q( ) (0) 16 [( ) ( ) ]2= + − + −πκRpa co  (5.257)

which depends on three parameters: the local mean curvature 
M M M= = ′ms ms, the contact mean curvature Mco, and the spon-
taneous curvature m.

Local conditions for adhesion plus engulfment
Complete engulfment with a stable membrane neck corresponds 
to an energy landscape E(q) that has a boundary minimum at 
q = 1. The latter criterion is equivalent to the stability condition 
in Eq. 5.256. Furthermore, the completely engulfed particle state 
represents the global minimum of this energy landscape when the 
three curvatures satisfy the inequalities

 M M m Mco co≥ ≥ −2 . (5.258)
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The first inequality corresponds to the local criterion for the 
onset of adhesion, the second inequality to a completely engulfed 
particle with a stable membrane neck. Therefore, the inequalities 
in Eq. 5.258 imply both adhesion and complete engulfment of 
the nanoparticle.

Effective constriction forces
The stability relation as given by Eq. 5.256, which applies to a 
stably closed neck for the complete engulfment of a nanoparticle, 
can be generalized by including an external force f > 0 that acts 
to constrict the membrane neck. Such a force contributes the 
term fRne to the energy of the vesicle-particle system which is pro-
portional to the neck radius Rne (Agudo-Canalejo and Lipowsky, 
2016). One then finds the stability relation

 f M M m
4

2 0
πκ

+ ′ + − ≥ms co  (5.259)

which defines the effective constriction force

 f M M meff
in

ms co for endocytosis.≡ ′ + −4 ( 2 )πκ  (5.260)

For small ′Mms, i.e., for a weakly curved membrane of the mother 
vesicle, the effective constriction force behaves as

 f f fW meff
in in in≈ +  (5.261)

with the adhesion-induced constriction force

 fW
W

in

pa
≡ −









4 1 1πκ

R R
 (5.262)

and the curvature-induced constriction force

 f mm
in ≡ −8 ,πκ  (5.263)

where fmin has the same form as in Eq. 5.137.
The final step of endocytosis corresponds to the cleavage 

(or  scission) of the membrane neck. As explained in Section 5.4, 
the cleavage of a neck with radius Rne leads to two bilayer edges 
and to a free energy barrier of the order of 4πRneλed which 
depends on the edge tension λed. To overcome this barrier, the 
effective constriction force must be sufficiently large and satisfy

 f f fW meff
in in in

ed≈ +  4 .πλ  (5.264)

Inspection of Eq. 5.262 for the adhesion-induced constriction 
force fWin shows that this force facilitates neck cleavage for strong 
adhesion with 1/RW ≫ 1/Rpa. Thus, even for a symmetric mem-
brane with m = 0 and fmin = 0, strong adhesion with

 fW W
in

ed
ed

or� �4πλ κ
λ

R  (5.265)

leads to neck cleavage and, thus, to the release of the membrane-
enclosed nanoparticle from the mother membrane. Using the 
typical value κ = 10−19 J for the bending rigidity and the estimate 

λed  1 pN for the edge tension, the inequality in Eq. 5.265 
predicts neck cleavage for an adhesion length RW that is small 
compared to 100 nm.

5.7.6 AMBIENCE-INDUCED SEGMENTATION

The membranes considered in the previous sections were taken 
to have a laterally uniform composition which implies later-
ally uniform curvature-elastic properties even if they contained 
several molecular components. However, when a multi-component 
membrane is in contact with an adhesive surface,  different 
membrane components will typically experience different 
molecular interactions with this surface, which implies that the 
membrane-surface interactions can lead to an enrichment or 
depletion of the different components within the bound segment 
of the vesicle membrane. As a consequence, the bound membrane 
segment will, in general, differ in its composition from the 
unbound segment of the membrane which provides an example 
for ambience-induced segmentation of membranes as displayed in 
Figure 5.31a (Rouhiparkouhi et al., 2013; Lipowsky et al., 2013; 
Lipowsky, 2014b). For two-component membranes, this kind of 
segmentation has been theoretically studied in some detail, see 
Appendix 5.G.

The adhesion geometry in Figure 5.31a corresponds to a 
chemically uniform substrate surface which leads to only two 
membrane segments, one bound and one unbound segment. If 
the substrate surface is chemically patterned as in Figure 5.31b 
and consists of two chemically distinct surface domains, both 
of which are adhesive but differ in their adhesive strengths, the 
vesicle membrane is partitioned into three different segments, 
corresponding to two different bound segments and one unbound 
segment. An even more complex geometry is depicted in 
Figure 5.31c: three vesicle membranes that differ in their overall 

Figure 5.31 ambience-induced segmentation of membranes that 
are exposed to different local environments: (a) Vesicle adhering to 
a planar, chemically uniform substrate surface; (b) Vesicle adhering 
to a planar and chemically patterned surface; (c) Cluster of three 
vesicles adhering to a planar, chemically uniform surface and to 
each other; and (d) Cartoon of a macrophage that moves along a 
solid surface and engulfs a small particle. the colors of the mem-
branes represent their overall compositions. For each membrane, 
the numbers [k] = [1], [2], etc indicate the different ambience-
induced membrane segments. Because of the different molecular 
interactions between the membrane components and the differ-
ent environments, each membrane segment will, in general, have 
a molecular composition that differs from the overall composition. 
(From Lipowsky, r. Biol. Chem., 395, 253–274, 2014.)
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compositions and interact both with the solid support and with 
other membranes. In addition, Figure 5.31d displays, in a rather 
schematic manner, the outer cell membrane of a macrophage that 
moves along a solid surface, contains some cytoskeletal filaments, 
and engulfs a microparticle.

In all examples displayed in Figure 5.31, the different mem-
brane segments, labeled by [k] = 1, 2, ..., K, can differ in their 
molecular composition which implies that they can also differ 
in their curvature-elastic properties. We are then led to consider 
membrane segments with different bending rigidities κ[k] and 
different spontaneous curvatures m[k]. This approach has been 
recently applied to clathrin-dependent endocytosis which involves 
two membrane segments, corresponding to the presence and 
absence of the clathrin-containing protein coat (Agudo-Canalejo 
and Lipowsky, 2015a). The latter process is discussed in more 
detail in Chapter 8 of this book.

Ambience-induced segmentation of vesicle membranes has 
been recently observed for giant vesicles that adhere to planar 
electrodes (Steinkühler et al., 2016). The vesicles contained 
anionic lipids and adhered to the positively charged electrode at 
the bottom of the chamber. Using fluorescence quenching assays, 
the bound membrane segment was observed to have a differ-
ent composition than the unbound segment, but, in contrast to 
naive expectations, only the outer leaflet of the bilayer membrane 
was affected and the bound segment of this latter segment was 
depleted of anionic lipids.

Ambience-induced segmentation will play an important role in 
the next two sections on membrane phase separation (Section 5.8) 
and membrane wetting (Section 5.9). Indeed, the interplay of 
ambience-induced segmentation and membrane phase separation 
(Section 5.8.5) confines the phase transition, for a given composi-
tion, to one of the membrane segments and each of these phase 
transitions occurs for a reduced range of compositions. In the 
case of wetting, the membranes are exposed to different aqueous 
phases that provide different local environments for these mem-
branes, in close analogy to the adhesive substrate surfaces that 
have been discussed in the present section.

5.8  MEMBRANE PHASE SEPARATION 
AND MULTI-DOMAIN VESICLES

Biological and biomimetic membranes are fluid, contain several 
molecular components, and represent two-dimensional systems. 
As a consequence, the membranes should be able to undergo 
phase separation into two different liquid phases, in close anal-
ogy to phase separation of liquid mixtures in three dimensions. 
Membrane phase separation proceeds via the formation of 
intramembrane domains that differ in their molecular com-
position from the surrounding membrane matrix. The pres-
ence of domains implies the appearance of a new parameter, 
the line tension, which acts to shorten the domain boundaries 
(Lipowsky, 1992).

In the context of liquid droplets, the tension of the 
three-phase contact line, which was already considered by 
Gibbs, represents a relatively small correction term to the 
interfacial free energies that can be completely ignored on 
the micrometer scale. In contrast, the line tension associated 
with intramembrane domains has a rather strong effect on the 

shape of membranes and vesicles. Indeed, the line tension of 
the domain boundaries can induce new types of shape trans-
formations such as domain-induced budding, displayed in 
Figures 5.32 and 5.3. The latter process was first predicted theo-
retically (Lipowsky, 1992, 1993; Jülicher and Lipowsky, 1993) 
and then confirmed experimentally by optical microscopy of 
giant vesicles (Baumgart et al., 2003, 2005; Bacia et al., 2005; 
Dimova et al., 2007; Semrau et al., 2008).

At the beginnings of the 1990s, it was rather difficult to find 
experimental evidence for the coexistence of two fluid phases in 
membranes. This situation has now changed completely because 
many ternary lipid mixtures have been identified which exhibit 
two coexisting fluid phases, a liquid-ordered (Lo) and a liquid-
disordered (Ld) phase. These lipid mixtures, which consist of a 
saturated lipid such as sphingomyelin, an unsaturated phospho-
lipid, and cholesterol, form vesicles with several intramembrane 
domains. The intense experimental study of these mixtures 
was triggered by the proposal (Simons and Ikonen, 1997) that 
biological membranes contain intramembrane domains or rafts 
that are rich in sphingomyelin and cholesterol. In order to 
directly visualize the different domains formed in lipid vesicles, 
it was also crucial to find appropriate fluorescent probes that 
have a preference for one of the two fluid phases (Korlach et al., 
1999; Dietrich et al., 2001; Veatch and Keller, 2003; Baumgart 
et al., 2003).

In this section, we will review the morphologies of multi-
domain membranes and vesicles. We will consider multi-com-
ponent membranes that consist of lipids and proteins and form 
two coexisting membrane phases, both of which are in a fluid 
state. Thus, the intramembrane domains could be pure lipid 
domains but they could also contain membrane proteins that 
participate in the phase separation. In the next subsection, the 
process of domain-induced budding as depicted in Figure 5.32 
will be discussed. Second, the shape functional for two-domain 
vesicles will be described in some detail. The morphologies of 
these vesicles involve again closed membrane necks which are 
now governed by the interplay between the spontaneous cur-
vatures of the two types of domains and the line tension of the 

Figure 5.32 Domain-induced budding of a growing liquid-disordered 
(Ld) domain within an liquid-ordered (Lo) matrix: (1) Essentially flat Ld 
domain; (2) Partial Ld bud; and (3) Complete Ld bud. During the time 
evolution from (1) to (3) the domain boundary between the Ld domain 
and the Lo matrix shortens and the line energy of this boundary 
decreases continuously. In the following, the letters a and b will be 
used to indicate two coexisting fluid phases within the membranes. 
these membrane phases can be pure lipid phases or involve mem-
brane proteins as well. (With kind permission Springer Science + 
Business Media: J. Phys. II France, Budding of membranes induced by 
intramembrane domains, 2, 1992, 1825–1840. Lipowsky, r.)
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domain boundary. In addition, the Gaussian curvature moduli 
of the two membrane domains also affect the vesicle shape and 
determine the relative position of domain boundary and mem-
brane neck. If the two domains differ in their bending rigidities, 
this rigidity difference can stabilize multi-domain vesicles with 
more than two domains and thus truncate the phase separation 
process. Such multi-domain vesicles undergo morphological 
transitions which involve changes of both the vesicle shape and 
the domain pattern (Gutlederer et al., 2009; Hu et al., 2011). 
Finally, in Section 7.6, we will address the interplay between 
membrane phase separation and ambience-induced segmentation 
which acts to confine the phase separation to single membrane 
segments. The experimental methods to identify two coexisting 
fluid phases within the membranes of GUVs are reviewed in 
Chapter 18 of this book.

This section is supplemented by two appendices: Appendix 5.F 
on the matching conditions and curvature discontinuities along 
domain boundaries; and Appendix 5.G which discusses the inter-
play of segmentation and phase separation for two-component 
membranes.

5.8.1 BUDDING OF INTRAMEMBRANE DOMAINS

To be specific, let us consider a single Ld domain embedded in a 
larger Lo matrix as shown in Figure 5.32. Because the two phases 
differ in their molecular composition, they will also differ in their 
curvature-elastic parameters. First, the Ld phase is more flexible 
than the Lo phase. Second, the two phases will, in general, have 
different spontaneous curvatures. One mechanism that generates 
such a difference in preferred curvature is provided by adsorbate 
molecules with different affinities to the two phases. In addition, 
the domain boundary contributes a line (free) energy that is pro-
portional to its length; the corresponding free energy per length 
defines the line tension λ (Lipowsky, 1992, 1993).

To simplify the notation, the Lo and Ld phases will now be 
denoted by the letters a and b. The Lo- or a-phase has the bend-
ing rigidity κa and the spontaneous curvature ma. Likewise, the 
Ld- or b-domain has the bending rigidity κb and the spontaneous 
curvature mb. We will first ignore possible contributions from 
the Gaussian curvature moduli which will be discussed further 
below.

In order to focus on the b-domain, let us further assume that 
the a-matrix is weakly curved and that its spontaneous curvature ma 
can be ignored. After nucleation, the b-domain is weakly curved as 
well, see state (1) in Figure 5.32. The domain area Ab then grows by 
diffusion-limited aggregation. For a circular domain, the domain 
has the radius L Ab b= /π  which implies the domain boundary 
length 2πLb. The domain energy is then given by

 E L A mb b b b(1)
22 2= +π λ κ  (5.266)

where the first term represents the line energy of the domain 
boundary and the second term the bending energy of the flat 
b-domain with spontaneous curvature mb. If we transform the 
flat domain into a spherical bud connected to the a-matrix by a 
narrow membrane neck, see state (3) in Figure 5.32, we get essen-
tially rid of the line energy. We now assume that the budding 

process is sufficiently fast and that we may ignore changes in the 
domain area Ab during this process. The bud then has the radius 
Rb bL= 1

2
 and the energy

 E mb b b(3)
28 (1 | |) .= −πκ R  (5.267)

Budding is energetically favored for E(3) − E(1) < 0 or (Lipowsky, 
1992)

 
L

m
Lb b

b

b b
b=

+
≡2 > 4

1 4 | | ,1R
ξ

ξ
(bud energetically favored)

 (5.268)

with the invagination length

 ξ κ λb b≡ /  (5.269)

This simple argument shows that the competition between bending 
and line tension leads to two regimes for the bud size, depending on 
the relative size of the invagination length ξb and the spontaneous 
curvature mb. If the spontaneous curvature mb is small compared to 
the inverse invagination length 1/ξb = λ/κb, the budding process is 
dominated by the line tension, and the bud radius Rb ≈ 4ξb. On the 
other hand, if the spontaneous curvature mb is large, the budding 
process is dominated by this curvature and Rb bm 1/| |.

The argument just described ignores the stability of the closed 
neck between the b-bud and the weakly curved a-matrix. As 
discussed further below, such a neck is stable if

 L
m

Lb b
b

b b
b=

+
≡2 > 4

1 2 | | ,2R
ξ

ξ
(stability of closed neck). 

(5.270)

Comparison of the two criteria Eqs 5.268 and 5.270 indicates 
that the budding transition at Lb = Lb,1 occurs before the closed 
neck of the bud becomes stable at Lb = Lb,2 > Lb,1. This conclusion 
is corroborated by systematic energy minimization calculations 
(Jülicher and Lipowsky, 1993, 1996) as described next.

5.8.2 THEORY OF TWO-DOMAIN VESICLES

When a vesicle membrane undergoes phase separation into 
two coexisting phases a and b, it will initially form many small 
a- and/or small b-domains which will then coarsen into larger 
domains.13 In this subsection, we will consider the simplest situ-
ation in which the completion of this coarsening process leads to 
one large a-domain coexisting with one large b-domain. Further 
below, we will also discuss the possibility that the coarsening 
process is truncated and leads to an equilibrium state of a multi-
domain vesicle with more than two domains.

Geometry and energetics of two-domain vesicles
Now, consider a vesicle of volume V that is bounded by a mem-
brane with one a domain and one b domain. We can then decom-
pose the vesicle shape S into three components: the shapes Sa and 
Sb of the two domains as well as the shape Sab of the ab domain 

13  We focus here on the nucleation regime close to the binodal line of the 
membrane phase diagram. Further away from this line, the multi-component 
membrane phase separates via spinodal decomposition for which the descrip-
tion in terms of sharp domain boundaries does not apply.
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boundary. The a and b domains have the surface areas Aa and Ab, 
respectively. The total area of the vesicle membrane is then given by

 A A A S Sa b a b= + = + { } { } (5.271)

where {.} denotes the area functional as before. The ab domain 
boundary with shape Sab has a certain length, { }S Lab ab=  where 
{.} denotes the length functional.

The energy of a two-domain vesicle can be decomposed into 
several contributions: the curvature energy of the a domain, 
the curvature energy of the b domain, and the line energy of 
the ab domain boundary. As for a GUV with a uniform or 
single-domain membrane, the curvature energies can be further 
decomposed into bending and Gaussian curvature contributions. 
The energy functional of the two-domain vesicle then has the 
form

 E E E E L2 { } { } { } { , } { }.Do be beS S S S S Sa b G a b ab= + + + λ  (5.272)

The last term on the right hand side of this equation represents 
the contribution of the domain boundary which is proportional 
to the line tension λ (Lipowsky, 1992). Any stable domain pat-
tern implies that the line tension λ has to be positive as will be 
assumed in the following. The energy functional

 G a b Ga a Gb bS S A G A G{ , } ≡ +∫ ∫κ κd d  (5.273)

represents the combined Gaussian curvature terms of both 
domains and depends on the Gaussian curvature moduli κGa and 
κGb of the a- and b-domains. Finally, the bending energy func-
tionals be{ }Sa  and be{ }Sb  have the form

 
 be bed and d{ } 2 ( ) { } 2 ( )2 2S A M m S A M ma a a a b b b b= − = −∫ ∫κ κ

 
(5.274)

which generalizes the spontaneous curvature model for a uniform 
membrane to the case of two different domains. These energy 
functionals depend on the bending rigidities κa and κb as well as 
on the spontaneous curvatures ma and mb.

Shape functional for two-domain vesicles
The equilibrium shapes of a two-domain vesicle are obtained 
by minimizing the energy functional Eq. 5.272 for a certain 
volume V S= { } and for certain areas Aa and Ab of the a- and 
b-domains. These three constraints can be taken into account by 
three Lagrange multipliers ΔP, Σa, and Σb. As a consequence, the 
shape functional of the two-domain vesicle has the form

 F V A A E2 2{ } { } { } { } { }.Do DoS P S S S Sa a b b= − + + +∆ Σ Σ  

(5.275)
So far, a systematic minimization of this functional has been 
performed for axisymmetric vesicles using the shooting method 
(Jülicher and Lipowsky, 1993, 1996) and, to some extent, by 
numerical minimization of discretized membranes (Gutlederer 
et al., 2009; Hu et al., 2011). In these numerical studies, the 

spontaneous curvatures were taken to be relatively small. 
The same energy functional has also be used to calculate doubly-
periodic bicontinuous shapes corresponding to “lattices of pas-
sages” (Gózʹdzʹ and Gompper 1998).

Gaussian curvature energies
The energy functional of a two-domain vesicle contains the 
Gaussian curvature term G a bS S{ , } as given by Eq. 5.273. If the 
two Gaussian curvature moduli κGa and κGb are equal, this term 
does not depend on the shape but only on the topology of the 
vesicle and is then given by

 G a b G Ga Gb GS S{ , } 2= = =πχκ κ κ κfor  (5.276)

where χ denotes the Euler characteristic of the whole vesicle, see 
Appendix 5.B. In the following, we will consider two-domain vesicles 
that have a spherical topology characterized by χ = 2.

If the Gaussian curvature moduli of the a- and b-phases are dif-
ferent, however, the Gaussian curvature terms also make a shape-
dependent contribution. Indeed, the Gaussian curvature term in 
Eq. 5.273 then becomes (Jülicher and Lipowsky, 1993, 1996)

 G a b G g Ga GbS S l C{ , } 2 ( ).= − + +∫∆κ π κ κ


d  (5.277)

with the difference

 ∆κ κ κG Ga Gb≡ −  (5.278)

of the Gaussian curvature moduli. The first term on the right hand 
side of Eq. 5.277 is proportional to this difference ΔκG and to the 
line integral of the geodesic curvature Cg along the domain bound-
ary. To obtain the correct sign of this term, the orientation of the line 
element dl has to be chosen in such a way that the line integral moves 
around the b-domain in a clockwise manner when one looks down 
onto this domain from the exterior solution. The line integral along 
the domain boundary implies that the first term on the right hand 
side of Eq. 5.277 depends on the shape Sab of the domain boundary. 
In contrast, the second term on the right hand side of Eq 5.277 does 
not depend on the morphology of the vesicle but reflects its spherical 
topology. For κGa = κGb = κG, the first term vanishes and the second 
term reduces to 4πκG as in Eq. 5.276 with χ = 2.

Euler-Lagrange or local shape equations
The first variation of the shape functional 2 { }Do S  as given by 
Eq 5.275 leads to two Euler-Lagrange equations for the (local) mean 
curvature M and the (local) Gaussian curvature G within the mem-
brane domains with shapes Sa and Sb. These equations have the form

 ∆ ΣP M M m M M m M Gi i i i i i= − ∇ − − − −2 2 4 4 [ ][ ]2 2 2
 κ κ κLB  

(5.279)

with i = a, b, the total membrane tensions

 Σ Σ i i i im≡ + 2 ,2κ  (5.280)

and the Laplace-Beltrami operator ∇LB
2 , generalizing the Euler-

Lagrange Eq. 5.25 for a uniform membrane. When the two types 
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of domains form spherical segments, the terms proportional to 
M2 − G vanish and we obtain two quadratic equations for the 
corresponding constant mean curvatures M = Ma and M = Mb.
Each of these quadratic equations can have up to two solutions 
which implies that the two-domain vesicles can form coexisting 
spherical segments with up to four different mean curvatures. 
One example is a two-domain vesicle with three closed membrane 
necks: one neck connects two membrane segment of a phase, 
one neck two membrane segments of b phase, and the third neck 
connects the a domain with the b domain. The latter neck is 
governed by a neck condition that includes the line tension of the 
domain boundary, see further below.

Matching conditions along the domain boundary
In addition to the two Euler-Lagrange Eqs 5.279, we need to 
impose appropriate matching conditions along the boundary 
between the two membrane domains. In the theoretical descrip-
tion considered here, we ignore the width of the ab domain 
boundary.14 This simplification is justified when the linear size 
of the a and b domain is large compared to the boundary width, 
a condition that is usually fulfilled for the optically resolvable 
membrane domains of giant vesicles. Because we ignore the width 
of the domain boundary, the bending rigidity and the spon-
taneous curvature change abruptly as we cross this boundary. 
Nevertheless, we can still impose the physical requirement that 
the shapes of the two membrane domains meet “smoothly” along 
the domain boundary, i.e., that these shapes have a common 
tangent along this boundary, as explicitly shown for axisymmetric 
vesicle shapes (Jülicher and Lipowsky, 1996).

Even for axisymmetric vesicle shapes with smooth contours, 
the matching conditions turn out to be somewhat complex. 
Indeed, these matching conditions can lead to discontinuities 
along the domain boundary, both for the curvature and for the 
mechanical tension. For an axisymmetric vesicle, one of the 
principal curvatures, say C1, is provided by the contour curvature. 
As described in Appendix 5.F, the contour curvature C1 attains, 
in general, two different values C1b and C1a when we approach 
the domain boundary from the b and a domain, respectively. 
Defining the mean curvatures Ma(s1) and Mb(s1) at the a- and 
b-sides of the domain boundary, see Appendix 5.F, the curvature 
discontinuity can be written in the concise form

 κ κ κ κa a a b b b Gb GaM s m M s m C s[ ( ) ] [ ( ) ] 1
2

( ) ( )1 1 2 1− − − = −  

(5.281)

where C2(s1) is the second principal curvature which is continuous 
across the domain boundary.

The curvature discontinuity also affects the difference Σa − Σb 
of the mechanical tensions within the two membrane domains. 
In order to describe this tension difference, we use the parametri-
zation of axisymmetric shapes as shown in Figure 5.33. Because 
of axisymmetry, the shape is determined by a one-dimensional 

contour which can be parametrized by the radial coordinate r = r(s) 
and the tilt angle ψ = ψ(s), both of which depend on the arc length 
s of the contour, see Appendix 5.F. The domain boundary is located 
at s = s1 and the tension difference Σa− Σb depends on the radius 
r1 ≡ r(s1) of the circular domain boundary and the tilt angle ψ1 ≡ ψ(s1) 
at this boundary. The tension difference then has the form

 Σ Σ ∆Σa b r
− = +λ ψcos 1

1
 (5.282)

with ΔΣ as given by the expression Eq. 5.17. The latter expres-
sion involves several terms and depends on the contour curva-
tures C1a(s1) and C1b(s1) and on the second principal curvature 
C s r2 1 1 1( ) /= sinψ  at the domain boundary. If both membrane 
domains have identical curvature-elastic properties, the additional 
term ΔΣ vanishes and we are left with the balance between the 
line tension λ and the mechanical tensions Σa and Σb within the 
two membrane domains. Finally, if the line tension λ vanishes as 
well, the mechanical tension within the a-domain is equal to the 
mechanical tension within the b-domain. The equality Σa = Σb also 
holds for two domains with identical curvature-elastic properties 
if the radius r1 = r(s1) of the domain boundary is a local minimum 
of r(s) as in Figure 5.33, corresponding to the tilt angle ψ1 = ψ(s1) 
= π/2 and cos( ) 01ψ = . The latter situation applies to two mem-
brane domains that have the same Gaussian curvature modulus, 
κGb = κGa, but is, in general, not valid for κGb ≠ κGa, see last sub-
section of Section 5.8.3.

Parameters of two-domain vesicles
The morphology of two-domain vesicles depends on three geo-
metric parameters, the vesicle volume V as well as on the partial 
areas Aa and Ab. Using again the vesicle size Rve = A / 4π  as the 
basic length scale, we are left with two dimensionless parameters, 
the reduced volume v ~ V/A3/2 with A = Aa + Ab and 0 ≤ v ≤ 1 as 
well as the area fraction

 x A
A A

A
Ab

b

a b

b≡
+

=  (5.283)

14 The width of the domain boundary is set by the correlation length for the com-
positional fluctuations. Far away from a critical demixing (or consolute) point, 
this correlation length will be comparable to the size of the lipid head groups 
while it becomes large compared to molecular length scales close to a critical 
point.

Figure 5.33 Contour of an axisymmetric vesicle with two domains, a 
(broken line) and b (full line). the contour is parametrized by the arc 
length s, the interval 0 ≤ s < s1 corresponds to the b-domain and the 
interval s1 < s ≤ s2 to the a-domain. the circular domain boundary is 
located at s = s1. the shape of the contour is described by the radial 
coordinate r = r(s) and the tilt angle ψ = ψ(s) which varies from ψ(s = 0) = 0 
at the north pole to ψ(s = s2) = π at the south pole.
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of the b-domain with 0 ≤ xb ≤ 1. The area fraction xa of the 
a-domain in then given by xa = 1 − xb.

In addition, the morphology of two-domain vesicles depends 
on six curvature-elastic parameters: the spontaneous curva-
tures ma and mb, the bending rigidities κa and κb, the difference 
κGa − κGb of the Gaussian curvature moduli, and the line ten-
sion λ. Using the bending rigidity κb as the basic energy scale, 
we obtain five dimensionless parameters: the dimensionless 
curvatures

 m m m ma a b b≡ ≡R Rve veand ,  (5.284)

the rigidity ratios

 ρ κ
κ

ρ κ
κ

κ κ
κκ ≡ ≡ = −a

b
G

G

b

Ga Gb

b
and ∆ , (5.285)

as well as the dimensionless line tension

 λ λ
κ

≡ Rve

b
. (5.286)

The bending rigidity ratio ρκ is expected to be of order one. If 
we again identify the b- and the a-domains with the Ld and Lo 
phases of three-component lipid bilayers, the value ρκ ≃ 4.5 has 
been measured for a certain tie line within the two-phase coex-
istence region (Heinrich et al., 2010). The rigidity ratio ρG is also 
expected to be of order one. Two groups (Baumgart et al., 2005; 
Semrau et al., 2008) have compared the experimentally observed 
shapes of two-domain vesicles with those calculated from the 
theory reviewed here and developed in (Jülicher and Lipowsky, 
1993, 1996). As a result, these groups obtained the estimates 
ρG ≃ 3.9 (Baumgart et al., 2005) and 1.1 ≤ ρG ≤ 2.5 (Semrau 
et al., 2008).

An order of magnitude estimate of the line tension leads to 
the value λ ≃ 10−11 N or 10 pN (Lipowsky, 1992). For the ternary 
lipid mixtures studied in (Baumgart et al., 2003, 2005; Semrau 
et al., 2008), the line tensions deduced from the experiments var-
ied between 10−12 and 10−14 N, reflecting the vicinity of critical 
demixing points in these mixtures. For giant vesicles with a size 
Rve between 10 and 50 µm, the dimensionless line tension λ  then 
varies within the range 1 500 λ .

5.8.3 DOMAIN-INDUCED BUDDING OF VESICLES

The shape functional 2 { }Do S  in Eq. 5.275 has been minimized 
in order to determine the equilibrium morphologies within the 
subspace of axisymmetric shapes (Jülicher and Lipowsky, 1993, 
1996). As discussed in the previous subsection, these shapes 
depend on seven dimensionless parameters, two geometric 
and five material parameters. In order to illustrate the equilib-
rium morphologies of two-domain shapes, the next subsection 
describes the dependence of domain-induced budding on the 
volume-to-area volume v and on the line tension λ , keeping all 
other parameters fixed. We will see that closed membrane necks 
play again a prominent role. The closure and the stability of these 
necks is governed by generalized neck conditions that depend on 
the line tension.

Budding controlled by osmotic conditions
We now consider a two-domain vesicle with area fraction xb = 0.1, 
corresponding to a relatively small b-domain, and study the shape 
of this vesicle as a function of volume-to-area ratio v and line 
tension λ . In order to reduce the dimension of the parameter 
space, the a- and b-domain are taken to have the same bending 
rigidity, κa = κb, and zero spontaneous curvatures, ma = mb = 0. 
Furthermore, we will also assume that the difference ΔκG between 
the Gaussian curvature moduli is small and can be ignored. 
We are then left with a 2-dimensional ( , )v λ -section across the 
7-dimensional parameter space. The corresponding morphology 
diagram is shown in Figure 5.34a.

This diagram contains two lines of limit shapes, Lss and Lps. 
The limit shapes Lss have volume-to-area ratio v = v* = 0.885 
and line tension λ λ> 8.43* = . These shapes consist of two 
spheres, a smaller b-sphere and a larger a-sphere that are con-
nected by a closed neck. The domain boundary is located 
within this neck and has, thus, zero length. The a-sphere has 
radius R Aa a= / 4π   and mean curvature Ma = 1/Ra while 
the b-sphere has radius R Ab b= / 4π   and mean curvature 
Mb = 1/Rb. Therefore, the geometry of the limit shapes Lss is 
completely determined by the partial areas Aa and Ab. When 
we inflate one of the limit shapes Lss, thereby increasing the 

Figure 5.34 (a) Morphology diagram for two-domain vesicles as a 
function of reduced volume v and line tension λ  and (b) Shapes of 
two-domain vesicles for λ = 9 and variable v (bottom row), corre-
sponding to the horizontal dashed line in (a). the b-domain covers the 
area fraction xb = 0.1; both domains are taken to have the same bend-
ing rigidity and the same Gaussian curvature modulus as well as zero 
spontaneous curvatures. the limit shapes Lss consist of two spheres, 
a larger sphere formed by the a-domain and a smaller sphere formed 
by the b-domain. the limit shapes Lps consist of an a-prolate and 
a b-sphere. In (a), the two lines of limit shapes meet at the point 
( , ) ( , ) (8.43,0.885)* *v vλ λ= = . as we deflate a vesicle for λ λ> *, 
we first reach the limit shape Lss, at which the open neck closes, move 
across the shaded region (yellow) of persistent shapes with closed 
necks, and eventually reach the limit shape Lps, at which the neck 
starts to open again. (reproduced from Jülicher, F. and Lipowsky, r. 
Phys. Rev. E, 53, 2670–2683, 1996.)
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volume-to-area ratio to v > v*, the neck opens up and the domain 
boundary acquires a nonzero length.

The limit shapes Lps are located at ν νps ( ) < *λ  and again restricted 
to λ λ> *, see Figure 5.34a. The latter shapes consist of an a-prolate 
and a b-sphere. The b-sphere of the limit shape Lps is identical with 
the b-sphere of the limit shape Lss and, thus, has the same radius 
Rb bA= / 4π  . This b-sphere is connected to the pole of the a- 
prolate via a closed neck, and the domain boundary is again located 
within this neck. At its pole, the a-prolate has the mean curvature

 M M Aa
b

b
b

b= − = −λ
κ

λ
κ

π
2 2

4 / . (5.287)

The latter relation represents an example for the neck closure con-
dition of domain-induced budding, see further below. When we 
deflate one of the limit shapes Lps, thereby decreasing the vol-
ume-to-area ratio to v < vps, the neck opens up and the domain 
boundary acquires a nonzero length.

Inspection of Figure 5.34a shows that the two lines of limit 
shapes, Lps and Lss, enclose an intermediate parameter regime in 
which all two-domain shapes have a closed neck. Now, assume 
that we move across this regime by inflation, thereby increasing the 
parameter v for fixed value of the line tension λ λ> *. We start with 
a shape that has a volume-to-area ratio v v< ( )ps λ  and a slightly 
open neck, see Figure 5.34b. As we reach the limit shape Lps by 
inflation, the neck closes and the two mean curvatures Ma and Mb 
adjacent to this neck fulfill the neck closure condition in Eq. 5.287. 
Further inflation does not affect the b-sphere but increases the vol-
ume of the a-prolate, thereby producing different persistent shapes 
Φps with a closed neck. The volume of the a-prolate increases until 
it is transformed into an a-sphere. During this transformation, the 
mean curvature Ma at the pole of the a-prolate decreases continu-
ously until it reaches the limiting value M Aa a= 4 /π   of the 
a-sphere. After this transformation, the two-domain vesicle forms 
the limit shape Lss. Because the line tension forces the domain 
boundary to be located within the neck, a further increase in the 
vesicle volume necessarily leads to an open neck.

Neck closure and closed neck conditions
The ( , )v λ -diagram discussed in the previous subsection, see 
Figure 5.34a, contains a large parameter region for which the 
shape of the two-domain vesicle involves a closed membrane neck. 
This abundance of necks is also obtained for other choices of the 
area fraction xb, different values of the bending rigidities κa and 
κb, and nonzero values of the spontaneous curvatures ma and mb. 
In all of these cases, the domain boundary is again located within 
the neck provided the difference ΔκG of the Gaussian curvature 
moduli is small and can be neglected. Such ab necks that com-
pletely eliminate the domain boundary will now be considered in 
more detail.

Out-buds
If the b-domain forms an out-bud as in Figure 5.34b, the closed 
ab-neck is stable if the mean curvatures Ma and Mb of the a- and 
b-segments adjacent to the neck satisfy the relation (Jülicher and 
Lipowsky, 1993, 1996)

 κ κ λ κ κa a a b b b Ga GbM m M m( ) ( ) 1
2

.− + − ≤ =for  (5.288)

The equality sign of this relation provides the neck closure con-
dition for the limit shapes, the inequality sign the closed neck 
condition. The relation in Eq. 5.288 for a domain-induced out-
bud has been confirmed by numerical energy minimization for 
a large number of different parameter values. This relation can 
also be derived by parametrizing the shape of the two-domain 
vesicle in terms of membrane segments with constant mean 
curvature, compare Section Stability of closed necks. Recently, 
the neck closure condition corresponding to the equality sign in 
Eq. 5.288 has been shown to apply to non-axisymmetric shapes 
as well (Yang et al., 2017).

One should note that the matching condition along the 
domain boundary no longer applies when we reach a limit shape 
with a closed neck for which the domain boundary has zero 
length. Indeed, consider the simplest case of two membrane 
domains that have the same curvature-elastic parameters. In the 
latter case, the matching condition in Eq. 5.281 has the simple 
form Ma = Mb, corresponding to a continuous variation of 
the mean curvature across the domain boundary. In contrast, 
the limit shape is characterized by the neck closure condition 
in Eq. 5.288 which reduces to M Ma b b= −λ

κ2  when the two 
domains have the same curvature-elastic parameters. If we 
combined the latter relation with Ma = Mb, we would con-
clude that M Ma b b

= = λ
κ4  which is, however, inconsistent with 

M Ab b= 4 /π   as in Eq. 5.287. The same conclusion follows 
also by inspection of the limit shape Lps in Figure 5.34 which 
clearly shows that Ma ≠ Mb.

In-buds
If the b-domain forms an in-bud with a closed ab-neck, this neck 
is stable if (Lipowsky, 2014b)

 κ κ λ κ κa a a b b b Ga GbM m M m for( ) ( ) 1
2

.− + − ≥ − =  (5.289)

This relation can again be derived by an appropriate hemisphere-
unduloid parametrization of the vesicle shape or, alternatively, 
by changing the sign of all curvatures that appear in Eq. 5.288. 
Because the line tension of the domain boundary is necessar-
ily positive, the right hand side of the inequality in Eq. 5.289 is 
always negative.

Special parameter values
It is instructive to consider some special cases of the neck closure 
condition corresponding to the equality in Eqs 5.288 and 5.289. 
If the a- and b-domains have the same lipid composition and, 
thus, the same curvature-elastic parameters, the line tension λ 
vanishes and the neck closure condition becomes Ma + Mb = 2m, 
corresponding to the neck closure relations Eqs 5.52 and 5.53 for 
a uniform membrane. For a weakly curved a-segment, a spherical 
b-bud then has the radius

 Rb
bM m

= ≈
 

1
| |

1
2| | .

(uniform membrane,
weakly curved -segment)a

 (5.290)

Another simple case is provided by a weakly curved a-membrane 
characterized by a small spontaneous curvature | | | |m ma b . 
In this case, the b-domain forms a spherical bud with radius

rl8
Highlight
however, it is not clear why and how the matching condition ceases to hold for a limit shape
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Rb
b b b aM m m

= ≈
+

1
| |

1
| /(2 )| | |).λ κ

(weakly curved
membrane, smalla-

 (5.291)

Thus, depending on the relative size of the spontaneous cur-
vature |mb| and the reduced line tension λ/(2κb), the bud size 
may be dominated by spontaneous curvature or by line ten-
sion. For some ternary lipid mixtures, the measured line ten-
sion was found to be of the order of 10−12 N (Baumgart et al., 
2005; Semrau et al., 2008). The bending rigidity κb has a 
typical value of the order of 10−19 J. Thus, in these systems, the 
inverse length scale λ/(2κb) ≃ 1/(200nm) which implies that 
the bud size is dominated by line tension with Rb ≈ 2κb/λ for 
| | 1/(200mb  nm) and governed by spontaneous curvature with 
Rb ≈ 1/|mb| for | | 1/(200mb  nm).

Effect of Gaussian curvature moduli
In the previous subsection, it was tacitly assumed that the differ-
ence ΔκG = κGa − κGb between the Gaussian curvature moduli of 
the a and b domain can be ignored. This simplification will be 
valid as long as ΔκG is small compared to the bending rigidities κa 
and κb. For larger values of ΔκG, this difference has a significant 
effect on the location of the domain boundary, see Figure 5.35.

For an axisymmetric shape as shown in the top figure of 
Figure 5.35, the shape contour can be parametrized by the arc 
length s, the radial coordinate r, and the angle ψ between the nor-
mal vector and the symmetry axis, see Figure 5.33. The Gaussian 
curvature contribution in Eq. 5.277 can then be expressed in 
terms of the tilt angle ψ1 = ψ(s1) at the domain boundary and 
becomes (Jülicher and Lipowsky, 1993, 1996)

 G a b Ga Gb GS S E{ , } 2 ( ) ( ) ( ) .1 1= − ≡π κ κ ψ ψcos  (5.292)

If the domain boundary is located in the neck, i.e., at the clos-
est point of the shape contour to the symmetry axis, the angle 
ψ1 = π/2 and the energy term EG(ψ1) = 0.

Depending on the sign of κGa − κGb, the energy term EG 
becomes negative as the domain boundary moves out of the 
neck towards the b or towards the a domain. If κGa > κGb, this 
term becomes negative for ψ1 > π/2 which implies that the 
domain boundary prefers to move up towards the b domain as in 
Figure 5.35a. On the other hand, if κGa < κGb, EG becomes nega-
tive for ψ1 < π/2 which implies that the domain boundary prefers 
to move down towards the a domain, see Figure 5.35b. In both 
cases, the neck is then formed by the domain with the larger 
Gaussian curvature modulus.

The actual displacement of the domain boundary is limited 
by the line tension. Indeed, as the domain boundary moves out 
of the neck, the energy gain |EG(ψ1)| arising from the Gaussian 
curvature terms is bounded by

 | ( )| 2 | |1 1EG Ga Gbψ π κ κ ψ≤ − for any value of  (5.293)

whereas the line energy of the domain boundary increases mono-
tonically with the length of this boundary.

Such displacements of the domain boundaries away from 
the neck have indeed been observed experimentally for two-
domain vesicles formed by ternary lipid mixtures (Baumgart 
et al., 2005; Semrau et al., 2008). Based on the observed loca-
tion of the domain boundaries, the difference ΔκG = κGa − κGb 
in the Gaussian curvature moduli has been estimated to be 
ΔκG ≃ 3.9 × 10−19 J in (Baumgart et al., 2005) and 3 × 10−19 J in 
(Semrau et al., 2008). So far, these values which are of the same 
order of magnitude as the bending rigidities represent the only 
experimentally deduced information about the Gaussian curva-
ture moduli of lipid bilayers.

5.8.4 STABLE MULTI-DOMAIN PATTERNS

When we quench a vesicle membrane from the one-phase into 
the two-phase region, the phase separation process within the 
membrane starts with the formation of many small domains 
which then grow and merge into larger domains. Domain 
growth by coalescence, which is driven by the reduction in the 
line energy of the domain boundaries, has been observed both 
in computer simulations (Kumar et al., 2001) and in giant 
vesicle experiments (Veatch and Keller, 2003). If the line tension 
is sufficiently large, the coarsening process will often lead to 
complete phase separation and to two large membrane domains 
as studied in the previous subsections. However, if the two lipid 
phases differ in their bending rigidity, a multi-domain pattern 
with more than two domains can be energetically more favor-
able (Gutlederer et al., 2009; Hu et al., 2011). Some examples 
with 1 + 3 and 1 + 4 domains are displayed in Figure 5.36. 
Inspection of these figures shows that the more rigid a-domains 
are only weakly curved whereas the more flexible b-domains 
form the more strongly curved membrane segments. A reduction 
in the number of b-domains would reduce the line energy of 
these domains but, at the same time, increase the bending energy 
of the vesicle, and the bending energy increase outweighs the line 
energy reduction.

Figure 5.35 (top) Side view of a vesicle that consists of a large a 
domain and a small b bud. the two domains are connected by a 
membrane neck which contains the ab domain boundary (arrow); 
(Bottom) More detailed view of the neck region which shows that 
the domain boundary position (arrows) depends on the relative size 
of the Gaussian curvature moduli κGa and κGb of the a and b domains. 
For κGa > κGb, the domain boundary is shifted towards the b bud. 
For κGa < κGb, this boundary is displaced towards the a domain. In both 
cases (a) and (b), the domain boundary is shifted out of the neck 
towards the domain with the smaller κG-value, and the neck is then 
formed by the domain with the larger Gaussian curvature modulus 
(Jülicher and Lipowsky, 1993, 1996). Such shifts of the domain bound-
aries have been experimentally observed by (Baumgart et al., 2005; 
Semrau et al., 2008). (reproduced from Jülicher, F. and Lipowsky, r., 
Phys. Rev. E, 53, 2670–2683, 1996.)
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The shape energy of multi-domain vesicles with Na and Nb 
domains is obtained by summing up the bending and Gaussian 
curvature energies over all Na + Nb domains and the line ener-
gies over all domain boundaries. The minimization of this shape 
energy has been performed both by solving the corresponding 
shape equations assuming certain symmetries of the domain pat-
terns (Gutlederer et al., 2009) and by Monte Carlo simulations 
(Hu et al., 2011). As a result, the multi-domain vesicles are found 
to undergo new types of morphological transformations at which 
both the vesicle shape and the domain pattern are changed in a 
discontinuous manner. Presumably the simplest way to explore 
these morphological transitions is by changing the vesicle volume 
via osmotic deflation or inflation as illustrated in Figure 5.37.

Each vesicle morphology shown in Figure 5.37 is characterized 
by a different spatial symmetry: both with respect to the vesicle 
shape and with respect to the domain pattern. Therefore, all tran-
sitions that can be observed between these different morphologies 
are discontinuous and exhibit hysteresis. As we deflate the vesicle 
for fixed area fraction xb = Ab/(Aa + Ab), we can encounter the 
sequence of vesicle morphologies I1, I2, I3, I4, and II1 displayed in 
Figure 5.37b. The corresponding transitions IN → IN+1 involve the 
fission of N into (N + 1) b-domains. Such a fission process has to 
overcome an energy barrier that involves longer domain boundar-
ies and, thus, an increased line energy. In contrast, during infla-
tion, the reverse transitions IN+1 → IN lead to a reduction in the 
number of b-domains and are thus facilitated by the line tension. 
Therefore, it should be easier to experimentally observe these mor-
phological transitions during inflation processes.

5.8.5  MEMBRANE PHASE SEPARATION AND 
AMBIENCE-INDUCED SEGMENTATION

As explained in Section 7.6 and illustrated in Figure 5.31, 
membranes are often exposed to different local environments 
which act to enrich or deplete certain molecular components of 
the membranes. As a result, the membranes are partitioned into 

several segments that can differ in their molecular composition. 
The interplay between this ambience-induced segmentation and 
membrane phase separation has some interesting consequences 
as shown theoretically for membranes consisting of two molecu-
lar components, see Appendix 5.G (Rouhiparkouhi et al., 2013; 
Lipowsky et al., 2013). First, the phase separation within the 
multi-component membrane is always spatially confined to a 
single segment as illustrated in Figure 5.38. Second, when the 
membrane is partitioned into K different membrane segments, we 
encounter K separate coexistence regions as we vary the mem-
brane composition and/or the temperature. Third, the size of the 
coexistence regions, i.e., the range of compositions that exhibits 
two-phase coexistence, shrinks with increasing K. These generic 
properties have direct consequences for cell membranes.

The environment of a cell membrane is rather heterogeneous 
and the molecular interactions experienced by the different 

Figure 5.36 Multi-domain vesicles with two membrane domains that 
differ in their bending rigidities: (a, c) Snapshots from Monte Carlo 
simulations with (a) three and (c) four domains of the b phase (red) 
within a single domain of a phase (white); and (b, d) Corresponding 
images obtained by optical microscopy (Veatch and Keller, 2003; 
Gudheti et al., 2007). the a phase corresponds to the more rigid 
liquid-ordered phase, which forms a single, multiply-connected and 
weakly curved domain, whereas the b phase represents the more 
flexible liquid-disordered phase which forms three or four discon-
nected and more strongly curved domains. (Hu, J. et al., Soft Matter, 
7, 6092–6102, 2011. reproduced by permission of the royal Society 
of Chemistry.)

Figure 5.37 Morphological transitions of multi-domain vesicles 
that simultaneously change the vesicle shape and the domain pat-
tern. (a) Morphology diagram as a function of area fraction xb of the 
b-domains and volume-to-area ratio or reduced volume v. the dia-
gram exhibits five different morphologies, labeled by I1, I2, I3, I4, and II1 
and depicted in (b). the dashed vertical line at xb = 0.7 indicates a 
possible deflation/inflation trajectory; and (b) Sequence of vesicle 
morphologies and morphological transitions that the vesicle explores 
as we move along the dashed vertical line in (a). For each morphol-
ogy, the white domain corresponds to the more rigid a or Lo phase, 
the red domains to the more flexible b or Ld phase. the multi-domain 
vesicle follows the sequence I1 → I2 → I3 → I4 → II1 during deflation and 
the reverse sequence during inflation. all transitions I1 ↔ I2 ↔ I3 ↔ 
I4 ↔ II1 break a spatial symmetry. therefore, all of these transitions are 
discontinuous and exhibit hysteresis. the transitions from IN + 1 → IN, 
as induced by inflation, are facilitated by the line tension and should 
thus be easier to observe experimentally. (Hu, J. et al., Soft Matter 7, 
6092–6102, 2011. reproduced by permission of the royal Society of 
Chemistry.)

 Ld

(a) (b) (c)

 Lo

Figure 5.38 Multi-component vesicles with three different composi-
tions. the top row displays the non-adhering vesicles with composi-
tions that belong to (a) the liquid-disordered phase Ld (white), (b) the 
two-phase coexistence region, and (c) the liquid-ordered phase Lo 
(blue). the bottom row displays the same vesicles now adhering to a 
rigid surface or solid support. In the adhering state, membrane phase 
separation and domain formation can occur either in the bound or in 
the unbound segment but not in both segments simultaneously.
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molecular components of the membrane change on nanoscopic 
scales. When we focus on the interactions with the cytoskeleton, 
we can distinguish at least two types of membrane segments, 
contact segments that interact with the cytoskeletal proteins and 
noncontact segments that do not experience such interactions 
(Sako and Kusumi, 1994; Saxton and Jacobson, 1997; Fujiwara 
et al., 2002; Kusumi et al., 2005). In addition, different contact 
segments are, in general, exposed to cytoskeletal structures that 
differ in their molecular composition of actin-binding proteins 
(Skau and Kovar, 2010; Michelot and Drubin, 2011) and non-
contact segments involve additional supramolecular structures 
such as the protein scaffolds formed during clathrin-dependent 
endocytosis that have a lifetime in the range between 20 and 80s 
(Loerke et al., 2009; Cureton et al., 2012).

Thus, cell membranes are expected to be partitioned into 
many distinct membrane segments that are exposed to different 
local environments. If lipid phase domains form in such a cell 
membrane, this domain formation is necessarily restricted to one 
of the membrane segments and, thus, hard to detect (Lipowsky, 
2014b). In the limiting case in which the environmental heteroge-
neities act as long-lived random fields on the cellular membranes, 
these heterogeneities would completely destroy the two-phase 
coexistence region, in analogy to the Ising model with random 
fields (Binder, 1983; Aizenman and Wehr, 1989; Fischer and 
Vink, 2011). This view is in agreement with experimental observa-
tion on membrane phase separation in giant plasma membrane 
vesicles (Baumgart et al., 2007; Veatch et al., 2008) because the 
latter vesicles have no cytoskeleton.

In contrast to lipid phase domains, the formation of intra-
membrane domains via the clustering of membrane proteins 
is frequently observed in vivo. One example is provided by 
clathrin-dependent endocytosis which can be understood as 
a domain-induced budding process that is governed by the 
membrane’s spontaneous curvature. When the endocytic 
vesicles contain nanoparticles or other types of cargo, the 
uptake of this cargo becomes maximal at a certain, optimal 
cargo size (Agudo-Canalejo and Lipowsky, 2015a) as experi-
mentally observed for the uptake of gold nanoparticles by HeLa 
cells (Chithrani et al., 2006; Chithrani and Chan, 2007) and 
discussed in more detail in Chapter 8 of this book. In gen-
eral, protein-rich membrane domains or membrane domains 
induced by an extended protein coat should always undergo 
domain-induced budding as long as the lipid-protein domains 
remain in a fluid state. Recent examples are domain-induced 
budding processes arising from the clustering of Shiga toxin 
(Pezeshkian et al., 2016) and from the sequential adsorption of 
two types of ESCRT proteins (Avalos-Padilla et al., 2018).

5.9  WETTING OF MEMBRANES BY 
AQUEOUS DROPLETS

Aqueous two-phase systems, also called aqueous biphasic systems, 
have been used for a long time in biochemical analysis and bio-
technology and are intimately related to water-in-water emulsions 
(Albertsson, 1986; Helfrich et al., 2002; Esquena, 2016). One 
prominent example are PEG-dextran solutions that undergo aque-
ous phase separation when the weight fractions of the polymers 

exceed a few percent. The corresponding interfacial tensions are 
ultralow, of the order of 10−6−10−4 N/m, reflecting the vicinity 
of a critical demixing point in the phase diagram (Scholten et al., 
2002; Liu et al., 2012; Atefi et al., 2014; de Freitas et al., 2016). 
The corresponding phase diagram is displayed in Figure 5.39 
based on the experimental data in (Liu et al., 2012). As explained 
in the following section, aqueous two-phase systems and water-
in-water emulsions also provide insight into the wetting behavior 
of membranes and vesicles. The experimental procedures used to 
encapsulate aqueous two-phase systems by GUVs are reviewed in 
Chapter 29 of this book.

In the experimental studies of phase separation of PEG-
dextran solutions within GUVs, (Li et al., 2011; Liu et al., 2016) 
the GUV membranes were observed to form many nanotubes. 
More precisely, such tubes were formed by the membrane 
segments in contact with the PEG-rich aqueous phase. Thus, 
deflation of the PEG-dextran solutions led simultaneously to 

Figure 5.39 Phase diagram and membrane wetting behavior of 
aqueous PEG-dextran solutions as a function of the weight fractions 
wp and wd for PEG and dextran as determined experimentally in (Liu 
et al., 2012). For low weight fractions, the polymer mixture forms a 
spatially uniform aqueous phase corresponding to the one-phase 
region (white) in the phase diagram. the coexistence region of the 
PEG-rich phase α and the dextran-rich phase β contains two sub-
regions, a complete wetting region (pink) close to the critical point 
and a partial wetting region (turquoise) further away from it. In the 
pink subregion, the membrane is completely wetted by the PEG-rich 
phase α which encloses the dextran-rich phase β. the corresponding 
wetting morphology is depicted in the left inset: the outer leaflet of 
the uniform vesicle membrane (red) is in contact with the exterior 
phase γ, the inner leaflet with the interior phase α but not with the 
interior phase β (gravitational effects arising from the different mass 
densities of the two phases have been ignored). In the turquoise 
subregion, the membrane is partially wetted by both phases as shown 
in the right inset: both interior phases α and β are now in contact with 
the vesicle membrane and induce two distinct membrane segments 
(red and purple). Within the phase diagram, the boundary between 
the complete and partial wetting subregions is provided by a certain 
tie line (red dashed line), the precise location of which depends on 
the lipid composition of the membrane. along this tie line, the system 
undergoes a complete-to-partial wetting transition. the dashed 
tie-line partitions the binodal line into two line segments (red and 
blue). If one approaches the red segment of the binodal line from the 
one-phase region, a wetting layer of the α phase starts to form at the 
membrane and becomes mesoscopically thick as one reaches this 
line segment. No such layer is formed along the blue segment of the 
binodal line.
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both wetting and tubulation of the GUVs. However, wetting and 
tubulation should be regarded as two distinct and independent 
processes. First, nanotubes can be formed in the absence of aque-
ous phase separation as predicted theoretically for uniform mem-
branes, see Section 5.6, and observed experimentally (Liu et al., 
2016) for GUVs exposed to asymmetric PEG solutions without 
dextran. Second, membrane wetting is expected to always gener-
ate some spontaneous curvature but tubulation can only occur if 
the spontaneous curvature is sufficiently large compared to the 
inverse vesicle size as explained in Section 5.6. In the following 
subsections, we will first focus on wetting and ignore the possibil-
ity of tube formation. The additional aspects related to spontane-
ous tubulation will be addressed in a later subsection.

This section is supplemented by two Appendices: Appendix 
5.H on wetting of two membraneless droplets and Appendix 5.I 
on out-wetting of membranes and vesicles by droplets that origi-
nate from the exterior solution.

5.9.1 DISTINCT IN-WETTING MORPHOLOGIES

Wetting phenomena arise in aqueous systems with three separate 
aqueous phases that will be denoted by α, β, and γ. In the pres-
ence of a GUV membrane, which separates the aqueous solution 
into an interior and exterior compartment, only two of these 
phases, say α and β, will be in chemical equilibrium and able to 
form two coexisting phases. We can then distinguish two dif-
ferent cases, out-wetting and in-wetting, depending on whether 
these coexisting phases are formed within the exterior or interior 
compartment. For out-wetting, the exterior solution under-
goes aqueous phase separation into α and β droplets while the 
interior solution forms a spatially uniform γ phase. The γ phase 
does not participate in the wetting process and, thus, represents 
an inert spectator phase. For in-wetting, the interior solution 
separates into α and β droplets while the exterior solution forms 
a spatially uniform γ phase which again plays the role of an inert 
spectator phase.

In order to simplify the following discussion, I will focus in 
this section on the case of in-wetting. The case of out-wetting is 
considered in Appendix 5.I. In-wetting has been studied experi-
mentally for PEG-dextran solutions, using two different methods 
to induce the phase separation within the GUVs: temperature 

changes (Helfrich et al., 2002; Long et al., 2008) and osmotic 
deflation (Li et al., 2008, 2011; Kusumaatmaja et al., 2009; 
Liu et al., 2016; Dimova and Lipowsky, 2016). After the phase 
separation has been completed, the vesicle contains two aqueous 
droplets consisting of the PEG-rich phase α and the dextran-rich 
phase β, which are both separated from the exterior phase γ by the 
GUV membrane.

In general, an aqueous solution with three distinct aqueous 
phases α, β and γ can form three different liquid-liquid interfaces, 
an αβ, an αγ, and a βγ interface. When the interior aqueous 
solution within the GUV undergoes aqueous phase separation 
as considered here, the membrane is partitioned into an αγ and 
a βγ membrane segment. In principle, one can then distinguish 
four wetting morphologies: a partial wetting morphology which 
is characterized by a three-phase contact line and three distinct 
morphologies of complete wetting as depicted in Figure 5.40.

For the PEG-dextran solutions, complete wetting of the mem-
brane by the β phase as in Figure 5.40c has not been observed. 
Complete wetting of the membrane by the PEG-rich phase α 
as in Figure 5.40b was observed close to the critical point of the 
PEG-dextran mixture, see pink region in Figure 5.39. Partial 
wetting as in Figure 5.40a was found further away from the criti-
cal point, see turquoise region in Figure 5.39. Deflation of the 
partial wetting morphologies should eventually lead to complete 
wetting of the αβ interface by the γ phase, see Figure 5.40d. 
In the latter case, the GUV membrane consists of three segments: 
an αγ segment around the α droplet, a βγ segment around the β 
droplet, and a membrane neck (or nanotube) connecting the αγ 
with the βγ segment. The latter morphology is not possible if the 
volume-to-area ratio of the GUV is too large. Indeed, if the α and 
β droplets have the volumes Vα and Vβ, they cannot be completely 
enclosed by the vesicle membrane if the membrane area A is too 
small and satisfies the inequality15

 A A V V< (4 / 9) .2
1/3 2/3 2/3

sp ≡ +( )π α β  (5.294)

15 If the vesicle membrane forms nanotubes, the area A corresponds to the appar-
ent area of the mother vesicle.
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Figure 5.40 In-wetting morphologies arising from phase separation into two aqueous phases, α (yellow) and β (blue), within a giant vesicle. 
the vesicle is surrounded by the bulk liquid γ (white) which plays the role of an inert spectator phase. red and purple segments of the vesicle 
membrane are in contact with the α and β droplets, respectively. the αβ interfaces are depicted as dashed orange lines: (a) Partial wetting of 
the vesicle membrane by both the α and the β phase. this morphology involves a three-phase contact line (black circles). On the micrometer 
scale, the vesicle shape exhibits a kink along this contact line which directly reveals the capillary forces acting onto the vesicle membrane; (b) 
Complete wetting of the membrane by the α phase; (c) Complete wetting by the β phase; and (d) Special morphology for which the α and the β 
droplet are separated by a closed membrane neck. the latter morphology, which resembles complete wetting by the γ phase, is only possible if 
the membrane has a certain minimal area A = A2sp to enclose both spherical droplets completely, see Eq. 5.294.

rl10
Notiz
replace prefactor $(4\pi/9)^{1/3}$ in equation (5.294) by $(36 \pi)^{1/3}$
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In the following, I will first focus on systems that fulfill the 
geometric constraint Eq. 5.294 and thus cannot attain the limit 
shape with A = A2sp in Figure 5.40d. The latter morphology will 
be discussed in Section 5.9.8 further below.

In the phase diagram of Figure 5.39, the complete and partial 
wetting subregions are separated by a certain tie line, at which 
the system undergoes a complete-to-partial wetting transition. 
The precise location of this tie line depends on the lipid compo-
sition of the membranes. So far, three compositions have been 
studied: binary lipid mixtures consisting of DOPC and GM1 (Li 
et al., 2008, 2011) as well as ternary mixtures containing DOPC, 
dipalmytoyl phosphatidyl choline (DPPC) and cholesterol (Liu 
et al., 2016). In general, the wetting transition along this tie line 
can be continuous or discontinous depending on the manner in 
which the contact angle vanishes as we approach the transition 
from the partial wetting regime. So far, the experimental data do 
not allow us to draw firm conclusions about the continuous or 
discontinuous nature of the transition.

A particularly interesting class of water-in-water droplets is pro-
vided by membraneless organelles and biomolecular condensates 
that have been discovered in vivo and are enriched in intrinsi-
cally disordered proteins such as FUS (Brangwynne et al., 2009). 
It has been recently shown that a FUS-rich droplet in contact 
with a lipid vesicle can attain three different wetting morpholo-
gies depending on the salt concentration in the exterior solution 
(Knorr et al., under review). First, the droplet may form a thin 
wetting layer that spreads over the whole vesicle membrane, corre-
sponding to complete wetting by the FUS-rich phase. Second, the 
droplet may have a limited contact area with the vesicle membrane 
and can then be characterized by apparent contact angles. Third, 
the droplet may also avoid the contact with the membrane cor-
responding to dewetting of the FUS-rich phase.

5.9.2  FLUID-ELASTIC MOLDING OF MEMBRANES

The distinction between dewetting, partial wetting, and com-
plete wetting as described in the previous subsection emphasizes 
the different morphologies of an aqueous droplet in contact 
with a vesicle membrane. Alternatively, we may also focus on 
the response of the membrane to such a droplet. This response 
reflects the fluid-elastic molding mechanisms by which the 
droplet shapes the membranes. These mechanisms involve the 
adhesion of the droplets to the membranes, the capillary forces 
that the αβ interface exerts onto the membrane, as well as the 
bilayer asymmetry and curvature generation arising from the dif-
ferent aqueous phases in contact with the two membrane leaflets. 
For a large bilayer asymmetry and low membrane tension, the 
membrane forms nanobuds and nanotubes as observed for vesicle 
membranes in contact with PEG-dextran solutions (Li et al., 
2011; Lipowsky, 2013; Liu et al., 2016).

The different molding mechanisms are governed by different 
fluid-elastic parameters. First of all, the contact areas between 
the different aqueous phases and the GUV membrane can be 
characterized by different adhesive strengths, Wαγ and Wβγ, which 
represent the adhesion free energies of the αγ and βγ segments per 
unit area. If the α droplets are attracted towards the membrane, 
in a background of β phase, the corresponding affinity contrast 
Wαγ − Wβγ is negative. In such a situation, the α droplet tries 

to increase its contact area Aαγ with the membrane. However, 
an increase of the contact area Aαγ for fixed volume Vα usually 
implies an increase in the area Aαβ of the αβ interface and, thus, 
of the interfacial free energy AαβΣαβ which is proportional to the 
interfacial tension Σαβ.

On the other hand, the α droplet can simultaneously increase 
the contact area Aαγ with the membrane and decrease the area 
Aαβ of the αβ interface when it is partially or completely engulfed 
by the membrane. Complete engulfment of the α droplet as 
depicted in Figure 5.40d is only possible if the membrane area A 
is sufficiently large and satisfies A ≥ A2sp with the area threshold 
A2sp as in Eq. 5.294. In general, complete engulfment of a liquid 
droplet by a vesicle membrane requires some area reservoir or, 
equivalently, a sufficiently small lateral stress Σ acting within the 
membrane. Vice versa, a large lateral stress as generated, e.g., by 
osmotic inflation reduces the contact area for partial wetting and 
suppresses engulfment.

The interfacial tension Σαβ of an aqueous two-phase system or 
water-in-water emulsion can be very small and only of the order 
of 10−6−10−5 N/m. In spite of these ultra-low tension values, the 
resulting capillary forces generate strong shape deformations of 
the vesicle membrane along the three-phase contact line. Indeed, 
when viewed with conventional optical resolution, the membrane 
shape exhibits an apparent kink along this contact line as sche-
matically depicted in Figures 5.40a and 5.49a for partial in- and 
out-wetting, respectively.

Finally, both for in- and for out-wetting, the two leaflets 
of the different membrane segments are exposed to different 
aqueous solutions which implies that the membrane segments 
acquire a certain spontaneous curvature. For a sufficiently 
large spontaneous curvature, the membrane segment forms 
nanobuds and nanotubes as observed for giant vesicles in 
contact with phase-separated PEG-dextran solutions (Li et al., 
2011; Lipowsky, 2013; Liu et al., 2016). In the latter case, 
the spontaneous curvature was generated by PEG adsorption 
which implies that the nanobuds and nanotubes were formed 
by the membrane segments αγ in contact with the PEG-rich 
phase, reflecting the more negative adhesive strength Wαγ of 
these segments.

5.9.3 THEORY OF VESICLE-DROPLET SYSTEMS

 Basic assumptions about the composition of the 
vesicle membrane
As previously mentioned, multicomponent membranes exposed to 
two different aqueous solutions are partitioned into two segments 
that will, in general, differ in their molecular compositions. These 
different compositions reflect the different molecular interactions 
between the membrane molecules and the two aqueous phases. 
Membrane segmentation can also arise via two alternative mecha-
nisms, (i) phase separation within the membrane as discussed in 
the previous Section 5.8 and (ii) curvature sorting, i.e., the prefer-
ence of some membrane molecules for highly curved membrane 
segments.

In the present section, we consider membrane compositions 
that belong to the one-phase region when the vesicle membrane 
is exposed to a uniform aqueous environment provided by any 
of the three liquid phases α, β, and γ. Furthermore, to simplify 
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the following discussion, we will assume that curvature sorting is 
negligible and can be ignored.16 In such a situation, the different 
molecular compositions of the αγ and βγ membrane segments are 
determined by the different molecular interactions of the mem-
brane molecules with the two distinct aqueous phases, molecular 
interactions that will be described by the corresponding adhesion 
free energies.

Geometry of in-wetting morphologies
The in-wetting morphologies in Figure 5.40 involve one α and 
one β droplet enclosed by the vesicle membrane. It will be useful 
to decompose the corresponding shape S into several components. 
First, we define the shapes Sα and Sβ of the two droplets with 
volumes

 V S V Sα α β β= = { } { }.and  (5.295)

The total volume of the vesicle is then given by

 V V V= +α β . (5.296)

These volumes can be considered to be constant at constant 
temperature and fixed osmotic conditions. The two droplets are 
bounded by three surface segments: the αβ interface between 
the α and the β droplet as well as two membrane segments, the 
αγ segment in contact with the α droplet and the βγ segment 
exposed to the β droplet. The shapes of these three surfaces will 
be denoted by Sαβ, Sαγ, and Sβγ, respectively. Their surface areas 
are then given by

 A S A S A Sαβ αβ αγ αγ βγ βγ= = =  { }, { }, { }.and  
(5.297)

All three surface segments meet along the three-phase contact line 
which has the shape Sαβγ and the length

 L Sαβγ αβγ= { } (5.298)

where L{.} is the length functional as before.
The αβ interface can adapt its area Aαβ to changes in the 

droplet and membrane morphologies. As before, the total mem-
brane area A will be taken to be constant at constant tempera-
ture. The vesicle-droplet system is then characterized by three 
geometric constraints as provided by the volumes Vα and Vβ of 
the two droplets as well as the total membrane area A. In order 
to determine the morphology of the vesicle-droplet system, we 
will minimize the (free) energy of the system, taking these three 
constraints into account.

Different energetic contributions
The three surface segments and the contact line make different 
contributions to the total (free) energy of the vesicle-droplet 
system. One contribution arises from the interfacial tension Σαβ 

of the interface between the two liquid phases α and β. The lat-
ter contribution is proportional to the interfacial area Aαβ and 
given by

 Σ Σαβ αβ αβ αβA S= { }. (5.299)

The curvature elasticity of each membrane segment jγ with j = α 
or β makes two contributions, a bending energy that depends 
on the bending rigidity κjγ and the spontaneous curvature mjγ as 
well as a contribution from the Gaussian curvature modulus κG,jγ. 
In close analogy to the bending energy of a two-domain vesicle, 
see Eq. 5.274, the bending energy functional of a partially wetted 
membrane has the form

   be
in in in{ , } { } { }S S S Sαγ βγ αγ αγ βγ βγ= +  (5.300)

with

  j j j j jS A M m jγ γ γ γ γκ α βin d for or{ } 2
2

= −( ) =∫  (5.301)

which depends on the (local) mean curvature M of the mem-
brane. In addition, the Gaussian curvature energy functional is 
given by

 G G G g G GS lC{ } ( ) 2 ( ),, , , ,αβγ αγ βγ αγ βγκ κ π κ κ= − + +∫d  (5.302)

where the first term involves the line integral over the geodesic 
curvature Cg along the three-phase contact line as follows from the 
Gauss-Bonnet theorem, see the analogous expression for two-
domain vesicles in Eq. 5.277. To obtain the correct sign of this 
term, the orientation of the line element dl has to be chosen in such 
a way that the αγ segment is surrounded in a clockwise manner 
when one looks down onto this segment from the exterior phase γ.
We will again focus on membrane compositions with (at least) 
one molecular species, such as cholesterol, that undergoes 
frequent flip-flops between the two leaflets. We can then ignore 
additional bending energy terms arising from area-difference 
elasticity as described by Eqs 5.63 and 5.64. Furthermore, as 
emphasized at the beginning of the present section, we will also 
assume that this multi-component membrane has no tendency 
to phase separate and has a laterally uniform composition when 
exposed to spatially uniform aqueous environments.

In addition, the molecular interactions between the aqueous 
droplets and the membrane lead to two additional contributions, 
the adhesion free energies of the droplets and the free energy of 
the three-phase contact line. The latter contribution is propor-
tional to the length Lαβγ of the contact line and given by

 λ λαβγ αβγco coL S= { } (5.303)

with the contact line tension λco. The latter line tension can be 
positive or negative in contrast to the line tension λ of a domain 
boundary, which must be positive to ensure the stability of the 
intramembrane domains. Finally, the adhesion free energies will 
now be discussed in some detail.

16  In general, curvature sorting should be limited to highly curved membrane 
segments. For in-wetting morphologies as considered here, high curvatures can 
be present along the three-phase contact line. In addition, one type of mem-
brane segment may form nanotubes (Li et al., 2011; Liu et al., 2016) which 
represent highly curved membrane segments as well.



Understanding giant vesicles: A theoretical perspective134
G

ia
nt

 v
es

ic
le

s 
th

eo
re

ti
ca

lly
 a

nd
 in

 s
ili

co

Adhesion free energies of droplets
In order to determine the adhesion free energies of the droplets 
in contact with the vesicle membrane, we denote the outer and 
inner leaflet of the bilayer membrane by the subscript “ol” and 
“il,” respectively, and view the leaflet-water interfaces as “walls” 
with different interfacial tensions, depending on whether they are 
exposed to the α or to the β phase.

To each shape S of the wetting morphology depicted in 
Figure 5.40a, we can define a reference system with the same 
shape but with both the α and β droplet replaced by γ phase. 
The intermolecular interactions between the leaflets and the adja-
cent γ phases then lead to the interfacial tensions Σol,γ and Σil,γ 
of the corresponding leaflet-water interfaces and the combined 
interfacial free energy functional of both leaflet-water interfaces 
has the form

 T A Aγγ αγ βγ γ γ αγ βγ{ , } ( ) { } { } ., ,S S S S= + +( )Σ Σol il  (5.304)

On the length scale of several nanometers, we should be able to 
ignore the dependence of the interfacial tensions on the interfacial 
curvatures which implies that both leaflet-water interfaces are 
governed by the same interfacial tension

 Σ Σ Σl ol ilγ γ γ≡ =, ,  (5.305)

corresponding to the leaflet-water interfaces of a planar bilayer 
membrane.

If we now go back to the wetting morphology in Figure 5.40a, 
the interfacial free energy of the leaflet-water interfaces becomes

 T A Aαβ αγ βγ α γ αγ β γ βγ{ , } ( ) { } ( ) { }.S S S S= + + +Σ Σ Σ Σl l l l  (5.306)

The adhesion free energy functional ad of the α and the β droplet 
in contact with one of the bilayer leaflets is then defined by

 E T T A Aad{ , } { } { }S S W S W Sαγ βγ αβ γγ αγ αγ βγ βγ≡ − = +  (5.307)

with the adhesion free energies per unit area, Wαγ and Wβγ, given 
by (Lipowsky, 2018a)

 W Wαγ α γ βγ β γ≡ − ≡ −Σ Σ Σ Σl l l land  (5.308)

for the α and β droplet in contact with the inner bilayer leaflet.
Thus, the system can be characterized by two adhesive 
strengths, Wαγ and Wβγ, in close analogy to (i) the adhesive 
strength W between a membrane and a substrate surface as 
discussed in Section 5.7 and to (ii) the adhesion of nanoparticles 
as described in Chapter 8 of this book. When the leaflet prefers 
the α phase over the γ phase, the adhesive strength Wαγ < 0. 
Likewise, when the leaflet prefers the β phase over the γ phase, 
Wβγ < 0. The adhesive strength Wjγ also represents the revers-
ible work that has to be expended per unit area to replace the γ 
phase by the phase j with j = α,β. In addition, we can also com-
pare the adhesion of the α and β droplets to one of the leaflets 
without any reference to the γ phase. Thus, the reversible work 
per unit area to replace a droplet of β phase in contact with a 
leaflet by α phase is given by

 W W Wαβ α β αγ βγ≡ − = −Σ Σl l  (5.309)

which is negative if the leaflet prefers the α phase over the β 
phase.

Energy functional for in-wetting
Now, let us collect the different terms described previously. As a 
result, we obtain the energy functional

 
E A E E

E
2 { } { } { , } { , }

{ }
Dr

in
be
in

adS S S S S S
S

≡ + +
+
Σαβ αβ αγ βγ αγ βγ

αβγ αβγ
 (5.310)

with the contact line contribution

 E E Lαβγ αβγ αβγ αβγλ{ } { } { }.S S SG= + co  (5.311)

The subscript 2Dr stands for “two droplets” and the superscript 
“in” indicates that the energy functional  in corresponds to in-
wetting and should be distinguished from out-wetting. In fact, 
the only energy contribution that is different for in- and out-
wetting is the one that arises from the bending energy be

in{ }S  of 
the two membrane segments, as described by Eq. 5.300, because 
the spontaneous curvatures change sign when we swap the α and 
β phases with the γ phase.

Shape functional for in-wetting
In addition to the different energetic contributions of the vesicle-
droplet system, we have to take the constraints on the membrane 
area A and the droplet volumes Vα and Vβ into account. The con-
straint on the membrane area A is implemented by the Lagrange 
multiplier Σ which can be identified with the lateral stress that 
acts to stretch (or compress) the membrane as explicitly shown 
for uniform membranes in Appendix 5.D. In addition, we have 
to enforce certain values for the volumes Vα and Vβ of the α and 
β droplets. These volumes are determined by the pressures Pα, 
Pβ, and Pγ within the three liquid phases α, β, and γ or, more 
precisely, by the pressure differences Pα − Pγ and Pβ − Pγ. We are 
then led to study the stationary shapes (minima, maxima, and 
saddle points) of the shape functional

 F V V A E2 2{ } ( ) { } ( ) { } { } { }Dr
in

Dr
inS P P S P P S S S= − + − + +γ α α γ β β Σ  
(5.312)

where the last term 2 { }Dr
in S  represents the energy functional for 

in-wetting as given by Eq. 5.310. Both the pressure differences 
Pγ − Pα and Pγ − Pβ as well as the lateral stress Σ will be used as 
Lagrange multipliers to fulfill the geometric constraints that the 
droplet volumes Vα and Vβ as well as the total membrane area A 
have certain prescribed values.

Terms proportional to individual segment areas
The shape functional as given by Eq. 5.312 contains the term 
Σ{ }S  which depends on the lateral membrane stress Σ and the 
adhesion term ad{ }S  as given by Eq. 5.307 which depends on the 
adhesive strengths of the two aqueous phases. When we combine 
these two terms, we obtain

 Σ Σ ΣA E A A{ } { } { } { }S S S S+ = +ad αγ αγ βγ βγ  (5.313)
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with the mechanical segment tensions (Lipowsky, 2018a)

 Σ Σ Σ Σαγ αγ βγ βγ≡ + ≡ +W Wand . (5.314)

Thus, each segment tension Σjγ depends both on the lateral 
membrane stress Σ and on the adhesive strength Wjγ. Individual 
vesicles from a given vesicle preparation are usually character-
ized by different Σ-values corresponding to different membrane 
areas and vesicle shapes. In contrast, the adhesive strength Wjγ is 
determined by the molecular interactions across the leaflet-water 
interfaces and should have the same value for all GUVs from the 
same batch, assuming that their membranes have the same lipid-
protein composition and are exposed to aqueous solutions with 
the same solute composition. As a consequence, the difference

 Σ Σαγ βγ αγ βγ αβ− −= =W W W  (5.315)

of the two segment tensions is only determined by the adhesive 
strengths and should also have the same value for all GUVs from 
the same batch.

5.9.4  SHAPE EQUATIONS AND MATCHING 
CONDITIONS

Shape equations for membrane segments
The first variation of the shape functional in Eq. 5.312 leads to 
two Euler-Lagrange or shape equations for the two membrane 
segments αγ and βγ, in close analogy to the shape Eqs 5.279 for 
two-domain vesicles. Indeed, the shape equations for the two 
membrane segments have the form

 
P P M M m M

M m M G
j j j j j

j j

− = − ∇ −
− − −

γ γ γ γ γ

γ γ

κ κ
κ

2 2 4
4 [ ][ ]

2 2

2
Σ LB  (5.316)

with j = α, β and the total segment tensions

 Σ Σ Σ j j j j jWγ γ γ γ γσ σ≡ + = + +  (5.317)

which include the spontaneous segment tensions

 σ κγ γ γj j jm≡ 2 .2  (5.318)

As before, the ∇LB
2  symbol represents the Laplace-Beltrami opera-

tor, see Eq. 5.24, and G is the (local) Gaussian curvature. For the 
partial in-wetting morphologies depicted in Figure 5.40a, the 
pressure differences Pα − Pγ and Pβ − Pγ are positive.

Boundary or matching conditions for 
axisymmetric shapes
In addition to the shape equations for the two membrane seg-
ments, the first variation of the shape functional also leads to 
certain boundary or matching conditions for the two segments 
along the contact line. For axisymmetric vesicles as depicted 
in Figure 5.41, these matching conditions can be obtained by 
generalizing the corresponding conditions for two-domain 
vesicles as discussed in Section 5.8 and Appendix 5.F. Indeed, the 

axisymmetric shape shown in Figure 5.41 is quite similar to the 
one in Figure 5.33, the only difference is the presence of the two 
droplets α and β as well as the αβ interface between these droplets.
In Figure 5.41, the symmetry axis is again chosen to be the z-axis 
and the shape contour is again parametrized in terms of the arc 
length s, the radial coordinate r = r(s), and the tilt angle ψ = ψ(s). 
We can now directly use the matching conditions described in 
Appendix 5.F.1 if we substitute the domain indices b and a with 
the segment indices αγ and βγ, respectively.

The first variation of the shape functional with respect to 
the variable ψ(s1) is obtained by using the substitution a → βγ 
and b → αγ in Eqs 5.2 and 5.3 which leads to the curvature 
discontinuity

 κ ε κ ε δκ κ κβγ αγ βγ βγ αγ αγC s C s C s m m1 1 1 1 2 1( ) ( ) ( ) 2 2+ − − = + −  
(5.319)

of the contour curvature C1 along the three-phase contact line 
with the parameter

 δκ κ κ κ καγ βγ αγ βγ≡ − + −G G, , . (5.320)

Note that the individual contour curvatures C1(s1 + ε) and 
C1(s1 − ε) are usually quite large compared to the orthogonal 
curvature C2(s1) that satisfies C s s r s r s2 1 1 1 1( ) ( )/ ( ) 1/ ( )= ≤sinψ . 
The discontinuity C1(s1 + ε) − C1(s1 − ε) of the contour curvature 
vanishes if the two membrane segments have the same curvature-
elastic properties, i.e., the same spontaneous curvature, bending 
rigidity, and Gaussian curvature modulus. The latter situation has 
been studied in (Kusumaatmaja et al., 2009) with the additional 
simplification that both membrane segments have zero spontane-
ous curvatures, i.e., mαγ = mβγ = 0.

Figure 5.41 (a) axisymmetric shape corresponding to partial in-wetting: 
as in Figure 5.33, the 2-dimensional shape of the membrane is 
uniquely determined by the 1-dimensional shape contour (red- purple) 
in the (r, z)-plane defined by the coordinate z along the symmetry 
axis and the radial coordinate r. the shape contour is parametrized 
by its arc length s, with the north and south pole of the vesicle being 
located at s = 0 and s = s2, respectively, and the contact line at s = s1. 
the angle ψ describes the tilt of the tangent vector at the shape 
contour from the horizontal r-direction; and (b) the αγ segment (red) 
and the βγ segment (purple) meet at the contact line with a common 
tangent. the angles between this tangent and the tangent to the αβ 
interface (dashed orange) represent the intrinsic contact angles θα

* 
and θβ

* with θ θ πα β
* *+ = .
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 Balance between interfacial and segment tensions
A second boundary or matching condition is obtained from the 
first variation of the shape functional with respect to the vari-
able r1 ≡ r(s1) which represents the radius of the contact line. 
The resulting condition can be obtained from Eq. 5.F16, supple-
mented by one additional term arising from the interfacial tension 
Σαβ. We then obtain the balance condition (Lipowsky, 2018a)

 Σ Σ Σ ∆Σβγ αγ αβ αθ λ ψ− = + +cos cos* 1

1
,co cor

 (5.321)

with the intrinsic contact angle θ*
α and the tilt angle ψ1 ≡ ψ(s1), 

see Figure 5.41. The last term in Eq. 5.321 has the explicit form

 ∆Σ, 1 1
1
2

( ) 1
2

( )co = + − −κ ε κ εβγ βγ αγ αγQ s Q s  (5.322)

with the curvature-dependent terms

 Q s C s C s m jj jγ γ α β( ) ( ) [ ( ) 2 ] = , .1
2

2
2≡ − − for  (5.323)

These relations describe the balance between the capillary forces 
arising from the interfacial tension Σαβ, the tensions Σβγ and 
Σαγ of the two membrane segments, and the line tension λco. 
The additional term ΔΣ,co in Eq. 5.321 arises from the differ-
ent curvature-elastic properties of the two membrane segments. 
Indeed, the term ΔΣ,co vanishes if the two membrane segments 
have the same curvature-elastic properties. In the latter case, the 
force balance condition Eqs 5.321 simplifies and becomes

 Σ Σ Σβγ αγ βγ αγ αβ αθ λ ψ− = − = +W W
r

cos cos* 1

1
co  (5.324)

which depends on the difference of the two adhesive strengths 
Wβγ and Wαγ, the interfacial tension Σαβ, and the contact line 
tension λco. Thus, if the vesicle membrane continued to have 
laterally uniform curvature-elastic properties even when it is 
partially wetted by the two aqueous droplets, the force balance 
along the contact line as described by Eq. 5.324 would involve 
neither the bending rigidity nor the spontaneous curvature of the 

membrane. For GUVs, the radius r1 of the contact line is typically 
of the order of many micrometers. In such a situation, the term 
proportional to the line tension λco in (5.324) can be neglected 
which implies that the intrinsic contact angle θα

*  depends only 
on two material parameters, the difference W Wβγ αγ−  of the two 
adhesive strengths and the interfacial tension Σαβ of the water-
water interface.

If the two membrane segments have different spontaneous cur-
vatures but the same bending rigidities κ and the same Gaussian 
curvature moduli, the additional term ΔΣ,co becomes

 ∆Σ, 1= 4 [ ][ ( ) ]co κ εβγ αγ αγm m M s m− − −  (5.325)

with the mean curvature M C C= ( )1
2 1 2+  which satisfies, for καγ = 

κβγ = κ and κG,αγ = κG,βγ, the matching condition

 M s m M s m( ) = ( )1 1+ − − −ε εβγ αγ  (5.326)

along the contact line as follows from Eq. 5.319. Thus, the 
discontinuity in the mean curvature, M(s1 + ε) − M(s1 − ε), 
is now equal to the difference in the spontaneous curvatures, 
mβγ − mαγ, and the additional term ΔΣ,co is proportional to this 
discontinuity.

At present, both the curvature discontinuities and the addi-
tional term ΔΣ,co that enters the force balance relation (5.321) 
cannot be used to analyze the shapes of GUVs because the 
local membrane curvatures along the contact line have not been 
resolved by optical microscopy. Therefore, these matching condi-
tions will not be further pursued in the following. On the other 
hand, the experimental observations revealed one universal fea-
ture of the partial wetting morphologies for GUVs, namely that 
the shapes of the two membrane segments are very well described 
by spherical caps which is a direct consequence of the capillary 
forces exerted by the αβ interface onto the vesicle membrane. 
Because the αβ interface necessarily forms a spherical cap as 
follows from the classical Laplace equation, the partial wetting 
morphologies consist of three surface segments that form three 
spherical caps and meet along the three-phase contact line, as 
displayed in Figure 5.42.

Figure 5.42 Cross-section of partial in-wetting morphology as observed experimentally: (a) three spherical surface segments corresponding to the 
αβ interface (dotted orange line) and to the two membrane segments αγ (red) and βγ (purple). these three spherical caps meet along an appar-
ent contact line (black circles); (b, c) the three-spherical-cap shape is determined by the curvature radii Rαγ, Rβγ, and Rαβ of the three spherical caps 
as well as by the contact line radius Rco. the three centers αγ , βγ , and αβ  of the three spherical caps are located on the rotational symmetry axis 
(vertical dashed line). In order to obtain a unique shape, we also need to specify the locations of these cap centers relative to the contact line plane 
pco (full horizontal line), see main text; and (d) at the contact line, the tangent planes to the three spherical surface segments define the three 
apparent contact angles θα

ap, θβ
ap, and θγ

ap with θ θ θ πα β γ
ap ap ap+ + = 2 . (From Lipowsky, r. J. Phys. Chem. B, 122, 3572–3586, 2018a.)
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5.9.5 THREE-SPHERICAL-CAP SHAPES

Geometric relations for three spherical caps
From the optical microscopy images, we can directly deduce 
the curvature radii of the three spherical caps which will be 
denoted by Rαβ, Rαγ, and Rβγ, respectively, see Figure 5.42b, c, 
and the centers of the spherical caps by Cαγ, Cβγ, and Cαβ. We 
will again use the sign convention that all radii are always taken 
to be positive. Because the three spherical caps meet along the 
apparent contact line, the three cap centers Cαγ, Cβγ, and Cαβ 
are necessarily colinear. The straight line through these cen-
ters represents the axis of rotational symmetry for the three-
spherical-cap shape corresponding to the vertical dashed line in 
Figure 5.42b,c. To obtain a certain three-spherical-cap shape, 
we also need to specify the radius Rco of the apparent contact 
line in addition to the curvature radii, see Figure 5.42c. In fact, 
the four length scales Rαβ, Rαγ, Rβγ, and Rco are not quite suf-
ficient to uniquely define the three-spherical-cap shape because 
we still need to specify (i) whether the two cap centers Cαγ and 
Cβγ of the two membrane segments are located above or below 
the apparent contact line plane pco as depicted by the horizontal 
full line in Figure 5.42b,c; and (ii) whether the cap center Cαβ 
of the liquid-liquid interface is above or below this contact line 
plane corresponding to an αβ interface that bulges towards the 
β or towards the α droplet.

For the example shown in Figure 5.42, the cap centers Cαγ 
and Cβγ are located above and below the apparent contact line 
plane pco, respectively. This location of the two cap centers 
implies that both membrane segments form spherical caps with 
an equator (or “belly”). In addition, the center Cαβ of the αβ 
interface is located below the plane pco which implies that the αβ 
interface bulges towards the α droplet corresponding to a pres-
sure Pβ in the β droplet that exceeds the pressure Pα in the α 
droplet. Keeping the four length scales fixed as well as the loca-
tions of the two cap centers Cαγ and Cβγ, we may also place the 
 center Cαβ above the contact line plane pco which then leads to an 
αβ interface that bulges towards the β droplet corresponding to Pα 
> Pβ.

We now introduce the sign convention that the mean curva-
ture Mαβ of the αβ interface is positive, i.e.,

 M P Pαβ
αβ

α β= 1 > 0 >
R

for  (5.327)

and negative with

 M P Pαβ
αβ

β α= − 1 < 0 > .
R

for  (5.328)

With this sign convention, the classical Laplace equation for the 
αβ interface assumes the form

 P P Mα β αβ αβ
αβ

αβ
− = = ±2

2
Σ

Σ
R

 (5.329)

where the plus and minus sign applies to Pα > Pβ and Pβ > Pα, 
respectively.

 Family of three-spherical-cap shapes with 
geometric constraints
As previously mentioned, the vesicle-droplet systems are charac-
terized by three geometric constraints as provided by the droplet 
volumes Vα and Vβ as well as by the total membrane area A. These 
three quantities can be expressed in terms of the four radii Rαβ, 
Rαγ, Rβγ, and Rco which leads to three equations between the four 
radii. The solution of these three equations may be parametrized 
in terms of Vα, Vβ, A, and a suitable reaction coordinate such as 
the apparent contact line radius Rco. As a result of this reparame-
trization, we obtain a one-parameter family of three-spherical-cap 
shapes that fulfill all three geometric constraints.

Apparent contact angles
Another set of geometric quantities that can be directly deduced 
from the optical microscopy images are the apparent contact 
angles θα

ap, θβ
ap, and θγ

ap, with θ θ θ πα β γ
ap ap ap+ + = 2  introduced in 

Figure 5.42d. The sines of these angles can be expressed in terms 
of the three curvature radii and the apparent contact line radius 
Rco. In general, one has to distinguish several cases depending 
on the relative locations of the cap centers Cαγ, Cβγ, and Cαβ with 
respect to the contact line plane pco. When these cap centers have 
the relative locations as in Figure 5.42b,c, corresponding to Pβ > Pα, 
we obtain the explicit relationships (Lipowsky, 2018a)

 sinθα
αβ αγ

αβ αγ
ap co

co co= − + −( )R
R

R R R R
R

2 2 2 2 ,  (5.330)

 sinθβ
αβ βγ

αβ βγ
ap co

co co= − − −( )R
R

R R R R
R

2 2 2 2 ,  (5.331)

with Rαβ ≥ Rβγ and

 sinθγ
αγ βγ

αγ βγ
ap co

co co= − + −( )R
R

R R R R
R

2 2 2 2 .  (5.332)

If the two cap centers Cαγ and Cβγ have the same locations as in 
Figure 5.42 but the cap center Cαβ is moved to a location above 
the contact line plane pco, corresponding to Pα > Pβ, these rela-
tions assume the slightly modified form

 sinθα
αβ αγ

αβ αγ
ap co

co co= − − −( )R
R R

R R R R2 2 2 2  (5.333)

with Rαβ ≥ Rαγ,

 sinθβ
αβ βγ

αβ βγ
ap co

co co= − + −( )R
R R

R R R R2 2 2 2 ,  (5.334)

and

 sinθγ
αγ βγ

αγ βγ
ap co

co co= − + −( )R
R R

R R R R2 2 2 2 . (5.335)

The latter expression is identical with Eq. 5.332 but the first two 
expressions differ from Eqs 5.330 and 5.331 in the signs before 
the second square root.
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These explicit relations between the sines of the apparent 
contact angles and the four radii directly demonstrate that the 
apparent contact angles are determined by the size and shape of 
the GUVs. In particular, all three angles change when we vary 
the apparent contact line radius Rco.

Angle-curvature relationship
Finally, using some trigonometric relations, it is not difficult to 
show that the curvature radii and the apparent contact angles 
satisfy the relation

 

sin sin sinθ θ θγ

αβ

α

βγ

β

αγ

ap ap ap

R R R
= −  (5.336)

where the minus and plus sign applies to an αβ interface 
that bulges towards the α and the β droplet, respectively. 
The equalities in Eq. 5.336, which do not depend on 
the  apparent contact line radius Rco, may be used to estimate 
the accuracy of the measured values for the curvature radii 
and apparent contact angles. When expressed in terms of 
the mean curvatures, the purely geometric relation (5.336) 
becomes

 M M Mαβ γ αγ β βγ αθ θ θsin sin sinap ap ap= − . (5.337)

Shape equations for spherical caps
When the membrane segments αγ and βγ assume spherical cap 
shapes, the shape Eqs 5.316 assume the simplified form

 P P M m M jj j j j j j− = − =γ γ γ γ γ γκ α β2 4 ,2Σ with  (5.338)

with the total segment tensions Σ Σ Σ j j j j jWγ γ γ γ γσ σ≡ + = + +  
as in Eq. 5.317 and the spontaneous segment tensions 
σ κγ γ γj j jm= 2 2  as in Eq. 5.318. The shape Eqs 5.338 can be 
rewritten in the more compact form

 P P M jj i i− = =γ γ γ α β2 ,Σeff with  (5.339)

with the effective tensions

 Σ Σ Σj j j j j j j j j jm M m Mγ γ γ γ γ γ γ γ γ γκ σ κeff ≡ − = + − 2 2  (5.340)

which depend on the mean curvatures Mjγ. Note that these shape 
equations now determine the constant mean curvatures Mαγ and 
Mβγ of the two spherical membrane segments. Because both mean 
curvatures are necessarily positive, a positive value of Pj − Pγ 
implies a positive value of the effective tension Σ jγ

eff .
A linear combination of the Laplace Eq. 5.329 for the αβ 

interface and the shape Eqs 5.339 for the two membrane seg-
ments can be used to eliminate the three pressure differences. As 
a result, we obtain the relation

 Σ Σ Σαβ αβ αγ αγ βγ βγM M M= −eff eff  (5.341)

between the interfacial tension Σαβ and the effective tensions Σαγ
eff  

and Σβγ
eff  experienced by the two membrane segments.

Relationship between tensions and angles
Using a combination of the geometric relation, Eq. 5.337, and 
the curvature-tension relation, Eq. 5.341, we can now eliminate 
the mean curvature Mαβ of the αβ interface which leads to the 
relationship (Lipowsky, 2018a)

 M Mαγ
αγ

αβ

β

γ
βγ

βγ

αβ

αθ

θ
θΣ

Σ

Σ

Σ

eff ap

ap

eff ap
−













−
sin

sin
sin
si

=
nnθγ

ap












 (5.342)

between the effective tensions, the apparent contact angles, and 
the mean curvatures of the αγ and βγ membrane segments. It is 
important to note that the derivation of Eq. 5.342 was based 
(i) on the purely geometric relation, Eq. 5.337, which applies to 
three spherical caps that intersect along the apparent contact 
line and (ii) on the shape equations for the spherical membrane 
segments and the αβ interface. In particular, this derivation did 
not make any assumptions about the mechanical balance of the 
interfacial and membrane tensions along the apparent contact 
line.

The relationship in Eq. 5.342 is reminiscent of the relation 
as given by Eq. 5.H7 in Appendix 5.H which applies to two 
membraneless droplets adhering to each other within a bulk 
liquid without a vesicle. The latter relation depends only on the 
contact angles and on the interfacial tensions, both of which 
represent material parameters. In contrast, the relationship in 
Eq. 5.342 for partial in-wetting of GUVs depends on several 
geometry-dependent parameters: (i) Explicitly on the mean 
curvatures Mαγ = 1/Rαγ and Mβγ = 1/Rβγ of the two membrane 
segments; (ii) Implicitly on these two curvatures via the effective 
tensions Σαγ

eff  and Σβγ
eff ; and (iii) On the apparent contact angles 

which are determined by the three-spherical-cap geometry as 
described in Eqs 5.330 to 5.332 for Pβ > Pα and in Eqs 5.333 to 
5.335 for Pα > Pβ.17

Parameter dependencies
On the other hand, many of the parameters that enter Eq. 5.342 
can be determined experimentally. The interfacial  tension Σαβ 
represents a material parameter that can be obtained via experi-
mental studies of macroscopic αβ interfaces as demonstrated 
for PEG-dextran solutions in (Liu et al., 2012). In  addition, 
the apparent contact angles and the mean curvatures can be 
obtained, for each vesicle-droplet couple, from optical microscopy 
experiments. It is less obvious how to determine the parameter 
combinations that enter the effective membrane tensions Σ jγ

eff  as 
given by Eq. 5.340. These parameter combinations are the total 
segment tensions Σ Σ j j j jW mγ γ γ γκ= + + 2 2  as defined by Eq 5.317 
and the combinations κjγmjγ with j = α or β. Without prior 
 knowledge about the bending rigidities and the spontaneous cur-
vatures, these four parameter combinations should be regarded 
as unknowns that enter the relationship in Eq. 5.342 in a linear 
fashion. In order to determine four unknowns, we need four 
linearly independent equations.

17  In both cases, the cap centers Cαγ and Cβγ are located on different sides of the 
contact line plane pco. Slightly different relations apply if these two cap centers 
are located on the same side of pco which implies that one of the membrane 
segments attains a spherical cap without an equator.
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To obtain such a set of equations, we might want to apply 
the relationship in Eq. 5.342 to four different vesicle-droplet 
couples as obtained from the same vesicle batch or the same 
preparation protocol. The four couples should then have the 
same composition of the vesicle membrane and the same com-
position of the different aqueous phases. As a consequence, all 
four vesicle-droplet couples should be characterized by the same 
interfacial tension Σαβ, the same adhesive strengths Wjγ, the 
same spontaneous curvatures mjγ, and the same bending rigidi-
ties κjγ because all of these quantities represent material param-
eters. However, the total segment tensions also include the 
overall lateral stress Σ that does not represent a material param-
eter but depends on the vesicle geometry and, thus, will vary 
from vesicle to vesicle even within the same batch. Therefore, if 
we applied the relationship in Eq. 5.342 to four different vesicle-
droplet couples, the corresponding total segment tensions would 
involve four different stresses. As a consequence, each additional 
vesicle-droplet system would introduce one additional unknown 
as provided by the lateral stress experienced by the correspond-
ing vesicle membrane.

To address this difficulty, two strategies can be pursued. First, 
we could consider GUVs with low lateral stresses Σ that fulfill the 
condition

 | | 2 .2Σ W m jj j jγ γ γκ α β+ =for or  (5.343)

We could then ignore these stresses and estimate the total seg-
ment tensions by their asymptotic behavior

 Σ j j j jW mγ γ γ γκ≈ + 2 .2  (5.344)

In the latter case, the total segment tensions would have the same 
values for all vesicle-droplet couples from the same batch. On the 
one hand, one would expect intuitively that the lateral stresses 
can be strongly reduced by osmotic deflation of the GUVs. On 
the other hand, the inequality in Eq. 5.343 involves two terms 
that may have different signs: the spontaneous tension 2 2κ γ γj jm  is 
always positive but the affinity strength Wjγ will be negative when 
the membranes prefers the j phase over the γ phase. These two 
terms could cancel each other to a large extent, implying that the 
lateral stress must become ultralow in order to fulfill the inequal-
ity in Eq. 5.343.

A second strategy that does not involve any assumption about 
the magnitude of the lateral stress Σ is to consider several droplets 
adhering to the same vesicle. This strategy is described in the next 
paragraph.

Several droplets adhering to the same GUV
Thus, consider a situation in which several α droplets adhere to 
the interior leaflet of the same GUV membrane. These droplets 
coexist with one large β droplet inside the GUV. The different 
α droplets are labeled by n = 1, 2, …, N. The vesicle membrane 
is then partitioned into N + 1 segments labeled by nγ and βγ. 
The different nγ segments experience the effective membrane 
tensions

 Σ Σαγ αγ αγ αγ αγ αγσ κ( ) ( )2n nW m M= + + −  (5.345)

where all parameters on the right hand side are independent of n 
apart from the mean curvatures M n

αγ
( ) of the nγ segments. For such 

a geometry, we obtain N relationships of the form

 M Mn
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nαγ
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β

γ
βγ
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θ
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( ) ( )
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Σ
Σ

Σ

Σ
−











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= −
sin

sin
sineff
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γθ
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
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
 (5.346)

with n = 1, 2, …, N. This set of equations can be rewritten in the 
form

 ϒ
Σ
Σ

αγ αγ
αγ

αβ

β

γ
βγ

αθ

θ
θ( ) ( )

( ) ( )

( )

(
n n

n n

n

n
M M≡ −








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+
sin

sin
sin ))

( )sinθγ
βγ

βγ

αβ
n M=

Σ

Σ

eff

 (5.347)

where the last term is independent of the droplet label n. We then 
conclude that (Lipowsky, 2018a)

 ϒ ϒ ϒαγ αγ αγ
(1) (2) ( ).= = =

N  (5.348)

Therefore, from three different nγ segments with three distinct 
mean curvatures M n

αγ
( ) and, thus, three distinct expressions ϒαγ

( )n , 
we obtain two linearly independent equations from which can 
deduce the two parameter combinations (Σ + Wαγ + σαγ)/Σαβ and 
καγmαγ/Σαβ for any value of Σ.

5.9.6  SHAPE FUNCTIONAL FOR THREE SPHERICAL 
CAPS

So far, we did not consider the force balance along the appar-
ent contact line of the three spherical cap segments. We 
now address this force balance using a somewhat different 
approach. We start from the energy functional 2 { }Dr

in S  and the 
shape functional 2 { }Dr

in S  as given by Eqs 5.310 and 5.312 and 
apply these functionals to the three-spherical-cap shapes S = 
Ssc which include the spherical cap shapes Sαγ

sc  and Sβγ
sc  of the 

two membrane segments. The energy functional 2 { }Dr
in S  then 

assumes the form

 2 { } ( , , , )Dr
in sc in

coS E= R R R Rαβ αγ βγ  (5.349)

where the energy Ein represents an explicit function of the 
four variables Rαβ, Rαγ, Rβγ, and Rco. The contributions from 
the Gaussian curvature energies and from the line tension are 
confined to the true contact line which is embedded in a highly 
curved membrane segment. These latter segment is lost when we 
use the three- spherical-cap approximation and replace the true 
by the apparent contact line. Therefore, we will now ignore these 
two energetic contributions. The energy function E in then has the 
form

 E E E W A E
j

j j j j j
in in in

be
inwith= = +∑

= ,
,

α β

γ γ γ γ γ  (5.350)

which consists of the adhesion free energies WjγAjγ and the bend-
ing energy contributions

 E A M mj j j j jγ γ γ γ γκ,
2

2be
in ≡ −( )  (5.351)
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with j = α or β and constant mean curvatures Mjγ = 1/Rjγ.
Likewise, when we apply the shape functional in Eq. 5.312 to 

the three-spherical-cap shape Ssc, the resulting expression

  in sc in
co{ } ( , , , )S F= R R R Rαβ αγ βγ  (5.352)

also becomes an explicit function F in of the four radii. This func-
tion has the form

 F P P V P P V A A Ein in= − + − + + +( ) ( ) ( )γ α α γ β β αγ βγΣ  (5.353)

with the energy function E in as given by Eq. 5.350. It will be 
convenient to rewrite this shape function according to

 F P P V P P V Fin in= − + − +( ) ( )γ α α γ β β ∆  (5.354)

with

 ∆ Σ Σ ΣF A A A E
j

j
in

be
in≡ + + + ∑αβ αβ αγ αγ βγ βγ

α β

γ

= ,
,  (5.355)

and the mechanical segment tensions Σjγ = Σ + Wjγ as defined in 
Eq. 5.314.

In order to obtain a self-consistent description, we will 
now consider two limiting cases corresponding to small spon-
taneous curvatures and small bending energies as well as large 
spontaneous curvatures and large spontaneous tensions.

 Small spontaneous curvatures and small bending energies
For membrane segment jγ, the regime of small spontaneous cur-
vature will be defined by

 (1 | |) (1 | |) )− ≤ ≤ +η ηγ γ γ γM m M mj j j j(small curvature  (5.356)

with a dimensionless coefficient |η| > 0 of order one. For these 
mjγ-values, the segment’s bending energy E jγ ,be

in  satisfies the 
inequality

 E M m A M Aj j j j j j j jγ γ γ γ γ γ γ γκ κ η,
2 2 22 ( ) 2 | | .be

in = − ≤  (5.357)

In terms of the curvature radius Rjγ of membrane segment jγ, 
we obtain the squared mean curvature M j jγ γ

2 2= −R  and the 
segment area

 A
A

j j j j
j

j
γ γ γ γ

γ

γ
πζ ζ

π
= ≡4

4
2

2R
R

with  (5.358)

which implies the inequality

 E j j j jγ γ γ γπκ η ζ ζ,
28 | | 0 < < 1be

in with≤  (5.359)

for the bending energy of the jγ segment.
The small bending energy regime for the jγ segment will 

now be defined by the condition that this energy is small com-
pared to the interfacial free energy ΣαβAαβ, i.e., by the condition

 E A Ej jγ αβ αβ γ, ,( .be
in

be
insmall bending energy Σ )  (5.360)

Using the two inequalities in Eq. 5.359, the condition in 
Eq. 5.360 can be fulfilled by

 E Aj jγ γ αβ αβπκ η,
28 | |be

in ≤  Σ  (5.361)

or

 A j
αβ

γ

αβ
π η

κ
 8 | |2

Σ
 (5.362)

with the dimensionless coefficient |η| of order one, see 
Eq 5.356.18 

Thus, if the spontaneous curvature mjγ is small and satisfies 
the inequalities in Eq. 5.356 and if the interfacial area Ajγ is large 
and satisfies the inequality in Eq. 5.362, we can ignore the bend-
ing energy E jγ ,be

in  of the membrane segment jγ compared to the 
interfacial free energy ΣαβAαβ. The energy contribution from this 
segment, see Eq. 5.350, then has the simple form

 E W Aj j jγ γ γ
in ≈ , (5.363)

i.e., this contribution is dominated by the adhesion free energy 
between the membrane and the α or β droplet.

Large spontaneous curvatures and spontaneous tensions
For segment jγ, the regime of large spontaneous curvatures is 
defined by

 | | | | ( ).m M mj j jγ γ γ regime of large  (5.364)

In the latter regime, the bending energy E jγ ,be
in  of the jγ segment 

becomes

 E m A Aj j j j j jγ γ γ γ γ γκ σ,
22be

in ≈ =  (5.365)

with the spontaneous tension σjγ which implies the contribution

 E W Aj j j jγ γ γ γσin ≈ +( )  (5.366)

of the jγ segment to the energy function Ein in Eq. 5.350.

Shape functions for special parameter regimes
If both segments belong to the small spontaneous curvature and 
small bending energy regime, the shape function ΔF in as given by 
Eq. 5.355 simplifies and becomes ∆ ∆F Fs sin in= +  with the area-
dependent shape function

 ∆ Σ Σ ΣF A A As s+ ≡ + + +in (small small regime)αβ αβ αγ αγ βγ βγ  
(5.367)

which depends on the mechanical segment tensions Σαγ and Σβγ. 
On the other hand, if both membrane segments belong to the 

18  The numerical value of |η| was taken to be |η| = 3/2 in (Lipowsky, 2018a).
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large spontaneous curvature regime, we obtain the shape function 
∆ ∆F Fl lin in= +  with

 ∆ Σ Σ ΣF A A Al l+ ≡ + + +in (large large regime).αβ αβ αγ αγ βγ βγ   
(5.368)

with the total segment tensions Σ Σ Σ j j j j j jW mγ γ γ γ γ γσ κ= + = + + 2 2  
as in Eq. 5.317.
Finally, if one membrane segment, say αγ, has a large spontane-
ous curvature whereas the other membrane segment, βγ, has 
a small spontaneous curvature, the shape function becomes 
∆ ∆F Fl sin in= +  with

 ∆ Σ Σ ΣF A A Al s+ ≡ + + +in (large small regime).αβ αβ αγ αγ βγ βγ  
(5.369)

Note that we can obtain the shape function for the small-small 
regime from the shape function for the large-large regime by 
putting the spontaneous curvatures mjγ and, thus, the spon-
taneous segment tensions σjγ equal to zero for both segments 
which implies that the total segment tensions Σ jγ  reduce to the 
mechanical segment tensions Σjγ. Likewise, we obtain the shape 
function for the large-small regime from the shape function 
of the large-large regime by putting the spontaneous tension 
σβγ of the βγ membrane segment equal to zero which leads to 
Σ Σ βγ βγ= .

5.9.7  FORCE BALANCE ALONG APPARENT 
CONTACT LINE

Constrained energy minimization within the subspace of three-
spherical-cap shapes then implies the four stationarity conditions 
(Lipowsky, 2018a)

∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

=F F F Fin in in in

co
and

R R R Rαβ αγ βγ
0, 0, 0, 0.  (5.370)

It is not difficult to show that the first condition ∂F in/∂Rαβ = 0 
is equivalent to the classical Laplace Eq. 5.329 for the curvature 
radius Rαβ of the αβ interface. We should also require that the 
two stationarity relations ∂F in/∂Rαγ = 0 and ∂Fin/∂Rβγ = 0 lead 
back to the shape Eqs 5.339 for the curvature radii Rαγ and Rβγ of 
the two membrane segments. The latter requirement is, however, 
not fulfilled in general but only for certain regions of the param-
eter space.

These special parameter regions include the small-small, 
large-large, and large-small regimes described in the previous 
subsection and defined by the shape functions ΔF in in Eqs 5.367 
to 5.369. All of these shape functions have the same form as the 
shape function ΔFo for two membraneless droplets as given by 
Eq 5.H12 in Appendix 5.H when we substitute the interfacial 
 tensions Σαγ and Σβγ of the membraneless droplets by the mechan-
ical or total tensions of the membrane segments. Using the same 
substitution in the force balance Eq. 5.H9 for membraneless 
droplets, we obtain the corresponding force balance conditions 
for the membrane-enclosed droplets.

As explained above, we can recover the small-small regime from 
the large-large regime by putting the spontaneous tensions of the 
two membrane segments equal to zero. Likewise, we can recover 
the large-small regime from the large-large regime by putting the 
spontaneous tension σβγ equal to zero. Therefore, it is sufficient 
to consider the substitution in the force balance Eq. 5.H9 for the 
large-large regime. In the latter case, the interfacial tensions Σαγ 
and Σβγ in Eq. 5.H9 for membraneless droplets have to be substi-
tuted by the total segment tensions Σαγ  and Σ βγ , respectively. As a 
result, we obtain the force balance conditions

 Σ Σ Σαβ

γ

αγ

β

βγ

αθ θ θsin sin sinap ap ap (large-large regime)= =
 

 (5.371)

between the αβ interface and the two membrane segments along 
the apparent contact line. These conditions are equivalent to the 
two linearly independent relationships
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θ
θ
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sin
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ap
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(5.372)

between the tensions and the contact angles (Lipowsky, 2013, 
2014b). The force balance as given by Eq. 5.371 represents the 
law of sines for a triangle with the three sides Σαβ, Σαγ , and Σ βγ  
as displayed in Figure 5.43b. For membraneless droplets, the cor-
responding triangle is displayed in Figure 5.48.

Figure 5.43 Force balance along the apparent contact line for 
small and large spontaneous curvatures: (a) Partial in-wetting 
morphology of vesicle (red, purple) enclosing two aqueous droplets 
of α (yellow) and β (blue) phase immersed in the exterior liquid γ 
(white). as in Figure 5.42, the membrane segments αγ (red) and 
βγ (purple) form spherical caps that meet the αβ interface (broken 
orange) along the apparent contact line (small black circles) where 
the three surface segments form the apparent contact angles 
θα

ap, θβ
ap, and θγ

ap; and (b) Force balance between the interfacial 
tension Σαβ as well as the total tensions Σαγ  and Σ βγ  of the two 
membrane segments as defined by Eq. 5.317. the three tensions 
form a  triangle which implies the relations in Eqs 5.371 and 5.372 
(Lipowsky, 2013, 2018a). the latter relations can be explicitly 
derived for three parameter regimes: (i) if both spontaneous cur-
vatures are large as defined by Eq. 5.364, (ii) if both spontaneous 
curvatures are small and the interfacial area Aαβ is sufficiently large 
as in Eqs 5.356 and 5.362, which implies Σ Σ j jγ γ≈ ; and (iii) for one 
small and one large spontaneous curvature.
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Essentially the same force balance conditions apply to the 
small-small and large-small regimes. If the βγ membrane seg-
ment belongs to the regime of small spontaneous curvature 
and small bending energy, the corresponding force balance 
conditions are obtained from those in Eqs 5.371 and 5.372 
by replacing the total segment tension Σ Σ βγ βγ βγσ= +  by the 
mechanical segment tension Σβγ . Likewise, the conditions for 
the small-small regime are obtained by replacing the total seg-
ment tensions Σ jγ of both segments by the mechanical segment 
tensions Σj γ.

Difference of total segment tensions
Subtracting the two force balance relations in Eq. 5.372 from 
each other, we obtain the difference

 Σ Σ
Σ Σ

Ξ
 βγ αγ

αβ

βγ αγ βγ αγ

αβ
α β γ

σ σ
θ θ θ− =

− + −
=

W W
( , , )ap ap ap  (5.373)

with the function

 Ξ( , , ) = ,x y z x y
z

sin sin
sin

−  (5.374)

as in Eq. 5.H19. Note that the overall lateral stress Σ, which 
depends on the vesicle geometry, drops out from the differ-
ence Σ Σ βγ αγ− . As a consequence, Eq. 5.373 provides a relation 
between the apparent contact angles θα

ap, θβ
ap, and θγ

ap, the adhe-
sive strengths Wαγ and Wβγ, and the spontaneous tensions σαγ and 
σβγ, i.e., between the apparent contact angles and material param-
eters. As shown in Appendix 5.H.4, the function Ξ( , , )θ θ θα β γ

ap ap ap  
satisfies the inequalities

 − ≤ ≤ +1 ( , , ) 1Ξ θ θ θα β γ
ap ap ap  (5.375)

as follows from the triangle inequalities for the triangle in 
Figure 5.43b. The upper bound Ξ = +1 is obtained for the 
apparent contact angles θα

ap = 0 and θ θ πβ γ
ap ap= = , correspond-

ing to complete wetting of the membrane by the α phase as 
in Figure 5.40b. The lower bound Ξ = −1 is obtained for 
the angles θβ

ap = 0 and θ θ πα γ
ap ap= = , corresponding to com-

plete wetting of the membrane by the β phase as shown in 
Figure 5.40c.

Relation between apparent and intrinsic contact angles
For some special parameter regions, we can also obtain a sim-
ple relation between the apparent contact angles in Figure 5.42 
and the intrinsic contact angle in Figure 5.41. We now con-
sider two membrane segments that have essentially the same 
curvature-elastic properties which implies the simplified 
force balance

 Σ Σ Σβγ αγ αβ αθ− = cos *  (5.376)

along the true contact line as described by Eq. 5.324 where we 
assumed a large contact line radius and ignored the term propor-
tional to the line tension λco. Two membrane segments with the 

same curvature-elastic properties have the same spontaneous ten-
sions. Therefore, the difference Σβγ − Σαγ between the mechanical 
tensions of the two segments is equal to the difference Σ Σ βγ αγ−  
between the total segment tensions. For small or large spontane-
ous curvatures, we then obtain

 Σ Σ Σ Σ Σ Σβγ αγ βγ αγ αβ
α

γ
αβ

β

γ

θ
θ

θ

θ
− = − = − 

sin
sin

sin

sin

ap

ap

ap

ap  (5.377)

where the second equality follows from Eq. 5.372. A combination 
of Eq. 5.377 with Eq. 5.376 then leads to the relation
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between the intrinsic contact angle θα
*  that is not accessible to 

conventional optical microscopy and the apparent contact angles 
that can be obtained from the microscopy images.

In (Kusumaatmaja et al., 2009), the relation in Eq. 5.378 was 
originally derived for the special case of vanishing spontaneous 
curvatures for both membrane segments, i.e., mαγ = mβγ = 0, 
and was then used to analyze the shapes of vesicles that enclosed 
one PEG-rich and one dextran-rich droplet. Even though the 
apparent contact angles of these vesicles were quite different, 
the relation in Eq. 5.378 led to a fairly constant value for the 
intrinsic contact angle θα

* . Later experiments revealed, however, 
that the spontaneous curvatures mαγ must be quite large because 
the αγ membrane segments in contact with the PEG-rich phase 
formed nanotubes, see Figures 5.4 and 5.21 corresponding to a 
spontaneous curvature of about 1/(125 nm) for the Ld phase and 
1/(600 nm) for the Lo phase. (Li et al., 2011; Liu et al., 2016) 
Furthermore, the experimental data as well as molecular dynam-
ics simulations provided strong evidence that this large spontane-
ous curvature was generated by asymmetric adsorption of PEG 
molecules. Therefore, it is tempting to assume that the spontane-
ous curvature mβγ of the βγ membrane segments in contact with 
the dextran-rich phase was comparatively small. A small value 
of mβγ and a large value of mαγ would justify the use of Eq 5.372 
to describe the force balance along the apparent contact line but 
it would not justify the use of Eq. 5.376 to describe the force 
balance along the true contact line because the latter equa-
tion is based on the assumption that both membrane segments 
have essentially the same spontaneous curvature. On the other 
hand, if we assumed that the spontaneous curvature mβγ is large 
as well and comparable to mαγ, we could justify the use of both 
Eqs 5.372 and 5.376. Therefore, it would be rather valuable to 
determine the spontaneous curvature mβγ in an independent 
manner, e.g., by studying GUVs that are completely filled with 
the dextran-rich phase, corresponding to a point in the aqueous 
phase diagram of Figure 5.39 that is located on the binodal line 
between the partial wetting regime of the two-phase coexistence 
region and the uniform phase at high dextran concentrations, see 
lower blue segment of the binodal in Figure 5.39. Deflation of 
such a GUV will lead to budding for small spontaneous cur-
vatures as in Section 5.5 or to tubulation for large spontaneous 
curvatures as in Section 5.6.
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 Membrane nanotubes for partial and complete wetting
As shown in Figure 5.39, the phase diagram of aqueous PEG-
dextran solutions exhibits a two-phase coexistence region with 
both a complete wetting regime close to the critical point and 
a partial wetting regime further away from this point. The two 
wetting regimes are separated by a certain tie line corresponding 
to the dashed straight line in Figure 5.39. For complete wetting, 
the whole GUV membrane is exposed to the PEG-rich phase 
whereas, for partial wetting, only the αγ membrane is in contact 
with this aqueous phase. Therefore, in the complete and partial 
wetting regime, nanotubes were formed by the whole GUV mem-
brane and the αγ membrane segment, respectively. Furthermore, 
for complete wetting, the tubes stayed away from the αβ interface 
whereas they accumulated on this interface for partial wetting. 
In the latter case, the adhesion of the tubes to the αβ interface 
lowers the (free) energy of the vesicle-droplet system as shown in 
(Liu et al., 2016). Each tube that adheres to the αβ interface is in 
contact with both the α and the β phase and, thus, forms both an 
αγ and a βγ membrane segment separated by a contact line paral-
lel to the long tube axis. Along these microscopic contact lines, 
the angle between the αβ interface and the αγ tube segments is 
again given by the intrinsic contact angle θα

* with the same local 
geometry as depicted in Fig. 5.41b, because the γ phase within the 
tubes is identical with the exterior aqueous phase.

If the αγ membrane segment forms nanotubes, the segment 
tension Σαγ = Σ + Wαγ is small compared to the spontaneous 
tension σαγ of this segment (Lipowsky, 2013) as follows from 
the mechanical equilibrium between the highly curved tubes 
and the weakly curved spherical αγ segments, see the detailed 
discussion of this aspect in Section 5.6. The corresponding 
tension-angle relationship in Eq. 5.372 then assumes the sim-
plified form
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which can be used to estimate the spontaneous curvature mαγ 
from the apparent contact angles (Liu et al., 2016).

5.9.8 TWO-DROPLET VESICLES WITH CLOSED NECKS

For partial in-wetting, the vesicle membrane is in contact with 
two enclosed droplets, as displayed in Figure 5.43a. When we 
deflate such a two-droplet vesicle, it can decrease its interfacial 
energy by reducing the area Aαβ of the αβ interface. The cor-
responding energy gain is governed by ΔAαβΣαβ where ΔAαβ is 
the change in interfacial area. Such a morphological change is, 
in fact, rather likely unless one of the membrane segments has a 
sufficiently large spontaneous curvature to form nanobuds and 
nanotubes. If the αγ segment forms nanotubes, for example, the 
energy gain is ΔAαγσαγ with the area ΔAαγ stored in the nanotubes 
and the spontaneous tension σ καγ αγ αγ= 2 2m . So, we expect that 
osmotic deflation of a partially wetted vesicle leads to a reduction 
of the interfacial area whenever σαγ αβ Σ . This competition 
between different morphological pathways is more systemati-
cally described in Appendix 5.J for the special case of two-droplet 
vesicles with up-down symmetry.

Thus, in the absence of bud and tube formation, the area of 
the αβ interface will eventually shrink to zero and the vesicle 
membrane will then form a closed membrane neck around this 
point-like interface as in Figure 5.40d. For such a morphol-
ogy, which looks like the limit shape Lpea in Figure 5.15a but 
involves two different interior solutions α and β, the vesicle 
membrane has the area A A V V= ∝ +2

2/3 2/3
sp α β , which is 

determined by the volumes Vα and Vβ of the two spherical 
droplets as in Eq. 5.294.

As described in Section 5.8.3 on domain-induced bud-
ding, spherical buds with closed necks are also formed by 
two-domain vesicles arising from lipid phase separation within 
multi-component membranes. Compared to such two-domain 
vesicles, the closed neck of a two-droplet vesicle is further stabi-
lized by the formation of the αβ interface during neck open-
ing. If we assume an axisymmetric neck and ignore a possible 
difference of the Gaussian curvature moduli κG,αγ and κG,βγ, the 
contact line is located within the membrane neck and the con-
tact line radius r1 is equal to the neck radius Rne. Furthermore, 
because of the assumed axisymmetry, the neck-spanning αβ 
interface has the shape of a spherical cap that meets the mem-
brane along the circular contact line with the intrinsic contact 
angle θα

*  of the α droplet, see Figure 5.41b. The free energy of 
the membrane neck then includes the interfacial free energy

 Σ Σαβ αβ
α

αβ
π

θ
A =

+
2

1 *
2

sin
Rne (5.380)

which grows quadratically with increasing neck radius Rne. 
The bending energy of the vesicle membrane that consists of two 
membrane segments and forms an open neck of radius Rne can 
be obtained from the corresponding expression for two-domain 
vesicles as derived in (Jülicher and Lipowsky, 1996). Adding the 
free energy of the contact line, we then obtain

 E E Ebe ne ne co be ne ne nefor small ( ) 2 ( 0) 4 1R R R R R+ ≈ = −π λ π  
(5.381)

with

 E M m M m1 ( ) ( ) 1
2

.≡ − + − −κ κ λαγ αγ αγ βγ βγ βγ co  (5.382)

The closure of the neck and the stability of the closed neck are 
governed by the behavior of the combined free energy ΣαβAαβ + 
Ebe(Rne) + 2πRneλco for small Rne. In the latter limit, the leading 
term is provided by the E1-term in (5.381) because the interfacial 
free energy Σαβ αβA  Rne

2 . Therefore, we obtain the stability crite-
rion E1 ≤ 0 which is equivalent to

 κ κ λ κ κβγ βγ βγ αγ αγ αγ βγ αγ( ) ( ) 1
2

( )., ,M m M m G G− + − ≤ co   

(5.383)

The equality in Eq (5.383) describes the neck closure condi-
tion for limit shapes obtained from vesicle shapes with open 
necks whereas the inequality describes the stability of closed 
necks. Because the additional term arising from the αβ 
interface is irrelevant in the limit of small neck radius Rne, 
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the stability criterion in Eq. 5.383 has the same form as the 
corresponding criterion for two-domain vesicles as given by 
Eq. 5.288 with the line tension λ of the domain boundary 
replaced by the line tension λco of the three-phase contact line. 
It is important to note, however, that the stability condition 
in Eq. 5.383 has been obtained under the implicit assumption 
that the membrane neck is axisymmetric. The latter assump-
tion is justified for a positive value of the contact line tension 
λco but may not apply to a negative value of λco. Indeed, recent 
molecular simulations have shown that a negative contact 
line tension can lead to a spontaneous symmetry breaking 
of the rotational symmetry and to a tight-lipped contact line 
(Satarifard et al., 2018).

5.9.9  NUCLEATION OF NANODROPLETS AT 
MEMBRANES

In general, phase separation in liquid mixtures may proceed via 
nucleation and growth of small droplets or via spinodal decom-
position. In the nucleation regime, the droplets are formed by 
the minority phase and have to overcome a certain free energy 
barrier in order to grow. This barrier is reduced if a droplet is 
nucleated at an adhesive surface. For a rigid surface as provided 
by a tense membrane, the barrier reduction depends primarily 
on the contact angle of the droplet. For a flexible and deformable 
membrane, as considered here, the barrier may be further reduced 
by the elastic response of the membrane which can adapt its shape 
and composition to the molecular interactions with the droplet.

As in the previous subsections, we focus on phase separation 
of the interior aqueous solution into two coexisting liquid phases, 
α and β. For complete wetting of the vesicle membrane by the α 
phase, the intrinsic contact angle θα

*  vanishes which implies that 
the phase separation starts via the formation of a thin α layer at 
the inner leaflet of the vesicle membrane, see pink subregion in 
Figure 5.39. For partial wetting, on the other hand, the intrinsic 

contact angle θα
*  is finite, and the phase separation within the 

nucleation regime starts with nanodroplets of α phase that are 
formed at the inner membrane leaflet as shown in Figure 5.44a.

For such a small droplet, the intrinsic contact angle will be 
affected by the tension λco of the contact line, see Eqs 5.321 
and 5.324. This contact line tension can be positive or negative, 
in contrast to the line tension of domain boundaries which is 
always positive. In fact, recent molecular simulation indicate 
that the contact line tension λco can be negative (Satarifard 
et al., 2018) which implies that it acts to decrease the contact 
angle θα

*  of small droplets compared to larger ones.
After an α droplet as in Figure 5.44a has been formed, the 

αγ segment of the membrane in contact with this droplet is 
exposed to an asymmetric environment and can acquire an 
appreciable spontaneous curvature mαγ. In order to simplify the 
following discussion, let us assume that the spontaneous curva-
ture mαγ is large compared to the spontaneous curvature mβγ of 
the βγ segment and that the latter curvature is small and can be 
ignored.

If the spontaneous curvature mαγ is negative as in the case of 
PEG-dextran solutions that undergo phase separation within 
the vesicle interior, the membrane prefers to curve towards the 
inner leaflet and to form a spherical in-bud of radius Rγ that is 
filled with the exterior γ phase as in Figure 5.44b. As shown in 
this figure, all membrane segments adjacent to the closed neck 
are formed by the αγ membrane with spontaneous curvature 
mαγ. The membrane neck is then characterized by the condition 
0 > = ( )1

2 1 2M M M mne + ≥ αγ  where M1 and M2 = −1/Rγ are 
the mean curvatures of the two membrane segments 1 and 2 on 
the two sides of the neck. Because these two membrane seg-
ments have the same curvature-elastic properties, this stability 
condition is identical with Eq. 5.57 for uniform membranes, see 
also Figure 5.14(d–f) in Section 4.6. Inspection of Figure 5.44b 
reveals that the in-bud displaces some volume of α phase and 
increases the area of the αβ interface which implies that the α 
droplet has to reach a sufficiently large volume before the in-
bud becomes energetically favorable. After such an in-bud has 
been formed, the bud radius increases until the spherical shape 
becomes unstable and transforms into a short necklace-like tube 
as displayed in Figure 5.23.

On the other hand, if the droplet-induced curvature mαγ is 
positive, the αγ membrane segment prefers to curve towards the 
outer leaflet of the vesicle membrane and to form a spherical out-
bud of radius Rα that is filled with α phase as in Figure 5.44c. As 
shown in the latter panel, the two membrane segments adjacent 
to the neck of the out-bud are now provided by the αγ and the βγ 
segments which have, in general, different spontaneous curva-
tures mαγ and mβγ. The formation of the out-bud reduces the free 
energy of the membrane-droplet system by (i) adapting the mean 
curvature of the αγ segment to its spontaneous curvature mαγ and 
(ii) replacing the αβ interface by a closed membrane neck which 
implies a strong reduction of the interfacial free energy. The corre-
sponding neck condition is given by Eq. 5.383 if both membrane 
segments have essentially the same Gaussian curvature modulus, 
κG,βγ ≃ κG,αγ. If the Gaussian curvature moduli are different, the 
vesicles may still form closed membrane necks but the domain 
boundaries are then shifted away from these necks and, thus, 
have a finite length, compare Figure 5.35.

Figure 5.44 In-wetting: Nucleation and growth of an aqueous 
nanodroplet (yellow) consisting of α phase in contact with an aqueous 
β phase and the inner leaflet of a weakly curved vesicle membrane 
(blue/red) that separates the α and β phases from the exterior aque-
ous phase γ. the contact line with the αβ interface (broken orange) 
divides the membrane into two segments, an αγ segment (blue) and a 
βγ segment (red). Both segments are exposed to asymmetric aqueous 
environments which act to induce spontaneous curvatures mαγ and 
mβγ. Here, we focus on the case mβγ ≃ 0 and |mαγ|≫ mβγ: (a) Initially, 
the αβ interface has the shape of a spherical cap and forms the 
intrinsic contact angle θα

*  with the adjacent αγ segment (blue) of the 
membrane; (b) For negative values of mαγ, the αγ membrane segment 
prefers to form a spherical in-bud that is filled with exterior γ phase. 
the closure and stability of the in-bud’s neck depends only on mαγ; 
and (c) For positive values of mαγ, the αγ membrane segment prefers 
to engulf the α droplet, in particular if the volume of the droplet 
matches the preferred bud size. Complete engulfment leads to a 
closed membrane neck that replaces the αβ interface, thereby elimi-
nating the contribution of this interface to the system’s free energy.
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5.10  TOPOLOGICAL CHANGES OF 
MEMBRANES

In the previous sections, we focused on processes that do 
not change the topology of the membranes. Now, let us briefly 
consider two important topology-transforming processes, 
membrane fusion and membrane fission (or scission). During 
membrane fusion, two separate membranes are combined into a 
single one; during fission, a single membrane is divided up into 
two separate ones. These processes are ubiquitous in eukaryotic 
cells: Both the outer cell membrane and the inner membranes of 
organelles act (i) as donor membranes that continuously produce 
vesicles via budding and fission and (ii) as acceptor membranes 
that integrate such vesicles via adhesion and fusion. One example 
for fission is provided by the closure of autophagosomes which are 
double-membrane organelles (Knorr et al., 2012, 2015).

5.10.1 FREE ENERGY LANDSCAPES

It is instructive to consider the free energy landscapes for fusion 
and fission as schematically depicted in Figure 5.45. Fusion is 
exergonic, if the free energy G2 of the 2-vesicle state exceeds the 
free energy G1 of the 1-vesicle state. In the opposite case with 
G1 > G2, fission is exergonic. Exergonic fusion or fission processes 
occur spontaneously but the kinetics of these processes is gov-
erned by the free energy barriers Δ between the 1-vesicle and the 
2-vesicle state, see Figure 5.45. Because these barriers are typi-
cally large compared to kBT, even exergonic fusion and fission 
processes will be rather slow unless coupled to other molecular 
processes that act to reduce these barriers. Indeed, in the liv-
ing cell, the fusion and fission of biomembranes is controlled by 
membrane-bound proteins such as SNAREs and dynamin as 

will be discussed in later chapters of this book. It should also be 
emphasized that the free energy landscape may involve several 
barriers as has been observed in molecular dynamics simulations 
of tension-induced fusion (Grafmüller et al., 2007, 2009).

Dependence on spontaneous curvature
The free energy difference G2 − G1 between the 2-vesicle and the 
1-vesicle state can be estimated if one ignores energetic contribu-
tions arising from changes in volume and focuses on changes in 
curvature energy (Lipowsky, 2013). Because of the topological 
changes, we need to take the Gaussian curvature and the associ-
ated Gaussian curvature modulus κG into account. (Helfrich, 
1973) Stability arguments indicate that −2 < κG/κ < 0 (Helfrich 
and Harbich, 1987). For the following considerations, it will be 
sufficient to use the rough estimate κG ≃ −κ which is consistent 
with both experimental (Derzhanski et al., 1978; Lorenzen et al., 
1986) and simulation (Hu et al., 2012) studies. A small spherical 
vesicle that is cleaved off from a donor membrane then changes 
the total curvature energy by a certain amount that can be used 
to estimate the free energy difference G2 − G1. It is important 
to note, however, that this change in curvature energy depends 
strongly on the magnitude of the spontaneous curvature.

5.10.2 EXERGONIC FUSION FOR SMALL m

Let us consider a 1-vesicle state corresponding to a spherical GUV 
that acts as the donor membrane and a 2-vesicle state obtained 
from this GUV by cleaving off a much smaller spherical vesicle, 
see top row of Figure 5.45. Both states have the same membrane 
area. The small vesicle of the 2-vesicle state has the radius Rss 
which is taken to be much smaller than the radius of the GUV. 
We may then ignore any constraints on the vesicle volumes and 
assume that the large vesicle of the 2-vesicle state has a spherical 
shape as well. If the GUV membrane is uniform and the magni-
tude |m| of its spontaneous curvature is much smaller than the 
inverse size, 1/Rss, of the small vesicle, the free energy difference 
between the 2-vesicle and 1-vesicle state is positive and given by

 G G mG2 1 8 4 4 | | 1/− = + +πκ πκ πκ� �for ssR  (5.384)

where the estimate κG ≃ −κ has been used. In this case, the fission 
process is endergonic whereas the fusion process is exergonic, see 
the corresponding free energy landscape in Figure 5.45a. For the 
typical rigidity value κ ≃ 20kBT, the relation Eq. 5.384 leads to 
the fairly large free energy difference G2 − G1 ≃ + 250kBT !

5.10.3 EXERGONIC FISSION FOR LARGE m

On the other hand, if the magnitude |m| of the spontaneous 
curvature is large, the GUV can form a small spherical bud with 
radius Rss ≃ 1/(2|m|) as in Figure 5.45b as follows from the closed 
neck condition for the corresponding limit shapes Lpea and Lsto 
as discussed in Section 5.5.2. If this bud is cleaved off, the free 
energy difference between the resulting 2-vesicle state and the 
initial 1-vesicle state is now negative and given by
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Figure 5.45 Free energy landscapes for membrane fusion and fission 
(or scission): (a) Schematic landscape for an exergonic fusion process. 
In this case, the free energy G2 of the 2-vesicle state exceeds the 
free energy G1 of the 1-vesicle state; and (b) Schematic landscape for 
an exergonic fission process. In the latter case the free energy G1 of 
the 1-vesicle state is larger than the free energy G2 of the 2-vesicle 
state. the cartoons (top row) show a 1-vesicle state on the left and 
a 2-vesicle state on the right; both states have the same membrane 
area. the small vesicle of the 2-vesicle state has the radius Rss which 
is much smaller than the radius of the large vesicle. the blue mem-
branes in (a) have a spontaneous curvature with magnitude |m| ≪ 1/Rss 
whereas the red membranes in (b) have a large spontaneous curva-
ture with m ≃ 1/(2Rss). In both (a) and (b), the free energy difference 
G2 − G1 determines the direction in which the processes can proceed 
spontaneously (black arrows) while the kinetics of these processes is 
governed by the free energy barriers Δ.
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In the latter case, the fission process is exergonic and the fusion 
process is endergonic, corresponding to a free energy landscape 
as in Figure 5.45b. Now, the free energy difference G2 − G1 ≃ 
−250kBT for a typical value κ ≃ 20kBT of the bending rigidity.

Biological membranes often form intramembrane domains 
with an appreciable spontaneous curvature mdo. One example 
for this latter case is provided by clathrin-dependent endocytosis 
which leads to membrane domains with a spontaneous curvature 
mdo ≃ −1/(40nm) (Agudo-Canalejo and Lipowsky, 2015a). Now, 
consider a GUV with a small membrane domain that has an 
appreciable spontaneous curvature mdo whereas the spontaneous 
curvature of the remaining GUV membrane is again negligible. 
The membrane domain can then form a small spherical bud 
of size Rss = 1/|mdo| as follows from the closed neck condition 
for domain-induced budding, see Eq. 5.291. If the latter bud 
is cleaved off, the free energy difference between the resulting 
2-vesicle state and the initial 1-vesicle state is again negative and 
has the form
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where λ denotes the line tension of the domain boundary. Because 
this line tension has to be positive, the fission of a domain-induced 
bud is an exergonic process that leads to an even larger free energy 
gain |G2 − G1| > 12πκ ≳ 750kBT for bending rigidity κ ≃ 20kBT.

5.11 SUMMARY AND OUTLOOK
This chapter addressed the multi-responsive behavior of giant 
vesicles from a theoretical point of view. Because the vesicle mem-
branes are fluid, they can respond to external perturbation by 
remodeling both their shape and their local membrane composi-
tion. Two curvature-elastic parameters that play a prominent role 
in the whole chapter are the spontaneous curvature m, which pro-
vides a quantitative measure for bilayer asymmetry (Section 3.5), 
and the spontaneous tension σ = 2κm2, which provides the 
intrinsic tension scale of curvature elasticity (Section 5.4.2). 
If molecular flip-flops between the two leaflets of the bilayer 
membrane can be ignored, the spontaneous curvature becomes an 
effective spontaneous curvature meff that contains both a local and 
a non-local contribution, the latter arising from area-difference-
elasticity, see Eqs 5.66 and 5.67.

All biomembranes are asymmetric in the sense that the two 
leaflets have different lipid compositions (Fadeel and Xue, 2009) 
and that the membrane proteins have a preferred orientation 
related to their biological function. It is important to realize that 
both lipids and membrane proteins as well as adsorbed solutes 
and anchored macromolecules can contribute to the spontaneous 
curvature as illustrated by the examples in Box 5.1. In fact, the 
framework of curvature elasticity as reviewed here applies to giant 
vesicles irrespective of the chemical nature of the molecular mem-
brane components as long as the vesicle membranes are in a fluid 
state. Thus, these vesicles may be built up from different lipid 
components, membrane proteins, or other amphiphilic molecules 
such as diblock copolymers.

The shapes and shape transformations of membranes with 
laterally uniform curvature-elastic properties are governed by two 
dimensionless parameters, the volume-to-area ratio (or reduced 
volume) v and the spontaneous curvature m m= Rve . These two 
parameters can be controlled by changes in the osmotic con-
ditions and by one of the curvature-generating mechanisms 
in Box 5.1. The resulting shape transformations often lead to 
budding and tubulation processes, which create nanobuds and 
nanotubes as described in Sections 5.5 and 5.6. The buds and 
tubes represent additional membrane compartments that are still 
connected to the mother vesicle via closed or narrow membrane 
necks. These necks are a direct consequence of curvature elasticity 
(Section 5.4.6, Figure 5.14) and can be used to deduce the spon-
taneous curvature from the GUV morphology as described in 
Box 5.2. The latter deduction is based on the local stability condi-
tions for closed necks as given by Eqs 5.60 and 5.61 which relate 
the neck curvature to the spontaneous curvature. In the absence 
of flip-flops, one obtains the generalized stability conditions in 
Eqs 5.68 and 5.69. Sufficiently large values of meff lead to the 
cleavage of the membrane neck and thus to complete membrane 
fission, see Section 5.5.4.

In cell biology, the closure and cleavage of such membrane 
necks represents an essential step for many processes such as 
endo- and exocytosis, the secretion of giant plasma membrane 
vesicles (or “blebs”) (Scott, 1976; Baumgart et al., 2007; Veatch 
et al., 2008; Keller et al., 2009) and outer membrane vesicles 
(Kulp and Kuehn, 2010; Schertzer and Whiteley, 2012) from 
eukaryotic and prokaryotic cells, as well as cytokinesis during cell 
division.

When a GUV undergoes spontaneous tubulation, the total 
membrane tension is dominated by the spontaneous tension as 
described by Eqs 5.193 and 5.215 for necklace-like and cylin-
drical nanotubes, respectively. Because the spontaneous tension 
is a material parameter, tubulated vesicles behave, to a large 
extent, like liquid droplets with a variable surface area and with 
an effective interfacial tension that is provided by the sponta-
neous tension σ. This droplet-like behavior, which reflects the 
area reservoir that the nanotubes provide for the mother vesicle, 
leads to an increased robustness against mechanical perturba-
tions as has been recently demonstrated by micropipette aspira-
tion and cycles of osmotic deflation and inflation (Bhatia et al., 
2018).

Membrane nanotubes are also formed within eukaryotic cells 
and provide ubiquitous structural elements of many membrane-
bound organelles such as the endoplasmic reticulum, the Golgi, 
the endosomal network, and mitochondria (Marchi et al., 2014; 
van Weering and Cullen, 2014; Westrate et al., 2015). These 
intracellular nanotubes are used for molecular sorting, signal-
ing, and transport. Intercellular (or “tunneling”) nanotubes 
formed by the plasma membranes of two or more cells provide 
long-distance connections for cell-cell communication, intercel-
lular transport, and virus infections (Wang and Gerdes, 2015; 
He et al., 2010; Sowinski et al., 2008). It seems rather plausible 
to assume that these tubes are also generated by spontane-
ous curvature and/or locally applied forces but the relative 
importance of these two tubulation mechanisms remains to be 
elucidated.
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Additional shape transformations of membranes and vesicles 
can be induced by adhesive surfaces as described in Section 5.7. 
The onset of adhesion is governed by the simple stability relation in 
Eq. 5.236 which depends on the adhesion length RW W= 2 | |/κ . 
This length can vary over several orders of magnitude as illus-
trated by the membrane-particle couples in Table 5.2. Analogous 
stability relations play an important role for the engulfment of 
nanoparticles by membranes as described in Chapter 8 of this 
book.

The adhesion of a vesicle to a rigid substrate or solid support 
leads to the segmentation of the vesicle membrane into a bound 
and unbound membrane segment. For multi-component vesicle 
membranes, these two segments can differ in their molecular 
composition and thus in their curvature-elastic properties when 
the vesicle membrane contains several molecular components, 
as explained in Section 7.6. Therefore, the adhesion of multi-
component membranes provides a relatively simple example for 
ambience-induced segmentation. This kind of segmentation plays 
an important role for the adhesion of nanoparticles by membrane-
anchored receptors (Agudo-Canalejo and Lipowsky, 2015a), see 
the more detailed discussion in Chapter 8 of this book.

Multi-component membranes can undergo phase separation 
into two fluid phases, a process that is now firmly established 
for a variety of three-component membranes as discussed in 
Section 2.4 and at the beginning of Section 5.8. Membrane phase 
separation leads to multi-domain vesicles, the shape of which is 
governed by the interplay between the curvature-elastic proper-
ties of the intramembrane domains and the line tension of the 
domain boundaries. One prominent example for this interplay 
is domain-induced budding, see Figure 5.32 and Section 5.8.3. 
Another example is provided by transformations between differ-
ent patterns of intramembrane domains, which are coupled to 
drastic shape changes of the vesicles as illustrated in Figure 5.37.

Membrane phase separation of multi-component vesicles 
is strongly affected by ambience-induced segmentation of the 
vesicle membranes as explained in Section 5.8.5. Indeed, if the 
membrane is partitioned into several segments that differ in 
their molecular composition, membrane phase separation is 
only possible in one of the segments but not in several segments 
simultaneously. Because cellular membranes are exposed to rather 
heterogeneous environments, the associated segmentation acts 
to suppress the formation of intramembrane domains within 
such membranes. The latter mechanism explains the difficulty 
to detect lipid phase separation in vivo, in contrast to the large 
intramembrane domains frequently observed in multi-component 
lipid membranes.

Another interesting example for ambience-induced segmenta-
tion is provided by membranes and vesicles exposed to aqueous 
two-phase systems or water-in-water emulsions as described in 
Section 5.9. To simplify the discussion, Section 5.9 focused on 
aqueous phase separation within the GUVs which leads to the 
in-wetting morphologies displayed in Figure 5.40. Out-wetting 
morphologies arising from phase separation of the exterior aque-
ous solution are addressed in Appendix 5.I. For partial in-wetting 
as shown in Figure 5.40a, the interface between the two aqueous 
phases α and β exerts capillary forces onto the GUV membrane 
along the three-phase contact line. On the micrometer scale, 

these forces lead to apparent kinks of the membrane shapes. 
This response of the membranes to the capillary forces is quite 
remarkable because the interfacial tension of the αβ interface is 
ultralow, of the order of 10−6−10−4 N/m, reflecting the vicinity of 
a critical demixing point in the aqueous phase diagram.

However, the apparent kink of the membrane shape should 
not persist to the nanoscale because such a kink would imply a 
very large bending energy of the GUV membrane. Therefore, 
when viewed on the nanometer scale, the membrane should be 
smoothly curved, which implies the existence of an intrinsic con-
tact angle as depicted in Figure 5.41. This angle is related to the 
difference of the segment tensions as given by the force balance 
Eq. 5.321. The latter equation also depends on the local curva-
tures of the two membrane segments at the contact line. At pres-
ent, these curvatures cannot be determined experimentally which 
implies that the force balance Eq. 5.321 cannot be scrutinized by 
experiment.

On the other hand, the optical micrographs of the GUV shape 
showed that the two membrane segments in contact with the α 
and β droplets form spherical caps to a very good approxima-
tion. The extrapolation of these spherical cap shapes defines an 
apparent contact line and apparent contact angles as shown in 
Figures 5.42 and 5.43. The spherical cap geometry leads to the 
simplified shape Eqs 5.338 which imply the general relationship 
in Eq. 5.342. The latter relationship depends on the effective 
tensions and curvature radii of the two membrane segments as 
well as on the interfacial tension and the apparent contact angles. 
This relationship can be used to obtain the curvature-elastic 
parameters of the membrane segments from the observed wetting 
morphology.

For certain regions of the parameter space corresponding to 
small and large spontaneous curvatures, a simplified set of ten-
sion-angle relationships can be derived for the force balance along 
the apparent contact lines. For small spontaneous curvatures 
as defined by Eq. 5.356, the bending energies can be neglected 
compared to the interfacial free energy of the αβ interface if the 
interfacial area Aαβ is sufficiently large and satisfies the inequality 
in Eq. 5.362. In this parameter regime, we obtain the relation-
ships in Eqs 5.371 and 5.372 which relate the total membrane 
tensions and the interfacial tension to the apparent contact angles, 
corresponding to the force triangle in Figure 5.43b. The same 
relationships apply to large spontaneous curvatures for which the 
bending energy is dominated by the spontaneous tension and 
behaves as in Eq. 5.365. If one of the membrane segments forms 
membrane nanotubes, one can ignore the mechanical tension 
within this segment compared to its spontaneous tension and use 
the simpler relationship in Eq. 5.379 to estimate the spontaneous 
curvature of the tubulated segment.

In the context of synthetic biology, GUVs are very attractive 
as possible microcompartments for the bottom-up assembly of 
artificial protocells (Walde et al., 2010; Fenz and Sengupta, 2012; 
Schwille, 2015; Weiss et al., 2018). One practical problem that 
has impeded research in this direction is the limited robustness of 
GUVs against mechanical perturbations. Very recently, this limita-
tion has been overcome by two different strategies. One strategy 
is based on the formation of GUVs within emulsion droplets 
that support and stabilize the GUVs (Weiss et al., 2018), see also 



Understanding giant vesicles: A theoretical perspective148
G

ia
nt

 v
es

ic
le

s 
th

eo
re

ti
ca

lly
 a

nd
 in

 s
ili

co

Chapter 30 of this book. The other strategy uses the special proper-
ties of tubulated GUVs as discussed in Section 5.6. The nanotubes 
increase the robustness of the giant vesicles by providing a mem-
brane reservoir for the mother vesicles which can then adapt their 
surface area to avoid membrane rupture (Bhatia et al., 2018). In the 
latter study, the increased robustness has already been demonstrated 
by micropipette experiments and by repeated cycles of osmotic 
deflation and inflation. Giant vesicles with membrane nanotubes 
will also tolerate other mechanical perturbations, arising, e.g., from 
the adhesion and engulfment of microparticles, in close analogy 
to cellular uptake via phagocytosis and pinocytosis, or in response 
to constriction forces that can lead to membrane fission and the 
formation of smaller membrane compartments. The latter process 
of artificial cytokinesis is an important objective for the bottom-
up assembly of artificial protocells. Thus, both droplet-stabilized 
and tubulated GUVs provide new and promising modules for the 
bottom-up assembly of such artificial protocells.
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APPENDICES

5.A  BRIEF EXCURSION INTO DIFFERENTIAL 
GEOMETRY

Any membrane shape S can be described in terms of two surface 
coordinates s s s≡ ( , )1 2  and a vector-valued function 

 

X X s= ( ) 
that maps the surface coordinates into three-dimensional space 
(see, e.g., do Carmo, 1976). At any point P of the membrane sur-
face, the tangent vectors 



Xi  with i = 1, 2 and the normal vector n 
are then given by

 
� �

�
� �
� �X X

s
n X X

X Xi i= ∂
∂

×
×

and =
| |

1 2

1 2
 (5.A1)

where the symbol × denotes the vector product in three-
dimensional space. The three vectors 



X1, 


X2, and n represent 
a right-handed trihedron at any point P of the membrane 
surface. Note that the normal vector n is a unit vector which is 
orthogonal to the plane spanned by the two tangent vectors. 
In general, the tangent vectors 



X1 and 


X2 are neither unit vec-
tors nor orthogonal to each other. These tangent vectors define 
the metric tensor

 g X Xij i j= ⋅
 

, (5.A2)

where the symbol ⋅ denotes the scalar product. As we move along 
the membrane surface, the normal vector n is tilted and this tilt 
can be expressed in terms of the tangent vectors because the nor-
mal vector is a unit vector with n n ⋅ = 1 and ∂

∂
⋅ =n

s i
n

 0. The tilt of 
the normal vector then defines the curvature tensor hi

j  via

 
∂
∂

= − ≡ − −n
s

h X h X h Xi i
j

j i i
� � � �1

1
2

2 (5.A3)

where the second equation explains the summation over the 
repeated index j. The principal curvatures C1 and C2 discussed 
in Section 3.2 are the eigenvalues of the curvature tensor −hi j. 
This definition of the principal curvatures implies that a sphere 
is characterized by the principal curvatures C1 = C2 > 0.19 Using 
the definition of the normal vector in Eq. 5.A1, we can express 
the first derivatives ∂

∂
n
s i
  of the normal vector via the second 

derivatives ∂
∂ ∂

2 X
s si j  of the vector-valued function 



X s( ). Therefore, 
in order to define the principal curvatures at a certain point on 
the membrane surface, the components of the vector 



X s( ) that 
describes the membrane shape in the vicinity of this point must 
be sufficiently smooth and twice differentiable with respect to the 
surface coordinates s i.

5.B TOPOLOGY OF VESICLES

Giant vesicles that do not experience external forces or constraints 
form closed membrane surfaces without pores or edges. In general, 
the topology of such a surface can be characterized by two related 
integers: (i) the number of handles, also known as the genus g of 
the surface, and (ii) the Euler characteristic χ = −2 2g. For any 
segmentation or partitioning of the membrane surface in terms of 
(curved) polygons, the Euler characteristic χ is equal to the number 
of polygons minus the number of edges plus the number of corners.

Three surfaces with genus g = 0,1, and 2 are displayed in 
Figure 5.46: A surface with g = 0 and χ = 2 is topologically equiv-
alent to a sphere, a doughnut or torus is characterized by g = 1 and 
χ = 0, and the Lawson surface with two handles has genus g = 2 
and Euler characteristic χ = −2. Furthermore, a set of several 
such surfaces has an Euler characteristic that is equal to the sum 
of the individual Euler characteristics. 

Thus, a set of n spheres has the Euler characteristics χ = 2n.
For a closed membrane surface without bilayer edges, the 

Gauss-Bonnet theorem implies that the integrated Gaussian cur-
vature is given by ∫ = = −dAG 2 2 (2 2 )πχ π g  as in Eq. 5.10. On the 
other hand, if the membrane surface has pores (or holes) that are 
bounded by bilayer edges, each edge makes a contribution to the 
integrated Gaussian curvature as given by

19  Most text books on differential geometry take the principal curvatures to be 
the eigenvalues of hi

j  instead of −hi
j . This conventional choice leads to C1 = C2 

< 0 for a sphere.

Figure 5.46 a sphere has no handle and genus g = 0; a torus has 
one handle and genus g = 1; the Lawson surface on the right has two 
handles and genus g = 2. the genus is a topological invariant and 
does not change for arbitrary shape deformations as long as we do 
not rupture or porate the surface.
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 ∫ ∫= − +dAG dlC g


2π  (5.B1)

which depends on the line integral of the geodesic curvature Cg 
along the bilayer edge. In general, each bilayer edge will also contrib-
ute an edge energy which is proportional to the length of the edge.

Vesicles of genus g = 2 as illustrated by the rightmost shape in 
Figure 5.46 can undergo thermally excited shape transformations 
that correspond to conformal transformations of the vesicle shape, 
for which the vesicle volume, the membrane area, and the inte-
grated mean curvature of the vesicle remain constant. This con-
formal diffusion in shape space was first predicted theoretically 
(Jülicher et al., 1993) and subsequently confirmed experimentally 
(Michalet and Bensimon, 1995).

5.C HIGHLY CURVED MEMBRANE SEGMENTS

5.C.1 HIGHER ORDER CURVATURE TERMS

As explained in Section 5.4.1, the spontaneous curvature model 
as defined by the curvature energy functional in Eq. 5.11 is 
obtained from a small curvature expansion up to second order 
in the principal curvatures C1 and C2 and ignores terms of 
higher order in these curvatures. These higher-order terms have 
the general form

 cu d withp q
p q

p q p qA C C C C p q,
, 1 2 2 1[ ] 3.≡ + + ≥∫ κ  (5.C1)

A somewhat different classification using symmetry arguments 
has been given by (Mitov, 1978).

A rough estimate for the magnitude of these terms can be 
obtained by dimensional analysis. The elastic parameter κp,q 
has the dimension of energy multiplied by length to the power 
p + q − 2. If we take the bending rigidity κ as the basic energy 
scale and the membrane thickness me as the basic molecular 
length, we obtain κ κp q

p q
,

2
 me

+ − . On the other hand, a vesicle 
with membrane area A has the overall size Rve = A /(4 )π  . 
Therefore, dimensional analysis implies that the higher-order 
terms behave as

 cu ve me
p q p q, 2 ( )( / )κ R 

− +  (5.C2)

and decay to zero, in the limit of large Rve me/ , provided p + 
q ≥ 3.

The estimate in Eq. 5.C2 indicates that, for Rve me nm 5 20  , 
all higher-order terms with p + q ≥ 4 should be negligible com-
pared to the second-order terms of the spontaneous curvature 
model as given by Eq. 5.11. On the other hand, third-order 
terms with p + q = 3 could make a significant contribution for 
5 20 80 me ve me nm R  . The latter terms have the general 
form C C1

3
2
3+  and C C C C1

2
2 2

2
1+  and involve the additional elastic 

parameters κ3,0 and κ2,1.
The same conclusion applies to small spherical buds with 

radius Rbud and narrow cylindrical tubes with radius Rtu. Thus, 
all higher-order terms should be negligible for Rbud nm 80  and 
Rtu nm 80  but third-order terms could make a significant con-
tributions for smaller values of Rbud or Rtu. In order to study the 

latter contributions in a systematic manner, molecular simulations 
should be rather useful.

5.C.2 MEMBRANE NECKS AS CURVATURE DEFECTS
As described in Section 5.4.6, closed membrane necks arise as 
limit shapes from the smooth solutions of the Euler-Lagrange or 
local shape equation. As the neck closes and the neck radius Rne 
goes to zero, the adjacent membrane segment becomes highly 
curved because the curvature 1/Rne diverges. This divergence is 
truncated because the membrane curvature cannot exceed the 
inverse membrane thickness 1/me.

Taking the molecular structure of the bilayer membrane into 
account, this structure should be strongly perturbed in the vicinity of 
a closed neck and this perturbed molecular structure might lead to a 
finite “defect energy” δEne of the neck. A simple estimate of this latter 
energy can be obtained as follows. As explained in Section 5.3.1, cur-
vature as a continuum concept emerges for membrane patches with a 
lateral dimension, say , that is about twice the membrane thickness. 
If we assume that the neck strongly perturbs the bilayer structure of a 
membrane patch of area 2, we obtain the estimate

 δ δ
πκ π

E E M mne
ne

ne≡ = −
8 4

[ ]
2

2  (5.C3)

which behaves as

 δ
π

E m m Mne nefor large≈
2 2

4
| | | |.� �  (5.C4)

This neck energy should be compared with the bending energy 
E mbe( ) (1 )2 2

2R R= −  of a spherical bud with radius R2. Bud and 
neck then have the combined energy

 E E m m Mbe ne nefor large+ ≈ +








δ

π
2

2
2

2

2
21

4
| | | |.R

R

� �  (5.C5)

Thus, if we take  8 nm, the correction term arising from 
the putative defect energy of the neck can be safely ignored 
for buds with radius R2 40 nm . In order to obtain a reliable 
estimate for smaller buds, molecular simulations should again 
be quite useful.

5.D MECHANICAL TENSION OF MEMBRANES

In this appendix, we consider vesicles with compressible mem-
branes and determine their equilibrium shapes by minimizing the 
combined bending and stretching energy with respect to mem-
brane area for fixed vesicle volume.

5.D.1  MECHANICAL TENSION AND STRETCHING 
ENERGY

In the absence of external forces or constraints, a bilayer mem-
brane attains a certain optimal area Aopt, which corresponds to 
the optimal packing of its molecules. The membrane experiences 
a tension, Σst, when its area A is stretched and deviates from the 
optimal value Aopt. This stretch tension can be expressed as

 Σst
opt

opt
( )A K

A A
AA=
−

 (5.D1)
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up to first order in A − Aopt, which defines the area compress-
ibility modulus KA. The stretch tension Σst must be smaller 
than the tension of rupture, Σrup. For lipid bilayers, the rupture 
tension Σrup is about two orders of magnitude smaller than 
the area compressibility modulus KA and of the order of a few 
mN/m.

The work of stretching or compression, starting from the ini-
tial area A = Aopt, defines the stretching energy

 E A dx x K
A A
AA

A
Ast

opt
st

opt

opt
( ) ( ) 1

2
( )

.
2

= =
−

∫ Σ  (5.D2)

For an arbitrary vesicle shape S, we define the stretching energy 
functional via

 E Ast st{ } ( { }).S E S≡  (5.D3)

5.D.2  COMBINED BENDING AND STRETCHING ENERGY

The total elastic energy of a compressible membrane, which consists 
of its combined bending and stretching energy, is now equal to

   el be st{ } { } { }.S S S≡ +  (5.D4)

The corresponding shape functional has the form

 F V E Eel be st{ } { } { } { }S P S S S= − + +∆  (5.D5)

where the pressure difference ΔP is used, as before, as a Lagrange 
multiplier to ensure that { }S V= .

5.D.3 TWO-STEP MINIMIZATION PROCEDURE

The minimization of the shape functional Eq. 5.D5 can be per-
formed in two steps:

 (i) First, we minimize the shape functional Eq. 5.22 for the 
spontaneous curvature model using the Lagrange multiplier 
tension Σ to enforce the membrane area { }S A= . As a 
result, we obtain the bending energy function

 E V A m j S jbe be( , ; , ; ) { }κ =   (5.D6)

as in Eq. 5.28, which represents the membrane’s bending 
energy as a function of volume V and membrane area A along 
a branch of (meta)stable equilibrium shapes S j. In general, we 
expect to find several branches of such shapes as illustrated in 
Figure 5.12 for vanishing spontaneous curvature, m = 0.

(ii)  Second, we minimize the combined elastic energy functional 
  el be st= +  with respect to membrane area A for fixed vol-
ume V. Because the stretching energy is an explicit function 
of the membrane area, we can replace the minimization of the 
elastic energy functional el by the minimization of the elastic 
energy function

 

E V A E V A E A

E V A K
A A
AA

el be st

be
opt

opt

( , ) ( , ) ( )

( , ) 1
2

( )
.

2

≡ +

= +
−  (5.D7)

The relation (dEel(V, A)/dA)V = 0 then determines the equilibrium 
value A = Aeq of the membrane area via

 K
A A
A

dE V A
dA

A
V

eq
opt

opt

be
eq

eq
−

= −










( , ) . (5.D8)

In this way, the minimization of the combination of bending and 
stretching energy has been reduced to the minimization of the 
bending energy functional alone, which determines the bending 
energy Ebe as a function of V and A.

5.D.4 MECHANICAL TENSION

The relation as given by Eq. 5.D8 has a very simple physical inter-
pretation. By definition, the left hand side of Eq. 5.D8 is equal to 
the stretch tension Σst, see Eq. 5.D1, whereas the right hand side 
of this equation corresponds to the relationship Eq. 5.32 which 
expresses the Lagrange multiplier tension Σ as the derivative of 
the bending energy with respect to membrane area A. Therefore, 
the relation Eq. 5.D8 is equivalent to

 Σ Σst

eq
opt

opt

be
eq

eq=
−

= −








 =K

A A
A

dE V A
dA

A
V

( , )
 (5.D9)

which reveals that the Lagrange multiplier tension Σ is, in fact, 
identical with the stretch tension Σst. The identity Eq. 5.D9 is 
not restricted to a specific form of the bending energy but holds 
for any such energy, when minimized for fixed vesicle volume and 
fixed membrane area. An analogous equation also holds for the 
bilayer coupling model (Svetina and Zeks, 1989), in which the 
bending energy function Ebe depends on the volume V, membrane 
area A, as well as total mean curvature I AMM = ∫d ,and the partial 
derivative on the right hand side of Eq. 5.D9 has to be taken at 
constant volume V and constant total mean curvature IM.

5.E DIFFERENT VARIANTS OF CURVATURE MODELS

In this appendix, we will consider three variants of the curvature 
model: the spontaneous curvature (SC) model as studied in the 
main text, the bilayer coupling model, and the area-difference-
elasticity model. Two general results will be shown explicitly: (i) 
all three models lead to the same stationary shapes of vesicles; and 
(ii) all stationary shapes of the area-difference-elasticity model are 
also stationary shapes of the spontaneous curvature model with 
an effective spontaneous curvature meff.

As in the main text, all functionals will be denoted by calli-
graphic letters. Thus, we again consider the geometric functionals 
V A A{ }, { }, { }S S S∆  , and M S{ } and denote their values for the 
stationary shapes S = Sst by V, A, ΔA, and IM.

5.E.1 BILAYER COUPLING (BC) MODEL

For the sake of clarity, it is convenient to start with the bilayer 
coupling (BC) model which is defined by the bending energy 
functional

 BC d{ } 2 .2S A M≡ ∫κ  (5.E1)
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In this model, one considers vesicle shapes with fixed volume V, 
fixed area A, and integrated mean curvature IM where the latter 
quantity is proportional to area difference ΔA between the two 
leaflets of the bilayer membrane. The stationary shapes SBC

st  of this 
model follow from the first variation of the shape functional

 F V A I EBC BC BC BC BC{ } { } { } { } { }.S P S S Q S SM= − + + +Σ  (5.E2)

The stationary shapes SBC
st  again form several branches labeled 

by j. The stationary shapes on branch j will be denoted by S jBC. 
The energies of these stationary shapes defines the energy func-
tions as given by

 E V A I j SM
j

BC BC BC( , , ; ) { }=   (5.E3)

along the branch j. Interpreting the relation between the energy 
functional BC and the shape functional BC as a Legendre trans-
formation, we obtain the relations

 P dE
dV

dE
dAA IM V IM

BC
BC

BC
BC= 






 = −








, ,
, ,Σ  (5.E4)

and

 Q dE
dIM V A

BC
BC= −









,
 (5.E5)

for the three Lagrange multipliers PBC, ΣBC, and QBC.
The spontaneous curvature (SC) model studied in the main 

text is defined by the energy functional

 E E E I ASC be BC{ } { } { } 4 { } 2 { }.2S S S m S m SM≡ = − +κ κ  (5.E6)

In this model, one considers vesicle shapes with fixed volume V 
and fixed area A. The stationary shapes SSC

st  of this model follow 
from the first variation of the shape functional

 F V A ESC SC SC SC{ } { } { } { }S P S S S= − + +Σ  (5.E7)

with PSC ≡ ΔP.

5.E.1.1  Identical stationary shapes in BC and SC models
A direct comparison of the two shape functionals BC and SC in 
Eqs 5.E2 and 5.E7 shows that these shape functionals are identi-
cal provided one chooses

 P P m Q mBC SC BC SC BCand= = + = −, 2 , 4 .2Σ Σ κ κ  (5.E8)

or

 P P Q m Q
SC BC SC BC

BC BCand= = − = −,
8 4

.
2

Σ Σ
κ κ

 (5.E9)

As a consequence, the Euler-Lagrange equations of the two 
models are also identical. The Euler-Lagrange equation of the SC 
model has the form

 P M M M m M M m GSC SC LB= − ∇ − − + −2 2 4 ( )[ ( ) ]2Σ κ κ  (5.E10)

as given by Eq. 5.23 with PSC ≡ ΔP and ΣSC ≡ Σ. The Euler-
Lagrange equation of the BC model is obtained from Eq. 5. E10 
by the parameter mapping Eq. 5.E9. Therefore, the stationary 
shapes of the SC model are also stationary shapes of the BC 
model and vice versa when we map the parameters of the two 
models according to Eq. 5.E8 or Eq. 5.E9, and we can identify 
the stationary shapes for each branch j, i.e., S Sj j

SC BC= , as well as 
the associated limit shapes.

5.E.2 AREA-DIFFERENCE-ELASTICITY MODEL

The bending energy functional of the area-difference-elasticity 
model as given by Eq. 5.63 can be rewritten in the form

 E E I A DADE BC ADE{ } { } 4 { } 2 { } { }2S S m S m S S= − + +κ κ  (5.E11)

with the nonlocal bending energy term ADE{ }S  as in Eq. 5.64.
In the area-difference-elasticity model, one again considers 

vesicle shapes with fixed volume V and fixed area A. In order to 
deal with the nonlocal character of ADE{ }S , it is useful to use 
a two-step variational procedure (Miao et al., 1994). In the first 
step, we determine the stationary shapes of Eq. 5.E11 for fixed 
volume V, fixed area A, and fixed integrated mean curvature IM. 
These shapes are obtained from the first variation of the shape 
functional

   F V A I EADE ADE ADE ADE{ } { } { } { } { }.S P S S Q S SM= − + + +Σ  (5.E12)

For fixed area A and fixed integrated mean curvature IM, the energy 
functional in Eq. 5.E11 reduces to  ADE BC const{ } { }S S= + . 
Therefore, the stationary shapes S jADE of the ADE model for the 
given values of V, A, and IM are identical with the stationary shapes 
S jBC of the BC model for the same values of V, A, and IM and, thus, 
fulfill the same Euler-Lagrange equation as given by Eq. 5.E10 with 
the parameter mapping as in Eq. 5.E9. The energy function

  E V A I j SM
j

ADE ADE ADE( , , ; ) { }=   (5.E13)

is then equal to

 E E V A I j mI m A I I
AM M

M M
ADE BC= − + +

−( , , ; ) 4 2 2 ( ) .2 ,0
2

κ κ πκ∆  

(5.E14)

Furthermore, the Lagrange multiplier QADE in Eq. 5.E12 fulfills 
the relation

 


Q dE
dI

Q m I I
AM V A

M M
ADE

ADE
BC= −









 = + −

−

,

,04 4κ πκ∆  (5.E15)

with QBC as in Eq. 5.E5).
In the second step of the variational procedure, we determine 

the values of the integrated mean curvature IM that lead to extrema 
of the energy function EADE for fixed volume V and fixed area A. 
These extrema follow from the condition

rl8
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 dE
dIM V A

ADE







 =

,

0. (5.E16)

Inserting this condition into Eq. 5.E15, we obtain the identity

 Q m
I I

A
M M

BC = − +
−

4 4 .,0κ πκ∆  (5.E17)

Finally, we use the relation between QBC and the spontaneous 
curvature as given by Eq. 5.E8 with m ≡ meff. As a result, we 
obtain the expression Eq. 5.66 for the effective spontaneous cur-
vature meff of the equivalent spontaneous curvature model.

5.F DISCONTINUITIES ALONG DOMAIN BOUNDARIES

This appendix, which supplements Section 5.8 on multi-domain 
membranes and vesicles, describes the matching conditions for 
the domain shapes along a domain boundary in some detail. 
Even for axisymmetric vesicle shapes with smooth contours, these 
matching conditions turn out to be somewhat complex. Indeed, 
these matching conditions imply discontinuities along the 
domain boundary, both for the curvature and for the mechanical 
tension. In order to describe these discontinuities, we parametrize 
the contour of the axisymmetric shape by its arc length s starting 
from the north pole of the shape. We could then use cylindrical 
coordinates, r and z, to describe the vesicle shape but it is more 
convenient to use the coordinate r and the tilt angle ψ,20 see 
Figure 5.33.

For an axisymmetric shape as in Figure 5.33, the two principal 
curvatures are given by

 C d
ds

C
r1 2= ≡ =ψ ψ ψ

 and sin  (5.F1)

where C1 represents the curvature of the shape contour. The sec-
ond principal curvature C2 is continuous at the domain boundary 
with s = s1 because both the tilt angle ψ(s) and the coordinate r(s) 
are continuous at this s-value. In contrast, the contour curvature 
C1 can change discontinuously at the domain boundary.

5.F.1 CURVATURE DISCONTINUITIES

This discontinuity follows from the matching condition (Jülicher 
and Lipowsky, 1996)

 κ ψ ε κ ψ ε δκ κ κa b a a b bs s C s m m ( ) ( ) ( ) 2 21 1 2 1+ − − = + −  (5.F2)

with

 δκ κ κ κ κ≡ − + −b a Gb Ga . (5.F3)

We now introduce the notation

 C s s C s sa b1 1 1 1 1 1( ) ( ) ( ) ( )≡ + ≡ − ψ ε ψ εand  (5.F4)

for the contour curvatures and

 
M s C s C s

M s C s C s

a a

b b

( ) 1
2

[ ( ) ( )]

( ) 1
2

[ ( ) ( )]

1 1 1 2 1

1 1 1 2 1

≡ +

≡ +

and
 (5.F5)

for the mean curvatures at the two sides of the domain bound-
ary. Using this notation, the matching condition Eq. 5.F2 can be 
rewritten as

 κ κ κ κa a a b b b Gb GaM s m M s m C s[ ( ) ] [ ( ) ] 1
2

( ) ( ).1 1 2 1− − − = −  (5.F6)

The above matching conditions imply the discontinuity

 C s C s s sa b1 1 1 1 1 1 1( ) ( ) ( ) ( )− = + − − = ψ ε ψ ε ∆  (5.F7)

of the contour curvature C1 with

 ∆1 1 1 2 1( ) ( ) 2≡ − + + −κ κ
κ

δκ
κ

κ κ
κ

b a

a
b

a

a a b b

a
C s C s m m  (5.F8)

as follows from Eq. 5.F2. Note that the discontinuity Δ1 depends 
(i) on the contour curvature C1b(s1) along the b-side of the domain 
boundary and (ii) on the second principal curvature C2(s1) at 
this boundary. Rearranging the terms in Eq. 5.F7, we obtain the 
discontinuity

 M s M sa b( ) ( ) 1
21 1 1− = ∆  (5.F9)

of the mean curvature M. Note also that the curvature dis-
continuities as described by Eqs 5.F7 and 5.F9 depend only 
on local properties of the vesicle shape close to the domain 
boundary.

The matching conditions for the curvatures simplify when 
we consider two membrane domains for which some of the 
curvature-elastic parameters are identical. If both membrane 
domains have the same Gaussian curvature moduli, the expres-
sion Eq. 5. F8 becomes

 ∆1 12 2 ( )= − + − =κ κ
κ

κ κ
κ

κ κb a

a
b

a a b b

a
Gb GaM m m  (5.F10)

and the matching condition Eq. 5.F6 attains the simple and 
concise form

 κ κ κ κa a a b b b Gb GaM s m M s m[ ( ) ] [ ( ) ] ( ).1 1− = − =  (5.F11)

If both domains have the same Gaussian curvature moduli and 
the same bending rigidity, the discontinuity Δ1 becomes

 ∆1 2( ) ( ).= − = =m ma b Gb Ga b aκ κ κ κand  (5.F12)

In this case, the curvature discontinuity is independent of the 
principal curvatures at the domain boundary and proportional to 
the difference mb − ma of the spontaneous curvatures. Using the 
matching condition in the form Eq. 5.F11, we also obtain

20  The two variables ψ and r satisfy the relation d
d
r
s = cosψ , a condition that is 

incorporated into the variational calculation by a Lagrange parameter func-
tion (Seifert et al., 1991; Jülicher and Lipowsky, 1996).

rl8
Cross-Out

rl8
Inserted Text
us

rl8
Cross-Out

rl8
Inserted Text
us



153
G

iant vesicles theo
retically and

 in silico
Appendices

 M s m M s mb b a a Gb Ga b a( ) ( ) .1 1− = − = =for andκ κ κ κ  (5.F13)

Therefore, the deviation of the mean curvature from the spon-
taneous curvature is continuous across the domain boundary if 
the two membrane domains have the same Gaussian curvature 
modulus and the same bending rigidity. Likewise, the discontinu-
ity simplifies to

 
∆1 12 ( ) .= − −[ ] = = =κ κ

κ
κ κb a

a
b b a Gb GaM s m m m mfor and

 
(5.F14)

In the latter case, the curvature discontinuity is proportional to 
the difference κb − κa of the bending rigidities and to the devia-
tion Mb(s1) − m of the mean curvature Mb(s1) along the b-side 
of the domain boundary from the spontaneous curvature m. 
Finally, the curvature discontinuity Δ1 vanishes if both membrane 
domains have the same curvature-elastic properties, i.e.,

 ∆1 0 , , .= = = =for andm mb a b a Gb Gaκ κ κ κ  (5.F15)

5.F.2  DIFFERENCE BETWEEN MECHANICAL TENSIONS

The discontinuity Δ1 of the contour curvature C1 at the domain 
boundary also affects the difference Σb − Σa of the mechanical 
tensions within the two membrane domains. Using the results of 
(Jülicher and Lipowsky, 1996), one finds the tension difference

 Σ Σ ∆Σa b
s

r s
− = +λ ψcos ( )

( )
1

1
 (5.F16)

with

 ∆Σ ≡ −1
2

( ) 1
2

( )1 1κ κa a b bQ s Q s  (5.F17)

and

 Q s C s C s m j a bj j j( ) ( ) [ ( ) 2 ] , .1 1
2

1 2 1
2≡ − − =for  (5.F18)

It follows from the relations in Eqs 5.F2, 5.F3, and 5.F6 that the 
curvature discontinuities along the domain boundary depend 
on the difference κGb − κGa of the Gaussian curvature moduli. 
Therefore, the expression Eq. 5.F17 for ΔΣ implicitly depends on 
κGb − κGa as well.

Inspection of the expression Eq. 5.F17 shows that ΔΣ contains 
only two shape-independent terms as given by the spontaneous 
tensions σ κj j jm= 2 2 with j = a, b. Thus, we can decompose the 
expression Eq. 5.F17 according to

 ∆ ∆ ∆Σ = − + + = − + +2 22 2κ κ σ σa a b b S a b Sm m  (5.F19)

with

 ∆S a a b bQ s Q s≡ −1
2

( ) 1
2

( )1 1κ κ   (5.F20)

and

 Q s C s C s C s mj j j( ) ( ) ( ) 4 ( ) .1 1
2

1 2
2

1 2 1= − +  (5.F21)

The tension difference in Eq. 5.F16 can then be rewritten as

 Σ Σ ∆ a b S
s

r s
− = +λ ψcos ( )

( )
.1

1
 (5.F22)

If both membrane domains have the same bending rigidity κ and 
the same Gaussian curvature modulus, the quantities ΔΣ and ΔS 
become

 ∆Σ = − − + −
= =

2 ( )[ ( ) ( ) ]
( , )

1 1κ
κ κ κ κ

m m M s m M s ma b a a b b

b a Gb Gaand  (5.F23)

and

 
∆S a b a b

b a Gb Ga

m m M s M s= − +
= =

2 ( )[ ( ) ( )]
( , ).

1 1κ
κ κ κ κand

 (5.F24)

Note that Mb(s1) − mb = Ma(s1) − ma according to Eq. 5.F13 for 
two domains with the same bending rigidity and the same Gaussian 
curvature modulus. Finally, if all curvature-elastic parameters of the 
two membrane domains are identical, the contour curvature is con-
tinuous across the domain boundary, see Eq. 5.F15, which implies 
C1b(s1) = C1a(s1), Qb(s1) = Qa(s1), and

 ∆ ∆Σ = = = = =S b a b a Gb Gam m0 , , .for andκ κ κ κ  (5.F25)

Therefore, in this case, the balance between the mechanical mem-
brane tensions Σa and Σb within the two domains and the line 
tension γ of the domain boundary is described by

 Σ Σa b b a b a Gb Ga
s

r s
m m− = = = =λ ψ κ κ κ κcos ( )

( )
, , .1

1
for and  

(5.F26)

The minimization of the energy functional Eq. 5.272 also implies 
a third matching condition that describes a jump in ψ , i.e., in the 
first derivative of the contour curvature C1 = ψ  with respect to 
the arc length s.21

5.G  SEGMENTATION AND PHASE SEPARATION OF 

TWO-COMPONENT MEMBRANES

The interplay of ambience-induced segmentation and phase 
separation of membranes has been theoretically studied in some 
detail for membranes with two lipid components, say la and lb 
(Rouhiparkouhi et al., 2013; Lipowsky et al., 2013). If the mem-
branes contains more than two components, we can single out one 
special component, denote this component by la, and combine all 

21  In order to derive this third matching condition, it is useful to start from 
the shape equation for ψ  within the two domains, see Eq. (A.13) in 
(Jülicher and Lipowsky, 1996), from which one can determine the quantity 
κ ψ ε κ ψ εa bs s ( ) ( )1 1+ − − . The latter quantity depends only on local properties 
of the vesicle shape close to the domain boundary.
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other components into an effective second component lb, thereby 
mapping a multi-component membrane onto a two-component 
one. To simplify the following discussion, we will ignore differ-
ences in the molecular areas of the two lipid components and take 
both molecular areas to be equal to Al. If the membrane contains 
Nla lipids la and Nlb lipids lb, the total membrane area A is then 
given by

 A N N Ala lb l= +1
2

( )  (5.G1)

where the factor 1/2 takes into account that the bilayer membrane 
consists of two leaflets.

The membrane is exposed to K local environments that differ 
in their molecular compositions and thus partition the membrane 
into several segments distinguished by the superscript [k] with 
k = 1, 2, … K as in Figure 5.31. The total membrane area A is 
then partitioned into the segmental areas A[k] with

 A A A A K= + + +[1] [2] [ ]... . (5.G2)

Furthermore, the total number of la and lb molecules contained 
in segment [k] is fixed and equal to A[k]/Al. Therefore, when 
one molecule diffuses from segment [k] to a neighboring seg-
ment [k '], another molecule must diffuse from segment [k '] to 
segment [k].

When a lipid molecule la or lb is located in segment [k], the 
molecular interactions with the adjacent environment [k] lead 
to the interaction energies Ula

k[ ] and Ulb
k[ ], respectively, where 

effectively attractive interactions are described by negative values 
Ula
k[ ] < 0 and Ulb

k[ ] < 0. The enrichment or depletion of the two 
lipid species adjacent to environment [k] is then determined by 
the relative affinity

 ∆U U U kk
la
k

lb
k[ ] [ ] [ ] [ ],= − within segment  (5.G3)

which is negative if environment [k] prefers the la lipids and posi-
tive if this environment prefers the lb lipids.

For a homogeneous environment with interaction energies 
Ula
k[ ] 0=  and Ulb

k[ ] 0= , the two lipid species have the chemical 
potentials μla and μlb. These chemical potentials are not inde-
pendent because the lipid numbers Nla and Nlb are related via 
Eq. 5.G1. The membrane system is then described by the semi-
grand canonical ensemble with the relative chemical potential 
(Lipowsky et al., 2013)

 ∆µ µ µ≡ −la lb . (5.G4)

Within this statistical ensemble, the phase transition occurs along 
the line

 ∆ ∆µ µ= *( ) < <T T T Tfor t c (5.G5)

in the (Δμ, T ) plane where Tt and Tc are the temperatures of the tri-
ple point and the critical demixing point, respectively. The function 
Δμ*(T) is obtained from the free energy in the semigrand canonical 
ensemble and depends on all parameters that describe the interac-
tions between the lipid components (Lipowsky et al., 2013).

When the membrane is now partitioned into several seg-
ments by the different local environments, the chemical 
potentials are shifted by the interaction energies Ula

k[ ] and Ulb
k[ ].

Each segment [k] is now characterized by the relative chemical 
potential

 ∆ ∆ ∆µ µ µ µ[ ] [ ] [ ] [ ]( ) ,k
la la

k
lb lb

k kU U U≡ + − + = +  (5.G6)

which is equal to the relative chemical potential of the homogeneous 
system shifted by the relative affinity ΔU[k]. As a consequence, each 
segment [k] undergoes a phase transition along the line

 ∆ ∆ ∆ ∆ ∆µ µ µ[ ] [ ]
*

[ ]( ) < < ,k k k
cU T U T T T= + = + for t  (5.G7)

and the membrane consisting of K segments exhibits K phase 
transitions as shown in Figure 5.47. The transition lines for seg-
ment [k + 1] and segment [k] are separated by

 ∆ ∆ ∆ ∆µ µ[ 1] [ ] [ 1] [ ]k k k k
kU U U+ +− = − ≡  (5.G8)

with the affinity contrast ΔUk between segment [k + 1] and 
segment [k].

In the canonical ensemble, the relative chemical potential 
Δμ is replaced by the mole fraction Xla of the la lipids with 0 ≤ 
Xla ≤ 1. Each transition line within the (Δμ, T) phase diagram 
as displayed in Figure 5.47 is then mapped onto a coexistence 
region within the (Xla, T) phase diagram. Because the resulting K 
coexistence regions have to be accommodated, at each temperature 
T, within the interval 0 ≤ Xla ≤ 1, the average width of a single 
coexistence region is necessarily smaller than 1/K and therefore 
decreases monotonically with increasing number K of distinct local 
environments.

5.H  WETTING OF TWO MEMBRANELESS DROPLETS

Wetting of a vesicle membrane, arising from the aqueous phase 
separation within the vesicle, leads to two aqueous drop-
lets enclosed by this membrane as depicted in the insets of 

∆µ[1]

Tc

Tt

∆µRelative chemical potential 

Te
m

pe
ra

tu
re

 T

∆U1 ∆U2 ∆U3

∆µ[2] ∆µ[3] ∆µ[4]

Figure 5.47 Phase diagram for a two-component membrane exposed 
to K = 4 different environments as a function of relative chemical 
potential Δμ and temperature T with Tt < T ≤ Tc. Segment [k] undergoes 
a phase transition along the demixing line Δμ = Δμ[k] as given by Eq. 5. G7. 
the demixing lines Δμ[k + 1] and Δμ[k] are separated by the affinity contrast 
ΔUk between segment [k + 1] and segment [k] as in Eq. 5.G8. Each 
demixing line has a critical point at T = Tc.
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Figure 5.39. This appendix describes the analogous but some-
what simpler situation corresponding to the wetting of two drop-
lets in the absence of the membrane. The two droplets consist of 
the two liquid phases α and β and are completely immersed into 
the bulk liquid phase γ, see Figure 5.48. The latter wetting sys-
tem will now be discussed in some detail to reveal the similari-
ties and differences compared to the wetting of membranes, see 
Section 9.3.

5.H.1  SPHERICAL GEOMETRY AND CONTACT ANGLES

The two droplets in Figure 5.48 consist of two aqueous phases, 
α and β, which are immersed into a third liquid phase γ. 
The geometry of such a droplet pair involves three interfaces: the 
αγ interface between the α droplet and the exterior γ phase; the 
βγ interface between the β droplet and the γ phase; and the αβ 
interface between the α and the β droplets. All three interfaces 
form spherical segments that meet at the three-phase contact line 
as shown in Figure 5.48a. The curvature radii of the three spheri-
cal radii are denoted by Rαγ, Rβγ, and Rαβ which are all taken to be 
positive.22 Along the contact line, the tangent planes of the three 
interfaces form the three contact angles θα, θβ, and θγ with θα + 
θβ + θγ = 2π, see Figure 5.48b. It is not difficult to show that the 
shape consisting of three spherical segments implies the geometric 
relation

 ± = −
sin sin sinθ θ θγ

αβ

α

βγ

β

αγR R R
 (5.H1)

or

 ± = −1 / /
R R Rαβ

α γ

βγ

β γ

αγ

θ θ θ θsin sin sin sin
 (5.H2)

where the plus and minus sign corresponds to an αβ interface 
that bulges towards the α and the β phase, respectively. Thus, 

the plus sign applies, in particular, to the geometry displayed in 
Figure 48a,b.

5.H.2  MECHANICAL EQUILIBRIUM BETWEEN 
INTERFACES

To proceed, let us consider the balance between the Laplace pres-
sures and the interfacial tensions Σαγ, Σβγ, and Σαβ of the three 
interfaces. The mean curvatures Mαγ = 1/Rαγ and Mβγ = 1/Rβγ of 
the αγ and βγ interfaces satisfy the two Laplace equations

 ∆ Σ ΣP P P M ii i i i i iγ γ γ γ γ γ α β≡ − = = =2 2 / > 0 , .R for  (5.H3)

These equations are also valid when the two droplets are not in 
contact with each other and form two separate spheres immersed 
into the γ phase. For the partial wetting geometry, on the other 
hand, the mean curvature Mαβ = ±1/Rαβ of the αβ interface satis-
fies another Laplace equation as given by

 P P Mβ α αβ αβ αβ αβ− = = ±2 2 / .Σ Σ R  (5.H4)

As before, the plus and minus sign corresponds to an αβ interface 
that bulges towards the α and β phase, respectively. The pres-
sure differences can be eliminated by a combination of all three 
Laplace equations which leads to the relationship

 ± = −
Σ Σ Σαβ

αβ

βγ

βγ

αγ

αγR R R
 (5.H5)

or

 ± = −1 / /
.

R R Rαβ

βγ αβ

βγ

αγ αβ

αγ

Σ Σ Σ Σ
 (5.H6)

between the three interfacial tensions.

Figure 5.48 (a) Partial wetting of an α droplet (yellow) and a β droplet (blue) immersed in the liquid bulk phase γ (white). the two droplets are 
bounded by the αγ, αβ, and βγ interfaces. all three interfaces form spherical segments that meet at the three-phase contact line (small black 
circles); (b) along the contact line, the tangent planes of the three interfaces form the three contact angles θα, θβ, and θγ with θα + θβ + θγ = 
2π; and (c) the interfacial tensions Σαβ, Σαγ, and Σβγ pull at the contact line in the directions of the three tangent planes. In mechanical equilib-
rium, the three tensions must balance and add up to zero which implies that they form the sides of a triangle (upper panel) which is known as 
Neumann’s triangle.

22 Note that the αβ interface may bulge towards the α phase as in Figure 5.48a or towards the β phase depending on the relative magnitude of the pressures within the 
α and β phases.
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5.H.3  INTERFACIAL TENSIONS FROM CONTACT 
ANGLES

If we combine the relationship Eq. 5.H6 between the three ten-
sions with the purely geometric relation Eq. 5.H2, we obtain

 1 1 .
R Rαγ

αγ

αβ

β

γ βγ

βγ

αβ

α

γ

θ
θ

θ
θ

Σ
Σ

Σ
Σ

−








 = −











sin
sin

sin
sin

 (5.H7)

Both the interfacial tensions and the contact angles are material 
parameters that do not depend on the droplet geometry, provided 
the droplets are sufficiently large and we can ignore the contact 
line tension. As a consequence, the relation (5.7) can only hold 
for arbitrary values of the radii Rαγ and Rβγ, if the terms in the two 
parentheses vanish separately. Therefore, we conclude that

 
Σ
Σ

Σ
Σ

αγ

αβ

β

γ

βγ

αβ

α

γ

θ
θ

θ
θ

= =
sin
sin

sin
sin

`and  (5.H8)

which relate the interfacial tensions to the contact angles. It is 
interesting to note that the derivation of Eq. 5.H8 was based 
(i) on the purely geometric relation Eq. 5.H2 for three spheri-
cal caps and (ii) on the Laplace Eqs 5.H3 and 5.H4 for the 
mechanical equilibrium of the spherical cap segments of the 
three interfaces away from the contact line. On the other hand, 
the relationships Eq. 5.H8 can also be derived from the force 
balance between the three interfacial tensions at the contact 
line. Indeed, in mechanical equilibrium, the three tensions 
must add up to zero which implies that these tensions form the 
sides of a triangle as shown in the upper panel of Figure 5.48c. 
In the literature on capillary forces, this triangle is known as 
Neumann’s triangle (Rowlinson and Widom, 1989). The law of 
sines for triangles then leads to the equalities

 
Σ Σ Σαβ

γ

αγ

β

βγ

αθ θ θsin sin sin
= =  (5.H9)

which are equivalent to the relations Eq. 5.H8.
It is instructive to rederive the force balance conditions as 

described by Eqs 5.8 or by the equivalent Eqs 5.9 using a varia-
tional approach. To do so, we start from the parametrization of 
the three-spherical-cap geometry in terms of the four radii Rαβ, 
Rαγ, Rβγ, and Rco as described in Section 9.5.1 and consider the 
(free) energy of the three interfaces which has the form

 E A A Ao( , , , ) .R R R Rαβ αγ βγ αβ αβ αγ αγ βγ βγco = + +Σ Σ Σ  (5.H10)

The three interfacial areas can be written as explicit functions of 
the four radii. To minimize this energy function for fixed droplet 
volumes Vα and Vβ, we define the shape function

 F P P V P P V Fo o( , , , ) ( ) ( )R R R Rαβ αγ βγ γ α α γ β βco ≡ − + − + ∆  (5.H11)

with

 ∆ Σ Σ ΣF E A A Ao o≡ = + +αβ αβ αγ αγ βγ βγ  (5.H12)

where the two droplet volumes Vα and Vβ are again explicit func-
tions of the four radii. The stationary three-spherical-cap shapes 
are then obtained from

 ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

=F F F Fo o o o

R R R Rαβ αγ βγ
0, 0, 0, 0.and

co
 (5.H13)

From these stationarity conditions, we recover the three Laplace 
Eqs 5.3 and 5.4 as well as the force balance Eqs 5.8 along the 
contact line.

5.H.4  TRIANGLE RzELATIONS FOR INTERFACIAL 
TENSIONS

Inspection of Figure 5.48c shows that the three contact angles are 
the exterior angles of the triangle formed by the three tensions. 
So far, it has been tacitly assumed that all three contact angles are 
neither zero nor equal to π. In fact, as one of the contact angle 
goes to zero, the two other angles must approach the limiting 
value π. In this limit, the interface of two phases is completely wet 
by the third phase. As an example, consider complete wetting 
of the βγ interface by the α phase. In the latter case, the con-
tact angle L1

+ and the two other contact angles have the values 
θ θ πβ γ= = . The α phase then forms a thin wetting layer between 
the β and the γ phases. In such a situation, one side of the tension 
triangle becomes equal to the sum of the two other sides and the 
triangle collapses.

For any triangle, the length of a given side must be smaller 
than or equal to the sum of the lengths of the two other sides. 
For the tension triangle in Figure 5.48c, the corresponding tri-
angle relations are given by

 Σ Σ Σ Σ Σ Σ Σ Σ Σαγ βγ αβ βγ αγ αβ αβ αγ βγ≤ + ≤ + ≤ +, .and   
(5.H14)

It will be instructive to rewrite these relations in a somewhat 
redundant manner as given by

 − ≤ − ≤ +Σ Σ Σ Σαβ βγ αγ αβ , (5.H15)

 − ≤ − ≤ +Σ Σ Σ Σαγ βγ αβ αγ , (5.H16)

and

 − ≤ − ≤ +Σ Σ Σ Σβγ βγ αγ βγ  (5.H17)

which provide lower and upper bounds for all tension differ-
ences. In fact, multiplying these inequalities by (−1), we obtain 
inequalities of the form −Σαβ ≤ Σαγ − Σβγ ≤ + Σαβ etc. Therefore, 
the difference between any two tensions is larger or equal to (−1) 
times the third tension and smaller or equal to (+1) times the 
third tension.

The inequalities in these triangle relations correspond to 
partial wetting while the equalities correspond to complete 
wetting.
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As an example, consider the bounds for the tension difference 
Σβγ − Σαγ as given by Eq. 5.H15. Using the relations in Eq. 5.H8, 
we obtain the expression

 
Σ Σ

Σ
βγ αγ

αγ

α β

γ

θ θ
θ

−
=

−sin sin
sin

. (5.H18)

It will be convenient to define the function

 Ξ( , , )x y z x y
z

≡ −sin sin
sin

 (5.H19)

Combining the relations Eqs 5.H18 and 5.H15, we obtain the 
inequalities

 − ≤ ≤ +1 ( , , ) 1Ξ θ θ θα β γ  (5.H20)

for the function Ξ that depends on all three contact angles. 
The lower bound

 Ξ( , 0, ) 1θ π θ θ πα β γ= = = = −  (5.H21)

describes complete wetting of the αγ interface by the β phase 
whereas the upper bound

 Ξ( 0, , ) 1θ θ π θ πα β γ= = = = +  (5.H22)

corresponds to complete wetting of the βγ interface by the α 
phase.

5.I  OUT-WETTING OF MEMBRANES AND VESICLES

In the main text, we focused on in-wetting morphologies of 
GUVs that arise from aqueous phase separation within the giant 
vesicles, see Figure 5.40. Wetting of vesicle membranes has also 
been observed when the vesicles were exposed to PEG-dextran 
solutions that underwent phase separation outside the GUVs 
(Li et al., 2012). The aqueous minority phase then forms droplets 
that can adhere to the vesicle membrane.

5.I.1 OUT-WETTING MORPHOLOGIES

The interaction of the membrane with one such droplet leads 
to several out-wetting morphologies as shown in Figure 5.49. 
The morphologies in Figure 5.49a and b have been observed 
for PEG-dextran solutions (Li et al., 2012). The morphology 
in Figure 5.49a corresponds to partial wetting of the vesicle 
membrane by the coexisting liquid phases α and β. This mor-
phology is again characterized by a three-phase contact line that 
partitions the membrane into two segments. When viewed with 
optical resolution, the shape contour has an apparent kink at 
the contact line which should be replaced by a smoothly curved 
membrane segment when we look at this line with nanoscale 
resolution.

For partial out-wetting, the αβ interface partitions the vesicle 
membrane into an γα segment and a γβ segment. At first sight, 
swapping the subscripts γ and α as well as γ and β for out-wetting 
compared to in-wetting morphologies might seem a bit pedantic 
but turns out to be important because of the spontaneous curva-
tures. These curvatures have a sign that is taken to be positive and 
negative if the membrane prefers to bulge towards the exterior 
and interior solution, respectively. Therefore, when we swap the 
interior and exterior solutions, the spontaneous curvature mγj for 
out-wetting morphologies will differ from the spontaneous curva-
ture mjγ = −mγj for in-wetting morphologies.

5.I.2 THEORY OF OUT-WETTING

Geometry of out-wetting morphologies
The out-wetting morphologies in Figure 5.49 involve the specta-
tor phase γ inside the GUV as well as a single β droplet coexisting 
with the bulk phase α in the exterior solution. The shape S of the 
vesicle-droplet system can again be decomposed into several com-
ponents. First, we define the shape Sγ of the interior β droplet, 
which is identical with the vesicle shape, and the shape Sβ of the β 
droplet. The corresponding droplet volumes are denoted by

 V S V Sγ γ β β= = { } { }.and  (5.I1)

Figure 5.49 Out-wetting morphologies of giant vesicles arising from phase separation of the exterior solution into two aqueous phases, α (white) 
and β (blue). the vesicle is filled with the aqueous spectator phase γ. (yellow) the αβ interfaces are depicted as dashed orange lines, the mem-
brane segments in contact with the α and β droplets as red and purple lines, respectively: (a) Partial wetting of the vesicle membrane by α and β as 
observed on the micrometer scale. the apparent kink at the contact line (black circles) reveals the capillary forces that the αβ interface exerts onto 
the vesicle membrane; (b) Special morphology for which the β droplet and the bulk phase α are separated by a closed membrane neck. this mor-
phology resembles complete wetting by the γ phase and required a sufficiently small reduced volume v of the vesicle; (c) Complete wetting of the 
membrane by the β phase; and (d) Complete wetting by the α phase which leads to the release of the β droplet from the vesicle.
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The vesicle volume is now identical with the volume of the γ drop-
let, i.e., V = Vγ. These volumes can be considered to be constant 
at constant temperature and fixed osmotic conditions. The two 
droplets are bounded by three surface segments: the αβ interface 
between the β droplet and the aqueous bulk phase α as well as 
two membrane segments, the γα segment in contact with the α 
phase and the βγ segment exposed to the β droplet. The shapes of 
these three surfaces will be denoted by Sαβ, Sγα, and Sγβ, respec-
tively, with surface areas

 A S A S A Sαβ αβ γα γα γβ γβ= = =  { }, { }, { }.and  (5.I2)

The total surface area A of the vesicle membrane is then given by

 A A A= +γα γβ . (5.I3)

All three surface segments meet along the three-phase contact line 
which has the shape Sαβγ and the length

 L Sαβγ αβγ= { }. (5.I4)

The αβ interface can adapt its area Aαβ to changes in the droplet 
and membrane morphologies. As before, the total membrane area 
A will be taken to be constant at constant temperature. The vesicle-
droplet system is then characterized by three geometric constraints 
as provided by the volumes Vγ and Vβ of the two droplets as well as 
the total membrane area A. In order to determine the morphology 
of the vesicle-droplet system, we will minimize the (free) energy of 
the system, taking these three constraints into account.

Adhesion free energies
The adhesion free energy per unit contact area between the outer 
leaflet of the vesicle membrane and the aqueous bulk phase α 
will be denoted by Wγα. Likewise, the adhesive strength Wγβ 
describes the adhesion free energy per unit contact area between 
the outer leaflet of the vesicle membrane and the β droplet. 
The adhesion free energy of the vesicle-droplet system then has 
the form

 E W A W Aad = +γα γα γβ γβ  (5.I5)

corresponding to the adhesion free energy functional

 E A Aad{ , } { } { }.S S W S W Sγα γβ γα γα γβ γβ= +  (5.I6)

We ignore any curvature-dependence of the adhesive strengths 
Wγα and Wγβ which leads to the identities

 W W W Wγα αγ γβ βγ= =and , (5.I7)

i.e., the adhesive strengths Wγα and Wγβ for out-wetting are identi-
cal with the adhesive strengths Wαγ and Wβγ for in-wetting as 
defined in Eq. 5.308. Therefore, the adhesion free energy func-
tional for out-wetting has the same form as for in-wetting.

Mechanical, spontaneous, and total segment tensions
The adhesive strengths Wγα and Wγβ contribute to the mechanical 
tensions

 Σ Σ Σ Σγα γα γβ γβ= + = +W Wand  (5.I8)

of the two membrane segments where Σ is again the overall stress 
of the vesicle membrane arising from the constraint on the total 
membrane area. If the two segments have a spontaneous curvature, 
the weakly curved segments experience the spontaneous tension

 σ κ σ κγα γα γα γβ γβ γβ= =2 2 .2 2m mand  (5.I9)

The mechanical and the spontaneous segment tensions add up to 
the total segment tensions

 Σ Σ Σ Σ
γα γα γα γβ γβ γβσ σ= + = +and  (5.I10)

which enter the shape equations for the two membrane segments 
γα and γβ.

Shape functional for out-wetting
In close analogy to Eq. 5.312 for in-wetting, the shape functional 
for out-wetting has the form

 F V V A E2 2{ } ( ) { } ( ) { } { } { }Dr
out

Dr
outS P P S P P S S S= − + − + +α γ γ α β β Σ  
(5.I11)

with the energy functional

 E A E E E2 { } { } { , } { , } {Dr
out

be
out

adS S S S S S S≡ + + +Σαβ αβ γα γβ γα γβ αβγ αβγγ }. 
(5.I12)

Compared to the energy functional for in-wetting, the energy 
functional for out-wetting differs only in the bending energy 
functional which has the form

 be
out d{ , }= 2 ( )

= ,

2S S A M m
j

j j jγα γβ

α β

γ γ γκ∑ ∫ −  (5.I13)

for out-wetting. As mentioned, the spontaneous curvatures 
mγj for out-wetting and mjγ for in-wetting are different and 
related by

 m mj jγ γ= − . (5.I14)

In contrast, the bending rigidities κγj for out-wetting are identical 
with the bending rigidities κγj for in-wetting.

5.I.3 THREE-SPHERICAL-CAP SHAPES

The out-wetting morphologies observed experimentally are well-
described by three-spherical-cap shapes as depicted in Figure 5.49. 
The αβ interface always forms a spherical cap with mean curva-
ture Mαβ = 1/Rαβ > 0. Furthermore, when viewed on the microm-
eter scale as in Figure 5.49a, the two membrane segments γα and 
γβ also form two spherical caps with mean curvatures Mγα = 
1/Rγα > 0 and Mγβ = ±1/Rβγ. These mean curvatures are governed 
by the shape equations

rl8
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 P P M jj j jγ γ γ α β− = =2 ,Σeff with  (5.I15)

with the effective, curvature-dependent tensions

 Σ Σγ γ γ γ γ γσ κj j j j j jW m Meff ≡ + + − 2  (5.I16)

of the two membrane segments γα and γβ. Because the mean 
curvature Mγα of the membrane segment γα in contact with the 
bulk phase α is necessarily positive, the effective tension Σγα

eff  has 
the same sign as the pressure difference Pγ − Pα. In contrast, the 
mean curvature Mγβ of the membrane segment in contact with 
the β droplet may be positive or negative which implies that the 
effective tension Σγβ

eff  need not have the same sign as the pressure 
difference Pγ − Pβ.

In addition, we introduce three apparent contact angles θγ
ap, θβ

ap, 
and θα

ap that open up towards the three liquid phases γ, β, and α. 
The tension-angle-curvature relationship for partial out-wetting is 
then given by

 M Mγα
γα

αβ

β

γ
γβ

γβ

αβ

αθ

θ
θΣ

Σ

Σ

Σ

eff ap

ap

eff ap
−













= −
sin

sin
sin
sinnθγ

ap












. (5.I17)

In contrast to in-wetting, the mean curvature Mγβ of the γβ 
membrane segment can now be negative corresponding to a γβ 
segment that bulges towards the γ phase within the vesicle.

If several β droplets adhere to the exterior leaflet of a single 
GUV, we obtain several γβ segments which we can distinguish by 
the label n = 1, 2, …, N. These γβ segments have the mean cur-
vatures M n

γβ
( ) and experience the effective tensions Σγβ

( )n . We then 
obtain the relations ϒ ϒ ϒγβ γβ γβ

(1) (2) ( )= = =

N  with

 ϒ
Σ

Σγβ γα
β

γ
γβ

γβ

αβ

α

γ

θ

θ
θ
θ

( )
( )

( )
( )

( ) ( )

(
n

n

n
n

n n

nM M≡ + −
sin

sin
sin
sin )) ,













 (5.I18)

in close analogy to the relations as given by Eqs 5.347 and 5.348 
for in-wetting. Thus, from three different γβ segments with three 
distinct mean curvatures M n

γβ
( ), we can obtain the two parameter 

combinations (Σ + Wγβ + σγβ)/Σαβ and κγβmγβ/Σαβ that determine 
the tension ratios Σ Σγβ αβ

( )/n .

5.I.4  FORCE BALANCE ALONG APPARENT 
CONTACT LINE

In order to describe the force balance between the two mem-
brane segments and the αβ interface in a self-consistent manner, 
we consider again special parameter regimes in close analogy 
to the force balance for in-wetting morphologies. Thus, we can 
distinguish small-small, large-large, and large-small regimes for 
out-wetting as well.

Special parameter regimes
The relationships between the effective tensions and apparent 
contact angles as given by Eqs. 5.17 and 5.18 depend on the mean 
curvatures of the different membrane segments. We can again 

derive curvature-independent relationships if we consider mem-
brane segments characterized by small spontaneous curvatures and 
small bending energies or large spontaneous curvatures and large 
spontaneous tensions. The corresponding shape function has the 
form

 F P P V P P V Fout out= − + − +( ) ( )α γ γ α β β ∆  (5.I19)

where the area-dependent shape function ΔF out is somewhat dif-
ferent for the different regimes. If both membrane segments have 
large spontaneous curvatures, the area-dependent shape function 
ΔF out has the form

 
∆ Σ Σ ΣF A A Al l+ = + +out

for large-large regime.
αβ αβ γα γα γβ γβ 

 (5.I20)

Likewise, we obtain ∆ ∆F Fl sout out= +  with

 
∆ Σ Σ ΣF A A Al s+ = + +out

for small-small regime.
αβ αβ γα γα γβ γβ  (5.I21)

and ∆ ∆F Fs sout out= +  with

 
∆ Σ Σ ΣF A A Al s+ = + +out

for small-small regime.
αβ αβ γα γα γβ γβ  (5.I22)

Comparison with the area-dependent shape functions for in-wet-
ting as given by Eqs 5.367–5.369 shows that, in all three regimes, 
the area-dependent shape function ΔF out for out-wetting is identi-
cal with the shape function ΔF in for in-wetting when we replace 
the segment labels γα and γβ by the segment labels αγ and βγ.

Force balance relations
Minimization of the shape function ΔFout with respect to the four 
curvature radii Rγα, Rγβ, and Rαβ as well as with respect to the 
contact line radius Rco leads to the shape equations for the three 
spherical caps as well as to the force balance relations

 Σ
Σ

Σ
Σ

 γα

αβ

β

γ

γβ

αβ

α

γ

θ

θ
θ
θ

= =
sin

sin
sin
sin

ap

ap

ap

apand . (5.I23)

More precisely, the latter relations describe the force balance along 
the apparent contact line if both membrane segments γα and γβ 
belong to the large spontaneous curvature regime. If the γα seg-
ment belongs to the small spontaneous curvature and small bend-
ing energy regime, the total segment tension Σγα in Eq. 5.I23 is 
replaced by the mechanical segment tension Σγα. Likewise, if the 
γβ segment belongs to the latter regime, the total segment tension 
Σγβ  is replaced by the mechanical segment Σγβ.

5.J SYMMETRIC TWO-DROPLET VESICLES

In this appendix, we address the deflation of two-droplet vesicles 
that belong to the partial in-wetting regime as illustrated in 
Figure 5.40a. When such a vesicle is osmotically deflated, it may 
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follow two distinct morphological pathways. The first pathway 
leads to the engulfment of both droplets by the membrane as in 
Figure 5.40d. The second pathway leads to the formation of many 
nanobuds and nanotubes as in Figure 5.21. In order to discuss 
the competition between these two morphological pathways, it is 
instructive to consider a simplified case corresponding to two-
droplet vesicles with an up-down symmetry.

Up-down symmetric geometry and fluid-elastic 
parameters
Such a two-droplet vesicle contains one α and one β droplet, both 
of which have the same volume Vα = Vβ ≡ V1. The two droplets 
are separated by a planar αβ interface, corresponding to apparent 
contact angles θ θα β

ap ap= . Likewise, the two membrane segments 
αγ and βγ in contact with the α and β phase have the same areas 
Aαγ = Aβγ ≡ A1. Therefore, the vesicle volume V and the mem-
brane area A are given by

 V V V V A A A A= + = = + =α β αγ βγ2 2 .1 1and  (5.J1)

Before deflation, the initial shape of the vesicle is taken to be a 
sphere with volume

 V Aini ve vewith= =4
3

/(4 )3π πR R   (5.J2)

which implies the reduced volume v = vini = 1.
In order to preserve the up-down symmetry during deflation, 

the two phases α and β and the two membrane segments αγ and 
βγ are taken to have the same fluid-elastic parameters. Thus, both 
phases adhere to the membrane with the same adhesive strength 
Wαγ = Wβγ ≡ W, and both membrane segments are characterized 
by the same bending rigidity καγ = κβγ ≡ κ and the same spontane-
ous curvature mαγ = mβγ ≡ m.

Regime of small spontaneous curvatures
First, consider the case of a small spontaneous curvature with 
| | 1/m  Rve. The free energy Eini of the initial spherical shape is 
then given by

 E A A A mini with (small≈ + =Σαβ αβ αβπκ8 / 4 | |). (5.J3)

Because both droplets have the same adhesive strength, the 
adhesion free energy WA does not depend on the shape of the 
vesicle and thus plays no role when we compare different vesicle 
morphologies.

For small |m|, the vesicle membrane cannot form any stable 
nanobuds or nanotubes and osmotic deflation from the initial 
volume Vini to the volume

 V Veng ini≡ / 2  (5.J4)

leads to the engulfment of both droplets as in Figure 5.40d. Each 
droplet forms a sphere which is enclosed by the corresponding 
membrane segment. The two spherical segments are connected by a 
closed membrane neck which replaces the αβ interface. Therefore, 

the free energy Eeng of this two-sphere shape does not involve any 
contribution from the interfacial tension Σαβ and has the form

 E meng (small≈ 16 | |).πκ  (5.J5)

arising from the bending energy of two spherical membrane 
segments.
The two-sphere shape without an αβ interface has a lower free 
energy than the initial one-sphere shape if Eeng − Eini < 0 which 
implies the inequalities

 Σ
Σ

αβ
αβ

πκ πκ> 8 > 8
A

Aor  (5.J6)

for the interfacial tension and the membrane area. Therefore, for 
small |m|, deflation of the initial spherical vesicle leads to the two-
sphere morphology without an αβ interface for sufficiently large 
interfacial tension Σαβ or sufficiently large membrane area A.

Regime of large spontaneous curvatures
For large spontaneous curvatures with |m|≫ 1/Rve, the initial 
spherical vesicle with volume V = Vini has the free energy

 E A mini (large≈ +( 1
4

) | |)Σαβ σ  (5.J7)

which depends on the spontaneous tension σ = 2κm2. 
When we deflate this vesicle to obtain the smaller volume 
V Veng ini= / 2 , the vesicle membrane may again engulf the 
two droplets completely, thereby replacing the αβ interface 
by a closed membrane neck. The free energy Eeng of the latter 
shape is now given by

 E A meng (large≈ σ | |) (5.J8)

which is smaller than Eini. Therefore, the first morphological 
pathway which eliminates the αβ interface always reduces the free 
energy of the vesicle-droplet system.

However, for large |m|, the deflated vesicle can also form 
nanobuds and nanotubes. To simplify the following discussion, 
the buds and tubes are built up from zero-energy spherules with 
radius R2 = 1/|m| as described in Sections 5.5 and 5.6. As a result 
of this second morphological pathway, the membrane forms a 
spherical mother vesicle with radius Rmv and N spherules of radius 
1/|m| which are connected by closed membrane necks. The vol-
ume Vtub of this shape is given by

 V N
m

tub mv= ±4
3

4
3 | |

3
3

π π
R  (5.J9)

where the plus and minus sign corresponds to out- and in-spher-
ules, respectively, and the conserved membrane area A can be 
decomposed according to

 A N
m

= +4 4 .2
2π πRmv  (5.J10)
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In order to compare the two morphological pathways of engulf-
ment and tubulation, we now consider the same deflation depth 
in both cases corresponding to V V Vtub eng ini= = / 2  as in 
Eq 5.J4. The latter equality implies

 4
3

4
3 | |

4
3 2

.3
3

3π π π
R

R
mv

ve± =N
m

 (5.J11)

In addition, the conservation of the membrane area leads to

 A A= = +4 42 2π πR Rve mv ∆  (5.J12)

with the excess area

 
∆A N

m
= 4 2π

 (5.J13)

stored in the nanobuds and nanotubes. Thus, the area fraction φ 
stored in the N spherules is given by

 ϕ ≡ =∆A
A

N
m2 .  (5.J14)

When expressed in terms of the dimensionless radius

 rmv ≡ Rmv/Rve  (5.J15)

and the dimensionless spontaneous curvature m m= Rve , the two 
relationships in Eqs 5.11 and 5.12 attain the form

 r
m

rmv mvand3 2

| |
1
2

1.± = + =ϕ ϕ  (5.J16)

These two equations determine the two unknown variables rmv 
and φ in terms of m . The solutions of these two equations have 
the asymptotic behavior

 ϕ = ≈ − =N
m2

2
3

2 1
2

0.195 (5.J17)

and

 r mmv for large= − ≈1 0.897 | |.ϕ  (5.J18)

The asymptotic behavior for the area fraction ϕ = N m/ 2 also fol-
lows from Eq. 5.171 with v = 1/ 2.

Because the spherules with radius R2 = 1/|m| do not contribute 
to the bending energy of the vesicle membrane, the tubulated 
vesicle has the free energy

 E A Atub mv mv≈ + = + −Σ Σ ∆αβ αβπ σ π σR R2 24 ( 1
4

)( )  (5.J19)

which implies

 E E A mtub ini (large− = − +( 1
4

) < 0 | |)Σ ∆αβ σ  (5.J20)

as follows from the expression for Eini in Eq. 5.J7. Therefore, the 
second morphological pathway induced by deflation also reduces 
the free energy of the vesicle-droplet system.

What remains to be done is to compare the free energies Etub 
and Eeng, both of which are smaller than Eini. Using Eqs 5.8 and 
5.19, we obtain the free energy difference

 E E A Atub eng− = − +1
4

( 1
4

) .Σ Σ ∆αβ αβ σ  (5.J21)

which is negative if

 ϕ
σ

αβ

αβ
=

+
∆ Σ

Σ
A

A
>

4
 (5.J22)

or

 σ ϕ
ϕ αβ> 1

4
.− Σ  (5.J23)

Furthermore, the area fraction φ (as in Eq. 5.J23) attains the 
constant value 2

3
2 1
2

0.195− =  for large |m| as in Eq. 5.J17. Using 
this asymptotic behavior, we find that

 E E mtub eng for (large< > 1 2
4(2 2 )

= 1.030 | |).σ
αβΣ

+
−

 

(5.J24)

Therefore, the free energy Etub of the tubulated vesicle is lower 
than the free energy Eeng of the vesicle with two completely 
engulfed droplets if the spontaneous tension σ is large compared 
to the interfacial tension Σαβ.

Spatial location of zero-energy spherules
In the previous discussion, we did not have to specify the spa-
tial location of the spherules which may be attached to the two 
membrane segments or to other spherules within necklace-like 
tubes. Indeed, because the spherules have zero bending energy, the 
free energy Etub depends only on the number N of the spherules 
but not on their spatial locations. In particular, for equal adhesive 
strengths Wαγ = Wβγ as considered above, an arbitrary number of 
Nα spherules can be in contact with the α phase which implies that 
Nβ = N − Nα spherules are in contact with the β phase, extending 
the morphological complexity discussed in Section 5.6.4.

This degeneracy is, however, lifted if the adhesive strength Wαγ 
of the α droplet differs from the adhesive strength Wβγ of the β 
droplet. If the α droplet is more adhesive than the β droplet, cor-
responding to Wαγ < Wβγ, a spherule in contact with the α phase 
gains the adhesion free energy (Wαγ − Wβγ)4π/|m|2 compared 
to a spherule in contact with the β phase. Therefore, if both 
membrane segments are still characterized by the same fluid-
elastic parameters, the morphology with the lowest free energy is 
provided by N spherules that are all in contact with the α phase 
for Wαγ < Wβγ.

rl8
Cross-Out
 



Understanding giant vesicles: A theoretical perspective162
G

ia
nt

 v
es

ic
le

s 
th

eo
re

ti
ca

lly
 a

nd
 in

 s
ili

co

GLOSSARY OF SYMBOLS
Symbols for membrane geometry and topology

A membrane area
{ }S area functional of vesicle shape S
Abo membrane area bound to rigid substrate surface
ΔA area difference between two leaflets of bilayer 

membrane
C1, C2 two principal curvatures of membrane surface
c Euler characteristic, χ = −2 2g
g topological genus of vesicle, i.e., number of 

handles
G determinant of metric tensor gij

gij metric tensor, g X Xij i j= ⋅
 

hi
j curvature tensor

G Gaussian curvature of membrane surface, 
G = C1C2

IM integrated mean curvature, I AMM = ∫d  
M S{ } integrated mean curvature functional of mem-

brane shape S
me membrane thickness
M mean curvature of membrane surface, 

M C C= +1
2 1 2( )

M1, M2 mean curvature of two segments adjacent to a 
closed neck

Mne (effective) neck curvature, M M Mne = +1
2 1 2( )

Mne dimensionless neck curvature, M M Rne ne ve=
n unit vector normal to membrane surface
ψ tilt angle along the contour of an axisymmetric 

vesicle shape
r radial coordinate for the contour of an axisym-

metric vesicle shape
Rcy radius of cylindrical membrane segment
Rne radius of membrane neck
Rsp radius of spherical membrane segment
Rve vesicle size, R Ave = /(4 )π  , used as basic length 

scale
S shape of vesicle
s two-dimensional surface coordinates, s s s≡ ( , )1 2 , 

of membrane shape


X vector-valued function 
 

X X s= ( ) in three 
dimensions



Xi two tangent vectors to membrane surface, 
 

X X si
i= ∂ ∂/

V volume of vesicle
 { }S volume functional of vesicle shape S
v volume-to-area ratio or reduced volume, 

v V A= 6 / 3/2π  

Symbols for curvature models of uniform membranes

Aopt optimal membrane area corresponding to opti-
mal molecular packing

Ebe bending energy
Ebe dimensionless bending energy, 

E Ebe be= / (8 )πκ
be { }S bending energy functional of vesicle shape S

be { }S dimensionless bending energy functional, 
 be be= / (8 )πκ

cu{ }S curvature energy functional of vesicle shape S

f locally applied pulling force acting on a small 
membrane segment

feff
in effective constriction force acting on the neck of 

an in-bud
feff

out effective constriction force acting on the neck of 
an out-bud

fex > 0 pulling force pointing towards the exterior 
vesicle compartment

fin < 0 pulling force pointing towards the interior 
vesicle compartment

fmin, fmout constriction forces generated by spontaneous 
curvature

F shape energy, F PV A E= − + +∆ Σ be

 { }S shape functional of vesicle shape S
IM,0 integrated mean curvature of vesicle shape 

with an optimal area difference
κ bending rigidity of membrane, used as basic 

energy scale
κ∆ second bending rigidity for area difference 

elasticity
κG Gaussian curvature modulus
K A area compressibility modulus
λed line tension of bilayer edge
m spontaneous curvature of bilayer membrane
m dimensionless spontaneous curvature, 

m mR= ve
mcom composite curvature, m m fcom = + / (4 )πκ
meff effective spontaneous curvature, m m meff nlo= +
mnlo nonlocal spontaneous curvature
Pin osmotic pressure within interior compartment

Pex osmotic pressure within exterior compartment

∆P osmotic pressure difference across the mem-
brane, ∆P P P= −in ex

Sst stationary shape, i.e., stationary solution of the 
Euler-Lagrange equation

σ spontaneous tension, σ κ= 2 2m

Σ mechanical membrane tension

Σ total membrane tension, Σ Σ = + σ

Symbols for spheres and tubules (Sections 5.5 and 5.6)

B*
+, bifurcation point for (1 )+ N -sphere vesicle at 

( , ) ( , )* *m v m v= + +

B◊
+ bifurcation point for (1 )+ N -sphere vesicle at 

( , ) ( , )m v m v= ◊
+

◊
+

Lpea limit shape of two-sphere vesicle with m > 0

Lsto limit shape of two-sphere vesicle with m < 0
L=

out limit shape of two-sphere vesicle consisting of 
two equal spheres

L=
in limit shape of two-sphere vesicle consisting of 

two nested spheres with equal radius
L*

+ limit shape of (1 )+ N -sphere vesicle at B*
+ with 

balanced volume, v Nv1 2=
L1

+ limit shape of (1 )+ N -sphere vesicle dominated 
by r1-sphere, v Nv1 2>

L2
+ limit shape of (1 )+ N -sphere vesicle dominated 

by r2-spheres, v Nv1 2<
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L◊
+ limit shape of (1 )+ N -sphere vesicle at B◊

+ with 
v v1 2=

L=
+ limit shape of (1 )+ N -sphere vesicle consisting of 

(1 )+ N  equal spheres
L N[ ]
in limit shape with in-necklaces containing N  small 

spheres
L N[ ]

out limit shape with out-necklaces containing N  
small spheres

m*
+ m-value of bifurcation point B*

+, 
m N*

1
2

1/3 3/2(1 )+ = +

m◊
+ m -value of bifurcation point B◊

+
, m N◊

+ = +1
M12 (effective) neck curvature of 12-neck of necklace-

like tube
M22 (effective) neck curvature of 22-neck of necklace-

like tube
N number of r2-spheres for (1 )+ N -sphere vesicles 

and necklace-like tubes
Φpea persistent two-sphere vesicle with m > 0
Φ*

+ persistent (1 )+ N -spheres, same geometry as L*
+ 

shape but with m m> *
+

Φ1
+ persistent (1 )+ N -spheres, same geometries as L1

+ 
shapes but with larger m -values

Φ2
+

persistent (1 )+ N -spheres, same geometries as L2
+  

shapes but with larger m-values
r r1 2, dimensionless radii of two-sphere vesicle, 

r R Ri i= / ve
Rcy radius of cylindrical membrane segment
Rpip radius of cylindrical pipette
Rsp radius of spherical membrane segment
R R1 2, two radii of two-sphere shape
ρ1 volume fraction of large r1-sphere, ρ1 1 2/ ( )= v Nv
ρ2 volume fraction of N  small r2-spheres, 

ρ ρ2 2 1 1/ 1/= =Nv v

σ spontaneous tension, σ κ= 2 2m
Σ mechanical membrane tension
Σasp aspiration tension as given by Eq. 5.210
Σ total membrane tension, Σ Σ = + σ
Θin two-sphere vesicle with an in-bud, unspecified 

neck condition
Θout two-sphere vesicle with an out-bud, unspecified 

neck condition

v1 dimensionless volume of single r1-sphere, v r1 1
3=

v2 dimensionless volume of single r2-sphere, v r2 2
3=

v*
+ v -value of bifurcation point B*

+, v N*
1/3 3/22 / (1 )+ = +

v◊
+

v -value of bifurcation point B◊
+, v N◊

+ = +1/ 1
vco

+ smallest possible volume of (1 )+ N -sphere vesicle 
with mutual contacts of out-buds

vpea volume of limit shape Lpea

v sto volume of limit shape Lsto

v=
out volume of limit shape L=

out consisting of two 
equal spheres

v N[ ]
in

volume of limit shape L N[ ]
in  with in-necklaces of 

total length N
v N[ ]

out volume of limit shape L N[ ]
out with out-necklaces of 

total length N
Z in vesicle shape with one in-bud that has radius 

r m2 1/ | |=  and zero bending energy

ZN
in vesicle shape with N  in-buds that have radius 

r m2 1/ | |=  and zero bending energy
Zout vesicle shape with one out-bud that has radius 

r m2 1/=  and zero bending energy
ZN

out vesicle shape with N  out-buds that have radius 
r m2 1/=  and zero bending energy

Symbols for adhesion of vesicles (Section 5.7)

Abo area of bound membrane segment adhering to 
the substrate surface

Aun area of unbound membrane segment not in 
 contact with the surface

C
co membrane curvature parallel to the contact line

C⊥co membrane curvature perpendicular to the  contact 
line

Ead adhesion (free) energy
ad adhesion (free) energy functional
AV energy functional of adhering vesicle
fW

in, fW
out effective constriction forces generated by 

adhesion
AV shape functional of adhering vesicle
l l1 2, two lipid species
Mbo mean curvature of membrane segment bound to 

adhesive surface
Mco contact mean curvature of unbound membrane 

segment
 Rbe radius of spherical bead
R
co membrane’s curvature radius parallel to the 

 contact line
R⊥co membrane’s curvature radius perpendicular to the 

contact line
RW adhesion length, R WW = 2 / | |κ
Sbo shape of bound membrane segment in contact 

with the adhesive surface
Sun shape of unbound membrane segment not in 

contact with the adhesive surface
θeff effective contact angle of adhering vesicle for 

strong adhesion
| |W adhesion free energy density or adhesive 

strength
| |w dimensionless adhesive strength, 

| | | | /2w W R= ve κ

Symbols for multi-domain vesicles (Section 5.8)

a b, indices for different membrane phases
A Aa b, area of intramembrane domain formed by 

membrane phases a and b
∆κG difference in Gaussian curvature moduli, 

∆κ κ κG Ga Gb= −
κ κa b, bending rigidities of a- and b-domains
κ κGa Gb, Gaussian curvature moduli of a- and b-domains
{.} length functional
Lab length of ab domain boundary, L Sab ab= { }
Ld Lo, liquid-disordered and liquid-ordered phase of 

lipid mixtures
λ line tension of domain boundary between 

 intramembrane domains
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