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5.1

The architecture of biological membranes is characterized by a
wide range of length scales. On the um scale, these membranes
exhibit a unique combination of properties: (i) They form closed
surfaces without edges; (ii) They are highly flexible and, thus, can
casily adapt their shape to external perturbations; (iii) In spite of
this flexibility, they provide robust and stable barriers between
the different aqueous compartments; and (iv) In the cell, these
compartments are continuously remodeled via membrane fusion
and fission (or scission).

These properties arise from the specific molecular structure
of these membranes. When viewed on the nm scale, each bio-
membrane consists of a specific mixture of many different lipids
and membrane proteins which reflects the biological functions of
this membrane. However, in spite of this chemical complexity,
all biomembranes are organized according to the same universal
principle: their basic building block is provided by a bilayer of
lipid molecules. The latter molecules are essentially insoluble in the
aqueous solution which ensures the stability of the membrane.
In addition, these lipid bilayers are maintained in a fluid state
which enables the membranes to adapt to external perturbations
by remodeling of membrane composition, shape, and topology.

Many of the fascinating remodeling processes that have
been found for biological membranes can also be observed for
giant unilamellar vesicles (GUVs) that are formed by mem-
branes with a relatively small number of molecular compo-
nents. The theory described here will typically be compared to
experimental observations on lipid vesicles but the same theory
applies to vesicle membranes that are composed of lipids and
membrane proteins.

One intriguing example for the remodeling of membrane
shape is provided by the formation of membrane necks via
budding, a crucial step of all endo- and exocytotic processes.
Another example is provided by the formation of membrane
nanotubes, highly curved membrane structures that protrude
from weakly curved membrane segments. As far as the remod-
eling of composition is concerned, we now have a variety of
lipid mixtures that can phase separate into two fluid phases,
a liquid-ordered and a liquid-disordered phase. When we
study this membrane phase separation in giant vesicles, we
often observe large intramembrane domains that partition the
vesicle membrane into a few membrane compartments with a
lateral extension in the micrometer range. In addition, multi-
component membranes exposed to a heterogeneous environ-
ment form ambience-induced segments that can also differ



in their molecular composition. One example for this type

of segmentation is provided by vesicle membranes exposed to
aqueous two-phase systems or water-in-water emulsions which
exhibit several wetting morphologies. The interplay between
ambience-induced segmentation and membrane phase separa-
tion leads to the confinement of phase separation to single
membrane segments which represents a generic mechanism

to suppress the formation of large intramembrane domains or
rafts in cellular membranes.

The present chapter is organized as follows. The next two
Sections 5.2 and 5.3 are introductory in nature: they describe
basic aspects of biomembranes and provide an elementary view of
membrane curvature. The relation between local curvature gen-
eration and spontaneous curvature is explained in Section 5.3.5.
Different molecular mechanisms for local curvature generation
are described in Box 5.1. Section 5.4 describes the theory of
curvature elasticity for uniform membranes.! This theory is based
on the /ocal curvature-elastic properties of the membranes, but
also takes into account that the ultralow lipid solubility and the
osmotic conditions lead to global constraints on the membrane
area and the vesicle volume. In fact, what makes this theory both
appealing and challenging is this interplay between local and
global membrane properties.

We will focus on the spontaneous curvature model but
also discuss the modifications arising from area-difference-
elasticity. On the one hand, the spontaneous curvature model
is particularly attractive from a theoretical point of view
because it depends only on a small number of curvature-elastic
parameters. In fact, for membranes with a laterally uniform
composition, the spontaneous curvature model involves only
two such parameters, (i) the bending rigidity x which describes
the resistance of the membrane against bending deformations
and (ii) the spontaneous curvature which provides a quantita-
tive measure for the bilayer asymmetry of the membranes.

On the other hand, the spontaneous curvature model is also
sufficient to obtain a quantitative description for the behavior
of many membranes of interest. Indeed, this model applies to
all membranes with (at least) one molecular component such as
cholesterol that undergoes frequent flip-flops between the two
leaflets of the bilayer. Area difference elasticity is only relevant
in the absence of flip-flops, i.e., when the number of molecules
is separately conserved in each leaflet.

One striking consequence of curvature elasticity is the forma-
tion of closed membrane necks that represent narrow funnel-like
membrane structures between two larger membrane segments.
The stability of these necks depends on the relative magnitude
of the neck curvature and the spontaneous curvature, which
may contain a nonlocal contribution from area-difference-
elasticity. These stability conditions for closed membrane necks
can be reinterpreted as effective constriction forces generated
by spontaneous curvature. Simple estimates show that suf-
ficiently large spontaneous curvatures lead to the cleavage of
the membrane necks and thus to complete membrane fission.
The different aspects of membrane necks are summarized in
Box 5.2.

! Here and below, a ‘uniform membrane’ is ‘laterally uniform’ and a ‘uniform
aqueous phase’ is ‘spatially uniform’.

Sections 5.5 and 5.6 are devoted to two striking morpholo-
gies formed by uniform membranes: (i) multi-sphere shapes that
involve small spherical buds and (ii) membrane nanotubes that
can be necklace-like or cylindrical. Section 5.7 describes the
behavior of vesicles that interact with an adhesive and rigid sur-
face. For simplicity, the latter section will focus on vesicle mem-
branes with a laterally uniform composition but will also discuss
adhesion of vesicles as an example for ambience-induced segmen-
tation of membranes. A closely related subject, the behavior of
adhesive nanoparticles in contact with membranes and vesicles,
will be addressed in Chapter 8 of this book. The shapes and shape
transformations of vesicles that contain two or multiple intra-
membrane domains are discussed in Section 5.8, and the wetting
of membranes in contact with aqueous two-phase systems or
water-in-water emulsions in Section 5.9. For partial wetting, the
water-water interfaces exert capillary forces onto the membranes
which then respond with strong shape deformations. On the
nanometer scale, the membrane segments close to the three-phase
contact line should be curved in a smooth manner and the capil-
lary forces then lead to a complex force balance along this contact
line which involves an intrinsic contact angle. On the microm-
eter scale, the membrane shapes exhibit kinks which define an
apparent contact line and apparent contact angles. Experimental
aspects of aqueous two-phase systems will be addressed in
Chapter 29 of this book. Both membrane phase separation and
membrane wetting leads to vesicle membranes that have a later-
ally nonuniform composition. At the end, we will briefly look
at the consequences of curvature elasticity for membrane fusion
and fission (or scission) of membranes, the two most important
topological transformations of membranes.

Each of the different membrane systems discussed in
Sections 5.7 through 5.9 involves one additional parameter: the
adhesive strength W of substrate surfaces, the line tension 4 of
domain boundaries, and the interfacial tension X4 between two
different aqueous phases. Because all of these parameters can be
measured or deduced from experimental observations, the theory
leads to quantitative predictions. In fact, the theory described
here leads to a large number of simple relationships between
material parameters and geometric quantities which provide
important checkpoints for the comparison between theory and
experiment.

5.2

Here and below, the term “biomembranes” will be used as

an abbreviation for “biological and biomimetic membranes.”
These two types of membranes differ primarily in their chemi-

cal complexity. Biological or cellular membranes usually contain
hundreds or even thousands of different lipid species and a large
number of different membrane proteins. Biomimetic membranes
as considered here have a much simpler composition with only a
few molecular components but share one crucial physical property
with biological membranes, namely their fluidity, which enables
both types of membranes to undergo analogous remodeling
processes. The simplest biomimetic membranes are provided by
one-component lipid bilayers which have a molecular structure as
in Figure 5.1.
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Lipid bilayer as the basic building block of all biomem-
branes: The lipid molecules are arranged into two monolayers or leaf-
lets, with the lipid headgroups forming the two interfaces between
the bilayer and the aqueous solutions. The thickness of the bilayer
is 4 to 5 nm. For a fluid bilayer, each lipid molecule undergoes rapid
lateral diffusion within the membrane. This diffusive process is based
on the pairwise exchange of neighboring lipids (black and white) on
the time scale of nanoseconds.

Essentially all biological membranes contain a single lipid bilayer
as their basic building block. The importance of lipids was already
realized by Langmuir and others at the beginning of the 20th
century. This insight came from spreading experiments: the mem-
branes were dissolved in a volatile organic solvent, the solution
was spread on a water surface, and the solvent was evaporated.

In this way, one obtains a lipid monolayer at the air—water inter-
face. Such a technique was also used by Gorter and Grendel who
extracted lipids from red blood cells (Gorter and Grendel, 1925;
Robertson, 1960). They found that the area of the monolayer was
approximately twice the area of the cell and proposed that the cell
should be covered by a lipid bilayer. This proposal was confirmed,
in the 1950s and 1960s, by imaging cross-sections of biomem-
branes via electron microscopy. Such electron microscopy images
gave direct evidence that cell membranes are based upon a single
bilayer and showed that these bilayers have a thickness of 4-5 nm
(Robertson, 1959).

Electron microscopy studies also demonstrated that bilayers
are already formed by a single species of phospholipid mole-
cules (Bangham and Horne, 1964). Therefore, bilayers consist-
ing of one or a few lipid components have become important
model systems for biological membranes. Different bilayer
systems have been developed and intensely studied, includ-
ing multilamellar liposomes, black lipid membranes, solid-
supported bilayers, and unilamellar vesicles. Giant unilamellar
vesicles as considered here typically have a linear size of tens
of micrometers and can be directly imaged in their fluid state
using optical microscopy.

One basic function of biological membranes is that they parti-
tion space into separate aqueous compartments and represent
effective barriers for the diffusion of ions and solute molecules
from one compartment to another. These functions are also pro-
vided by lipid bilayers. When these bilayers form vesicles, they
create an interior aqueous compartment that is well separated
from the exterior solution. Indeed, the bilayers are permeable to
small uncharged molecules such as H,0, O,, and CO, as well
as H;O* and OH~ ions, but do not allow the permeation of
other ions or larger water-soluble molecules such as glucose and

other monosaccharides. As a consequence, these solutes represent
osmotically active “particles” and exert osmotic pressures onto
the vesicle membranes. The experimental methods to measure
the permeability of membranes are reviewed in Chapter 20 of
this book.

The osmotic pressures depend on the solute concentrations
in the interior and exterior solutions. If a vesicle membrane is
exposed to different interior and exterior concentrations, the
resulting osmotic pressure difference causes water to move
through the membrane into the compartment with the higher
solute concentration. First, consider a higher solute concentra-
tion in the exterior solution which leads to osmotic deflation
of the vesicle. In this case, the water outflux reduces the vesicle
volume until the interior particle concentration matches the
exterior one and the osmotic pressure difference is close to zero.
On the other hand, if we start with a higher solute concentra-
tion in the interior compartment, the volume of the vesicle is
increased by osmotic inflation. However, this volume increase
is truncated by the limited ability of the vesicle membrane to
increase its area by mechanical stretching. Indeed, when a lipid
bilayer is mechanically stretched, its area can only be increased
by a few percent before it ruptures. Therefore, once the inflated
vesicle has attained a spherical shape, further influx of water
increases the membrane tension up to a limiting value at which
the membrane ruptures and forms pores. These pores then
provide an alternative pathway for the reduction of the osmotic
pressure difference.

Another universal aspect of biological membranes is that

they are maintained in a fluid state which is characterized by
fast lateral diffusion of the molecules along the membrane.

This membrane fluidity became generally accepted at the beginning
of the 1970s as a result of three parallel developments. First, the
lateral diffusion was probed by spin-labeled lipids (Kornberg
and McConnell, 1971; Devaux and McConnell, 1972) and
steroids (Sackmann and Triuble, 1972; Triuble and Sackmann,
1972) which led to lateral diffusion constants of the order of

1 um? per second. Nowadays, the lateral diffusion of membrane
molecules can be observed directly by fluorescence recovery
after photobleaching (FRAP) (Almeida and Vaz, 1995) and by
single particle tracking (Sako and Kusumi, 1994; Saxton and
Jacobson, 1997; Fujiwara et al., 2002; Kusumi et al., 2005), two
methods that have been applied to a large variety of biomimetic
and biological membranes. These studies confirmed that the
lateral diffusion constants of membrane molecules are indeed
of the order of 1 um? per second. A detailed discussion of both
FRAP and single particle tracking as well as tables with diffu-
sion constants for a variety of lipids can be found in Chapter 21
of this book.

Second, it has been realized that the observed shape transfor-
mations of red blood cells (Canham, 1970; Evans, 1974) and lipid
vesicles (Helfrich, 1973; Deuling and Helfrich, 1976) are only
possible if the membranes represent two-dimensional liquids.
Indeed, these shape transformations change the curvature of the
membranes in a smooth and continuous manner and would be
impossible for solid-like or polymerized membranes. Particularly
interesting shape changes are provided by budding processes in



Formation of a spherical out-bud from a giant unilamellar
vesicle (GUV) as observed by phase contrast microscopy. This bud-
ding process, which took about 5 s, proceeds in a smooth and
continuous manner and provides direct evidence on the micrometer
scale that the lipid membrane is in a fluid state on the molecular scale.
(Reproduced with permission from Dimova, R. et al., A practical guide
to giant vesicles: Probing the membrane nanoregime via optical
microscopy, J. Phys. Cond. Mat., 18, $1151-51176, 2006, Institute of
Physics)

which small spherical out- or in-buds are formed from larger
mother vesicles. Out-buds point towards the exterior aqueous
solution, in-buds towards the interior solution. One example for
the formation of an out-bud is shown in Figure 5.2. Such a bud-
ding process provides direct evidence that the membrane is in a
fluid state. The associated curvature elasticity of biomembranes
has now been developed into a quantitative theory (Berndl et al.,
1990; Seifert and Lipowsky, 1990; Seifert et al., 1991; Miao et al.,
1991; Lipowsky, 1991; Miao et al., 1994; Débereiner et al., 1997;
Lipowsky, 2013; Liu et al., 2016; Lipowsky, 2018a) which will be
described in this chapter.

Third, in 1972, a large body of observations on cellular mem-
branes was integrated into the fluid mosaic model in which the
membrane proteins are dispersed in a fluid bilayer of lipids (Singer
and Nicolson, 1972). Whether the fluid mosaic model actually
describes the supramolecular structure of cell membranes has been a
matter of some debate. On the one hand, the endocytosis and exo-
cytosis of cell membranes involves the formation of fluid domains
that are enriched in membrane-anchored receptors and coat proteins
and can be understood in terms of domain-induced budding
(Lipowsky, 1992, 1993; Agudo-Canalejo and Lipowsky, 2015a).

On the other hand, it has also been proposed that cell mem-
branes contain intramembrane domains, so-called rafts, that are
enriched in certain lipids such as sphingomyelin and cholesterol
(Simons and Ikonen, 1997). In spite of a large number of experi-
mental studies, including superresolution microscopy methods
such as stimulated emission depletion (STED) microscopy, it
has not possible to obtain direct evidence for such rafts in cel-
lular membranes. If these lipid rafts exist in mammalian cells,
their diameter does not exceed 20 nm (Eggeling et al., 2009).

The different experimental techniques used to search for such rafts
have been critically reviewed by (Klotzsch and Schiitz, 2013).

One generic mechanism that explains the difficulty to observe
membrane phase separation in cellular membranes is ambience-
induced segmentation by the heterogeneous environment to which
these membranes are exposed (Lipowsky, 2014b) as discussed in
Section 5.8.5 below.

In general, the fluidity of biomembranes implies that these
membranes can easily adapt to changes in their environment by
remodeling their composition, shape, and topology. This multi-
responsive behavior includes shape transformations of GU'Vs,

membrane segmentation by laterally nonuniform environments
such as adhesive surfaces, membrane phase separation, and the
responses of GUVs to capillary forces arising from water-in-water
droplets.

The remodeling of membrane composition in ternary lipid
mixtures leads to the nucleation and growth of intramembrane
domains that can be directly observed in the optical microscope,
see Figure 5.3. Such domains, which demonstrate the coexis-
tence of two (or more) lipid phases, have now been observed for
a variety of membrane systems including giant vesicles (Dietrich
et al., 2001; Veatch and Keller, 2003; Baumgart et al., 2003;
Bacia et al., 2005; Riske et al., 2006; Dimova et al., 2007;
Semrau et al., 2008), solid-supported membranes (Jensen et al.,
2007; Garg et al., 2007; Kiessling et al., 2009), hole-spanning
(or black lipid) membranes (Collins and Keller, 2008), as well as
pore-spanning membranes (Orth et al., 2012). The phase dia-
grams of such three-component membranes have been deter-
mined using spectroscopic methods (David et al., 2009) as well as
fluorescence microscopy of giant vesicles and X-ray diffraction of
membrane stacks (Veatch et al., 2006; Vequi-Suplicy et al., 2010;
Uppamoochikkal et al., 2010; Pataraia et al., 2014). The experi-
mental aspects of lipid phase separation and domain formation
are reviewed in more detail in Chapter 18 of this book.

Another particularly striking example for the remodeling of
membrane shape that does not require membrane phase separa-
tion is provided by the spontaneous tubulation of GUVs (Li
et al., 2011; Lipowsky, 2013; Liu et al., 2016). Two examples for
the resulting pattern of nanotubes are displayed in Figure 5.4.

In these examples, the vesicles respond to osmotic deflation by
the formation of many nanotubes that emanate from the giant
mother vesicle and protrude into the vesicle interior. As a result,
highly curved membrane segments coexist with weakly curved
segments even though the membrane has a laterally uniform com-
position. The nanotubes shown in Figure 5.4 were formed spon-
taneously, i.e., in the absence of external pulling forces. Another
quite different mechanism for the formation of membrane

Remodeling of membrane composition can lead to
domain-induced budding of vesicles as theoretically predicted in
(Lipowsky, 1992, 1993; Julicher and Lipowsky, 1993) and observed by
fluorescence microscopy in (Baumgart et al., 2003; Riske et al., 2006):
(left) Cross section through a vesicle that formed two domains after
a decrease in temperature (Baumgart et al., 2003); and (right) Three-
dimensional confocal scan of a two-domain vesicle that was formed by
electrofusion. In both cases, the vesicle membrane is composed of dio-
leoyl phosphadityl choline (DOPC), sphingomyelin, and cholesterol (see
Appendix 1 of the book for structure and data on these lipids) together
with small concentrations of two fluorescent probes. (Reproduced with
permission from Riske, K.A. et al., Biophys. Rev. Lett., 1, 387-400, 2006.
Copyright (c) 2006 World Scientific Publishing.)
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Remodeling of membrane shape can lead to complex
patterns of flexible nanotubes. The nanotubes were formed by liquid-
disordered membranes after the interior aqueous compartment sepa-
rated into a PEG-rich and dextran-rich phase: (a) Disordered pattern
corresponding to a vesicle membrane that is completely wetted by the
PEG-rich phase; and (b) Layer of densely packed tubes correspond-
ing to a membrane that is partially wetted by both aqueous phases.
All tubes are connected to the outer vesicle membranes (red circles).
In both images, the diameter of the tubes is below the diffraction limit
of the confocal microscope but the tubes are theoretically predicted
to be necklace-like and cylindrical in (a) and (b), respectively (Liu et al.,
2016). (Reproduced with permission from Liu, Y. et al., ACS Nano,

10, 463-474, 2016. Copyright American Chemical Society.)

micropipette

nanotube

a0
bean

optical trap

Pulling a membrane nanotube attached to a bead from a
giant unilamellar vesicle (GUV) by an optical trap: The weakly curved
GUV is aspirated by the micropipette, the right end of the strongly
curved nanotube experiences the pulling force f arising from the
optical trap. The latter force is typically of the order of 10 pN and can
then generate tubes with a radius of 10-20 nm.

nanotubes is provided by external pulling forces that are locally
applied to the membranes. A particularly instructive setup for the
latter tubulation process is obtained if one aspirates a giant unila-
mellar vesicle in a micropipette and simultaneously applies a pull-
ing force to a membrane-bound nanobead via magnetic tweezers
(Heinrich and Waugh, 1996) or optical traps (Sorre et al., 2012),
as schematically depicted in Figure 5.5.

The experimental methods that have been developed for GUVs
composed of a few lipid components can also be applied to giant
plasma membrane vesicles (GPMVs) or “blebs,” which contain a
wide assortment of different lipids and proteins, all oriented in
the same way as in the original cell membrane. In spite of their
chemical complexity, the membranes of GPM Vs were found to
phase separate into coexisting lipid phases (Baumgart et al., 2007;
Veatch et al., 2008), in close analogy to ternary lipid mixtures.
One cellular process that has been elucidated using GPM Vs
is the molecular recognition of “self” during phagocytosis by
macrophages. This recognition process involves the binding of the
immunoglobulin CD47, a ubiquitous “marker of self” protein, to
the macrophage receptor SIRPa (Sosale et al., 2015). The adhe-
sion of GPMVs with CD47 to SIRPa immobilized on a substrate

surface revealed that the two proteins bind in a cooperative

manner (Steinkiihler et al., 2019), confirming previous theoretical
studies (Weikl et al., 2009, 2016; Hu et al., 2013). Furthermore,
it has also been observed that GPMVs form many nanotubes
under deflation and that these tubulated vesicles exhibit rather
unusual elastic properties (Steinkiihler et al., 2018b).

In spite of their high flexibility, lipid membranes have a robust
molecular architecture and maintain this architecture even under
strong local deformations. One example is provided by force-
induced tubulation as shown in Figure 5.5. Using this method,
one can produce nanotubes or “tethers” with a radius of only
10 nm, which should be compared to the bilayer thickness of
4-5 nm (Sorre et al., 2012). Tubes of a similar width have also
been generated by a slightly different setup in which the laser
trap is replaced by another micropipette that grabs the nanobead
(Hochmuth et al., 1982; Tian et al., 2009). However, in spite
of the large curvature of these nanotubes, the tube membranes
maintain their structural integrity and provide an efficient separa-
tion of the interior and exterior aqueous compartments. Detailed
information about the experimental method to pull nanotubes
from GUVs can be found in Chapter 16 of this book.

The stability of the bilayer structure reflects the ultralow solu-
bility of phospholipids in water. One measure for this solubility
is provided by the critical micelle concentration which represents
both the concentration at which the lipids start to self-assemble
into bilayers (instead of micelles) and the concentration of individ-
ual lipid molecules in the presence of bilayers. The critical micelle
concentration of phospholipids decreases exponentially with their
chain length, i.e., with the number of hydrocarbon groups per
chain (Cevc and Marsh, 1987). The phospholipid dimyristoyl
phosphatidyl choline (DMPC, see Appendix 1 of the book for
structure and data on this and other lipids), for example, has the
relatively short chain length of 14 hydrocarbon groups, but its
critical micelle concentration is only 1071%% in mole fraction units
or about 0.95 DMPC molecules per im?. When this lipid forms a
giant unilamellar vesicle with a radius of 10 [m, the vesicle mem-
brane consists of about 4 X 10? lipid molecules whereas the inte-
rior aqueous compartment of the vesicle contains only about 4 X
10° such molecules. Most biologically relevant phospholipids have
a chain length that exceeds 14 hydrocarbon groups which implies
an even lower critical micelle concentration. As a consequence,
one can usually ignore any exchange of phospholipids between the
bilayer membrane and the aqueous solutions and assume that the
membrane contains a fixed number of such lipids.

Because biomembranes are fluid, one might expect that their
shape can be understood by analogy with liquid droplets.
However, in the absence of external forces or constraints, a liquid
droplet of a given volume always attains a spherical shape in
order to minimize its interfacial area and, thus, its interfacial free
energy. In contrast to liquid droplets, lipid vesicles can attain

a large variety of different shapes such as discocytes, stomato-
cytes, and dumbbells. Furthermore, the vesicle may undergo
shape transformations as one changes the osmotic conditions

or the temperature. Because the lipid molecules are practically
insoluble in water, the total number of lipid molecules within
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Temperature-induced shape transformation of a single
vesicle: In this example, the vesicle starts from the initial shape of a
discocyte (D) which is transformed, via the intermediate stomato-
cytes S, and S, into the limit shape L5t consisting of two spheres.
The small sphere of Lst° forms an in-bud that is connected to the
large sphere via a closed membrane neck. The generation of a
smooth spherical bud without any membrane folds again demon-
strates the fluidity of the membrane. The top row displays images of
phase contrast microscopy, the bottom row theoretical shapes with
minimal curvature energy. (From Berndl, K. et al., Europhys. Lett., 13,
659-664, 1990.)

the membrane is conserved during such shape transforma-

tions. In addition, at any given temperature, each lipid molecule
tries to occupy a certain optimal area within the membrane.
Furthermore, when exposed to external forces or constraints, lipid
bilayers hardly change their area before they rupture. Therefore,
the area of the vesicle membrane is conserved, to a very good
approximation, during isothermal shape transformations arising,
e.g., from osmotic deflation and inflation. The latter processes
change the vesicle volume for fixed membrane area. In general,
the volume of a vesicle can become arbitrarily small but cannot
exceed the volume of a sphere.

Shape transformations can also be induced by tempera-
ture changes reflecting the different thermal expansivities of
the lipid bilayer and the aqueous solution. When we increase
the temperature by A7, the initial membrane area 4, increases
by AA = a,ATA, with a, ~ 2 x 1073/K for lipid bilayers.

At the same time, the initial water volume Vj, increases by

AV = a, ATV, with @, =~ 2 X 1074/K. When we apply these rela-
tions to a GUV, we find that an increase in temperature gener-
ates excess area of the membrane and reduces the volume-to-area
ratio of the vesicle. One example for temperature-induced shape
transformations is displayed in Figure 5.6.

The multi-responsive behavior of GU'Vs as illustrated by
Figures 5.2 through 5.6 can be understood, in a quantitative man-
ner, by the unusual curvature-elastic properties of the vesicle mem-
branes. In the next two sections, we will first discuss the general
concept of membrane curvature and then introduce the spontaneous
curvature model for the description of curvature elasticity.

5.3

This section provides an elementary introduction into different
aspects of curvature. It first emphasizes that membrane curvature
emerges on nanoscopic scales and then describes basic concepts
from differential geometry which include the two principal
curvatures, the mean curvature, and the Gaussian curvature.
Furthermore, one simple but important issue that is discussed in
some detail is our convention for the sign of the principal curvatures,
which can be positive or negative. At the end of this section, several
molecular mechanisms for local curvature generation are briefly

discussed and summarized in Box 5.1. Local curvature generation
is intimately related to the preferred or spontaneous curvature of a
membrane. The latter curvature can again be positive or negative.
The present section is supplemented by Appendix 5.A on differen-
tial geometry.

As shown in Figure 5.3 and Figure 5.6, vesicle shapes appear to
be rather smooth when viewed under the optical microscope.
Therefore, on the micrometer scale, membranes can be described
as smoothly curved surfaces and then characterized by their cur-
vature. However, this smoothness does not persist to molecular
scales, i.e., when we resolve the molecular structure of a bilayer
membrane as in Figure 5.7.

Because membranes are immersed in liquid water, each lipid
and protein molecule undergoes thermal motion with displace-
ments both parallel and perpendicular to the membrane. The per-
pendicular displacements represent molecular protrusions that
roughen the two interfaces bounding the membrane. Therefore,
in order to characterize a lipid/protein bilayer by its curvature,
one has to consider small membrane patches and average over
the molecular conformations within these patches. The minimal
lateral size of these patches can be determined from the analysis
of the bilayer’s shape fluctuations and was found, from molecular
dynamics simulations of a one-component lipid bilayer, to be
about 1.5 times the membrane thickness, see Figure 5.7 (Goetz
et al., 1999). For a membrane with a thickness of 4 nm, this mini-
mal size is about 6 nm. Because such a membrane patch contains
80-100 lipid molecules, membrane curvature should be regarded
as an emergent property arising from the collective behavior of a
large number of lipid molecules.

The curvature just discussed applies to the midsurface of the
bilayer membrane, i.c., to the surface between the two leaflets of
the bilayer. Furthermore, for a membrane segment with mid-
surface area A and bending rigidity «, curved conformations as
in Figure 5.7 are only possible if the membrane is “tensionless”
in the sense that the mechanical membrane tension is small
compared to k/A (Goetz and Lipowsky, 1998). For the example
displayed in Figure 5.7, the latter tension scale is found to be
k/A = 0.08 mN/m.

Emergence of membrane curvature on nanoscopic scales
as observed in molecular dynamics simulations. The bilayer has a
thickness of about 4 nm, the smallest curvature radius of its midsur-
face (red curve) is about 6 nm. For comparison, two circles (broken
lines) with a radius of 6 nm are also displayed. (Reproduced from
Goetz, R. et al., Phys. Rev. Lett., 82, 221-224, 1999.)
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For each point on a smooth surface, we can construct a unit normal
vector perpendicular to the membrane surface. Now, any plane that
contains both the chosen point and this normal vector, defines a
so-called normal section of the membrane surface, see Figure 5.8.
The intersection between the surface and such a normal section
defines a cross-sectional curve through the chosen point with a cer-
tain curvature C at this point. [ will take this curvature to be positive
if the cross-sectional curve bulges in the direction of the chosen
normal vector as in Figure 5.8. This sign convention ensures that the
cross-sectional curves on a sphere have positive curvature. Now, let
us rotate the normal section around the normal vector. As a result
of this rotation, the cross-sectional curve through the chosen point
changes and so does the curvature C. As we change the rotation
angle from 0 to 360 degrees, the latter curvature varies over a certain
range as given by C,,, < C< C_ .. The two extremal values C,;

‘min — max* ‘min
and C,

define the principal curvatures, C, and C,, at the chosen
point. These principal curvatures correspond to the eigenvalues of
the negative curvature tensor, see Appendix 5.A. Furthermore, for
C, # C,, the normal sections that contain the cross-sectional curves
with C= C; and C = C, are always orthogonal to each other.

For fluid membranes as considered here, the molecules diffuse
laterally along the membrane, which implies that the membrane
surface should be described in terms of geometric quantities that do
not depend on the choice of the surface coordinates, i.e., that are
invariant under a reparametrization of the surface. Such quantities
are provided, apart from a possible change of sign, by the principal
curvatures C; and C, or equivalently by the mean curvature

ME%(Cl +C)) (5.1)

and the Gaussian curvature

G=CCy. (5.2)

The mean curvature is proportional to the trace of the curva-
ture tensor whereas the Gaussian curvature is equal to its deter-
minant (Appendix 5.A). Note that ¢ G and

=M~ M? -
Co=M+ [M> -

G. Both expressions are always real-valued
because M? > G.? Indeed, the latter inequality is equivalent to

7

Normal section through membrane surface: Consider
a point P of the membrane surface and the normal vector (arrow)
at point P. A normal section is provided by any plane that contains
both the point P and its normal vector. The intersection between the
chosen normal section and the membrane surface defines a cross-
sectional curve through point P. This curve has a certain curvature at

point P. The latter curvature changes in a smooth manner as we rotate
the normal section around the normal vector.

2 'The expressions for C; and C, imply that C, =y and C, = siny/r for axisym-
metric shapes parametrized by the tilt angle y and the radial coordinate 7 of the
shape contour (Seifert et al., 1991).

(C, = G,)? > 0 and, thus, holds for any shape of the membrane seg-
ment. The equality M? = G applies to spherical segments with C; = C,.

The mean curvature M is invariant under all orientation-
preserving transformations of the surface coordinates, i.e.,
under all transformations that have a positive Jacobi deter-
minant. The latter transformations do not affect the normal
vectors of the membrane. However, we may also consider
improper transformations of the surface coordinates which
reverse the orientation of the normal vectors. A simple
example of such an improper transformation A!is provided
by a transposition of the two surface coordinates, i.e., by

the transformation from (5!, s2) to (7! = +%,7% = s'). The rever-
sal of the normal vector implies that the principal curvatures
change their sign and so does the mean curvature.

On the one hand, the reversal of the normal vectors provides
a useful operation from a theoretical point of view because many
physical properties of the membrane should not depend on our
choice for the orientation of the normal vectors and must there-
fore be invariant under the reversal of these vectors. On the other
hand, in order to avoid any ambiguity, we need a convention
that always assigns a definite orientation to the normal vectors.
For vesicle membranes as considered here, we can always distin-
guish between an interior and an exterior compartment and, thus,
can always take the normal vectors to point towards the outer
leaflet which is in contact with the exterior aqueous compart-
ment, see Figure 5.9.

The sign of the mean curvature M depends on the sign of the
principal curvatures C, and C,. As explained before, each princi-
pal curvature is obtained from a certain normal section and taken
to be positive if the corresponding cross-sectional curve bulges in
the direction of the normal vector. If all cross-sectional curves of
the membrane bulge into the direction of the normal vector as in
Figures 5.8 and 5.9a, both C, and C, are positive which implies

that the mean curvature M is positive as well.? Likewise, the mean

exterior compartment

av@== N ~=Yhi

interior compartment

(a) (b) () (d)

Sign convention for mean curvature M: (a) The mean cur-
vature is positive if the membrane curves or bulges locally towards its
outer leaflet in contact with the exterior compartment; (b) The mean
curvature vanishes for a planar membrane; (c) The mean curvature is
negative if the membrane curves or bulges locally towards its inner
leaflet in contact with the interior compartment; and (d) If Pis a
saddle point, the two principal curvatures C, and C, have opposite
sign and the mean curvature M = %(C1 + C,) is small or even zero.

3 Choose local Cartesian coordinates (x,y,2) with the origin given by point = (0,0,0),
normal vector 7 = (0,0, 1), and the x-coordinate parallel to the normal section that
contains the cross-sectional curve with the principal curvature C; = C_;,. The cross-

sectional curves within the normal sections with y = 0 and x = 0 are then described
by z & —Cyx? and z &% —C, ? for small values of xand y.



curvature M is negative if all cross-sectional curves of the mem-
brane bulge into the direction of the negative normal vector, see
Figure 5.9¢. At a saddle point of the membrane surface, the two
principal curvatures have opposite signs and the mean curvature
M can be positive or negative or even vanish, depending on the
relative magnitude of the two principal curvatures, see Figure 5.9d.

In general, the principal curvatures and the mean curvature A/
are local quantities that vary along the membrane surface. Some
particularly simple shapes are, however, characterized by constant
mean curvature, i.e., all points on the surface have the same mean
curvature, see Figure 5.10. Thus, a planar membrane has vanish-
ing mean curvature, M = 0, whereas a sphere with radius R, has
mean curvature M = 1/R and M = —1/R, when its inner leaflet
is in contact with the interior and the exterior solution, respec-
tively. Likewise, a cylinder with radius R has mean curvature
M = 1/(2R,)) when the enclosed volume of water belongs to the
interior compartment and M = —1/(2R_) when this volume is
connected to the exterior compartment. Another simple shape
is a catenoid for which each point represents a saddle point with
vanishing mean curvature M = 0 as depicted in Figure 5.10c.
Cylinders represent possible shapes for membrane nanotubes.
Another tube morphology that has been observed are necklace-
like tubes as shown in Figure 5.11a. The latter tubes consist of

Simple membrane shapes with constant mean curva-
ture M: (a) Sphere with radius R,, and mean curvature M = +1/R_;
(b) Cylinder with radius R, and mean curvature M = +1/(2R.,); and (c)
Catenoid with mean curvature M = 0. For spheres and cylinders, the
sign of the mean curvature depends on whether the inner leaflet is in
contact with the interior or exterior aqueous solution.

Rey
—

(b) (c)

Three membrane tubes with different morphologies but
the same constant mean curvature M: (a) Necklace-like tube consisting
of identical spheres with radius R,, = 1/|[M|. The spheres are connected
by closed membrane necks; (b) Unduloid with lemon-like bulges con-
nected by open necks. The neck radius R, and the bulge radius R,, are
related to |M| via [M| = 1/(R,. + Ry.,); and (c) Cylindrical tube with radius
R., = 1/(2|M)). (Reproduced from Lipowsky, R. Biol. Chem. 395, 253—
274, 2014b. With permission of Walter de Gruyter GmBH & CO.KG.)

identical spheres connected by closed membrane necks. For spheres
with radius R, the necklace-like tube has mean curvature M = 1/R,
and M = —1/R,, when the enclosed volume of the tube is connected
to the interior and exterior solution, respectively. A necklace-like tube
consisting of spheres with radius R, can be continuously transformed
into a cylindrical tube with radius R., = %RSP, thereby preserving
the value of the mean curvature. This transformation proceeds via a
family of intermediate unduloids, all of which have the same mean
curvature as the necklace-like and the cylindrical tube. The undu-
loids consist of lemon-like bulges connected by open necks, see the
example in Figure 5.11b. Thus, during the constant-mean-curvature
transformation, the closed necks of the necklace-like tube open up
and the bulges of the necklace retract until the necks and the bellies
have the same radius and form a cylindrical tube.

The simulation snapshot in Figure 5.7 displays a symmetric
bilayer consisting of two leaflets that have the same molecular
composition and are exposed to the same aqueous environment.
Likewise, the cartoons in Figure 5.9 did not indicate any asym-
metry between the two leaflets. In real systems, such symmetric
bilayers are somewhat exceptional, but they provide a useful
reference system because their elastic properties are governed by
a single elastic parameter, the bending rigidity « that provides the
basic energy scale of membranes. For phospholipid bilayers, the
latter scale is of the order of 107! J, which is about 2047 at room
temperature. For different lipid bilayers, the measured values of
the bending rigidity vary by about an order of magnitude, see the
corresponding tables in Chapters 11, 14, and 15 of this book.
Real bilayer membranes are typically asymmetric. This asym-
metry can arise from a different lipid composition of the two
leaflets as found in all biological membranes (van Meer et al., 2008;
Fadeel and Xue, 2009). One prominent example is provided by the
ganglioside GM1, a glycolipid that is abundant in all mammalian
neurons (Aureli et al., 2016) and plays an important role in many
neuronal processes and diseases (Schengrund, 2015). Furthermore,
GML1 acts as a membrane anchor for various toxins, bacteria, and
viruses such as the simian virus 40 (Ewers et al., 2010). The cur-
vature generated by different leaflet concentrations of GM1 has
been recently studied, both experimentally for giant vesicles (Bhatia
etal., 2018; Dasgupta et al., 2018) and by simulations of molecular
bilayers (Dasgupta et al., 2018; Sreekumari and Lipowsky, 2018;
Miettinen and Lipowsky, 2019). Likewise, membrane proteins
in biological membranes have a preferred orientation, which also
contributes to their asymmetry. In addition, membranes can
acquire such an asymmetry from their environment as provided
by the exterior and interior aqueous compartments. Indeed, the
membranes become asymmetric when these two compartments
contain different concentrations of ions, small solutes such as sugar
molecules, and/or proteins that form adsorption or depletion lay-
ers on the two leaflets of the bilayer membranes (Lipowsky and
Débereiner, 1998; Lipowsky, 2013; Rozycki and Lipowsky, 2015,
2016; Liu et al., 2016; Karimi et al., 2018; Ghosh et al., in prepara-
tion). Examples for mechanisms of local generation of membrane
curvature are given in Box 5.1. Local curvature generation by
proteins is reviewed in Chapter 23 of this book.
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Box 5.1 Local generation of membrane curvature

Bilayer asymmetry and spontaneous curvature can be generated by a variety of molecular
mechanisms as illustrated in this Box.

® A simple example is provided by a flexible polymer that is anchored with one of its ends
to the membrane (Lipowsky, 1995; Nikolov et al., 2007).

® Such an anchored polymer generates curvature in order to increase its configurational
entropy.
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® Adhesive nanoparticles that are partially engulfed by the membrane act as scaffolds and
123,’ ,\\Q&\ impose their curvature onto this membrane, (Lipowsky and Dobereiner, 1998; Deserno,

"é@; 5:;\‘ 2004; Agudo-Canalejo and Lipowsky, 2015a) see Chapter 8 of this book.
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e © ® Small adhesive solutes generate a substantial spontaneous curvature m as predicted
© theoretically (Lipowsky and Dobereiner, 1998; Lipowsky, 2013) and observed in molecular
) ° ® simulations (Rozycki and Lipowsky, 2015). For particles with a diameter of 1 nm and a
concentration difference of 100 mM, adsorption leads tom = ﬁ
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® o 6} ® Depletion layers of solutes induce a spontaneous curvature m of the opposite sign
® ° ° (Lipowsky and Débereiner, 1998). This prediction has also been confirmed by recent
molecular simulations (Rézycki and Lipowsky, 2016). For particles with a diameter of 1 nm
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The case of divalent ions is controversial because two recent experimental studies on Ca?* ions (Simunovic et al., 2015;
Baumgart et al., 2017) led to different conclusions about the sign of the ion-induced spontaneous curvature.

(IREIEYT ® N-BAR proteins such as amphiphysin (Takei et al., 1999; Peter et al., 2004) and endophilin
"&;’mﬂ E Pt (Farsad et al., 2001), F-BAR proteins such as pacsin/syndapin (Wang et al., 2009), and
K«XWWHMZ’/};‘ other proteins involved in endocytosis such as epsin (Ford et al., 2002) can bind to mem-

Q’\;%%% 44'/'4 branes and impose their curvature onto these membranes.
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Membrane-binding proteins that act as scaffolds for the membrane shape are usually quite rigid. They can be regarded
as adhesive nanoparticles with two characteristic properties: (i) their shape is typically nonspherical and often banana-like
or convex-concave; and (ii) their surface contains a more or less complex pattern of adhesive and nonadhesive surface
domains. Thus membrane-binding proteins that impose their shape onto the membrane can be regarded as nonspherical
Janus-like nanoparticles.
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® |f the planar membrane can bind to some of the adhesive surface domains (red) of the
particle, the particle generates membrane curvature via an induced-fit mechanism.

® |[f the adhesive surface domains (red) can only be reached by an appropriately curved
membrane, the particle generates membrane curvature via conformational selection
(Lipowsky, 2014b).
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On length scales that exceed about twice the membrane
thickness, the bilayer asymmetry can be described in terms of
another curvature-elastic parameter, the spontaneous curvature 7.
In order to define the sign of 7 in an unambiguous manner, we
use the same sign convention as for the mean curvature M, see
Figure 5.9. Thus, we distinguish an interior from an exterior
aqueous compartment and take the spontaneous curvature to be
positive and negative if the membrane prefers to bulge towards
the exterior and interior compartment, respectively. Note that,
under the reversal of the normal vectors, the spontaneous curva-
ture transforms in the same way as the mean curvature and, thus,
changes sign.

If the membrane is decorated by many bound “particles,” it will
acquire a certain spontaneous curvature that depends both on the
local particle-induced curvature and on the particle coverages for
the two leaflets of the bilayer membrane (Breidenich et al., 2000;
Lipowsky, 2002). Thus, if a single particle that is bound to the
outer leaflet of an asymptotically flat bilayer generates the local,
position-dependent mean curvature M(s', s?), the spontaneous
curvature 7 is given by

= IZW,si(FeX _Fin) (53)

with the integrated mean curvature

Iy = jdAMsi(xl,sZ) (5.4)

and the coverages I',, and I}, which are equal to the numbers

of particles bound to the outer and inner leaflets per unit area
(Breidenich et al., 2000). In contrast to other elastic membrane
parameters such as the bending rigidity or the area compressibil-
ity modulus, the spontaneous curvature can vary over more than
three orders of magnitude, from the inverse size of giant vesicles,
which is of the order of 1/(50 Lm), to half the inverse membrane
thickness, which is of the order of 1/(10 nm).

Inspection of the relationship Eq. 5.3 shows that the sign of
the spontaneous curvature 7 is determined (i) by the sign of
the integrated mean curvature /y; induced by a single particle
bound to the outer leaflet of the bilayer and (ii) by the sign of
the difference I',, —
inner leaflets. Depending on the molar particle concentrations

I, between the coverages of the outer and

in the exterior and interior aqueous compartments, the sign of
I',, — T, can be positive or negative. Likewise, the sign of the
integrated curvature /y; ; can be positive or negative as well,
reflecting different molecular interactions between the bound
particle and the membrane. An anchored polymer, for example,
generates a positive value of 7y but this value becomes negative
when all monomers of the polymer are strongly adsorbed onto
the membrane (Breidenich et al., 2001, 2005). A negative sign of
Iy also applies if the particle is large and partially engulfed by
the membrane.

As explained previously, we use two related conventions in
order to define the sign of the local mean curvature of the mem-
brane in an unambiguous manner. The first convention is that the
normal vector of the membrane is taken to point towards the exte-
rior compartment. The second convention is that we take the local
mean curvature of the membrane to be positive if the membrane

bulges in the direction of the normal vector. Therefore, the spon-
taneous curvature is taken to be positive as well if the membrane
prefers to bulge towards the exterior solution, i.e., in the direction
of the normal vector.

The intuitive notion that asymmetric membranes have a pre-
ferred curvature was originally discussed by Bancroft for surfactant
monolayers in water-oil emulsions (Bancroft, 1913; Bancroft and
Tucker, 1927) and was included by Frank as the so-called “splay
term” in the curvature elasticity of liquid crystals (Frank, 1958).
In the context of lipid bilayers, spontaneous curvature was first
considered by Helfrich (1973), who introduced it in analogy to
the splay term for liquid crystals. The corresponding curvature
energy of the membrane is now known as the spontaneous cur-
vature model (Seifert et al., 1991) which will be presented in the
next section.

54

This chapter describes the theoretical framework that has been
crucial in order to understand the morphology of giant vesicles.
This framework is based on membrane curvature and the asso-
ciated elastic energy contributions. The theory also takes into
account that the low lipid solubility and the osmotic conditions
lead to important constraints on the membrane area and the
vesicle volume. In fact, what makes this theory both appealing and
challenging is the interplay between local and global membrane
properties.

On the one hand, the shape of a membrane can be described
locally by its mean and Gaussian curvatures. On the other hand,
in the absence of topological transformations such as membrane
fusion and fission, both the membrane area and the vesicle volume
are essentially fixed which has a direct and strong influence on
the local membrane behavior. The connection between local and
global properties is provided by two quantities, the mechanical
tension X within the membrane and the pressure difference AP
across this membrane. For free vesicles, these two quantities can-
not be measured experimentally. However, the theory described
in this chapter provides explicit relations between X and AP
and those quantities that are directly accessible to experimental
observations.

Another intriguing aspect of the morphology of giant vesicles
is the frequent observation of membrane necks that connect
two larger membrane segments. One example is provided by
the neck that connects the spherical bud to the mother vesicle
in Figure 5.2, another example is provided by the shape L5 in
Figure 5.6. Theoretically, these necks were first discovered by
numerical energy minimization (Seifert et al., 1991; Miao et al.,
1991; Berndl et al., 1990) of vesicles with uniform membranes as
considered in this section. The necks are interesting from a con-
ceptual point of view because they lead to local relations between
(i) geometric quantities that can be directly observed in the opti-
cal microscope and (ii) curvature-elastic parameters such as the
spontaneous curvature.

This section focuses on the spontaneous curvature model
which is theoretically appealing because it depends on a rela-
tively small number of parameters. Indeed, uniform vesicle
membranes involve two geometric quantities, the vesicle volume
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V and the membrane area A, as well as two material param-
eters, the bending rigidity x and the spontaneous curvature m
introduced in Section 5.3.5. In fact, as shown below, the vesicle
shapes depend only on two dimensionless parameters, the
volume-to-area ratio proportional to V/4%2, also known as the
reduced volume, and the dimensionless spontaneous curvature
proportional to mA"2.

The spontaneous curvature model is based on an expansion in
powers of the principal curvatures and should be reliable as long
as these curvatures are small compared to the inverse membrane
thickness. In addition, the spontaneous curvature model implic-
itly assumes that the area difference between the two leaflets can
change via flip-flops of lipid molecules. While a phospholipid
molecule may stay in the same leaflet for hours, a cholesterol
molecule will, on average, flip-flop from one leaflet to the other
within one second. Therefore, the spontaneous curvature model
should provide a reliable description for bilayer membranes that
contain cholesterol or another sterol. The latter membranes are
of particular interest because they undergo phase separation into
liquid-disordered and liquid-ordered phases, see Section 5.8 below
and Chapter 18 of this book.

If all membrane components undergo relatively slow flip-
flops, one should extend the spontaneous curvature model by
adding a nonlocal term that depends on the quenched area
difference between the two leaflets. This extension leads to the
area-difference-elasticity model and to an effective spontane-
ous curvature as described at the end of this section.

The present section is supplemented by three appen-
dices: Appendix 5.B on different topologies of vesicles;
Appendix 5.D which explains the identity of the mechani-
cal tension with the Lagrange multiplier for membrane area;
and Appendix 5.E which describes the different variants of
curvature models.

Within the spontaneous curvature model, the curvature energy
functional &,{S} of a certain membrane shape S is provided by
the area integral*

Eant$) = [d1200) 65
where €., (s) represents a local energy density that varies smoothly
with the two-dimensional surface coordinates s = (5!, s%) used to
parametrize the membrane surface via the three-dimensional vector
X(s5). When expressed in terms of these coordinates, the area ele-
ment d4 depends on the metric tensor g;, see Appendix 5.A , and
has the form

dAa= C].Jldfz\/g with g =det(g;) = g11422 — 212 £21- (5.6)

The local density €, of the curvature energy should only
depend on the principal curvatures C; and C,. In addition,

4 Here and below, large calligraphic letters such as £ and F are used for func-
tionals that map shapes into real numbers.

at any given point P of the membrane surface, this energy
density must remain unchanged when we rotate the surface
coordinates by #/2 which implies ¢, (C,, C)) = €.,(C;, C,). An
expansion of &, up to second order in the principal curvatures
then leads to’

£ca(C1,Co) m ag + a1(C1 +Ca) + ar(CE + C3) + a3C1Cy. (5.7)

When this relation is expressed in terms of the mean curvature M
and the Gaussian curvature G, we obtain

Ecu ® 2K(M —m)* +k¢G (5.8)
with the bending rigidity &, the spontaneous curvature 7, and
the Gaussian curvature modulus x.¢ As a result, the curvature

energy functional has the form (Helfrich, 1973; Seifert et al.,
1991)

Euls)= [ =P rrcC]  659)
which defines the spontaneous curvature model.
For a closed vesicle without bilayers edges or pores, the Gauss-
Bonnet theorem of differential geometry implies
J.dAG =2y =2n(2-2g) (5.10)

with the Euler characteristic y and the topological genus g,
which counts the number of handles, see Appendix 5.B. Thus,
for a closed vesicle shape S and a uniform vesicle membrane, the
spontaneous curvature model is defined by the curvature energy

functional

ElSt = &S+ 2y K (5.11)
with the bending energy functional

(5} = 2 _[dA (M =m)2. (5.12)

When we evaluate the functionals €, and £, for a certain shape
S, we obtain the corresponding curvature and bending energies
E =& (S} and E, = € {S,} for which we use normal capital
letters E.

It is instructive to consider the behavior of the bending energy
functional Eq. 5.12 under the reversal of the normal vectors. Thus,
consider a certain shape S, and map it onto another shape §, by
reversing all normal vectors of its membrane surface. The mean
curvature M of shape S, is then transformed into the mean curva-
ture M'(s) = —M(s) of shape §;, which implies

> Here and below, the symbol & stands for ‘asympotically equal’ in a certain limit
¢ The constant term @, — @, /(4a,) has been omitted.



Eoe ({80 4, ) = Ee({S,},m)  for  w' =—m, (5.13)
i.e., the bending energy functional is invariant under a reversal of
the normal vectors provided we reverse the spontaneous curvature
m as well.

The bending energy functional &,.{5} ~ [dAM? of symmet-
ric membranes with 7 = 0 has a long history in the calculus
of variations. The quadratic expression in the mean curvature
was first studied at the beginning of the 19th century by the
French mathematician Germain in her theory of vibrating plates
(Dalmédico, 1991). About a hundred years later, this expression
played a prominent role in the work of the German mathemati-
cian Blaschke and his students, who were particularly interested
in its invariance properties under conformal transformations.
In the 1960s, the subject was studied in a systematic manner
by the British mathematician Willmore, and the shapes that
minimize IdAM % are often referred to as Willmore surfaces
(Willmore, 1982).

As described above, the spontaneous curvature model is based

on the expansion of the curvature energy density in powers of
the principal curvatures and includes all terms up to second
order in these curvatures. This truncation of the curvature
expansion at second order is clearly appropriate as long as the
principal curvatures are much smaller than the inverse membrane
thickness 1/ ¢, 1/ (4 nm) as follows from the discussion in
Section 5.3.1. Thus, the spontaneous curvature model should
provide a reliable description for the shapes of giant vesicles as
observed in the (conventional) optical microscope, which resolves
membrane curvatures below 1/(300 nm). In fact, as explained in
Appendix 5.C.1, the spontaneous curvature model is expected to
be quite reliable up to principal curvatures of about 1/(80 nm).
For more strongly curved membrane segments, third-order curva-
ture terms may become important which involve two additional
curvature-elastic parameters, see Appendix 5.C.1.

The bending energy functional as given by Eq. 5.12 attains its
minimal value, €, = 0, when we consider shapes for which
the mean curvature M is equal to the spontaneous curvature
m. The expression Eq. 5.12 also implies that the bending
rigidity k represents a “spring constant” for deviations of the

actual mean curvature M from the spontaneous curvature m
of the membrane.

Real membranes experience a variety of constraints that
necessarily lead to such deviations of M from 7. One important
constraint is provided by the size of the membrane. If the membrane
area A is large compared to 47/m?, which is the surface area
of a sphere with radius 1/ | 7|, the membrane cannot adapt its
curvature to the spontaneous curvature by forming a single sphere
but can do so, to a large extent, by forming a long cylinder with
radius R, = 1/(2m). Another important constraint arises from the
osmotic conditions that determine the vesicle volume and, thus,
the volume-to-area ratio, also known as the reduced volume. If
the vesicle volume is increased by osmotic inflation, it will eventu-
ally attain a spherical shape with mean curvature M = 1/R that
usually differs from the spontaneous curvature 7 of the vesicle
membrane. In fact, for a giant spherical vesicle, the mean curva-
ture M = 1/R, can be very small compared to the absolute value
|| of the spontaneous curvature. Likewise, supported lipid bilay-
ers with M = 0 can have a large spontaneous curvature with mag-
nitude | 7[> 0. Whenever a large membrane segment of area A is
forced to attain a mean curvature that is much smaller than the
spontaneous curvature, the contribution of this segment to the
bending energy obtained from Eq. 5.12 has the form E},. = Ao
with the spontaneous tension (Lipowsky, 2013)

o =2km’. (5.14)
This tension represents the only tension scale that can be defined,
apart from a dimensionless multiplicative factor, by the two
parameters k and 7. Therefore, the spontaneous tension ¢ may
be viewed as the intrinsic tension of curvature elasticity. If the
membrane has a bending rigidity of about 107" J, a spontaneous
curvature of 1/(20 wm) leads to a spontaneous tension of about
10=¢ mN/m while a spontaneous curvature of 1/(20 nm) leads to
a spontaneous tension of about 1 mN/m. Thus, in real membrane
systems, the spontaneous tension can vary over six orders of mag-
nitude, see the examples in Table 5.1.

As explained in Section 5.2.2, lipid bilayers are permeable to
water and small gas molecules but essentially impermeable to
ions and solute molecules, see also Chapter 20 of this book.

As a consequence, the vesicle volume is primarily determined

Spontaneous (or preferred) curvature m in units of 1/um and associated spontaneous tension ¢ = 2xm? in units of 2 mN/m for four
different membrane systems where the bending rigidity was taken to have the typical value x ~ 10-"7 J.

SUGAR SOLUTIONS? DNA STRANDS®
m [1/Um] 0.01-0.1 0.1-1
0 [2 mN/m] 10-8—10-¢ 10-6—10~4

Dobereiner, H.G. et al., Eur. Biophys. J., 28, 174-178, 1999.
Nikolov, V. et al., Biophys. J., 92, 4356-4368, 2007.

BAR-DOMAIN PROTEINS¢
10-50
10-2-0.5

PEG/DEXTRAN SOLUTIONS¢
3-10
1073-102

b
¢ Li, Y. etal., Proc. Nat. Acad, Sci. USA, 108, 4731-4736, 2011; Liu, Y. et al., ACS Nano, 10, 463-474, 2016.
d Peter, B.J. et al., Science, 303, 495-499, 2004; McMahon, H.T. and Gallop, J.L. Nature, 438, 590-596, 2005.
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by the osmotic conditions and the temperature. Therefore, one
convenient procedure to change the vesicle volume at constant
temperature is via osmotic inflation and deflation. Osmotic defla-
tion is limited by the attractive intermolecular forces that start to
become important when different membrane segments come into
close proximity. Thus, at very small volumes, different segments
of the vesicle membrane may start to fold back onto themselves or
to form local membrane stacks. On the other hand, osmotic infla-
tion is limited by the available membrane area. Indeed, for a given
membrane area A and the corresponding vesicle size

Ree = A/ (470), (5.15)
the vesicle volume Vattains its maximal value when the vesicle
has a spherical shape. Therefore, the vesicle volume satisfies the

inequality

3/2
Vs%”Rée :4”( A j . (5.16)

3 41

For constant temperature and lipid composition, the area A of
the vesicle membrane is primarily determined by the number of
lipid molecules within the membrane. Indeed, in the absence
of external forces or constraints, the lipids attain a certain
molecular area corresponding to their optimal packing density.
In principle, the membrane area can be changed by a mechani-
cal tension that acts to stretch the membrane. In practice, such
a tension can increase the membrane area only by a few percent
because the membrane starts to rupture for larger extensions of
its area. Therefore, as long as the membrane does not rupture,
the membrane area A should attain a constant value to a very
good approximation.

For giant unilamellar vesicles, one can directly measure
the vesicle volume V'and the membrane area A. It is therefore
rather natural from an experimental point of view to regard V'
and A as basic geometric parameters that determine the vesicle

shape.

For closed vesicles, the Gaussian curvature modulus contributes
a constant term to the curvature energy functional €, which is
independent of the vesicle shape. We are then left with the bend-
ing energy functional £, that depends on four (dimensionful)
parameters: two material parameters, namely bending rigidity k
and spontaneous curvature 7z, as well as two geometric parame-
ters, vesicle volume V' and membrane area A. Furthermore, we can
choose a basic energy and length scale. One convenient choice
for these two scales is provided by the bending energy x and the
vesicle size R, as defined by Eq. 5.15.

For the latter choice, the dimensionless bending energy £, /k
depends only on two dimensionless parameters: (i) the volume-to-
area ratio or reduced volume of the vesicle

(5.17)

and (ii) the rescaled and dimensionless spontaneous curvature

= mRee =m| A/4TT).

In the following, we will often discuss the behavior of vesicles
with a certain, fixed membrane area and, thus, with a fixed length
scale R,.. Deflation and inflation processes are then described

by changes in the volume v for a certain value of the spontane-
ous curvature 7. Likewise, adsorption and desorption processes
which affect the bilayer asymmetry are described by changes of
the spontaneous curvature 7 for a fixed value of the volume ».

(5.18)

The conclusions of the previous subsection can be understood
from a somewhat different perspective if we study the behavior of
the energy functional in Eq. 5.12 under scale transformations. As
mentioned, the vesicle shape S can be described by a vector-valued
function X(s) that depends on the two-dimensional surface
coordinate 5. A scale transformation from the shape S to the new

shape S’ is then described by

X(5) > X'(s)=¢ X(s)  with ascale factor >0 (5.19)
which implies the scale transformations
IV >17"=C% and Ao A =(%A (5.20)

of vesicle volume and membrane area.

The bending energy functional €, in Eq. 5.12 remains invari-
ant under the scale transformation Eq. 5.19, i.e., &, {S"} = &b {5}
if we combine this transformation with the rescaling

m—> ' =m/§ (5.21)

of the spontaneous curvature.

Now, assume that we have minimized the energy functional
and found the shape §; of minimal bending energy for a certain
set of the (dimensionful) parameters V; 4, k, and 7. Any slightly
deformed shape, say S;, will have a larger bending energy, i.e.,

&, A8} > E,4S,}. This property remains valid if we compare the
bending energies of the shapes S and §7 as obtained by rescaling
both S, and S, with the same scale factor &, i.e., & {51} > Epe S0}
for any small deformation of S, provided we also rescale the
spontaneous curvature according to Eq. 5.21. Therefore, the
rescaled shape S represents the shape of minimal bending energy
for the parameters C, 2 Ak, and m ) €

The same conclusion can be drawn from the dimension-
less parameters introduced in the previous subsection. Indeed,
the dimensionless bending energy E,./k depends only (i) on the
volume-to-area ratio v  V/4*? and (ii) on the spontaneous
curvature 7 = m Ry, both of which remain invariant under the
combined scale transformation Eqs 5.20 and 5.21.

It is often instructive to consider the special case of a sym-
metric membrane with vanishing spontaneous curvature, 7 = 0.
In this case, the energy functional Eq. 5.12 is invariant under



the scale transformation of the vesicle geometry as described

by Eq 5.20 and does not involve the rescaling of any material
parameter. Thus, for 7 = 0, large and small vesicles have the same
bending energy if they have the same shape.

If we take the vesicle volume and the membrane area as control
parameters, we are thus faced with the problem of minimiz-
ing the curvature energy functional as given by Eq. 5.11 for

a given vesicle volume V'and membrane area A. In principle,
there are a variety of ways to tackle this minimization problem
numerically.

Numerical minimization typically involves a discretization of
the vesicle shape into a triangular mesh of membrane patches.
Furthermore, in order to model the fluidity of the membrane, one
has to choose a dynamic triangulation. The advantage of numeri-
cal minimization is that we do not have to make any simplifying
assumptions about the vesicle shape. The disadvantage of such a
numerical procedure is that we can only explore a limited region
of the parameter space. Furthermore, numerical minimization
methods becomes difficult whenever the vesicle shape involves
narrow membrane necks or long tubes. As we will see further
below, such somewhat exotic shapes are quite common for vesicle
membranes.

In order to apply analytical approaches to the constrained
minimization, we will now incorporate the area and volume
constraints via Lagrange multipliers ¥ and AP and consider the
shape functional

FA{S} =—APV{S} + ZALS}+ Epe S} (5.22)
where we have omitted the shape-independent term arising from
the integrated Gaussian curvature. The two Lagrange multipliers
have to be chosen in such a way that the volume functional V and
the area functional A attain the values V{§} = Vand A{S} = A.
Note that we again denote the functionals F, V, and A by large
calligraphic letters and their numerical values for a certain shape
by normal capital letters 7, V; and A.

As shown in Appendix 5.D, the Lagrange multiplier Z can
be identified with the mechanical tension experienced by the
uniform membrane. The latter identity can be derived by defining
the overall elastic energy of the membrane to be the sum of its
bending and stretching energy and by minimizing this overall
elastic energy (Lipowsky, 2014a).

'The first variation of the shape functional F{S} leads to the Euler-
Lagrange equation

AP =25 M — 2k VM —4k[M - m|[M(M +m)~G]  (5.23)
with the Laplace-Beltrami operator V75 and the (local) Gaussian
curvature G. When expressed in terms of the surface coordinates

s, the action of this operator onto a scalar function f(s) has the
explicit form

(5.24)

1 0 . 0
Vigf=—r K O j
LBf \/g afk (\/gg 8;/ f

with the inverse metric tensor (g7) = (g;)™" and an implicit sum-
mation over repeated indices (do Carmo, 1976). Note that the
Euler-Lagrange Eq. 5.23 provides an explicit relation between
the Lagrange multipliers AP and X with the mean and Gaussian
curvatures, M and G, which describe the membrane shape locally.
Therefore, the Euler-Lagrange equation represents a Jocal shape
equation.

The Euler-Lagrange Eq. 5.23 is equivalent to

AP =25 M -2k VigM — Ak mM? — 4k[M — m|[M? = G] (5.25)

with the total membrane tension

S=S+2kn? =340 (5.26)
which represents the sum of the mechanical tension X and the
spontaneous tension o, where we identified the Lagrange multi-
plier £ with the mechanical tension, see Appendix 5.D. Therefore,
the only tension that enters the solution of the Euler-Lagrange
equation is the total tension X that contains the spontaneous
tension o defined in Eq. 5.14.

For spontaneous curvature 72 = 0, the Euler-Lagrange

Eq 5.23 assumes the simplified form

AP =25M —2kVigM -4k M[M*-G] (m=0)  (5.27)
which was derived by several mathematicians as reviewed in
the monograph of Willmore (Willmore, 1982). It seems that
the variation of the more general case with 7 # 0 was first
considered by (Jenkins, 1977) who included both normal and
tangential displacements of the membrane surface.” However,
in order to derive the Euler-Lagrange Eq. 5.23, it is sufficient to
include only normal displacements as shown by (Ou-Yang and

Helfrich, 1989).

The solutions of the Euler-Lagrange Eq. 5.23 represent the
stationary shapes corresponding to local minima, saddle points,
or local maxima of the bending energy. The physically relevant
shapes are the local minima, which represent (meta)stable states,
and the saddle points which provide the activation barriers
between different (meta)stable states.

In practice, the combination of the Laplace-Beltrami opera-
tor and the nonlinearities in the principal curvatures C, and C,,
arising from the second and third power of the mean curvature
M= %(Q + ) and from the Gaussian curvature G = C,C,,
make the Euler-Lagrange Eq. 5.23 rather difficult to solve.

As explained further below, much insight can be obtained for
special shapes such as spheres, cylinders, and combinations

7 'The final result of the variational calculation by (Jenkins, 1977) contains one
term that is cancelled by another, missing term.
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thereof. For axisymmetric shapes, the partial differential

Eq 5.23 is equivalent to a set of ordinary differential equations
that can be solved numerically, e.g., by shooting methods.

In this way, the regime of relatively small spontaneous curva-
tures 7 with | 7 |=| 7| Rye S 2 has been studied in a systematic
manner (Seifert et al., 1991).

These numerical solutions have shown that the stationary
shapes form, in general, several branches for the same set of
parameters as illustrated in Figure 5.12.% The latter figure displays
the branches for vanishing spontaneous curvature 7 = 0. The dif-
ferent branches will now be labeled by the index j and the cor-
responding stationary shapes by S/. Along branch j, the bending
energy function

Ene(V, Ak, 5 ) = Epe {57} (5.28)

varies in a continuous manner as one changes one of the con-
trol parameters. When expressed in terms of the dimensionless
parameters v and 7 = m Ry as defined in Eqgs 5.17 and 5.18, one
obtains

Ene(V, Asic,m; j) = 87k E(v, m; j), (5.29)
see Figure 5.12. The corresponding shapes of minimal energy are
displayed in Figure 5.13.

In order to get further insight into the two Lagrange multipliers
AP and %, it is useful to consider the shape energy

25 -
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Dimensionless bending energy E,. = E,../(87k) as a
function of volume-to-area ratio v for spontaneous curvature m = 0:
The sphere corresponds to the largest possible volume-to-area ratio
v = 1. In the limit of small v, we obtain the limit shape Lst of a sto-
matocyte consisting of two concentric spheres of (almost) equal size
connected by a closed membrane neck. The two full lines emanating
from the sphere correspond to (meta)stable prolates and oblates.
The dashed-dotted line connecting the limit shape Ls*° with the transi-
tion point Dst° corresponds to stable stomatocytes, the one between
Dste and Mste to metastable stomatocytes, and the dashed-dotted line
between Msto and Cst° to the activation barriers between the oblates
and the stomatocytes. (Reproduced from Seifert, U. et al., Phys. Rev.
A, 44,1182-1202, 1991.)

8 The ‘branches’ are really two-dimensional sheets over the (v, 7)-plane.
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Axisymmetric shapes of a vesicle with constant area A and
variable volume V as expressed in terms of the dimensionless volume
v (bottom row) for spontaneous curvature m = 0. (Reproduced from
Seifert, U. et al., Phys. Rev. A, 44, 1182-1202, 1991.)

F(AP, %5, m; j) = —APV + 2A+ Ene(V, As 5,725 /) (5.30)
along a certain branch j of stationary shapes and to interpret
this expression as the Legendre-transformed energy from the
extensive variables V'and A to the intensive variables AP and X.
The formal structure of such a Legendre transformation, which
plays an important role in thermodynamics, implies (Svetina
and Zeks, 1989; Seifert et al., 1991; Miao et al., 1991; Seifert,
1997)

dBye(V, A, m; /)j
AP =
( o | (5.31)
and
5= -(dEbe(V’A;"’m;”) . (5.32)
dA -

When we have several branches of stationary shapes for the same
values of V'and A, the derivatives on the right hand side of these
relations will depend on the branch index j and so will the values
of AP and %, compare Figure 5.12.

The relation Eq. 5.31 implies that the Lagrange multiplier AP
is the pressure conjugate to the vesicle volume Vand can, thus, be
identified with the difference

AP =P, —P. (5.33)
between the pressures P, and P, within the interior and exterior
compartments. In practise, these pressures are usually osmotic
pressures but may also include hydrostatic pressures as imposed
by a micropipette. The pressure difference AP is usually orders of
magnitude smaller than the individual osmotic pressures P, and P,..
The relation Eq. 5.32 implies that the Lagrange multiplier X is the
tension conjugate to the membrane area A. In fact, as previously
mentioned, this tension can be identified with the mechani-
cal tension experienced by the uniform membrane as shown in
Appendix 5.D (Lipowsky, 2014a).

When expressed in terms of the dimensionless bending energy
Epe = Epe/(87K), the general relations Egs 5.31 and 5.32 for the
pressure difference and the membrane tension can be rewritten in
the form

1 OFE.
A% o

=6Jm

(5.34)

AP _( dr ) OFp.
8mc \dl” ), Ov
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For vanishing spontaneous curvature, 7z = 7z =0, the second term
in Eqs 5.37 and 5.36 vanishes which implies that both APand
become proportional to the partial derivative OFpe/0v. Inspection
of Figure 5.12 shows that this derivative is negative along the
prolate and oblate branch but close to zero along the stomatocyte
branch. Thus, as we reduce the volume of a spherical vesicle with
m = 0, the pressure difference AP and the membrane tension X
are both negative along the prolate and oblate branches. A nega-
tive pressure difference AP = P, — P, implies that the exterior
osmotic pressure exceeds the interior one and that the pressure
difference acts to compress the vesicle volume. A negative tension
Y implies that the membrane is slightly compressed compared to
its optimal packing density. Along the stomatocyte branch, on
the other hand, both the pressure difference and the membrane
tension are close to zero.

A combination of the two relations Eqs 5.34 and 5.36 leads to

Km aEbe

3APV—22A:4\/;A1/2 o

(5.38)

independent of the derivative 0F},. /0» which cancels out from
this special combination of AP and X. In the absence of a sponta-
neous curvature, we then obtain the simple relation

3APV =254 (m=0). (5.39)
We will see in the next subsection that the same relation also

follows from special deformations (or variations) of the stationary
shapes as provided by infinitesimal scale transformations.

Now, consider a certain stationary shape S/ of the shape func-
tional F as given by Eq. 5.22. The pressure difference AP and the
tension X then have specific values as obtained from the partial
derivatives in Eqs 5.31 and 5.32 along the corresponding branch
that includes the chosen shape §’. Small deformations of this
shape can be described by membrane displacements 7(s) which
define the deformed shape S via

X(5) > X'(0)= X(s)+¢€ii(s) with |e|<1. (5.40)
Because the shape S/ represents a local minimum or saddle point
of the shape functional £, we know that

dF (S

FAS =F {$/}=0(e?) bz0=0.  (5.41)

A particular shape deformation is provided by the choice
7(s) = X(s) which leads to the infinitesimal scale transformation

() > X' (9 =01+8)X(). (5.42)
This scale transformation implies that the area 4 and the volume
V are transformed accordingto A - A'= (1 + ¢)*4and V- V’
= (1 + €)*V. Likewise the integrated mean curvature

I =T s} = [ (5.43)
transforms according to
I =TadS) = Iy = Ty{S = (1+ &)l (5.44)

while the integral IdAM2 remains unchanged. When applied
to the explicit form of the shape functional F; the condition

Eq 5.41 leads to

~3APV +28.A4 ~4kmly =0 (5.45)
with the total membrane tension £ = £+ 2k as in Eq. 5.26.
For any stationary shape 3, this equation provides an explicit
connection between AP, ¥ and the global geometric quanti-
ties V; A, and I,,. Therefore, Eq. 5.45 represents a global shape
equation.

For m = 0, the global shape equation reduces to the relation
Eq. 5.39. Furthermore, a combination of Eq. 5.45 with Eq. 5.38
leads to the expression

e _ o Lot (5.46)

om N A

for the partial derivative of the dimensionless bending

energy Ey.(v, ) with respect to the spontaneous curvature

7 = mRy.. Note that the integrated mean curvature /,; depends
on the stationary shape S/ and, thus, on the spontaneous
curvature 7.

The numerical solutions of the Euler-Lagrange equations for
axisymmetric shapes revealed that these shapes develop narrow
membrane necks in certain regions of the parameter space and
that these shapes approach limit shapes with closed necks. These
necks provide information about the spontaneous curvature 7 as
will be explained in the following subsections, see also Box 5.2 for
a summary of necks for vesicle membranes with laterally uniform
composition.

Let us consider a branch of stationary shapes §* that represent
local minima of the bending energy and, thus, solutions of the
Euler-Lagrange Eq. 5.23. These shapes are smooth in the sense
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that the shape variable X(s) is twice differentiable with respect
to the surface coordinates and that the mean curvature varies
continuously along an arbitrary path on the membrane surface.
For any point P on this surface and for any path through this
point, we can thus define two mean curvature values, M, and
M,,_, which represent the limiting values of the mean curvature
as we approach the point 2 from the “left” and from the “right”
along the chosen path. The continuous variation of M then
implies that

1
Mp :E(MP+ +Mp_). (547)

For a smooth surface, we could also use the more general expres-
sion Mp =§ Mpy +(1-§)Mp_ with 0 < <1 corresponding

to different weights for the left-sided and the right-sided limit.
However, because the assignment of “left” and “right” is com-
pletely arbitrary, we want the expression to remain unchanged
when we interchange “left” and “right,” which implies § =1/2.
We now interpret the expression Eq. 5.47 as an interpolation
formula and extend it to closed necks, i.e., to points on the mem-
brane surface at which the mean curvature develops a discontinu-
ity. Thus, if the two membrane segments, 1 and 2, adjacent to the
closed neck have the mean curvatures M, and M,, we define the
effective curvature of the closed neck by

My = %(Ml +Mp). (5.48)

This definition is analogous to the value H(0) =1 of the Heaviside
step function H(x) as obtained from smooth approximations
for H(x).

The numerical studies of membrane necks also showed that
the neck closure makes no contributions to the bending energy.
Because the energy density at the neck is given by

Ebe(Mne) = 2K[Mpe — ], (5.49)
we conclude that the neck closes in such a way that
My = %(Z\/h +Mz)=m (neck closure). (5.50)

It follows from this condition that the two membrane segments
1 and 2 have the same bending energy density, i.e., that
gbc(Ml) =8bc(M2)- (5.51)
In fact, we could also start from the requirement that the bending
energy density is continuous across the closed neck which leads to
M, — m = (M, — m). For the root with the plus sign, we obtain
the relation M, = M,, i.e., a continuous variation of M and, thus,
no neck bug, for the root with the minus sign, we recover the neck
closure condition Eq. 5.50.
The neck closure condition Eq. 5.50 has been confirmed for a
large number of axisymmetric shapes as obtained by minimizing
the bending energy numerically (Seifert et al., 1991). So far, necks

between non-axisymmetric membrane segments have not been
studied in a systematic manner but the continuity arguments
given above also apply to such non-axisymmetric situations and
then lead to the same closure condition.

It is instructive to apply the condition Eq. 5.50 to the neck
closure of membrane buds as frequently observed in experiments.
Two cases can be distinguished corresponding to in- and out-
buds that point towards the interior and exterior compartment,
respectively, see Figure 5.14.

First, consider spherical out-buds as shown in Figure 5.14a—c.
For such a bud with radius R,, the bud membrane adjacent to the
neck has positive mean curvature M, = 1/R,. The 1-segment on
the other side of the neck must satisfy M, > —M, because the two
membrane segments cannot intersect each other. Combining this
geometric constraint with the neck closure condition Eq 5.50, we
obtain the inequality

m= %(M1 +M5)20 (neck closure of out-bud) (5.52)
for the spontaneous curvature 7. Thus, whenever we observe

the neck closure of an out-bud, we can conclude that the spon-
taneous curvature must be positive or zero. Furthermore, for

m = 0, neck closure of an out-bud implies M, = —M,, i.e., the
1-segment partially engulfs the bud membrane in the vicinity

of the neck. Therefore, for a 1-segment with mean curvature

M, > —M, = —1/R,, neck closure of an out-bud implies a positive
spontaneous curvature.

Next, consider spherical in-buds as shown in Figure 5.14d—f. For a
spherical in-bud with radius R,, the bud membrane adjacent to the
neck has negative mean curvature M, = —1/R,. The 1-segment on
the other side of the neck must satisfy M, < — M, = |M,| because
the two membrane segments should not intersect each other.
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(a—c) Out-buds with closed necks, formed as limit shapes
by a membrane with positive spontaneous curvature: The out-buds
are filled with interior medium (gray) and point towards the exterior
medium (white). The three membranes (blue) in (a—c) have the same
spontaneous curvature m > 0 but differ in the mean curvatures of the
1- and 2-segments; (d—f) In-buds with closed necks, formed as limit
shapes by a membrane with negative spontaneous curvature: The in-
buds are filled with exterior medium (white) and point towards the
interior medium (gray). The three membranes (blue) in (d—f) have the
same spontaneous curvature m < 0 but differ in the mean curvatures
of the two membrane segments. The two segments have mean curva-
ture M, = mand M, = min (a) and (d), M; = 0 and M, = 2min (b) and
(e), and M, = —mand M, = 3m in (c) and (f).



A combination of the latter inequality with the neck closure con-
dition Eq. 5.50 now leads to the condition

m= %(Z\/h +M3)<0 (neck closure of in-bud) (5.53)

for the spontaneous curvature 7. Thus, whenever we observe the
neck closure of an in-bud, we can conclude that the spontaneous
curvature must be negative or zero. For m = 0, neck closure of an
in-bud now implies M, = —M, = |M,)| as for the limit shape L
in Figure 5.12. Therefore, for a 1-segment with mean curvature
M, < |M,| = 1/R,, neck closure of an in-bud implies a negative
spontaneous curvature.

The neck closure condition Eq. 5.50 applies to limit shapes as
obtained from smooth solutions of the local shape Eq. 5.23 or the
corresponding set of ordinary differential equations for axisym-
metric shapes. One may also consider a closed neck and ask under
what conditions this neck is locally stable. This problem has been
addressed for axisymmetric vesicles consisting of two almost
spherical vesicles that are connected by a narrow neck with radius
R... More precisely, these vesicle shapes consist of two spherical
caps which are connected by two unduloid segments which form
a membrane neck of radius R,.. The shapes are parametrized in
such a way that one can study the closure of the neck keeping the
total membrane area constant. For vanishing neck radius R, the
shapes approach the two-sphere shapes ©°* and 0. The two-
sphere shape ©°* consists of a sphere with radius R, and mean
curvature M, = 1/R, connected, via a closed neck, to a spherical
out-bud with radius R, < R, and mean curvature M, = 1/R, as in
Figure 5.14a. The two-sphere shape ©' again consists of a sphere
of radius R, and mean curvature M, = 1/R, but now connected,
via a closed membrane neck, to a spherical in-bud with radius
R, < R, and mean curvature M, = —1/R, as in Figure 5.14f.
For small but nonzero R,, the bending energy of these vesicle
shapes can then be expanded in powers of the neck radius R,..

If the two membrane segments 1 and 2 adjacent to the neck
have positive mean curvatures as in Figure 5.14a, the bending
energy is found to behave as (Fourcade et al., 1994)

Epe(Roe )= Epe (0) =47k (My —m+ My —m) Rye for small Rye. (5.54)

On the other hand, if the 1-segment has positive mean curva-
ture whereas the 2-segment has negative mean curvature as in
Figure 5.14f, the bending energy has the asymptotic behavior
(Lipowsky, 2014a)

Epe(Rue)= Epe(0)+ 4k (My—m+ My —m)Rye  for small R, (5.55)

? In the next Section 5.5 we will study such two-sphere vesicles in a systematic
manner and distinguish limit shapes from persistent shapes. The two-sphere
shapes ©°% then correspond to the limit shapes Zp<* and L% as well as to the
persistent shapes @<, Likewise, the two-sphere shapes © represent both the

limit shapes Z*° and LT as well as the persistent shapes @,

with a plus instead of a minus sign in front of the linear term.

In both cases, the bending energy ;. (0) of the two-sphere shapes

©° and O™, which are characterized by vanishing neck radius

R, =0, does not involve any contribution from the neck itself.
The asymptotic behavior as given by Eq. 5.54 implies that the

closed neck in Figure 5.14a, corresponding to an out-bud, is stable

provided the average neck curvature M, satisfies

Me Z%(M1+M2)SM with M7 >0and M, >0 (5.56)

but opens up if M, > m. The marginal case with M, . = m
corresponds to the neck closure condition Eq. 5.52 with positive
spontaneous curvature. Therefore, when a membrane with 7 > 0
forms a closed neck with A, > 0 and M, > 0 as in Figure 5.14a,
this neck remains closed if the effective neck curvature M,
decreases below the spontaneous curvature 7.

On the other hand, the small R, -behavior in Eq. 5.55 implies
that the closed neck of the in-bud in Figure 5.14f is stable provided

Me I%(M1+M2)2m with M;>0and M, <0 (5.57)

but opens up if M, < m. Now, the marginal case with M,, = m
corresponds to the neck closure condition Eq. 5.53 with negative
spontaneous curvature. Therefore, when a membrane with 7 < 0
forms a closed neck with A, > 0 and M, < 0 as in Figure 5.14f,
this neck remains stable if the effective neck curvature M, increases
above the spontaneous curvature 7, i.e., if the absolute value ||
of the effective neck curvature decreases below the absolute value
|| of the spontaneous curvature.

The stability of a closed neck must not depend on our choice
for the direction of the normal vectors. When we reverse the
normal vectors, we change both the sign of the mean curvatures
and the sign of the spontaneous curvature. Let us first apply this
transformation to the neck configuration in Figure 5.14a which
leads to the neck configuration in Figure 5.14d. The correspond-
ing stability relation now becomes

Mne:%(MﬁMz)z;ﬁ with M <0, M5 <0,and 7 < 0. (5.58)

Furthermore, if we reverse the normal vectors of the neck con-
figuration in Figure 5.14f, we obtain the neck configuration in
Figure 5.14c and the associated stability relation

Mpe :%(Ml +M2)S m  with My <0,M, >0, and » > 0. (5.59)

In summary, we obtain essentially two different stability relations
for the closed necks depicted in Figure 5.14. Closed necks with
non-negative neck curvature M, can only exist for non-negative
spontaneous curvature 7 > 0 and the neck curvature can then
attain a value within the interval

0 Mpe S (5.60)

(out-bud, spontaneous curvature » 2 0)
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which includes the neck configurations in Figure 5.14(a—c).

The limiting case M, = 0 applies to an out-bud that is partially
enclosed by the adjacent 1-segment of the mother vesicle whereas
the equality M, = m corresponds to the neck closure condition of
the limit shape. An example for M, = 0 is provided by a disco-
cyte with a membrane neck that connects the discocyte’s north
pole with mean curvature M, < 0 to a spherical out-bud with
mean curvature M, = =M, > 0.

Closed necks with non-positive neck curvature M, , on the other
hand, can only exist for non-positive spontaneous curvature 72 < 0
and the neck curvature can then have a value within the interval

02 Mpe 2m (in-bud, spontancous curvature 7 <0)  (5.61)
which includes the neck configurations in Figure 5.14(d—f). Now,
the neck closure condition M, = m and the enclosed bud condi-
tion M, = 0 provide lower and upper bounds for the range of
possible M, -values.

For a stably closed neck that satisfies the inequalities M, < m
and m < M, in Eqs 5.60 and 5.61, the bending energy density
€, = 2k[M,, — m]? as given by Eq. 5.49 does not vanish.
The closed neck may just be considered as a curvature “defect” as
discussed in Appendix 5.C.2. In the continuum description used
here, this defect is point-like and has vanishing area which implies
that its bending energy vanishes as well. The latter property is
explicitly borne out in the derivation of the relations Eqs 5.54 and
5.55 because the energies £, (0) obtained for vanishing neck radius
R.. = 0 do not contain any contribution from the neck.

However, a large mismatch between the neck curvature and
the spontaneous curvature as obtained for stable necks with
0 <M, =mand m= M, <0 does have an important consequence
for the morphology of the vesicle. Indeed, a sufficiently large mis-
match leads to an effective, curvature-induced constriction force
that cleaves the membrane neck and thus leads to membrane
fission, see Section 5.5.4 below.

As mentioned at the beginning of this section, the spontane-

ous curvature model provides a quantitative description for the
morphology of vesicles as long as the membrane curvatures are
large compared to the inverse membrane thickness. Thus, highly
curved membrane structures such as nanobuds or nanotubes may
involve higher order curvature terms as discussed in Appendix 5.E.
In addition, the spontaneous curvature model implicitly assumes
that the area difference between the two bilayer leaflets can change
via fast flip-flops of at least one molecular membrane component.
If flip-flops can be ignored on the experimentally relevant time
scales, the spontaneous curvature model should be supplemented
by an additional energy term as described in this subsection.

The bending energy functional Eq. 5.12 represents the area
integral over a local energy density. In general, the bending of a
bilayer membrane consisting of two leaflets may be constrained in
a nonlocal or global manner. Indeed, if the membrane molecules

cannot undergo flip-flops between the two leaflets, the num-
ber of molecules are fixed within each leaflet and the quenched
difference between these two numbers leads to a preferred area
difference between these leaflets. This constraint was originally
considered by Evans (1974), incorporated into the bilayer-coupling
model by (Svetina and Zeks, 1989; Seifert et al., 1991), and gener-
alized in terms of the area-difference-elasticity model (Miao et al.,
1994; Dobereiner et al., 1997; Seifert, 1997).

The area difference A4 between the area of the outer leaflet
and the area of the inner leaflet is given by

AA=2d o\ (5.62)

with the molecular length scale 4, which corresponds to the distance

between the neutral surfaces of the two monolayers or leaflets, and

the integrated mean curvature Iy = IdAM as in Eq 5.43. The area-

difference-elasticity model is defined by the energy functional
EADEAS} =Ebe S+ DapretS) (5.63)

with the local energy functional €,.{S} as defined by Eq. 5.12

corresponding to the spontaneous curvature model and the

nonlocal area-difference-elasticity term (Miao et al., 1994;
Débereiner et al., 1997)

. KA
D Si=
ADE{S} 2

mo

(AA(S}—A Ay

_2mKA
A

(Zu{S}t— T o)’ (5.64)

where AA{S} represents the area difference of the vesicle shape S and
Zp{S} the integrated mean curvature of this shape. The additional
energy term D,;; introduces two new parameters, the second bend-
ing rigidity k, and the integrated mean curvature /1, , = AA/2d, ,
corresponding to optimal molecular areas in both leaflets (Seifert,
1997). These molecular areas are, however, not accessible to current
experimental methods and depend on the mechanical membrane
tension. If the leaflets of a large spherical vesicle with radius R, had

optimal molecular areas, we would obtain

IM,O = J.dARL = 47'L'RV6. (565)

Ve

The stationary shapes with fixed membrane area 4 and fixed
vesicle volume Vare now more difficult to calculate because of

the nonlocal character of the area-elasticity-difference but can be
obtained using a two-step variational procedure, see Appendix 5.E.
This procedure shows that all stationary shapes of the area-
difference-elasticity model are also stationary shapes of the
spontaneous curvature model with the shape functional F{S}

as given by Eq. 5.22 and the effective spontaneous curvature
(Débereiner et al., 1997)

(5.66)

Meff = 72+ Vinlo
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with the spontaneous curvature 7, which is determined locally by
the molecular interactions as considered in the previous subsec-
tions, and the nonlocal spontaneous curvature

xa Inio = IuiS”}

. P (5.67)

hlo =
which depends on the stationary shape S/ via the integrated mean
curvature Z {S/'}.

As mentioned before, area-difference-elasticity is only relevant
if the membrane contains no molecular components that undergo
flip-flops on the experimentally relevant time scales. Therefore,
as far as the effective spontaneous curvature 4 is concerned, we
need to distinguish two cases: (i) For relatively fast flip-flops of
some membrane components such as cholesterol, we can ignore
1o Which implies that the
effective spontaneous curvature 7.4 becomes equal to the sponta-
neous curvature 7 i.e., the area-difference-elasticity model reduces

the nonlocal spontaneous curvature 7

to the spontaneous curvature model; and (ii) For relatively slow
flip-flops of all molecular membrane components, we will, in
general, have a nonlocal spontaneous curvature 7z, contributing
In order to
examine whether this nonlocal spontaneous curvature m

to the effective spontaneous curvature m g = m + m,,.

is rel-
evant for a given vesicle shape, we need to determine its magnitude

nlo

and to compare it with the local spontaneous curvature 7.

The latter approach can be applied, in particular, to two-sphere
shapes with closed membrane necks. The stability of these necks
can also be examined for the area-difference-elasticity model
using the shape parametrization described in Section 5.4.6.
Thus, we again consider axisymmetric shapes with membrane
necks, parametrized in such a way that they approach the
two-sphere shapes ©®°“t and ©™ in the limit of small neck radii.
As before, the two-sphere shape ®@° consist of a sphere with

a spherical out-bud and the two-sphere shape ©™ of a sphere
with a spherical in-bud. We now use the energy functional

Eq. 5.63 of the area-difference-elasticity model to calculate

the elastic energy of the vesicle shapes up to first order in the
neck radius R, .. One then finds that closed necks with positive
curvature M, are stable if

out
0<Mue <myg=m+m Ka Do =Iad®77}
; K A (5.68)

(stable @°"" shapes)
and necks with negative curvature M, are stable if

_ / in
0> Mpe 2 mese =m+7 Ka Ino = ZviOT}
K A (5.69)

(stable ©™ shapes).

These stability conditions involve three different types of quanti-
ties: (i) the neck curvature, a purely geometric quantity that can be
directly deduced from the two-sphere shapes; (ii) the local sponta-
neous curvature 72, a material parameter determined by the molec-
ular interactions, and (iii) the non-local spontaneous curvature 7,

that depends both on the geometry of the shape via the integrated
mean curvature and on the bending rigidity ratio k,/k. In subsec-
tion 5.5.3 further below, we will discuss the consequences of the
stability conditions Eqs 5.68 and 5.69 for multi-sphere vesicles.

5.5

In this section, we will consider a variety of multi-sphere shapes
for vesicles with uniform membranes, i.e., membranes that have
laterally uniform compositions and curvature-elastic properties.
This section should be considered as a case study which nicely
illustrates the polymorphism and multi-responsive behavior of
giant vesicles.

We will focus on multi-component membranes that contain at
least one membrane component such as cholesterol that under-
goes relatively fast flip-flops. As mentioned, these membranes
are appealing from a theoretical point of view because we can
study their shapes within the spontaneous curvature model which
depends only on two dimensionless parameters, the volume-
to-area ratio (or reduced volume) » and the (local) spontaneous
curvature 7. These two parameters can be controlled experi-
mentally, e.g., by the osmotic conditions and by the adsorption
of small solutes. In addition, three-component membranes with
cholesterol have been of particular interest recently because they
can form liquid-ordered and liquid-disordered phases. For both
types of intramembrane phases, multi-sphere shapes have indeed
been observed experimentally (Liu et al., 2016).

We will start with the Euler-Lagrange equations for spherical
shapes which reveal the coexistence of two different sphere radii.
When combined with the stability relations for the individual
spheres and for the closed necks, we obtain multi-sphere vesicles
that consist of several spheres with two different radii. We first
consider two-sphere shapes and show that these shapes can be
found in extended regions of the (v, 7)-plane and that these
regions are bounded by two types of limit shapes. We also exam-
ine the changes of the morphology diagram when area difference
elasticity is taken into account. We conclude that these changes
are negligible both for large spontaneous curvatures and for small
bud sizes.

Multi-sphere shapes consisting of more than two spheres will
also be discussed. One interesting example is provided by one
sphere with radius R, and NV spherical buds with radius R,, all
connected by closed necks that have the same neck curvature.
For N> 1, the morphology diagram exhibits a more complex
bifurcation structure with two bifurcation points and three
types of limit shapes. The multi-sphere shapes with V> 1 buds
described in this section are intimately related to the necklace-
like tubes with V> 1 spherules as considered in the next
Section 5.6.

We now specify the local shape Eq. 5.23, which represents the
Euler-Lagrange equation of the bending energy functional, and
the global shape Eq. 5.45, which follows from the invariance of
the bending energy under infinitesimal scale transformations,
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to a spherical membrane segment with constant mean curvature
M= M, It turns out that both shape equations lead to the same
quadratic equation for M., as given by

AP = Py — Py = 22 My, — 4K mM2, (5.70)
with the total membrane tension £ =% +c. For a symmetric
bilayer membrane with 7 = 0, the relation Eq. 5.70 further sim-
plifies and becomes

AP = 25M,, (m=0) (5.71)
which has the same form as the Laplace equation for liquid drop-
lets. The Euler-Lagrange Eq. 5.70 can be derived in a more intuitive
manner if one parametrizes the spherical shape by its radius R, and
minimizes the shape energy with respect to R, (Lipowsky, 2013).

It follows from Eqs 5.70 and 5.71 that each value of M, = +1/R,,
defines a straight M -line in the (£,AP)-plane. For 7 = 0, these M-
lines cover the whole (X,AP)-plane. For m # 0, 0n the other hand,
the straight M-lines do not cover the whole (£, AP)-plane as follows
from the solution of the quadratic Eq. 5.70 which has the form

~ A N2
z z AP
My = + -
4K m 4K m 4K m

Because the mean curvature must be real-valued, spherical seg-

1/2

(5.72)

ments are not possible for those values of T and AP for which
the expression under the square root (or discriminant) becomes
negative. Therefore, a certain choice of £ and AP leads to spheri-
cal segments if

~2
AP > — z for m<0 (5.73)
4| m |
and if
iZ
AP<—— for m>0. (5.74)
4K m

a2
Along the parabolic boundaries AP =X / (4K ) of these regions,
we have only one solution as given by

S Z+2xa’
MleZ_izﬂ_

= 5.75
4K m ( )

AKm

For all other possible values of % and AP, we have two different
solutions as in Eq. 5.72 with M, # M,, corresponding to two
different spherical segments. In general, the mean curvatures M,
and M, may be positive or negative depending on the signs of the
pressure difference AP, the membrane tension Z, and the sponta-
neous curvature 7.

The two solutions M, and M, are characterized by the same values
of the pressure difference AP and the mechanical tension X.
Therefore, the two membrane segments can coexist for these val-
ues of AP and X. Vice versa, when we observe the coexistence of

two spherical membrane segments with mean curvatures M, and
M,, we can use the two Euler-Lagrange equations to conclude
that the membrane tension is given by

¥ = 2im( My + My) — 2k m” (5.76)
and the pressure difference by
AP = 4—K'777M1M2. (577)

The coexistence of two spherical shapes is indeed observed when
out- and in-buds are formed from larger mother vesicles as shown
in Figure 5.2 through Figure 5.6 and discussed in more detail in
the next subsection.

On the other hand, the coexistence of more than two spheri-
cal segments with pair-wise different mean curvatures M, and
M is not possible for a uniform membrane. Indeed, if N >
3 different types of spherical segments coexisted on the same
vesicle, we would have NV Euler-Lagrange equations of the form
Eq. 5.70. When we now choose a pair of spherical segments with
mean curvatures M, and M, we obtain the relations Egs 5.76
and 5.77 with M, and M, replaced by M, and M,. For fixed 7,
we can choose N — 1 different values for j and obtain N — 1
different relations of the form Eqs 5.76 and 5.77. These relations
immediately imply that all mean curvatures A/, must be identi-
cal. Because we can repeat this procedure for each value of 7, we
conclude that the shape equations for spherical segments allow
only two different values of the mean curvature to coexist for
uniform membranes.

Multi-component membranes can lead to the coexistence of
several lipid phases and several types of intramembrane domains
that differ in their composition, see Section 5.8 below. For two
types of domains, the membrane can form coexisting spheri-
cal segments with four different mean curvatures. In general, a
membrane with K types of domains can form coexisting spherical
segments with 2K different mean curvatures as follows from the
Euler-Lagrange equations for the different membrane domains.
This morphological complexity remains to be explored.

Now, consider a single sphere which experiences the pressure
difference P, = P,,;, — P, where P, is the osmotic pressure
acting within the volume enclosed by the sphere. The second
variation of the shape functional shows that a sphere with radius
R, and mean curvature M = 1/R, is (locally) stable provided
this pressure difference PSP satisfies (Ou-Yang and Helfrich, 1989;

Seifert et al., 1991; Miao et al., 1991)

* 4K
Py > Pyt = RTWRSP -3) (Mg =1/Ry)
Sp

(5.78)

When we reverse the normal vector of the sphere, we change the
signs of both the mean curvature M and the spontaneous curvature
m. For such an inverted sphere, we obtain the stability condition

w 4
o = (~Rp=3) (Mg =1/ Ry).
RS

Dy > (5.79)



One example for an inverted sphere in real systems is provided
by an in-bud protruding into a giant vesicle which is a possible
shape for negative spontaneous curvature 7 < 0. The in-bud
with radius R, = R, and mean curvature M, = —1/R, is attached
to a spherical mother vesicle with radius R, = R, > R, and mean
curvature M, = 1/R,. In this case, the volume enclosed by the
in-bud is a subvolume of the exterior solution. Therefore, the
membrane of the in-bud experiences the pressure difference P, =
—AP whereas the membrane of the mother vesicle is exposed to
P, =AP.

Because the mother vesicle and the in-bud experience two dif-
ferent pressure differences, the two spherical membrane segments
are then governed by two different stability conditions. Indeed,
using the stability relations Eqs 5.78 and 5.79 as well as the gen-
eral expression Eq. 5.77 for AP, the spherical shape of the mother
vesicle is found to be stable if

—4Km>4%(mR1—3) or ﬁ<3—mR1
R

AP = B
Eﬁﬁb 1 Eb }h

(5.80)

whereas the stability condition for the spherical in-bud has the
form

AP =K R =3y or Zs T3 s )
RE R Ry R;

At the critical pressures Ry = Ps;i, the spherical shape undergoes
a bifurcation which generates the branches of prolate and oblate
shapes. For conventional spheres with A/, > 0, the prolate shape
has the lowest bending energy for small [2|/M,-values whereas
the oblate shape represents the lower energy shape for sufficiently
large negative values of m/M,, see the morphology diagram in

Figure 5.16 (Seifert et al., 1991).

Giant vesicles frequently form shapes that consist of two spheres
connected by a narrow membrane neck. Within the spontane-
ous curvature model, such shapes arise quite naturally and can be
reached by deflation of smoothly curved shapes. Two such limit
shapes have been obtained from a systematic numerical study of
axisymmetric shapes (Berndl, 1990; Seifert et al., 1991): the limit
shapes L with a spherical out-bud and the limit shapes Ls° with a
spherical in-bud. These limit shapes represent two-sphere shapes and
have the geometries displayed in Figure 5.15. The limit shapes Zp<
are reached, for positive spontaneous curvature, by the deflation of
pear-like vesicles, the limit shapes Z°° for negative spontaneous cur-
vature by the deflation of stomatocytes, see the morphology diagram
in Figure 5.16. Inspection of this diagram shows that these limit
shapes are found along two lines within the (», 7)-plane.

Closer inspection of this morphology diagram also reveals that
the deflation of a spherical vesicle with v = 1 and 7 > 0 leads to
a prolate-pear bifurcation before the limit shape P« is reached.
Because the latter bifurcation is discontinuous and exhibits hys-
teresis, the experimental observation of the true limit shape will
be facilitated if one studies both the deflation and the subsequent
inflation of the GUV. Likewise, the deflation of a spherical vesicle
with » =1 and 7 <0 leads to an oblate-stomatocyte bifurcation

(@) (b)

Geometry of shapes consisting of two spheres with
radii r, = R//R,. and r, = R,/R,, < r, connected by a closed neck: (a)
Two-sphere shape ©°“t with an out-bud and positive neck curva-
ture M, = %(%+é) >0 which can only form for positive spontane-
ous curvature m > +/2 and (b) Two-sphere shape ©" with an in-bud
and non-positive neck curvature M, = %(&—%) <0 which can only
form for non-positive spontaneous curvature m < 0. The stability of
the membrane neck in (a) and (b) is governed by Eqgs 5.60 and 5.61,
respectively. M. = m, the shape ©°tin (a) represents a limit shape
Lpe2 as obtained by neck closure from a stationary pear-like shape
of the Euler-Lagrange equation while it represents a persistent
shape ®re2 with a stably closed neck for M, <m. Likewise, the shape
©'" may represent a limit shape Lt as obtained by neck closure from
a stationary stomatocyte or a persistent shape ®st°. The limit shapes
are found along certain lines within the (v,m)-plane whereas the per-
sistent shapes are stable within two-dimensional regions of this plane,
see the morphology diagrams in Figures 5.16 and 5.17.

spontaneous curvature 12 [x 2]
(=)

, Oblates
N

N psto
\

0 0.2 0.4 0.6 - 0.8 1
volume-to-area ratio v

Morphology diagram as a function of volume-to-area
ratio v and spontaneous curvature ¢, = 2m which exhibits two lines of
limit shapes. The limit shapes Lre with an out-bud as in Figure 5.15a
are found for m > /25 along the upper line which is truncated at the
end point (vi,mi)=(1/ J2.42) corresponding to two equal spheres.
As we move along the Lre2-line by increasing the spontaneous curva-
ture m and the volume-to-area-ratio v, the out-bud becomes smaller
and smaller until the whole membrane area is taken up by the larger
sphere. The limit shapes Ls° with an out-bud, see Figure 5.15b, are
found form<0 along the lower line which is truncated at the end
point (vi,mx) = (0,0) corresponding to two nested spheres of equal
size. As we move along the Ls°-line by decreasingm <0 and increas-
ing v, the in-bud becomes smaller and smaller until the vesicle forms
a single sphere with v =1 (Berndl, 1990). (Reproduced from Seifert,
U. et al., Phys. Rev. A, 44, 1182-1202, 1991; Bernd|, K. Formen Von
Vesikeln Diplomarbeit, Ludwig—Maximilians—Universitat Minchen,
1990.)

before the limit shape L is reached. The latter bifurcation is
again discontinuous (Seifert et al., 1991).

The following analysis of two-sphere vesicles involves several
steps (Lipowsky, 2018b). First, the geometric properties of the
two-sphere shapes lead to other types of limit shapes, .2"* and
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i consisting of two identical spheres. Second, the neck closure
condition determines the limit shapes ZP<* and L. Finally, we
must examine the stability of the two individual spheres in order
to find instability lines at which the two-sphere vesicles transform
into other types of shapes. We will also emphasize two-sphere
vesicles with buds that have zero bending energy and consider the
two-sphere limit shapes obtained in the presence of area differ-
ence elasticity.

The geometry of any two-sphere vesicle is determined by the radii
R, and R, of the two spheres. In the following, we will consider
vesicles with fixed area A and vesicle size Rye = /A / (47) but
variable volume V'as controlled by the osmotic conditions. We
then measure the radii of the two spheres in units of R, and
define the dimensionless radii

nER /Ry and 1, =R/ Re. (5.82)
These two radii satisfy the implicit equations
) A
o+ = =1 (5.83)
] R
and
|4
nEn == (5.84)
7R35
3

where the plus and minus sign in Eq. 5.84 correspond to two-
sphere shapes with an out- and in-bud, respectively. Therefore,
the geometry of any two-sphere vesicle is determined by its area 4
and its volume V'and depends only on the volume-to-area ratio v.
As in Figure 5.15, we use the notation @°* and O for two-sphere
shapes for which we have not examined the stability of their
necks.

For a two-sphere vesicle with an in-bud, the radius 7, of this
bud must satisfy 7, < 7, because the membrane segments of the
two spheres should not intersect. For a two-sphere vesicle with
an out-bud, the shapes for 7, < r, are identical with the shapes
for 7, > r,. In order to avoid this degeneracy, we will impose the
restriction 7, < 7, for out-buds as well. Because ° + 7§ =1 as in
Eq 5.83, the inequality n 2 7m =1— 7 implies

1
nz—=
V2
The limiting cases with m =n =1/ V2 corresponds to two spheres
with the same size and defines two other types of limit shapes,

denoted by 1.2 and 1. 'The limit shape I.2"* consists of two
equal spheres with positive mean curvature whereas the limit

and m < % (5.85)

shape I.Z consists of two nested spheres which have the same size
but opposite mean curvatures. In addition, these limit shapes have
the smallest possible volume of two-sphere vesicles as given by

min() =2 =1/2  for 12% (5.86)

and

min(z)=v2 =0 for LEL. (5.87)
A related property of these limit shapes is that their neck curva-
tures have the smallest absolute values. When expressed in terms
of the dimensionless neck curvature

Mpe = MpeRye = 1(1 + 1], (5.88)
2\n n
these minimal neck curvatures have the values
min(MnC) = \/E for 2" (5.89)
and
min(| Mpe |) = max(Mpe) =0 for L2, (5.90)

A necessary prerequisite for a stable two-sphere vesicle is the stabil-
ity of the closed neck connecting the two spheres. The stability

of closed necks was already studied in subsection 5.4.6 where we
distinguished neck closure from closed neck conditions. The closure
condition has the dimensionless form

Mpe = 1(1 + 1) =m (neck closure) (5.91)

2in n

where the plus and minus sign again corresponds to two-sphere
shapes with out- and in-buds, respectively. In addition, the closed
neck condition is given by

0<Mpe = 1(1 + 1) <m for out-buds (5.92)
2\n n
and by
— 11 1 _ .
0> Mg = ( —j > for in-buds. (5.93)
2\n n

The combination of the geometric relations Eqs 5.83 and 5.84
with the neck closure condition Eq. 5.91 determines the limit
shapes LP<* and L*°. When we eliminate the two radii from these
three equations, we obtain the functional relationships

»=0P"(m) for the line of I.P** shapes (5.94)

and

(5.95)

v=0"°(m) for the line of 1" shapes.

The function »P** () has the explicit form (Seifert et al., 1991)



b= 0P (1) 5_13{1—12) 1+ for w242, (5.96)
Amr 2 A
which behaves as

I (5.97)
8

5 for large .

The function »°*°

applies to 2 <0 .
Both lines of limit shapes L= and L+ extend down to the
smallest possible volumes which they reach when both spheres

() has the same 7-dependence as P (%) but

have the same size. The corresponding values of the spontaneous
curvature # are given by

min(7) =m2" =2 for P (5.98)

and by

max(7)=m" =0 for [5°, (5.99)
see the 2P and L lines in Figure 5.16. In the following subsection,
the region of the morphology diagram with 7 > 0, which contains
the limit shapes Zr= and 1.2, will be discussed in more detail.

It is useful to distinguish another special case of budded vesicle
shapes, denoted by Z°* and Z™. The spherical buds of these
shapes have radius » =1/ | 7| and thus zero bending energy.
Because of the inequality » <1/~/2 as in Eq. 5.85, we then have

1 1 1 1
<— and n=,/1-—2—.

n=—-=s
||~ 2 w2

(5.100)

Both relations lead to the same inequality | 7 > \/5 which implies

#>~2  for out-buds (5.101)

and

m<—J2 forin-buds. (5.102)
For these vesicles, the buds have vanishing bending energy and
the whole bending energy is provided by the bending energy of
the mother vesicle with radius 7. The neck mean curvature is then

given by
1 1 _
Mpe = MO ()= —| ———+m (5.103)
2\1=1/ "
which satisfies
M3.(m)y<m for out-buds with > 2 (5.104)
and
M2.(m)y>m forinbudswith #<—/2.  (5.105)

Comparison with the stability relations as given by Eqs 5.92

and 5.93 then shows that the closed necks between the zero-

energy buds and the mother vesicles are stable for both positive
and negative Spontancous curvatures. For out-buds, the equal-
ity Mpe =
applies to n =
This special morphology represents a limit shape for which the

Mnc(m) m describes the neck closure condition and
=1/m, i.e., to the case of two identical spheres.

whole bending energy vanishes.
The volume of the two-sphere vesicles Z°* and Z" with zero-
energy buds is given by

(5.106)

where the plus and minus sign applies to out- and in-buds, respec-
tively. This volume behaves as

(5.107)

for large | 7

Cbz]—%
2m

which applies to both out-buds with 7z > 0 and in-buds with 7 < 0.

As displayed in Figure 5.17, the morphology diagram for
Y ) gy diag

positive spontaneous curvature contains two lines of limit

shapes, Zr< and 1.2, that have a common end point at

/single sphere

volume-to-area ratio v

/ LOUI

"~ two spheres of equal size

VY% PR L2 H

positive spontaneous curvature in

Morphology diagram for two-sphere vesicles with an out-
bud (inset) and positive spontaneous curvature: Such vesicles have
positive neck curvature and can be formed for spontaneous curvature
m >+/2 as well as reduced volume v in the interval 1/4/2 <v < vP®(m)
corresponding to the shaded (yellow) region. The lower boundary of
this region (horizontal line) is provided by the limit shapes [2* that
consist of two identical spheres and have the volume v2* =1/ \E, the
upper boundary (curved line) by the limit shapes Lpe2 as described by
v =vP*(m) in Eq. 5.96. The two boundary lines have a common end
point at (m2*,v2") =(/2,1/2). When a limit shape Lre2 is deflated for
constant spontaneous curvature m > +/2, the larger sphere shrinks
whereas the smaller sphere (or out-bud) grows transforming the limit
shape LPe? into a persistent shape ®re2 with neck curvature M,. <m.
The closed neck persists during further deflation until the lower limit
shape [2* with two identical spheres is reached. All two-sphere
vesicles with the same volume v (broken horizontal lines) have the
same neck curvature and the same shape but differ in their bending
energy, see text. The upper broken line corresponds to the two-
sphere geometry with v = 0.941 and M, = 24/2, the intermediate
broken line to v=0.871 and M, = 2.

97


rl8
Eingefügter Text
*


Understanding giant vesicles: A theoretical perspective

(7,0) = (2" 02" = (+/2,1/~/2). Thus, the limit shapes Zr<* are

located at

p=0P(m) and w2 w2 =2 (5.108)
while the 1.2 shapes are located at
WZWEUtZl/\/E and /772;713”2\/5. (5.109)

Note that all I.2" shapes have the same geometry but differ in
their bending energy which has the 7-dependent form

2(1—nm)?  withn =1/+2. (5.110)

out
Epe{L2"} = 7Eb;{;: b

which vanishes for 7z = 22"

=/2 and increases as ~ 7 for
large 7.

Inspection of Figure 5.17 shows that the two lines of limit
shapes enclose an extended region of two-sphere shapes, ®F*, with
stably closed necks. This region can be entered by deflation of the
Lr< shapes, by inflation of the I.2" shapes, and by increasing the
spontaneous curvature of the Z°<* shapes. All ©P* shapes that are
produced by one of these processes are persistent in the sense that
their necks remain stably closed during both deflation and inflation

as well as under small changes of the spontaneous curvature.

A second requirement for the stability of two-sphere vesicles is the
shape stability of both spheres. Thus, in order to examine the sta-

bility of the individual spheres, we now use the stability criterion

Eq. 5.78 together with the pressure difference P, = AP and AP

as given by Eq. 5.77. We then conclude that the spherical mother

vesicle with radius R, is stable if

AP =2 K R=3) or 25273 s
RiRy Ry noon
whereas the out-bud with radius R, is stable if
AP =27 4—§(mR2 -3 or Z> ””22_3. (5.112)
RRy R n s

Because the two radii , = R|/R,, and r, = R,/R,, satisfy the
geometric relation 415 =1, we can express both stability rela-
tions in terms of a single radius, say 7,. One then finds that both
individual spheres are stable for all limit shapes Zr¢* and 1.2 as
well as for the shapes Z°* with zero-energy buds. Furthermore,
the larger sphere of the intermediate persistent shapes ®F* is
always stable whereas the spherical out-bud may become unstable
for sufficiently large values of the spontaneous curvature and a
certain range of v-values. More precisely, the spherical out-bud
with radius 7, is stable if

22 (5.113)

and unstable if

252 (5.114)

Therefore, the instability line between the stable and unstable out-
buds follows from the solutions of the equation

(5.115)

This equation has no solution for 7 < 7, =13.29, one solution for
m = ms and two solutions for 7 > .

Therefore, the out-buds of the persistent shapes ®P* are
stable for 7 < g but become unstable for 7 > 7 and a certain
m-dependent range of v-values. At 7 = 7, the instability consists
of the single point (7,255 ) = (13.29,0.8259) which opens up into
a parabola-like curve for 7 > 7. For large 7, the upper and
lower branches of the parabola-like curve approach the Z°* line
and the I.2"" line, respectively. Because 7 =13.29, this bifurca-
tion structure is located outside of the (7,7)-region displayed in
Figure 5.17.

Thus, we conclude that two-sphere vesicles with out-buds
can be found in a large region of the morphology diagram
for 7> 0. In particular, when we deflate a limit shape Lp<
for 2 <m < mss ~=13.29, we obtain a family of stable persis-
tent shapes @ with decreasing neck curvatures My, until
we reach the limit shape I.2" with the smallest possible neck
curvature My, = 7+ = V2. Further deflation of the limit shape
1.2 leads back to a dumbbell-like shape with an open neck.

So far, two-sphere vesicles have been discussed in the context of
the spontaneous curvature model which depends on the locally
generated spontaneous curvature 7 and assumes that one molecu-
lar component of the bilayer membrane can undergo frequent
flip-flops between the two bilayer leaflets. It is instructive to

see how the morphology diagram is changed when we consider
bilayer membranes with slow flip-flops between the leaflets. In the
latter situation, the area difference AA between the two leaflets

is constrained as described by the nonlocal energy term in the
area-difference-elasticity model, see the nonlocal expression in

Eq. 5.64 that contributes to the energy functional Eq. 5.63 of this
model.

As explained in Section 4.7.1, the shapes that minimize this
energy functional also minimize the energy functional of the
spontaneous curvature model as in Eq. 5.12, provided we use
the effective spontaneous curvature 4 = m + m,,, as given
by Eq. 5.66 which represents the sum of the local spontaneous
curvature 7 and the nonlocal spontaneous curvature

KA o —Zmis}y
K A

Nplo =TT



as in Eq. 5.67. If the leaflets of a sphere with radius R, have
optimal molecular areas, one has /,; , = 47R,. and the geometric
factor of the nonlocal spontaneous curvature becomes

Ino = IntS) _ AnRve = Tu{S}
A 47 R%,

(5.116)

Now, consider again the two-sphere vesicles @ and ©™ with
radii R, and R, connected by a closed membrane neck as shown in
Figure 5.15. The integrated mean curvature Zy; of these shapes is
given by

Ty{O°} =4n(R +Ry) and Iy {@"}=4n(R —Ry) (5.117)

which leads to the geometric factors

471'RVC —IM{S} _ 1

—{A-nFn (5.118)
AR R :
and to the nonlocal spontaneous curvatures
_ KA _
Polo = MaloRee =7 = =(1=nF12) (5.119)

where the minus and plus sign applies to out- and in-buds, respec-
tively. The nonlocal spontaneous curvature involves the geometric

factor
1-nFn=1-nF1-1

where we used the area relation > + 75 = 1. For the shape @°u
with an out-bud, this expression is negative and bounded by

(5.120)

1-V2<1-n—=y1-n> <0 for0<n <1(out-bud). (5.121)

For the shape © with an in-bud, on the other hand, the corre-
sponding expression is positive and satisfies the bounds

0<1—n+y1-r> <241 for0<n<1(nbud). (5122

Therefore, the absolute value of the nonlocal spontaneous curva-
ture satisfies the bounds

| oo [T (N2 = 1)EA for @2 (5.123)
K

and
(5.124)

| oo [T (N2 +1) 22 for @1,
K

These bounds can be used to estimate the relative magnitude of
the nonlocal and local contributions to the spontaneous curva-
ture, see further below.

When we include area-difference-elasticity, the stability condi-
tions for the closed neck are given by Eqs 5.68 and 5.69 which
imply the neck closure condition

Me zl(lilj =+ glo = 77z+7rK—A(l—r1 Fn)(5.125)
2\n »m K

where the last equality follows from Eq. 5.119. In order to

determine the location of the limit shapes ZP<* and L% in the

(v, m)-plane, we must now combine the neck closure relation

Eq 5.125 with the geometric relations w+rs=land i £ =0.

In general, the x,-term will shift the ZP<- and L°-lines in the

(v, m)-plane, a shift that can be easily calculated for any value of

Kka/k. For positive spontaneous curvature, for example, one then

finds that the lines of limit shapes L= are shifted towards higher

m-values as we increase the rigidity ratio x,/k. Furthermore,

when we describe the shifted Lr lines by 7#P“* = f(»). the func-

tion f{v) develops a minimum for x,/k > 1.

In addition, we can draw some general conclusions about
the morphology diagram when we include the area-difference-
elasticity term proportional to k,. First, the limit shapes .2 and L™,
consisting of two spheres with the same radius, are again located
aty =p2" =1/\/§ for >0 and at » = s =0 for 7% < 0 as follows
from the two geometric relations alone. Therefore, the morphology
diagram in the (»,7)-plane will always contain extended regions
with (meta)stable two-sphere shapes as in Figure 5.17, irrespective
of the value of k,/k.

Second, we can conclude from the neck closure condition in
Eq. 5.125 and from the bounds provided by Eqs 5.123 and 5.124
that the nonlocal contributions 7z, arising from area difference
elasticity can be neglected for sufficiently large local contributions 7.
More precisely, we obtain from Eqs 5.125 and 5.123 that the
nonlocal spontaneous curvature can be ignored for the shape ©°u
if the local spontaneous curvature is sufficiently large and positive
with

7> n(2 1)L (out-bud). (5.126)
K

Likewise, combining Eq. 5.125 with Eq. 5.124, we conclude that

the nonlocal contribution can be ignored for the shape ©™ if the

local spontaneous curvature is large and negative with

< —n(2 + 1)';—A (in-bud). (5.127)

The ratio k,/k of the bending rigidities is expected to be of
the order of one (Débereiner et al., 1997). Therefore, both for
out- and for in-buds, the nonlocal contribution can be ignored
compared to the local one if | 72| > 1ot | m | > 1/R,.

Finally, assume that we were able to measure the radii 7, and 7, of
a vesicle during neck closure. We can then use the neck closure condi-
tion in Eq. 5.125 to estimate the local spontaneous curvature 7 via

m:l[1+lj+ﬂ,’m(n trn-1) (5.128)
K

2\n n

99



Understanding giant vesicles: A theoretical perspective

where the plus and minus sign applies to an out- and in-bud,
respectively. For small bud radius 7,, the radius n =4/1— 75 =115
When we use this asymptotic equality in Eq. 5.128, we obtain the
local spontaneous curvature which implies

mzl(liljinmrz for small buds with » < 1. (5.129)
2\n » K

‘The asymptotic behavior as given by Eq. 5.129 implies that the «,-
term can also be ignored for sufficiently small buds. This behavior
for small buds is consistent with the behavior for large spontaneous
curvatures 7 because large 7 implies limit shapes with small buds.

The influence of area difference elasticity on two-sphere
vesicles has been recently studied for giant vesicles that contained
lipids with photoresponsive F-Azo groups and underwent light-
induced budding (Georgiev et al., 2018). A theoretical analysis
of the experimental data based on Eq. 5.128 showed that the
spontaneous curvature can indeed be decomposed into a local
and a nonlocal contribution, that all vesicles were governed by the
same rigidity ratio k,/k, and that the local spontaneous curvature
m = Ry was about 1/(2.5 pm).

As explained in the previous subsections, the persistent shapes
@re2 have the same geometry, for a given volume v, as the limit
shapes LP° but an increased spontaneous curvature 7 compared
to the spontaneous curvature of ZP<*. When expressed in terms of
dimensionful variables, the spontaneous curvature 7 then satis-
fies the stability condition 7 > M. = %(M1 + Mz) for the closed
necks of out-buds as in Eqs 5.60 and 5.92. Now, consider an
explicit constriction force f'that acts on the neck radius R, which
we take into account by adding the term fR,, to the bending
energy in Eq. 5.54.1° We then obtain the generalized condition

f—4mc(My + My —2m)> 0 (5.130)

for a closed membrane neck which may be rewritten in the form

[+ fE >0 (5.131)

with the effective constriction force

S =4ak2m— My —M)>0  (out-buds with 7> 0). (5.132)
This constriction force vanishes when the neck satisfies the neck
closure condition M, + M, = 2m.

Now, let us consider a persistent shape @< close to the line
of limit shapes I.2"" which consist of two identical spheres. These
persistent shapes have a volume » > 1/+/2 and are characterized
by two spheres with small mean curvatures M, and M,, both of
which are of the order of \/E/Rve. Furthermore, the individual
spheres of these persistent shapes are stable up to fairly high
m-values because the individual spheres of the limit shapes .2
are stable for all values of . If the spontaneous curvature m

10The same approach has been used for the endocytosis and exocytosis of
nanoparticles in (Agudo-Canalejo and Lipowsky, 2016).

is large compared to both M| and M,, the expression for the
curvature-induced constriction force as given by Eq. 5.132 simpli-
fies and becomes asymptotically equal to

Woa N with )M =8akm for 2m > My + Mo, (5.133)

where £,)"" represents the curvature-induced constriction force.
Thus, for the bending rigidities x = 107 J and k = 4 X 107 ],
the spontaneous curvature 72 = 1/(100nm) generates the constric-
tion forces £,"* =~ 25 pN and £,,"* =100 pN, respectively.

In the absence of flip-flops between the bilayer leaflets, we
should include the effects of area-difference-elasticity as discussed
in the previous subsection. In this case, the effective constriction
force has the form

U =47k @+ 2m — My — M) >0 (5.134)
with the nonlocal spontaneous curvature
KA Taro—Zy{@°™ Ko l—n—
st — Ko I i@} Kal-n-n (5.135)
K A K Re

as in Eq. 5.119. This term is negative, see Eq. 5.121, which implies
that area-difference-elasticity acts to weaken the curvature-
induced constriction forces for out-buds.

In-buds with closed necks are formed for negative spontaneous
curvatures. In the latter case, we obtain the effective constriction force

fi8 = 4mic(My + My —2m)>0  (in-buds with #<0)  (5.136)

which behaves as /.t = f,,; with the curvature-induced constric-

tion force

N — _8akm  for 2m < My + My <0. (5.137)

In the absence of molecular flip-flops between the bilayer leaflets,
the effective constriction force is

iR = 4mic(My + My —2m—2mi%,) (5.138)
with the nonlocal spontaneous curvature
i Kka Ino—Zy{O™ kal—n+
in _ 5 Ka Lo Mi®T) _ Kal-ntn (5.139)

K A K Re

as in Eq. 5.119. This term is positive, see Eq. 5.122, which implies
that area-difference-elasticity also acts to weaken the effective
constriction forces for in-buds.

In the curvature models, a closed membrane neck is described
by a point-like discontinuity of the membrane curvature. Because
of the finite membrane thickness £ ., the radius R, of the mem-
brane neck is necessarily restricted to Ry 2 ¢ me. Therefore, strictly
speaking, the above derivation of the effective constriction forces
fHt and felff implicitly assumed that R, 2 ¢,,.. However, we
will now argue that these constriction forces may also be used to
obtain a simple criterion for the cleavage of the membrane neck.



Neck cleavage represents a topological transformation from
a budded vesicle that has the same topology as a single sphere to
a cleaved state with the topology of two spheres. The free energy
difference between the budded and the cleaved state involves
a contribution from the Gaussian curvature modulus x, see
Section 5.10 at the end of this chapter. Furthermore, this free
energy difference depends strongly on the magnitude of the
spontaneous curvature. For large values of ||, the fission process
is exergonic and reduces the free energy of the vesicle as explained
in Section 5.10.3. Therefore, in the presence of a large spontane-
ous curvature, thermodynamics allows fission to occur spontane-
ously, i.e., without any free energy input from a chemical reaction
such as ATP hydrolysis. How fast this exergonic process occurs
depends, however, on the free energy barrier between the budded
and the cleaved state of the vesicle membrane.

In order to cleave the membrane neck, we have to create two
bilayer edges. For a neck with radius R, these two bilayer edges
have the combined length 47R .. The associated edge energy E,
depends on the edge tension 4.4 and has the form

Eeq = 47 RyeAed

with Roe > £ me (5.140)

where the latter inequality reminds us that the neck radius should
exceed the membrane thickness £ . The edge energy provides

a simple estimate for the free energy barrier between the bud-

ded and the cleaved state of the vesicle membrane. This barrier
has to be overcome by the mechanical work £, R, expended by
the curvature-induced constriction force f,, = £, or f,,;* from
Rye =l me to R = 0. Therefore, we obtain the cleavage criterion
JfRo. > E 4 which is equivalent to

Hed

||| m |2 (5.141)

for large | 7] .

This criterion predicts that the membrane neck is cleaved and
undergoes fission if the absolute value || of the spontaneous
curvature is sufficiently large and exceeds the threshold value
|| = A4/ (2).

The main contribution to the edge tension 1.4 comes from the
interface between the hydrophobic core of the bilayer and the
aqueous solution. The corresponding interfacial tension X, may be
reduced by a rearrangement of the head groups along the bilayer
edge or by the adsorption of edge-active molecules. For an inter-
facial tension Xy, = 1 mN/m and a thickness £}, >~ 2 nm of the
hydrophobic core, we obtain the estimate Aeq = Zpclne 2 2 pN.
Using the typical bending rigidity k = 107" ], neck cleavage
requires the spontaneous curvature 7 to exceed the threshold
value | m |2 1/(100 nm). As we will see in Section 7.5 below,
neck cleavage is further facilitated by the adhesion of membranes
to solid substrates and nanoparticles.

Curvature-induced budding and fission has been recently
observed in molecular dynamics simulations of nanovesicles
(Ghosh et al., in preparation). In this case, the spontaneous curva-
ture was generated by the adsorption of small solute particles.
Combined budding and fission has also been observed experi-
mentally for giant vesicles exposed to polyhistidine-tagged GFP
proteins that were bound to certain lipid components within the
vesicle membranes (Steinkiihler et al., in preparation).

Let us now consider multi-sphere vesicles that consist of more
than two spheres connected by more than one closed neck, see
also Box 5.2. The Euler-Lagrange Eq. 5.70, which applies to all
membrane segments of such a multi-sphere vesicle apart from the
closed necks, implies that at most two different types of spheres
with two distinct radii, r, = R,/R,. and r, = R,/R,,, can coexist on
the same vesicle.

These two radii are determined by the membrane area
A=47R2, by the vesicle volume I = v(47t/3)R{?e, and by the
numbers N, and NV, of the two types of spheres. If both types of
spheres have a positive mean curvature, the two radii 7 and 7,
satisfy the geometric relations

Ny + Nors' =1 (5.142)

and
N+ Nors =p (My>0and M, >0). (5.143)

If we define the volumes #; and v, of the individual spheres via

MR o TR and YR =0, TR (5.144)

3 3 3

the relation Eq. 5.143 can be rewritten in the form
Niv1 + Novp = . (5145)

Simple examples for such multi-sphere shapes with /V, = 1 are
shown in Figure 5.18a—c. If the - and r,-spheres have positive
and negative mean curvature, respectively, multi-sphere shapes
with NV, > 1 are impossible because they would require differ-
ent types of necks with positive and negative neck curvature.
Therefore, we are left with /V, = 1, i.e., one large sphere with
N, in-buds as illustrated in Figure 5.18d. In the latter case, the
second geometric relation Eq. 5.143 is replaced by

713—]\T2723=1/1—N21/2 =y (]\7[1 >(and ]\7[2<0). (5.146)
In contrast to these geometric relations, the stability relations for
the membrane necks are local and do not depend on the sphere

2
2
(a) (b) (c) (d)

(a—c) Examples for vesicles consisting of 1 + N spheres
with positive neck curvature: (a) Large r,-sphere with two smaller
r-spheres; (b) Small r;-sphere with two larger r,-spheres as observed
in (Lipowsky and Dimova, 2003); (c) Large r,-sphere with three smaller
r,-spheres; and (d) Example for a vesicle consisting of 1 + 3 spheres
with negative neck curvature. For simplicity, all membrane necks have
been placed in the plane of the figure. The positions of these necks
are, however, arbitrary and can be shifted along the surface of the
large sphere as long as the buds do not intersect each other.
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numbers NV, and 2,. Therefore, both the neck closure condition
Eq. 5.91 as well as the closed neck conditions Eqs 5.92 and 5.93 are
valid for arbitrary numbers /V, and N, of - and 7,-spheres, where
we implicitly assume that these spheres do not intersect each other.
However, a multi-sphere vesicles built up from several
r-spheres and r,-spheres may exhibit different types of closed
necks. Indeed, we can distinguish necks between two 7-spheres
from necks between two 7,-spheres and from necks between
an 7- and an 7,-sphere. These three types of necks have differ-
ent neck curvatures My as long as 7, # 7,. In this section, we
will focus on the simplest case in which all necks have the same
curvature as in Figure 5.18 and again focus on the case with
out-buds. Multi-sphere shapes with two types of necks will be
discussed in the next section in the context of necklace-like
tubes.

The simplest multi-sphere shapes with more than two spheres
consist of one 7,-sphere and N 7,-spheres which are connected by
N closed necks with the same neck curvature M. All examples
in Figure 5.18 belong to this category. If the neck curvature is
positive, the 7,-spheres form N out-buds of the 7-sphere as in
Figure 5.18a—c. The latter shapes lead to a morphology diagram
with two bifurcation points Bf and Bf as displayed in Figure 5.19.

single sphere
1 Ve gle sp €L+
1

volume-to-area ratio v

<L

14N spheres of equal size "

»

C 4
m, mg » _
positive spontaneous curvature m

Morphology diagram for (1 + N)-sphere vesicles with
positive spontaneous curvature: The vesicles consist of one r;-sphere
and N r,-spheres as illustrated in Figure 5.18a-c. These vesicles are
(meta)stable within the yellow (dark and light) parameter region
bounded by three types of limit shapes (red lines), denoted by L},
L5, and L. . The limit shapes Lj and L; have variable neck curvature
M,e =m whereas the limit shapes L* have the constant neck curva-
ture M,. =1+ N. The limit shapes involve two types of bifurcation
points (black stars). At the bifurcation point Bi with coordinates
(m,v)=(m¥,v¥) as given by Egs 5.147 and 5.148, the limit shape L
bifurcates into the shapes i and L. The limit shape L: has a balanced
geometry in the sense that the volume of the r;-sphere is equal to
the combined volume of all r,-spheres. The same geometry applies
to the persistent shapes @+ along the horizontal broken line (blue)
that emanates from the bifurcation point B:. At the bifurcation point
B: with (m,v) = (m{,vi) =1+ N,1/ 1+ N) corresponding to the limit
shape Li, the limit shapes L. bifurcate off from the line of L} shapes.
The limit shapes L and Lt consist of 1 + N spheres with the same size.
The region between the L:-line and the Ly-line with m > m; (dark yellow)
is special because two different ®; shapes can be formed at each
point within this region: one of these shapes is characterized by r; > r,,
the other by r; < r,. Both shapes can be reached by inflation of the
limit shape L. as illustrated in Figure 5.20 for N = 3.

Inspection of Figure 5.19 reveals that membranes with sufficiently
small spontaneous curvatures do not form stable multi-sphere
shapes. As we increase the spontaneous curvature, we encounter
the bifurcation points Bf at which a single multi-sphere shape, %,
appears with spontaneous curvature

=i (N) = %(1 + N1/3y3/2 (5.147)
and volume
=sf(N)= 2 (5.148)
ﬁ—ﬂ*( )=(1+I\]1/3)3/2. .

It is interesting to note that 7% (N)sf (N) =1 for all values of N.
The limit shape It has a balanced volume in the sense that

= =Nr =N (balanced volume). (5.149)
i.e., the volume of the 7,-sphere is equal to the combined volume
of all 7,-spheres.

For 7 > m* (N), the limit shape I* bifurcates into two differ-
ent branches of limit shapes, I.{ and I3, as shown in Figure 5.19.
For the upper branch with the limit shapes I{, the volume », of the
7,-sphere exceeds the combined volume Vv, of the r,-spheres. For the
lower branch with the limit shapes 1.5, on the other hand, the 7y
spheres dominate in the sense that Vv, > v;. Thus, the volume ratio

p1 = "I > forthe L7 shapes (5.150)
2
but
p1 <1 for the I} shapes. (5.151)

As we move along the line of I.{-shapes by increasing the sponta-
neous curvature 7, both the total volume » and the volume ratio
p, increase monotonically until the 7-sphere has taken up the
whole volume in the limit of large 7. More precisely, the volume
V{I1} of the I{-shapes increases monotonically with increasing
spontaneous curvature 7 and behaves as

(5.152)

41 3
VI~ PR3 120
(L}~ [ 8772 4

3N N _
—3 for large 7.

On the other hand, we can also move along the lower branch of
the I}-shapes by increasing .5 which leads to a monotonic decay
of the volume ratio p; until the /V r,-spheres have taken up the
whole volume and » = 1\7723 ~1/ \/N, see Figure 5.19.

As a consequence, the two limit shapes L} and L} look rather
different for large 7. In this limit, the Lf—shapes consist of a large
r-sphere and N small 7,-spheres with radii

n=1 and n»n= % (L7, large ). (5.153)
2
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In contrast, the LE—shapes consist of a small 7-sphere and N large
r,-spheres with radii

~— d ] 5.154
nm— and 1 N ( )

(L5, large ).
For N = 2, these two limit shapes are illustrated in Figure 5.18a,b.

When we inspect the morphology diagram in Figure 5.19 more
closely, we discover an additional complication related to the
I5-branch. In contrast to the volume ratio p, that decreases
monotonically along this branch, the total volume V{I.}} of

the I5-shapes exhibits a minimum as a function of 7. At this
minimum, the I.5-shape consists of 1 + NV spheres of equal size
withn =m =1/+/1+ N, and provides the end point for the line
of limit shapes %, see Figure 5.19. Therefore, the limit shape I
with

1
1+ N

m=my(N)=J1+ N and »=s{(N)= (5.155)

:

represents a second bifurcation point, B, at which the I
shapes split off from the I} shapes. Note that the limit shape
L5 is built up from 1 + NV spheres of equal size with radius
n=n=1/J1+N =1/ ﬁg As a consequence, the bending energy
vanishes for each of these spheres and, thus, for the whole limit
shape L.

For 7> i (N), the volume V{I}} increases again and
behaves as

V{LE};ZTR?{ ! > ! } for large 77.  (5.156)

7_7_1’_7
JN 8N 8w

In contrast, all L shapes have the same geometry and, thus, the
same volume V{I.1} = (47[/3)]?3’C / N1+ N . The latter shapes are
distinguished by their bending energies which depend on 7. It is
again interesting to note that 7, (N)zg (IN) =1 for all values of V.

As shown in Figure 5.19, the lines of limit shapes I, I3, and
IE enclose an extended region of two-sphere shapes ®* with
stably closed necks. This region can be entered by deflation of I
or I} shapes, by inflation of I} or I shapes, and by increasing
the spontaneous curvature of I{ or I3 shapes. All ®* shapes
that are produced by one of these processes are persistent in the
sense that their neck remains stably closed during both deflation
and inflation as well as under small changes of the spontaneous
curvature.

It is interesting to note that all bifurcation points Bf and Bo
are located on the line » =1/ within the (7,v)-plane. Indeed, it
follows from Eqs 5.147 and 5.148 that 2 (N) =1/ % (N) and from
Eq. 5.155 that§ (N) =1/ 75 (IN) for all values of N. Furthermore, for
large IV, the 7-coordinates behave as 7+ (N) ~ %Nl/ % for the bifur-
cation points Bf and as 7§ (N) ~ NY2 for the bifurcation points B
which implies that the points By are more widely spaced compared to
the points Bf.

When we apply the stability criterion Eq. 5.78 to examine the
stability of the individual spheres, we find that both spheres

are stable for all limit shapes I.{, I3, and I.Z. Furthermore,

the larger sphere of the intermediate persistent shapes ®* is
always stable whereas the smaller sphere becomes unstable for
sufficiently large values of the spontaneous curvature. The cor-
responding instability lines now follow from the solutions of the
equation

2
n__ 3 (5.157)

This equation has no solution for 7 < 7 (IN'), one solution for
m = mss(IN) and two solutions for 7 > 74 (IN). The critical value
mss(IN) for the instability of the small spheres is found to be
mss =14.3,15.2, and 19.6 for N = 2, 3, 10, respectively.

For large 7, the right hand side of Eq. 5.157 becomes small
which implies the two asymptotic solutions

(large ) (5.158)

for the bud radius 7,. In the same limit, the reduced volume

3/2
y=1+Nr} =(1—N722) + N (5.159)
behaves as
S IR A R L Y A CA )
7 n
and as
1
RS =y<J>r form ~1/+1+N. (5.161)

JI+ N

Therefore, the two branches of the instability line approach the
straight lines v = 1 and » = » corresponding to a single sphere
and to a multi-sphere consisting of (I + V) spheres of equal size,
respectively, compare Figure 5.19.

Along the instability line that approaches » =2 =1/V1+ N
for large 7, the N buds are smaller than or equal to the central
sphere, i.e., 7, < 7, as illustrated in Figure 5.18a and Figure 5.20a.
In contrast, the shapes along the 1.} line with 7 > 7%:; are charac-
terized by IV buds that are larger than the central sphere, i.e., , > 7,
as illustrated in Figure 5.18b and Figure 5.20c. As a consequence,
the instability line that approaches » =2 =1/+1+ N for large 7
does not cross the I} line obtained for 7 > 7%:; . Indeed, for the
dark yellow region in Figure 5.19, we obtain a stack of two different
sheets of (1 + N)-spheres, the two sheets being connected via
the IL line. This bifurcation structure will be discussed in more
detail in the next paragraphs.
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As for two-sphere vesicles, the geometry of the persistent
shapes @+ is fully determined by the volume ». Thus, if we
consider any point (,,7,) within the region bounded by the
limit shapes, see the yellow region in Figure 5.19, the persis-
tent shape at this point has the same geometry as the limit
shape with the same volume » = v,, i.e., as the limit shape
obtained by projecting the point (7,,2,) parallel to the 7-axis
onto the line of limit shapes. Using this constant-volume pro-
jection, we can then distinguish persistent shapes @7, @, and
®3 which have the same geometry as the limit shapes I, Lf,
and I3, respectively.

Now, consider a point (7,,7,) within the region between the
L% line and the L}-line with 7 > ;77:; , corresponding to the dark
yellow region in Figure 5.19. The constant-volume projection of
this point onto the lines of limit shapes leads to two such shapes.
One of these I} shapes is located at 7 < /%g and characterized
by 7, > r, whereas the other L} shape is located at 7 > 7, which
implies 7, < 7,. As a consequence, for each point (7,,7,) within
the dark yellow region in Figure 5.19, we obtain two different per-
sistent shapes ®3 with 7, < 7, and r, > 5, respectively. Therefore,
the dark yellow region in Figure 5.19 is characterized by a stack
of two different sheets of shapes, two sheets that merge along the
line of limit shapes ..

This two-sheet structure of the morphology diagram has
interesting consequences for the deflation and inflation behav-
ior of the multi-sphere vesicles considered here. Starting from
a “balanced” persistent shape ®¥, deflation eventually leads
to a limit shape %, consisting of 1 + /N spheres of equal size.
Further deflation of the latter shape will open up the necks of the
IE-shapes. However, inflation of the I.E-shape will not necessar-
ily lead back to the ®3-shapes that were obtained by deflation
of the balanced ®¥-shapes. Indeed, the whole I.-line should
be regarded as another bifurcation line from which two sheets of
®3-shapes emanate, both of which are accessible via inflation of
the I L-shapes. Inflation along one of these two sheets leads back
to the balanced ®¥-shapes, inflation along the other sheet leads
to the limit shapes I with 7 > /%g This behavior is illustrated in
Figure 5.20 for N = 3.

Deflation
e

Inflation
(—

() (b)

R with V¥

The persistent shapes @* include the special shapes Z
out-buds that have radius »» =1/7 and, thus, vanishing bending
energy. The reduced volume of these latter shapes is given by

(4 NY?,N_, 3N _N
il el s )
m m m

a

(5.162)

for large .

Therefore, the line of special shapes Z{'" with zero-energy

buds also approaches the straight line v = 1 for a single sphere.
Comparison with Egs 5.152 and 5.160 shows that the line of ZR"
shapes is located between the line of limit shapes I{ as described
by Eq. 5.152 and the upper branch of the instability line for
individual spheres as given by Eq. 5.160. As a consequence, the
special shapes ZR'" are stable for large 7. Furthermore, the line of
ZR" shapes with zero-energy buds includes the limit shape L, see
Figure 5.19, because

for m=7§ =\J1+N. (5.163)

In the latter case, the N out-buds have the same size as the mother
vesicle which implies that the whole limit shape Ly has vanish-
ing bending energy as mentioned previously. Therefore, the ZX"
shapes with zero-energy buds have stably closed necks connect-
ing stable individual spheres, and the corresponding ZR" line in
the morphology diagram emanates from the limit shape I.j with
m=my =~/1+ N and approaches the straight line » = 1, corre-
sponding to a single sphere, for large 7.

When we include area-difference-elasticity, the shapes with a
large mother vesicle of radius 7 and NV spherical out-buds of
radius 7, generate the nonlocal spontaneous curvature

wnlo=n“<1—n—zwz>=n“(1—a— N(l—nz)j (5.164)
K K

Deflation
<

Inflation
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Three multi-sphere vesicles that can be transformed into each other by deflation or inflation. All three vesicles consist of a single
r;-sphere and three r,-spheres: (a) Persistent shape ®7 with one large ry-sphere with volume v, and N = 3 smaller r,-spheres with combined

volume 3v, < v;; (b) Limit shape L% for which the r,-sphere and the three r,-spheres have the same size; and (c) Persistent shape ®; with a small
r;-sphere and three larger r,-spheres. Deflation of @7 in (a) leads, via an intermediate shape @3, to L% as in (b) but inflation of L. can lead either
back to (a) or to (c). Such deflation and inflation processes are possible for m>m;g(3) = 2, see Figure 5.19.



which generalizes Eq. 5.119 from N=1 to NV > 1. The last

equality in Eq. 5.164 follows from the area relation n* + N7§ = 1.
The geometric factor in Eq. 5.164 is negative and bounded by

-1+ N <1-n— /N(1—r12) <0

which implies that the absolute value of the nonlocal spontaneous

(5.165)

curvature satisfies

| 7o [< 7 (VI+ N =1) =2, (5.166)
K
The neck closure condition is now given by
— 11 1
My = (+j =it e =+ T A (1=n = Nn)  (5.167)
2\n n K

Using the inequality in Eq. 5.166, we can ignore the nonlocal con-
tribution 7z, in the neck closure condition as given by Eq 5.167 for

> T+ N —1)=2 (5.168)
K

which generalizes Eq. 5.126 for two-sphere shapes with N =1 to
arbitrary values of V.

Alternatively, we can consider the limit of small out-buds and,
thus, small bud radii 7,. In this limit, the radius 7, of the mother
vesicle behaves as 1 ~ 1—%1\]722 for small Nrs as follows from the
area relation n° + Nrf =1. As a consequence, the neck closure
condition in Eq. 5.167 leads to the local spontaneous curvature

7 z1(1+1J+ﬂKAN72 for small buds with » < 1/ VN
K

(5.169)

which shows that we can ignore the k, term arising from area-

difference-elasticity for small n» <1/ JN.

Because all out-buds or 7,-spheres are attached to the 7-sphere,
they may become closely packed when they reach a certain size.
For N = 2 as shown in Figures 5.18a, b, the two ,-spheres can
become arbitrarily large without getting into contact. Therefore,
mutual exclusion of the two 7,-spheres does not affect the mor-
phology diagram in Figure 5.19. For NV = 3, mutual exclusion of
the three 7,-spheres starts to play a role when the radius of the
r,-spheres becomes sufficiently large compared to the radius of
the 7-sphere, compare Figure 5.20c. Indeed, the three 7,-spheres
come into contact when 7 = ﬁn = 6.46n corresponding to
the contact volume v, = 0.5712 %or N = 3. As a consequence,

(1 + 3)-sphere shapes with 7, > 7, can no longer be formed for the
volume range 0.5712<» <1/ \/5 =0.5774.

In general, the mutual exclusion of the 7,-spheres acts to
reduce the parameter region in which (1 + /V)-sphere shapes
can be formed for all V> 3. The corresponding contact volume
18 (N) decreases with increasing N. For N = 12, the r,-spheres

come into contact along the I.L-line where the 7,-spheres have
the same size as the 7-sphere. The corresponding contact vol-
ume 14,(12) = pg (12)=1/ V13 =0.2774. As a consequence,

(1 + 12)-sphere shapes, for which each 7,-sphere is larger than the
r-sphere can no longer be formed when we take mutual exclusion
of the r,-spheres into account. On the other hand, we can also
conclude that the morphology diagram exhibits both bifurcation
points B and B; as well as the limit shapes L{, .5 with , > 7,
and I up to bud number N = 11. Thus, for 3 < N < 11, the
mutual exclusion of the out-buds will only affect the (1 + N)-
spheres for which the bud radius 7, exceeds the radius 7 of the
central sphere, as illustrated in Figure 5.20c for N = 3.

In the previous subsections, we focused on the stability of dif-
ferent multi-sphere shapes and found certain stability regions
within the (,v)-plane for each of these shapes. When we vary
the spontaneous curvature 7 and the volume » within such a
stability region, the bending energy of the corresponding multi-
sphere shape changes smoothly and defines an energy surface
over this region. Because the different stability regions overlap
with each other in the (7,7)-plane, we often find many energy
surfaces stacked above one another, when we consider the vicin-
ity of a certain point in the (7,v)-plane. These energy surfaces of
the multi-sphere shapes should be regarded as partial branches
that supplement the branches of stationary solutions obtained
from the Euler-Lagrange equations. Therefore, the overall
energy landscape of the vesicle shapes is rather complex.

In order to determine the shape of lowest bending energy for
given values of 7 and v, we need to compare the different branches
of shapes. As an example, let us again consider multi-sphere shapes
with /V out-buds which have the dimensionless bending energy

Epe=(1—mR))* + N(1—= mRy)* =1+ N + > = 2m(n + Nry) (5.170)

where the radii 7, and 7, satisfy the geometric relations in Eqs 5.142
and 5.143 with N, = 1 and NV, = N. When we minimize this bend-
ing energy with respect to /N, we find the optimal bud number

2(1=) (5.171)

Nopt ® m* for large 7.
For N'= N, the radius of the out-buds has the value », ~ 1/m
which implies that shapes with an optimal bud number are
identical with the shapes ZR'" possessing N zero-energy out-buds.
The asymptotic equality as given by Eq. 5.171 implies that the
optimal number V= NV, of out-buds increases with the spon-
taneous curvature 77 when we consider a fixed volume » < 1 as
obtained by the osmotic deflation of a single sphere. The actual
shape transition from a shape with NV out-buds to a shape with

N + 1 out-buds necessarily involves smooth vesicle shapes with
open necks. For small values of &V, the corresponding bifurcations
have been calculated by numerical energy minimization in (Seifert
etal., 1991; Liu et al., 2016). For large values of V, we need to
consider sufficiently large GUVs with radius 7, > r, = 1/#4 so that
we can ignore the mutual exclusion of the out-buds.
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Box 5.2 Membrane necks of vesicles with laterally uniform composition

Membrane necks are funnel-like membrane structures that connect two different membrane compartments. The mean
curvatures, M, and M,, of the two membrane segments adjacent to the neck define the neck curvature M,. = 2(M; + M,) as
introduced in Eq. 5.48.

® GUV and out-bud connected by a narrow membrane neck (from Figure 5.2). The mother
vesicle has the radius R, = 19 um, the out-bud has the radius R, = 7.2 um. The neck cur-
vature M, then has the positive value M. = 2(7-+ 7)) = oA

® GUV and in-bud connected by a narrow membrane neck (from Figure 5.6). The mother
vesicle has the radius R, = 10.4 um, the in-bud has the radius R, = 4.7 um, which leads to
the negative neck curvature M, = J(g-— ) = —W.

When we observe the closure of a neck, the neck curvature M, is equal to the spontaneous curvature mgg, which may
include a non-local contribution from area-difference-elasticity as in Eq. 5.68. Thus, the observation of neck closure leads
to an estimate for m 4. Furthermore, sufficiently large values of m lead to the cleavage of the membrane neck and thus to
complete membrane fission, see Section 5.5.4.

® A spherical vesicle may form several spherical buds with closed membrane necks.
In equilibrium, all buds must have the same mean curvature as follows from the Euler-
Lagrange Eq. 5.70 for spherical membrane segments. Therefore, the necks of all buds
must have the same neck curvature M,..

® (Top) A vesicle with four out-buds and positive neck curvature.

® (Bottom) A vesicle with four in-buds and negative neck curvature.

out-tube consisting of four out-beads with the same positive mean curvature.

® (Bottom) A vesicle membrane with negative spontaneous curvature forming a necklace-
like in-tube consisting of four in-beads with the same negative mean curvature.

® |n both cases, the neck curvature M, attains two different values (i) for the necks con-
necting the necklace-like tube with the mother vesicle and (i) for the necks between two
neighboring beads within the tube.

@ﬁ ® (Top) A vesicle membrane with positive spontaneous curvature forming a necklace-like

® Five different morphologies of a vesicle with four in-beads or in-buds of equal size. All
five morphologies have the same membrane area, the same vesicle volume, the same
integrated mean curvature, and the same bending energy. This degeneracy illustrates
the morphological complexity of membranes, see Section 6.4 further below.

® Apart from the 4-bud morphology, all morphologies involve two types of necks that dif-
@ fer in their neck curvature.
GUVs with buds and necklace-like tubes stabilized by membrane necks have some interesting properties. On the one
hand, they provide aqueous subcompartments that could be used for the confinement of nanoparticles or microspheres.
The closed necks represent diffusion barriers that can, however, be removed relatively easily, e.g., by osmotic inflation
which leads to neck opening for all morphologies displayed in this box. On the other hand, the formation of many buds
and necklace-like tubes provides an area reservoir to the mother vesicle which increases the vesicle’s robustness against

mechanical perturbation as shown by micropipette aspiration (Bhatia et al., 2018). The stability of membrane necks can be
further enhanced by adhesion and constriction forces (Agudo-Canalejo and Lipowsky, 2016), see Chapter 8 of this book.




5.6

Giant vesicles can spontaneously form long nanotubes that
emanate from the vesicle membrane. Such a tubulation process
provides direct evidence that the vesicle membrane has a
relatively large spontaneous curvature 7. In-tubes pointing
towards the interior of the vesicle are formed for large nega-
tive m-values, see Figure 5.21, out-tubes pointing towards the
exterior solution for large positive values of 7. Therefore, a
uniform membrane with constant spontaneous curvature will
form either in-tubes or out-tubes but not both types of tubes
simultaneously.

In general, in- and out-tubes differ in several important aspects.
First, the in- and out-tubes are connected to different volume
reservoirs: the in-tubes exchange volume with the exterior aqueous
compartment, which represents an effectively unlimited volume
reservoir, whereas the out-tubes exchange aqueous solution with
the interior vesicle compartment. Second, the membranes of out-
and in-tubes experience different osmotic pressure differences: the
membrane of an out-tube is subject to the same pressure differ-
ence AP as the membrane of the large spherical segment whereas
an in-tube feels the opposite pressure difference —AP. Third, the
membrane segments that form in- and out-tubes differ in the sign
of their mean curvature which is negative for in-tubes and positive
for out-tubes.

As shown in Figure 5.21, membrane nanotubes can have
two different morphologies: necklace-like tubes consisting of
small quasi-spherical beads connected by closed membrane
necks as well as cylindrical tubes. From a theoretical point of
view, necklace-like tubes represent multi-sphere vesicles with
two types of necks whereas cylinders are governed by differ-
ent shape equations. For cylindrical tubes, we include a pulling
force that is applied locally to the tip of the tubes. For both tube
morphologies, the mechanical tension is relatively small, reflect-
ing the large area reservoir provided by the tubes, and the total
membrane tension is dominated by the spontaneous tension,

o = 2km?* (Lipowsky, 2013). At the end, we briefly discuss the
transformation of necklace-like tubes into cylindrical ones, a
transformation that occurs when the tube length has reached a
certain critical value.

Giant vesicles with in-tubes, i.e., with membrane nano-
tubes that point towards the vesicle interior: (a) one necklace-like
tube and several buds and (b) several necklace-like tubes and two
cylindrical tube segments (white arrows). (Reproduced with permis-
sion from Liu, Y. et al., ACS Nano, 10, 463-474, 2016.)

in-necklaces out-necklaces

(a) (b)

Necklace-like nanotubes consisting of spherules with
radius r, emanating from a giant spherical vesicle with radius r;. These
shapes involve two different types of closed necks, 12-necks and
22-necks, that differ in their neck curvatures: (a) Necklace-like in-
tubes with negative neck curvatures M,, and M,, < M, are formed for
negative spontaneous curvature; and (b) Necklace-like out-tubes with
positive neck curvatures M,, and M,, > M,, require a membrane with
positive spontaneous curvature.

Necklace-like nanotubes as observed experimentally consist of
identical quasi-spherical beads that are connected by closed mem-
brane necks. One such necklace consisting of three beads is visible
in Figure 5.21a. If one ignores thermally excited fluctuations, such
a necklace can be described, in the context of curvature models,
by a multi-sphere vesicle with two different types of closed necks
as shown in Figure 5.22. Indeed, we now have to distinguish the
necks between the large sphere and a necklace from the necks
between two small spheres within the same necklace. In the fol-
lowing, we will use three terms for the sake of clarity. First, we will
distinguish “buds” that are directly connected to the mother vesicle
from “beads” that are connected to buds or other beads. Second,
both buds and beads will be collectively called “spherules.”

Geometry of vesicle with necklace-like nanotubes. Consider
a GUYV consisting of a large spherical mother vesicle and one
or several necklace-like nanotubes as displayed in Figure 5.22.
The tubes contain a total number V of spherules. For a vesicle
membrane with area A, we will again use the vesicle size

Ry =,/ A/ (4m) as the basic length scale and use the rescaled
radii , = R)/R,. and r, = R)/R . < r; of the mother vesicle and the
spherules. These radii satisfy the relations

e+ Nrf =1 (5.172)
corresponding to the total membrane area 4 and
33—
nENr =v (5.173)

corresponding to the vesicle volume V' where the plus and minus
sign applies to out- and in-necklaces. Note that the same geomet-
ric relations apply to a GUV with /V out- or in-buds as described
in Section 5.5.

Stability of membrane necks. As mentioned, each necklace con-
nected to a giant vesicle is characterized by two types of necks,
12- and 22-necks, see Figure 5.22. These two necks have two
different neck curvatures as given by

My = %(1\41 M) (5.174)
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and

My :%(M2+M2):M2. (5.175)

We will now examine the stability of these two types of necks.
Out-necklaces require positive spontaneous curvature 72 > 0
and are characterized by positive mean curvature M, = 1/R, of
the spherules. For such a necklace, the 22-necks connecting two
neighboring spherules, see Figure 5.22, are stable if the neck
curvature M,,

0< My, =My <m (stable 22-neck of out-necklace).  (5.176)

Furthermore, the stability condition for the 12-necks, connecting
the mother vesicle with the out-necklace, has the form
M+ My < 2m (5.177)

which follows from the stability condition Eq. 5.176 for the
22-necks because

M+ My <2My < 2m. (5.178)

In-necklaces, on the other hand, can form for negative sponta-
neous curvature 7 < 0 and are characterized by negative mean
curvature M, = —1/R, of the spherules. The stability condition for
the 22-necks is now given by

m< My =My <0 (stable 22-neck of in-necklace). (5.179)

Furthermore, the stability condition for the 12-necks, connecting
the mother vesicle with the out-necklace, has the form
My + My 22m (5.180)

which follows from the stability condition Eq. 5.179 for the
22-necks because

My + Mz >2My = 2m. (5.181)

We now consider necklaces that consist of zero-energy spherules
with radius R, =1/ | m|< Ry and denote the shapes with NV zero-
energy spherules by L% and LY".1" In contrast to the persistent
shapes Z\ and Z{' with NV zero-energy in- and out-buds as
discussed in Section Multi-sphere vesicles with N out-buds, the
shapes .} and I.3/" are limit shapes because the closed 22-necks
between neighboring spherules fulfill the neck closure condition
M,, = m, compare Eqs 5.176 and 5.179.

For the limit shapes '\ and I}/ with spherules of radius
m =1/ |m|<& 1, the mother vesicle has the radius

"In (Liu et al., 2016), the shapes LY, have been denoted by LY.

l\/T

n=nN)=,1-— (5.182)
m
and the volume is given by
3/2 .
V:V(J\T):[l_Z\g} 1 §3’ (5183)
Z | 7]

where the minus and plus sign applies to in- and out-necklaces,
respectively.

Because the spherules have the radius », =1/ | 7|, the in- and
out-necklaces do not contribute to the bending energies of the LR
and LY shapes. The latter energies are then equal to the bending
energies of the mother vesicle with radius 7, and mean curvature
M, =1/ n. These bending energies have the form

Epe(n)=8nx(1- f7m)2 for both in- and out-necklaces (5.184)

corresponding to 77 <0 and 7z > 0, respectively. Using Eq. 5.182,
the latter bending energy can be rewritten as

Ene(n) _,

- L N
Epe(n) == =1+m" =2m[l-— =N (5.185)
8k m
which behaves as
Ebe(n):(l—;ﬁ)z—N(l—lj for large | 7| . (5.186)
Y/

The first term of this expression represents the bending energy of
a single sphere with spontaneous curvature 7. The second term
proportional to NV is negative for 7 <0 or 7z > 1. Thus, for large
negative or positive values of 7, the bending energies of the two
limit shapes L'\ and X" decrease with increasing N. Therefore,
these limit shapes provide possible low-energy pathways for the
osmotic deflation of giant vesicles with large negative and large
positive spontaneous curvatures, respectively. .

‘The low-energy pathway provided by the sequence of L'\ shapes
has been studied in detail by numerical minimization of the shape
functional 7{S} in Eq. 5.22 (Liu et al., 2016). As a result, it was
found that each limit shape I\ belongs to a different branch of
(meta)stable shapes. When we start from such a limit shape with a
certain value of /V, an increase in vesicle volume via osmotic infla-
tion leads to an opening of the necks and the necklaces then resem-
ble unduloids as shown in Figure 5.23b, compare also Figure 5.28
further below. On the other hand, decreasing the vesicle volume
by osmotic deflation does not open the closed necks connecting
neighboring spherules but increases the radius of the spherules to
r >1/| m|, see Figure 5.23b. The corresponding metastable branch
extends up to 7, = 3/| 7| at which point the spherules become
unstable and undergo a sphere-prolate bifurcation.

The mechanical equilibrium between the spherical mother vesicle
and the spherules implies the two shape equations

o 1 1
AP = 2EM, —4kmMg, with Mg, = My =— ot My =+—
Ry Ry
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Osmotic deflation and inflation of a lipid vesicle with size
R, = 20.7 um and spontaneous curvature m = —1/(599nm): (a) Energy
landscape of the vesicle as a function of the reduced volume v with the
limit shapes L™ = [}. The energy difference AE describes the deflation-
induced reduction in bending energy compared to the initial spherical
vesicle, in units of 8zx. The eight vertical lines labeled from 1 to 8 (top)
correspond to eight v-values obtained via eight discrete deflation
steps; and (b) Tube shapes for the global energy minima at these eight
v-values. The short vertical line on the left end of the tubes represents
a short segment of the mother vesicle which is connected to each
tube by a closed membrane neck. As we deflate the initial vesicle
with v =1, we move along the 1-necklace branch (red) that begins
at the limit shape Lst° with bud radius R, ~ 1/(2|m|) and v = 0.9997.
After passing the shape L' = L7 with R, = 1/|m| and v = 0.9987, we
reach the reduced volume v = 0.9982 at which the 1-necklace branch
crosses the 2-necklace branch (blue). For the latter v-value, a bud with
radius R, > 1/|m| coexists with a 2-necklace that has an open 22-neck.
Further deflation leads to the 2-necklace ['?' = ['§ with a closed neck at
v =0.9975 and, subsequently, to the 3-necklace branch (orange) and
the 4-necklace branch (green). The dashed and solid segments of the
free energy landscape in panel (a) correspond to tubes with closed
and open necks, respectively. (Reproduced with permission from Liu,
Y. et al., ACS Nano, 10, 463-474, 2016.)

as in Eq. 5.70 with the total membrane tension 3 = ¥ + 2k .
Combining these two equations to eliminate the pressure differ-
ence AP, we obtain the mechanical tension

¥ = 2km(My + My) = 2Km” = dkmMys —2km”  (5.187)
where the first equality is equal to Eq. 5.76 and the second equal-
ity follows from the mean curvature M, of the 12-neck as given
by Eq. 5.174. Therefore, the mechanical tension X depends on the
neck curvature M, whereas the stability of the multi-sphere shape
is determined by the neck curvature M,, of the 22-necks.

For the limit shapes I'{ and LY, the spherules have the mean
curvature M, = m and the mean curvature of the 12-necks is
given by M1 = £ (M + m). As a consequence, the mechanical
tension in Eq. 5.187 becomes

5 = oy =2 =3 R
mRy Ry

(5.188)

where the minus and plus sign applies to the limit shapes Iy
and LY, respectively. Because the radius R, of the mother vesicle
is much larger than the radius R, = 1/|m]| of the spherules, the
absolute value || of the mechanical tension in Eq. 5.188 is much
smaller than the spontaneous tension ¢ = 2km?.

The limit shapes I} and LY represent the equilibrium shapes
of the tubulated vesicle for certain vesicle volumes or, equiva-
lently, for certain values of the membrane area

Ane = Ane N = Nan/m*  (limit shapes LY and LY)  (5.189)
stored in the tubes (Liu et al., 2016; Bhatia et al., 2018). Each

of these limit shapes belongs to a whole branch of shapes, as
illustrated for in-necklaces by the energy branches in Figures 5.23
and 5.24. The latter figure displays the bending energy landscape
E, for the necklace-like tubes that grow as we reduce the volume
of the GUV. The deflation process decreases the membrane area
A, of the mother vesicle and increases the area 4, stored in the
tubes, for fixed total area A = A, + A,.. The bending energy of
the tubulated GUV is equal to £, + E,, where the bending energy

E, of the mother vesicle is a monotonically decreasing function

o
w

[sto i Qo ;o
./ N ,I ". .I' 4-'

o
N

Tube energy E [87K]
o

o

0 1 2 3 4 5
Tube area Ay [47/m?]

Energy landscape E,, of a necklace-like nanotube
protruding into a GUV as a function of membrane area A, stored
in the tube. The size of the GUV is much larger than the width of
the nanotube. The energy landscape is built up from a discrete set
of [N]-branches with N > 1. The different branches are distinguished
by different colors. Each [N]-branch attains its energy minimum for the
limit shape ™ = [, which consists of N spherules with radius R,= 1/|m|
and area 4z/m?. When we deflate the limit shape LIV, i.e., when we
reduce the vesicle volume for fixed membrane area, we move towards
larger values of the tube area A, along the dotted lines which repre-
sent necklace-like tubes with N small spheres of radius R, > 1/|m| and
N — 1 closed necks. When R, reaches the limiting value R, = 3/|m|, the
spherules undergo a sphere-prolate bifurcation (outside of the figure).
When we inflate the limit shape N1 = [ we move towards smaller val-
ues of A, along the full lines that represent necklace-like tubes with N
bellies and N — 1 open necks. The dash-dotted lines represent unsta-
ble necklace-like tubes corresponding to transition states [N, N + 1]
between the (meta)stable [N] and [N + 1] states. The red circles mark
the nanotube morphologies displayed in Figure 5.25. (From Bhatia, T.
etal., ACS Nano, 12, 4478-4485, 2018.)
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Morphologies of necklace-like nanotubes corresponding
to the red circles in Figure 5.24. The number at the top of each tube
represents the tube area A, in units of 4z/m?: (a) Four shapes along
the (meta)stable [3]-branch. The shape with A, = 1.86 represents
the bifurcation point between the [3]-branch and the unstable [2,
3]-branch of transition states. The shape with A,, = 3 is the limit shape

1. (b) Three shapes along the unstable [2, 3]-branch of transition
states. The shape with A, = 2.13 is located at the energy minimum
of the [2, 3]-branch, see Figure 5.24, the shape with A, = 2.36
separates transition states with three from those with two bellies;
and (c) Metastable shape of the [2]-branch that decays into the limit
shape [ = ['§ via the rightmost transition state in (b) with A , = 3 (two
arrows). (From Bhatia, T. et al., ACS Nano, 12, 4478-4485, 2018.)

of A,.. Examples for the morphologies of the necklace-like tubes
along several branches of the energy landscape are displayed in
Figure 5.25.

Inspection of the energy landscape in Figure 5.24 reveals
that the equilibrium shapes with the lowest bending energy £,
are provided by short segments of the [/V]-branches as obrained
by slight deflation and slight inflation of the limit shapes L.
Slight deflation of L\ reduces the vesicle volume and increases
the area A, of the necklace-like tubes until we reach the inter-
section point of the [N]-branch with the [V + 1]-branch at tube
area A, = (N + €y)4n/m? with a dimensionless coeflicient ¢
that satisfies 0 < e, < 1. We now consider the increase in tube
area as given by

4
Am - Ant,l\" = 61\" 2
m

with 0 < 5N < EN (5190)

which leads to the mean curvature

m

My =—F——=~
: J1+0n /N

The number V of spherules is directly related to the length L
of the necklace-like nanotubes via L, = 2NR, = 2N/|M,| which
implies

m(l—;t}) for large N. (5.191)

ON

My = m+ (5.192)

for large Lo > Ry,

nt

i.e., for a tube length L, that is large compared to the radius R, of
the spherules, with 0 < §,, < 1. Using again the general expres-
sion for the mechanical tension X of necklace-like tubes as given
by Eq. 5.187, we obtain

X = 2Km M1+@ = L + O o
Lt mRy il

Therefore, the absolute value |Z| of a necklace-like tube is much
smaller than the spontaneous tension o if both the mother vesicle
radius R, and the tube length L  are much larger than the small
sphere radius R, ~ 1/||. In such a situation, the total mem-
brane tension £ =X+ 0 of a GUV with necklace-like nanotubes
becomes

(5.193)

ﬁz2+o=( L ON j6+6=0 (large|m|)  (5.194)

mBRy mlg

and is, thus dominated by the spontaneous tension 6. The small
mechanical tension reflects the large area reservoirs as provided by
the nanotubes. Indeed, when the tubulated vesicle is exposed to
external forces or constraints, it can adapt to these perturbations,
for fixed vesicle volume and membrane area, by simply shortening
the nanotubes. This increased robustness of tubulated vesicles has
been recently demonstrated by micropipette aspiration of tubu-

lated GUVs (Bhatia et al., 2018).

As previously mentioned, the limit shapes 1% displayed in
Figure 5.23 provide a low-energy pathway for the growth of a
single necklace-like tube. The elongation of this tube from L™
to LI proceeds via a sphere-prolate bifurcation. Inspection of
the microscopy images displayed in Figure 5.21 and Figure 5.4
reveals however that giant vesicles can form much more complex
shapes consisting of many buds and tubes. This morphological
complexity emerges from the presence of a second low-energy
pathway provided by the nucleation of another bud via an oblate-
stomatocyte bifurcation (Liu et al., 2016). The competition of
these two pathways—eclongation of an existing bud or necklace
and nucleation of another bud—can lead to many different mor-
phologies (Lipowsky, 2018Db).

In order to illustrate the morphological complexity, let us
consider a monodisperse batch of vesicles with a certain spontane-
ous curvature 7. These vesicles are now osmotically deflated by
the same deflation steps as in Figures 5.23-5.25. As a result, we
obtain the same sequence of vesicle volumes V), that lead to the
limit shapes L%, but let us now include the possibilities (i) that
the vesicle membrane can also form, at each step, a new bud and
(ii) that the same deflation step can elongate any of the existing
buds and necklaces. As a result, we obtain a complex sequence of
morphologies as shown in Figure 5.26.

In Figure 5.26, all morphologies with the same number N of
spherules have the same bending energy (Lipowsky, 2014a; Liu
et al., 2016) and represent, in fact, the states of lowest bending
energy for given area A and volume V. The N-bead morphologies



(a) The deflation of the limit shape [[" = L] in with a single
in-bud (top) can lead to the shape [¥ = [} with a necklace consisting of
two spherules or to another shape with two in-buds. Further deflation
steps (arrows) lead to an increasing number |Q| of distinct N-bead
morphologies which all have the same area, volume, and bending
energy and represent, in fact, the states of lowest bending energy.
Note that we have |Q| = 5 distinct morphologies with N = 4 spherules;
and (b) For N = 6, the vesicle can attain |Q| = 11 different morpholo-
gies, all having the same volume, area, and bending energy as [ = L&.
Neighboring morphologies differ in the location of only one bead and
can be obtained by a “cut and paste” operation (Lipowsky, 2014a).

In both (a) and (b), all contact zones between two spherical mem-
brane segments contain a closed membrane neck which implies that
all beads are filled with exterior solution (white).

differ, however, in the detailed arrangement of the spherules

and belong to different energy branches that cross each other at
volume V'= V. Note also that all spherules connected to the
same mother vesicle must have the same size. The latter feature
follows directly from the Euler-Lagrange equation for uniform
membranes because this equation allows only spherical segments
with two different radii to coexist on the same vesicle.

What happens when we continue to deflate the vesicles
displayed at the bottom of Figure 5.26a? It turns out that the
number |Q| of distinct N-spherule morphologies grows quite rap-
idly for N> 4. This is illustrated in Figure 5.26b by the |Q| = 11
distinct states of lowest bending energy for V= 6. Each of these
11 states has again the same area, volume, and bending energy.
Therefore, we have 11 different branches of shapes that cross each
other at volume V= V,. For even larger values of /V, the number
|| of distinct N-spherule morphologies grows exponentially with
\/N as follows from known results about partitions in the sense
of mathematical number theory. Furthermore, when we reach a
certain volume V) after the Nth deflation step, many 7-spherule
morphologies with 7z < N can still exist as metastable states with
larger spherule sizes. As a consequence, the energy landscape
becomes more and more rugged as the volume decreases and the
largest possible bead number N increases.

The morphological complexity described above has been
recently studied experimentally by optical microscopy of giant
vesicles (Bhatia et al., in preparation). These vesicles were exposed
to aqueous solutions of two senesaccharides, sucrose and
glucose. Varying the two sugar concentrations, one can inde-
pendently change the volume-to-area ratio » and the spontaneous
curvature 7. As a result, a large variety of different morphologies
has been observed, in agreement with the theoretical predictions.

As shown in Figure 5.21b, the spontaneous tubulation of giant
vesicles can also lead to cylindrical nanotubes. Cylindrical shapes

are described by two shape equations, both of which differ from
the shape equation for spherical shapes. In the next subsection, we
will first derive the shape equations for cylinders. In the subse-
quent subsection, we will then combine the shape equations for
cylinders and spheres in order to describe giant vesicles with
cylindrical nanotubes.

A cylindrical membrane segment is characterized by constant
mean curvature M = M_ and vanishing Gaussian curvature G = 0.
It then follows from the Euler-Lagrange Eq. 5.23 that the mean
curvature M, satisfies the cubic equation

AP =25Mey —4ic Moy (M2, =) = 25Moy —4k M3, (5.195)
with the total membrane tension £ = X + 2k as before. In con-
trast to spherical shapes, an infinitesimal scale transformation

of cylindrical shapes leads to a global shape Eq. 5.45 that differs
from the Euler-Lagrange Eq. 5.195. Indeed, the global shape
equation has the form

3AP =85 My — 16K mME (5.196)
for both in- and out-tubes. The Euler-Lagrange Eq. 5.195 and
the global shape Eq. 5.196 can be derived in a more intui-
tive manner if one parametrizes the cylindrical shape by its
radius R, and its length Z_, and minimizes the corresponding
shape energy both with respect to R, and with respect to L,
(Lipowsky, 2013). ~

We can now eliminate the term proportional to £ by a
combination of Eqs 5.195 and 5.196 which leads to the pressure
difference

AP =165 Mg (m — Mey). (5.197)

When we insert the latter equation into Eq. 5.195, we obtain the
total tension

S =8kmMey — 6k ME (5.198)
and the mechanical tension
T =5 2km? = —6Kk(Mey — m)(Mey —%m) (5.199)

as a function of mean curvature M.

The two relations in Eqs 5.197 and 5.199 have two immedi-
ate consequences: (i) For fixed curvature-elastic parameters k
and 7 , each possible value of M leads to unique values of AP
and X. Thus, as we vary the value of M_, we move along a certain
line in the (X, AP)-plane; and (ii) Vice versa, for each point in the
(%, AP)-plane, we find only a single solution for M. Taken sepa-
rately, both the cubic relationship Eq. 5.197 between the pressure
difference AP and the mean curvature M, as well as the quadratic

m


rl8
Durchstreichen

rl8
Eingefügter Text
simple sugars


Understanding giant vesicles: A theoretical perspective

relationship Eq. 5.199 between the mechanical tension X and A7
can lead to several solutions for M. However, one cannot find two
different values for M, that satisfy both relationships simultane-
ously. Therefore, these equations do not allow the coexistence of
two cylinders with different radii.

To proceed, let us now consider a vesicle as shown in Figures 5.5
and 5.27 that has the shape of a large sphere with radius R, and

a cylindrical tube with radius R and length Z_. As in the case of
necklace-like tubes, we must distinguish cylindrical in-tubes as

in Figure 5.27a from cylindrical out-tubes as in Figure 5.27b. To
study the interplay of spontaneous and force-induced tubulation,
a locally applied external force will be included that acts at the tip
of the cylinder as shown in Figure 5.27. The force fis taken to be
positive and negative if it points towards the exterior and interior
aqueous solution, respectively, see Figure 5.27 (this convention is
different from the one used in (Lipowsky, 2013), where fdescribed
the absolute value of the pulling force for both pulling directions).
As shown in (Lipowsky, 2013), minimization with respect to

R, and L, then leads to two equations that have the same form
as Egs 5.197 and 5.199 but with the spontaneous curvature 7
replaced by the composite curvature

Mreom = it (5.200)
4K

which represents the superposition of the spontaneous curvature
m and the rescaled pulling force f/(47k).

Next, we take into account that the cylindrical tubes emanate
from a giant spherical vesicle as in Figure 5.27. The different
membrane segments that form the tubes and the giant vesicle
experience the same pressure difference AP and the same mem-
brane tension X. These two quantities are related to the mean
curvature of the giant vesicle via the Euler-Lagrange equation

AP =25 Mg, — 4k mM3,

as given by Eq. 5.70 with M, = 1/R.
If we insert the expressions Eqs 5.197 and 5.199 for the cylin-
der, with m replaced by m,,,, into the Euler-Lagrange Eq. 5.70 for

f=f >0

(@) (b)

Giant vesicles with cylindrical nanotubes formed by
spontaneous or force-induced tubulation: (a) Cylindrical in-tube in
the presence of a pulling force f = f,, that points towards the interior
solution; and (b) Cylindrical out-tube in the presence of a pulling force
f = f,, that points towards the exterior solution. The pulling forces f,,
and f,, are taken to be negative and positive, respectively.

the sphere, we obtain a cubic equation for the mean curvature M,
which has the form (Lipowsky, 2013)

4(Mey)=0 (5.201)

with the polynomial

&(x) =45 = (4com +3Map )7 + Amcom Mo = m Mg, (5.202)

A cylindrical nanotube that emanates from a large mother
vesicle must have a radius R, that is much smaller than the
radius R, of the large mother vesicle. This separation of length
scales is corroborated by the experimental observations, com-
pare Figure 5.21b, and implies that the curvature [M, | = 1/
(2R.,) of the cylindrical tube is much larger than the curvature
M, = 1/R,,, of the giant vesicle. In this limit, the cubic equa-

tion Eq. 5.201 has the solution

1
Mcyzmcom_ =m+ f -

(5.203)
4R, Ank 4Ry

for Ry, > Ry

Therefore, to leading order, the mean curvature of the cylindrical
nanotube is equal to the composite curvature m,,, = m + fl(47k).
For spontaneous tubulation with f'= 0, the relation Eq. 5.203
also implies that the limit of large R,/R, is equivalent to the

limit of large |m|R, which is of the same order of magnitude as

| 7 = | Ry

Alternatively, we may also combine the Euler-Lagrange

Eq 5.70 for the large sphere with the Euler-Lagrange Eq. 5.195 for
the cylindrical nanotube to eliminate only the pressure differ-
ence. In the limit of giant vesicles, we then obtain the asymptotic
equality

Mcyzi«/i/(ZK)—i for | |1/ Ry

p

(5.204)

with the total membrane tension £ = +0 = X + 2k as in

Eq. 5.26, where the plus and minus sign in Eq. 5.204 applies to
out- and in-tubes, respectively. Note that the latter relation does
not depend explicitly on the locally applied force £7 A combination
of the two asymptotic equalities Eqs 5.203 and 5.204 then leads
to the relation

cwv L s 5o -1 forRy> Ry (5.209)

Mcom
47Kk 4R,

between the spontaneous curvature 7, the locally applied force
f; and the total membrane tension £ = X + ¢ which includes the
spontaneous tension ¢ = 2km?* and, thus, depends on the sponta-
neous curvature 7 as well.

It is also possible to pull both out- and in-tubes via an optical
trap from the same aspirated GUV (Dasgupta and Dimova, 2014;
Dasgupta et al., 2018). One can then measure the two forces .,
and f;, that generate out- and in-tubes for the same aspiration



pressure and, thus, for the same mechanical membrane tension .
Both cases are described by Eq. 5.205 with freplaced by f;, for
the plus sign and by f;, for the minus sign. The sum of these two
relations leads to the simple expression

(Rp > Rey) (5.2006)

for the spontaneous curvature 72. The term —1/(4R, ) represents

again a small correction term because |72 >> 1/R, as in Eq. 5.204.
Therefore, one can determine the spontaneous curvature 7 by
measuring the forces £, and f;, irrespective of the membrane tension.
For symmetric bilayers as studied in (Dasgupta and Dimova, 2014),
the spontaneous curvature vanishes and the relation Eq. 5.206 implies
that f;, = —f.,. For GUVs containing a binary mixture of POPC and
GM], on the other hand, the out- and in-pulling forces, £ and f;,
were observed to have different magnitudes, i.e., f;, # —f., which
implies a nonzero spontaneous curvature (Dasgupta et al., 2018).

The relationship betweenthecompusitecurvature-amd-thretotat
Trrermbrarreterssio as given by Eq. 5.205 depends on the total
membrane tension £ In some experimental studies of force-
induced out-tubes, (Sorre et al., 2012; Simunovic et al., 2015)
the relation in Eq. 5.205 was used with the total membrane
1sp 45 Obtained
from the spherical end cap of the membrane tongue within the
micropipette. Thus, consider the membrane tongue of a GUV
that is aspirated by a cylindrical micropipette with radius R,
The spherical end cap of this tongue has the mean curvature M
< UR,;, which increases initially from the value M, = 1/R,, i.e.,
the mean curvature of the initial mother vesicle, up to M, =
l/RPip and then remains constant during further aspiration. Thus,
it is useful to distinguish 7nitial aspiration with 1/R,, < M, <
/R, from prolonged aspiration with M,, = 1/R,;.
If the pressures within the interior vesicle compartment and
within the pipette are denoted by P, and P,;,, the spherical end
cap of the tongue is then described by the shape equation

tension ¥ replaced by the aspiration tension X

Pa — Byip = 25M,, — 4K mM?, (5.207)
as follows from Eq. 5.70 for spherical segments with A/, replaced
by M,,. In addition, the spherical mother vesicle with curvature
radius R, and mean curvature M, = 1/R, leads to the second
shape equation

Po — Py = 25Myp, — 4K M2,

as in Eq. 5.70. Subtracting the latter equation from Eq. 5.207, we
obtain the suction pressure

P — Pyip = 2[ My — Msp][i ~2km( Mo + My )]. (5.208)

Note that the suction pressure P, — P, vanishes for M, = M,
which corresponds to the initial contact between GUV and

pipette.

Solving Eq. 5.208 for the total membrane tension 3, we obtain

=%, +AS (5.209)
with the aspiration tension
Pex — By
TSap=——— L2 for My, > My, (5.210)
2(Myy — Mgp)
and the additional tension term
AL =2k m( Mgy + Myo). (5.211)

When the mean curvature M, of the tongue’s end cap has
reached its maximal value I/Rpip, the aspiration tension and the
additional tension term become

(Pex = B pip)Rpip

Zasp = 5.212
P72 R/ Ry) 6212

and

AS = 2km(Mgy +1/ Ryip)- (5.213)
The expression in Eq. 5.212 has been widely used to obtain the
aspiration tension from micropipette experiments by control-
ling the suction pressure 2, — P,;,
radius R,;, as well as the radius R, of the mother vesicle by opti-
cal microscopy. The approximation used in (Sorre et al., 2012;
Simunovic et al., 2015; Da}sgupta etal., 2018) was to ignoreAthe
additional tension term AX and to replace the total tension ¥ in
Eq 5.205 by the aspiration tension X, as given by Eq. 5.212.
The accuracy of this approximation depends on the magni-

and by measuring the pipette

tude of the suction pressure and of the spontaneous curvature.
As an example, let us consider a GUV membrane with bend-
ing rigidity k = 107" J and spontaneous curvature » = 7/um
and let us assume that the GUV is aspirated by a micropipette of
radius R,;, = 3 tm and then forms a larger spherical segment of
radius R, = 6 m. The additional tension term AX then has the
magnitude 2k 72( Mg, +1/ Rpip) = 0.1 UN/m which is equal to

1 uN/m for 7 =10 or m = 1/(100 nm). This inaccuracy should be
compared to the smallest values of the aspiration tension which
are also of the order of 1 WN/m for the considered geometry, cor-
responding to the smallest accessible suction pressures of about
1 Pa. Therefore, we conclude that the additional tension term AX
should 7oz be neglected if the spontaneous curvature is large and/
or if the suction pressure is small.

In the absence of locally applied pulling forces, the total ten-

sion X =X + 0 of a cylindrical nanotube is given by the relation
Eq 5.198, which depends on the bending rigidity «, the spontane-
ous curvature 72, and the tube’s mean curvature M. Inserting the
asymprtotic equality Eq. 5.203 for M_, with f= 0 into Eq 5.198,

the total tension becomes
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2 K 1
a2kt A = 14—
P 77hsp

for large | m | Ry, (5.214)

with the spontaneous tension ¢ = 2km?. It then follows that the
total membrane tension is again dominated by the spontaneous
tension and that the mechanical tension T =3 — & behaves as
(Lipowsky, 2013)

1 R,
~ 57— c=+t—T¢o for large | m | Rp
RSP ZiﬁRgP Rsp

(5.215)

where the plus and minus sign applies to out- and in-tubes,
respectively. Thus, in the limit of large R /R, or large
Ry, | m || 7| corresponding to large spherical segments or narrow
tubes, the total tension X approaches the spontancous tension o
whereas the mechanical tension goes to zero as X ~ km/R,,.

It is interesting to note that the relation Eq. 5.215 is equiva-
lent to 1/R, ~ X/(km). A combination of this latter relation with
Eq 5.203 leads to

Mey = m—i for Ry > Ry and f=0.

(5.216)
4K m

Thus, for fixed values of the curvature-elastic parameters x and 7,

an increase in the mechanical membrane tension X leads to a

reduction of [M, | and, thus, to an increase in the tube radius

R, This conclusion, which applies to both 72> 0 and m < 0, is

somewhat counterintuitive but also follows from the quadratic

expression Eq. 5.199 for the mechanical tension X as a function of

M,,. A closer look at this latter expression reveals that cylindrical

tubes do not exist for

2 [0}

SS%. = 2knt = (5.217)
3 3

(no cylindrical tubes).

Furthermore, starting from a cylinder with M, = m, correspond-
ing to X = 0 and zero bending energy, an increase in the mechan-
ical tension X decreases the mean curvature |M, | and increases
the cylinder radius R, = 1/(2|M|) until we reach =% = 0/3
corresponding to a cylindrical tube with mean curvature

M., = 2|m|/3 and radius R, = 3/(4|m)).

As shown in Figure 5.21b, necklace-like and cylindrical nano-
tubes have been observed to coexist on the same vesicle. These
observations can be understood from the competition of differ-
ent energy contributions which favor necklace-like tubes below a
certain critical tube length but cylindrical tubes above this length
(Lipowsky, 2013; Liu et al., 2016). At the critical tube length, the
necklace-like tube transforms into a cylindrical one. Such a trans-
formation can proceed in a continuous manner viz intermediate
unduloids as shown in Figure 5.28.

The existence of a critical tube length can be understood intu-
itively from the following simple argument (Lipowsky, 2013).
If the membrane has spontaneous curvature 7, a necklace-like

(@) A

oW
. G G . .
(b) \ 4 N - W

&/

(c)

Low energy transformation of a necklace-like tube into
a capped cylinder: All three tubes have the same surface area and,
apart from the end caps, the same mean curvature M which is equal
to the spontaneous curvature m. (a) Necklace-like tube L} with vanish-
ing bending energy consisting of six spherules connected by closed
membrane necks. The spherules have the radius R, = 1/|m| and mean
curvature M = —1/R, = m; (b) Capped unduloid with neck radius R,.,
bulge radius Ry,, and mean curvature M = -1/(R,. + R,,) = m; and
(c) Capped cylinder with radius Ry, = 1/(2|m|) and mean curvature
M = —1/(2R.,) = m. The transformation of the sphere-necklace into the
cylinder proceeds via a continuous family of intermediate unduloids.
During this transformation, the tube volume is reduced by a factor
3/4. If we ignore the end caps of the unduloids in (b) and the cylin-
der in (c), both types of tubes have zero bending energy as does the
necklace-like tube in (a). (Reproduced with permission from Liu, Y.
et al.,, ACS Nano, 10, 463-474, 2016.)

tube consisting of spherules with radius R, = 1/|m| connected
by closed membrane necks has vanishing bending energy. For a
cylindrical tube with radius R, = 1/(2|]), the main body of
the cylinder also has vanishing bending energy but such a tube
must be closed by two end caps which have the finite bend-
ing energy 27k. Therefore, the bending energy of the end caps
disfavors the cylindrical tube. On the other hand, the necklace-
like tube has a larger volume compared to the cylindrical one
and the osmotic pressure difference across the membranes acts to
compress the tubes when they protrude into the interior solu-
tion within the vesicles. Therefore, such a tube can lower its free
energy by reducing its volume which favors the cylindrical tube.
The volume work is proportional to the tube length whereas the
bending energy of the end caps is independent of this length.
The competition between these two energies then implies that
short tubes are necklace-like whereas long tubes are cylindrical.
The same conclusion is obtained by minimizing the bending
energy of the whole vesicle membrane (Liu et al., 2016). One
then finds that, for fixed vesicle volume and membrane area,
the mother vesicle has a smaller bending energy when it forms
a cylindrical tube and that this energy decrease of the mother
vesicle overcompensates the bending energy increase from the end
caps of the cylinder when the tube is sufficiently long. The criti-
cal tube length at which the necklace-like tube transforms into a
cylindrical one is about three times the vesicle radius.

5.7

When a vesicle is in contact with an adhesive substrate surface
as in Figure 5.29, it can gain adhesion energy by spreading onto
this surface but must then increase its bending energy to adapt
its shape to the adhesive surface. For large vesicles, the adhesion
energy must dominate because it is proportional to the contact
area of the vesicle and thus grows quadratically with the size of
the vesicle whereas the increased bending energy is concentrated




unbound segment

(b)

(a) Optical micrograph of two vesicles adhering to a pure
glass surface that reflects the light and creates two mirror images;
and (b) Shape of the larger vesicle consisting of a bound (gray region)
and an unbound (white region) membrane segment. The two seg-
ments join along the contact line (red) which represents the bound-
ary of the bound membrane segment. (Reproduced with permission
from Gruhn, T. et al., Langmuir, 23, 5423-5429, 2007. Copyright 2007
American Chemical Society.)

along the contact line of the vesicle with the surface and thus
grows only linearly with the size of the vesicle.

Within the contact area, the membrane experiences a variety
of molecular forces. In order to study the overall shape of the
adhering vesicle, one may ignore the molecular details and
focus on the adhesive strength |W] of the membrane-surface
interactions which corresponds to the adhesion (free) energy
per area (Seifert and Lipowsky, 1990). This coarse-grained
description of the membrane-surface interactions in terms
of the single parameter |W] is consistent with the separation
of length scales that has been used to construct the different
curvature models.

Because the bound and the unbound membrane segments
are exposed to different environments and, thus, to differ-
ent molecular interactions, they can differ in their molecular
composition and, thus, in their curvature-elastic properties
(Rouhiparkouhi et al., 2013; Lipowsky et al., 2013; Lipowsky,
2014b). In order to reduce the number of parameters, we will
first assume that this ambience-induced segmentation of the
vesicle membranes can be ignored and that the bound and
unbound membrane segments have the same curvature-elastic
properties. Adhesion-induced segmentation of multi-compo-
nent membranes will be discussed at the end of this section and
at the end of Section 5.8.

Furthermore, we will again focus on the spontaneous curva-
ture model which depends on only two dimensionless param-
eters, the volume » and the spontaneous curvature 7. When we
parametrize the adhesion energy in terms of the dimensionless
adhesive strength |w| proportional to [W|/k, vesicles adhering to
planar surfaces are described by only three parameters. On the
one hand, this parametrization is convenient from a theoretical
point of view because it allows us to explore large regions of the
parameter space. On the other hand, the additional parameter
|W] can be directly deduced from experimental observations of
adhering vesicles. At the end of this section, more complex adhe-
sion geometries will be briefly discussed corresponding to curved
and/or chemically patterned substrate surfaces. The extension of
the theory described here to the interactions of membranes with
adhesive nanoparticles is described in Chapter 8 of this book.
The experimental methods used to study the adhesion of GUVs
are reviewed in Chapter 17.

First, let us consider a planar substrate surface and focus on the
competition between bending rigidity x and adhesive strength

| W] for the simple case of a vesicle that is free to adapt its volume,
corresponding to the osmotic pressure difference AP = 0, and is
bounded by a symmetric membrane with vanishing spontaneous
curvature, 72 = 0. We are then left with only three dimensionful
parameters, the membrane area A, the bending rigidity k, and the
adhesive strength |W/].

The non-adhering or free vesicle forms a spherical shape S,
with bending energy &,.{S} = 8mx. When the vesicle membrane
spreads onto an adhesive surface, the vesicle attains the shape S,y
with contact area A, of the bound membrane segment and gains
the adhesion energy

By =—|W | Apo. (5.218)
For a planar surface, this adhesion energy is the only energy
contribution from the bound membrane segment. The unbound
membrane segment, on the other hand, has to adapt its shape to
the presence of the substrate surface which leads to the bending
energy increase

AEbe = Epe{Sad} — Eve {5t} = 87K AL (5.219)
Adhesion is favored if
Eag +AEL. <0 or 8akAEp. <|W | Ap.  (5.220)

Because AFj,. is a dimensionless number, we can immediately
conclude from this relation that the vesicle adheres to the surface
if the adhesive strength |W| is sufficiently large or if the bending
rigidity « is sufficiently small.

In general, the adhesion of vesicles involves three additional
parameters: the osmotic conditions that determine the volume-to-
area ratio, the spontaneous curvature 7 of asymmetric bilayers,
and the mean curvature M, of the bound membrane segment
arising from a curved adhesive surface. In order to take these
additional parameters into account, we need a systematic theory
based on an appropriate energy functional.

The shape S of a vesicle that adheres to a rigid substrate surface
can be decomposed into two membrane segments, a bound seg-
ment with shape S, in contact with the surface and an unbound
segment with shape S, not in contact with this surface. The total
membrane area 4 can then be decomposed according to

A=Ay + Ay = A{Spo} + A{Sun} (5.221)

where Ap, = A{Sho} and Ay, = A{Syn} are the partial areas of
the bound and unbound membrane segments S, and S, respec-
tively. In general, the two partial areas also depend on the shape
of the adhesive surface. The combined bending and adhesion
energy of the vesicle leads to the energy functional (Seifert and

Lipowsky, 1990)
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Eavis) =2k J' AA (M= m)? +Exa S} (5.222)
with the adhesion (free) energy functional
gad{S} == | w |A{Sb0} (5223)

where the subscript “AV” stands for “adhering vesicle.” The first
term on the right hand side of Eq. 5.222, which represents the
bending energy functional of the spontaneous curvature model,
can be decomposed into the bending energies of the unbound and
the bound membrane segments according to

Enel S} = 2 J' A (M =) + zKJ'dAbo (Myo—m)?  (5.224)

where the mean curvature M, of the bound segment is imposed
onto the latter segment by the shape of the rigid substrate.

The stationary states of the adhering vesicle are then obtained
by minimizing the shape functional

FaviS=—APV{S} +ZA{S}+ EaviS} (5.225)

with the constraints that V{§} =17 and A{S} = A where Vand
A are the prescribed vesicle volume and membrane area as before.
It is important to note that the value of the contact area 4, of the

bound membrane segment is not prescribed here which implies that
the contact line is not pinned but free to find its optimal position.

As before, it is again convenient to choose the vesicle size
Ry. =4/ A/ (47) as the basic length scale and the bending rigidity
k as the basic energy scale. The shape of the adhering vesicle then
depends on the dimensionless volume » = 65/ 1/ 4*? and on
the dimensionless spontaneous curvature 7 = mR,., both of which
also determine the shape of free vesicles. In addition, the adhering
shape also depends on the dimensionless adhesion strength
\w|= W | R/ Kk (5.226)
and on the dimensionless curvatures My, = Mpo R, that the sub-
strate surface imposes on the bound membrane segment.
The simplest substrate geometry is provided by a planar sur-
face with M, = 0 which reduces the parameter space to the three
dimensionless parameters 2, 7, and |w|. The next-to-simplest
substrate geometry is obtained for constant-mean-curvature surfaces
such as spherical surfaces or cavities. In the latter case, the mean
curvature My, of the bound membrane segment is constant and the
parameter space becomes four-dimensional. In the following subsec-
tions, we will first discuss the planar case and subsequently summa-
rize the modifications arising from spherical surfaces and cavities.

For a planar substrate surface as in Figure 5.29, the bound mem-
brane segment of the adhering vesicle is planar as well. We require
the bound and the unbound membrane segments to join along

the contact line in a smooth manner, i.e., that the two membrane
segments have a common tangent plane or, equivalently, that the
normal vector of the unbound membrane segment is also normal
to the planar substrate along the contact line. In other words, the
membrane shape should not exhibit any kink along the contact
line. This geometric requirement is equivalent to the condi-

tion that the membrane has a finite bending energy (Seifert and
Lipowsky, 1990).

Because the normal vector is required to vary continuously
across the contact line, the principal curvature €, tangential to
the contact line vanishes. In addition, the principal curvature C,
of the unbound membrane segment perpendicular to the contact
line is given by

Cleo =~2|W|/K

as follows from the first variation of the shape functional

Eq 5.225, both for axisymmetric (Seifert and Lipowsky, 1990)
and for non-axisymmetric (Deserno et al., 2007) shapes.
Therefore, the contact mean curvature becomes

(5.227)

M, = %(CHco +Clco)= %CJ_CO =|W|/(2x) (planar substrate).
(5.228)

Because the mean curvature of the bound segment vanishes, the
mean curvature of the membrane jumps from M = M_ to M =0
when we cross the planar contact line.

It is interesting to note that the contact mean curvature M,
does not depend on the spontaneous curvature 7, which is
somewhat counterintuitive. This 7-independence also applies
when the vesicle adheres to a curved surface, see further below.
However, the shape and the contact area of an adhering vesicle do
depend quite significantly on the spontaneous curvature (Agudo-
Canalejo and Lipowsky, in preparation).

One should also note that the principal curvature C,
jumps along the contact line from C |, = 0 within the bound
membrane segment to C| ¢, =/2|IV|/x within the unbound
segment. Likewise, as mentioned, the mean curvature jumps
from M = 0 within the bound membrane segment to M = M,
within the unbound segment. In the following sections, we

co

will see that analogous curvature discontinuities are also
present along domain boundaries separating two intramem-
brane domains and along three phase contact lines arising
from membrane wetting.

The contact mean curvature M, = +f| W' | /(2K) as given by

Eq 5.228 is a material parameter that directly encodes the com-
petition between membrane bending as governed by the bending
rigidity ¥ and membrane-surface adhesion as described by the
adhesive strength |W/|. For planar substrate surfaces as considered
here, the inverse of the contact mean curvature is equal to the

adhesion length

Ry =2/ |W | =2/ |w|Rye. (5.229)



Five combinations of lipid bilayers and adhesive materials, with estimates of the bending rigidity «, the adhesive strength ||, and
the adhesion length R,; see Appendix 1 of the book for structure and data on the lipids

ADHESION LIPID ADHESIVE K (W] Ry
REGIME BILAYER MATERIAL [10-17 J] [m]/m?] [nm]
Strong DMPC Silica 0.8 0.5—1" 13-18
Strong EggPC Glass ~1 0.15¢ 26
Intermediate DMPC Receptor-ligand 0.8 0.03¢ 73
Weak DOPC/DOPG Coated glass 0.4¢ 3 x 10~4¢ 510
Ultraweak DOPC/DOPG Glass 0.4¢ 1075¢ 2800

Brining, B.A. et al., Biochim. Biophys. Acta, 1838, 2412-2419, 2014.
Anderson, T.H. et al., Langmuir, 25, 6997-7005, 2009.

Schénherr, H. et al., Langmuir, 20, 11600-11606, 2004.

Moy, V.T. et al., Biophys. J., 76, 1632-1638, 1999.

Gruhn, T. et al., Langmuir, 23, 5423-5429, 2007.
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Depending on the lipid composition of the bilayer membrane

and on the adhesive material, the adhesion length Ry, can vary
between about 10 nanometers for strong adhesion and a few
micrometers for ultraweak adhesion as illustrated by the examples
in Table 5.2. For the adhering vesicle displayed in Figure 5.29, the
adhesion length was estimated to be 2.8 ptm corresponding to the
ultra-weak adhesion regime, see bottom row of Table 5.2. In this
case, the contact curvature radius

1
RJ_cozl/CJ_co:ERW :\[K/(2|W|)

(5.230)

can be directly read off from the optical image displayed in
Figure 5.29a.

When the adhesion length becomes of the order of 10 nano-
meter as in the first two rows of Table 5.2, we start to “see”
the molecular structure of the lipid bilayers. As a consequence,
higher-order curvature terms as discussed in Section C.1 may
start to play a role. On the other hand, the estimates in the latter
section also imply that we can certainly ignore such terms for
Ry 2 80nm.

The shape of the unbound membrane segment of the adhering
vesicle is obtained by solving the Euler-Lagrange Eq. 5.23 with
the boundary condition as given by Eq. 5.228. If the shape is
axisymmetric with respect to the normal vector of the planar
surface, the Euler-Lagrange equation leads to a set of ordinary
differential equations that can be solved numerically, see the
examples in Figure 5.30 (Seifert and Lipowsky, 1990). In all
panels of this figure, the membrane has the same area and the
same bending rigidity as well as vanishing spontaneous curva-
ture. In Figure 5.30a, we see the shapes of five vesicles that can
freely adapt their volume corresponding to AP = 0. The five
vesicle shapes are obtained for five different values of the adhe-
sive strength |w|.

Inspection of Figure 5.30a shows that the contact area of the
bound membrane segment increases with increasing || as one
would expect intuitively. However, as we decrease the adhesive
strength |w|, the contact area vanishes already at the threshold value

b)
c)

—

Vesicles with identical membrane area and vanishing
spontaneous curvature adhering to substrate surfaces (shaded) with
variable adhesive strength: (a) Vesicle shapes and five different values
of the adhesive strength, |w| = 2, 2.9, 4.1, 6.4, and 10.2, in the absence
of a volume constraint, corresponding to pressure difference AP = 0.
As |w| decreases, so does the contact area of the bound membrane
segment. The spherical shape with vanishing contact area is obtained
for the finite value |w| = 2; (b) Adhering discocyte vesicles for differ-
ent values of the adhesive strength |w| and the pressure difference
AP < 0; and (c) In the strong adhesion regime with |w| > 2, the vesicle
shape approaches a spherical cap, characterized by the effective
(or apparent) contact angle 6.4 (Reproduced from Seifert, U. and
Lipowsky, R., Phys. Rev., A 42, 4768-4771, 1990.)

|w|=|waa| =2 (AP =0), (5.231)
corresponding to the spherical shape in Figure 5.30a. Thus, the
vesicle starts to spread over the substrate surface provided (Seifert

and Lipowsky, 1990)

|w|=|W |R% /K >|ma|=2 forAP=0.  (5.232)
The relation |w| > 2 is equivalent to the intuitive relations
Re>Ry or A|W|>8w (AP=0),  (5.233)

i.e., the membrane starts to spread over the substrate surface when
the vesicle size R, exceeds the adhesion length Ry, The latter
criterion directly reflects the competition between the adhesive
strength |W| and the bending rigidity x which favors and disfa-
vors the onset of spreading, respectively.

The shapes in Figure 5.30a have been obtained for spon-
taneous curvature 7 = 0 but the threshold value |w,| = 2
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or | IV, = 2k / R% should apply as long as the spherical shape of
the free vesicle remains stable. Because a sphere with AP = 0 is
stable for m < 3/R,., the threshold value |w,4| = 2 for the onset
of spreading is expected to apply for this range of m-values

as well. This expectation is confirmed by numerical energy
minimization for axisymmetric shapes (Agudo-Canalejo and
Lipowsky, in preparation). The latter calculations also show
that the contact area increases with increasing spontaneous
curvature 7 > 0 even though the contact mean curvature M
does not depend on 7.

If the vesicle volume is constrained by the osmotic conditions,
the spreading of the vesicle membrane onto the adhesive surface
sets in for (Lipowsky and Seifert, 1991)

| W |> | waa(v) | / RZ (5.234)
where the dimensionless parameter |w, | depends on the dimen-
sionless volume v, approaches the value |w,y(v)| = 2 for small
1 — v, and stays of order one for arbitrary values of ». For an
ensemble of vesicles with different sizes, the relation Eq. 5.234
implies that large vesicles with

Rye > /| waa(@)| K/ |W | (bound vesicle) (5.235)
adhere to the adhesive surface whereas small vesicles do not.
This difference in the size distribution of bound and free vesicles

should be accessible to experiment.

The contact mean curvature M, characterizes the membrane
shape along the contact line between the bound and unbound
membrane segment as described by Eq. 5.228. It turns out that
this curvature also provides a general stability criterion for the
onset of adhesion, i.e., for the initial spreading of the membrane
onto the adhesive surface. This criterion is based on the com-
parison between the contact mean curvature M, and the mean
curvature M, of the membrane segment that comes initially into
contact with the adhesive surface. Indeed, the membrane segment
starts to spread onto the adhesive surface if (Agudo-Canalejo and
Lipowsky, 2015a,b)

Mums < M, (onset of adhesion), (5.236)
i.e., if the mean curvature M, of the adjacent membrane segment
is smaller than the contact mean curvature M.

For a spherical vesicle with radius R,, all membrane
segments have the same mean curvature, M, = 1/R,..
Furthermore, for a planar surface as considered here, the
contact mean curvature is given by M, = /| W| /(2K) as in
Eq 5.228. The general criterion Eq. 5.236 then assumes the
form | W| > 2k /R% or |w| > 2 in agreement with the inequal-
ity Eq. 5.232. The general criterion for the onset of adhesion
as given by Eq. 5.236 will be discussed further below for the
adhesion of vesicles to spherical beads and cavities, and plays
a prominent role for the engulfment of nanoparticles, see

Chapter 8 of this book.

The strong adhesion regime corresponds to the situation in
which the adhesion length Ry, is much smaller than the vesicle
size, i.e.,

Rye> Ry or |W|A>8rx or |w|[>2. (5.237)
For a given value of the adhesion strength |W/|, the strong
adhesion regime corresponds to the limit of small bending
rigidity . Thus, the limiting case Ry/R,, = 0 can be obtained
for a hypothetical membrane with vanishing bending rigid-
ity k = 0. In this limit, the shape functional Eq. 5.225 for the
adhering vesicle reduces to
FaviS}=—APV{S}+ZA{S}— | W] A{Spo} (5.238)
with the bound membrane segment S,,,. The shape functional
in (5.238) is identical with the shape functional of a liquid
droplet in contact with a planar surface (Lipowsky et al., 2005).
This shape functional for k = 0 is minimized by vesicle shapes
which correspond to spherical caps in complete analogy to
liquid droplets.
For k = 0, the contact curvature radius R_, vanishes, and
the vesicle forms a sharp “microscopic” contact angle with
the surface along the contact line. For k > 0 but small R /R,
the shape of the vesicle consists of a spherical cap, a strongly
curved membrane segment along the contact line, and a bound
membrane segment with area Ay, < %A. The strongly curved
membrane segment has a mean curvature of the order of M, =
(|W|/2K)'"? and provides the connection between the unbound
spherical cap and the bound membrane segment. On length
scales which are large compared to 1/M_,, the adhering vesicle
can be characterized by an effective (or apparent) contact angle
0.4 as in Figure 5.30c (Seifert and Lipowsky, 1990). The effec-
tive contact angle does not represent a material parameter but is
determined by the spherical cap geometry and the volume-to-
area ratio v via the geometric relation

1 cos(Besr)]"*[2+ cos( eff)]

|
[3+ cos(Befr )]3/2

(5.239)

Furthermore, in the strong adhesion regime corresponding to the
limit of large ||, the combined bending and adhesion energy

Eav = Eav /(87K) of the vesicle can be expanded in powers of the
dimensionless adhesive strength |w| (Lipowsky and Seifert, 1991;
Tordeux et al., 2002; Steinkiihler et al., 2016). One then finds

_ 1+ cosOefr —sin(Ocfr / 2)
Exzvre—— 2 Jlw| forlarge|w
2(3+C0596ff)| | 3+ cos Ot el

(5.240)

When we rewrite this expression in terms of dimensionful param-
eters, we obtain

Eay % — Ay | W | + 87 =500t /2) (5.241)

—sin(Oegr / 2)
JEIW A .
3+ cosBOqg V]



The first-order term represents the adhesion energy of the bound
membrane segment with area

_ 1+ cosOc

Apo = 5.242
> 3+ cosOesr ( )

The second-order term in Eq. 5.241 is proportional to
VK [ ] A~ Ricon Abo KMczo (5.243)

where the right hand side represents an estimate for the bend-
ing energy of the strongly curved membrane segment close to
the contact line because this segment has an area of the order
of RJ_CO\/A—bO and the mean curvature M, . Therefore, the
second-order term can be regarded as a line energy term that
depends, however, on the effective contact angle .4 and, thus,
on the volume-to-area ratio » via the relation Eq. 5.239. In the
absence of a volume constraint, i.e., for pressure difference AP = 0,
the strong adhesion regime leads to a pancake-like shape with
0.6 =0 and Ay, =3 A. In this case, the expression Eq. 5.241
for the combined bending and adhesion energy simplifies and
becomes

Esz—%A|W\+4\/;,/K|W\A

for large | w| = |W| R2. /k.

(5.244)

In the present subsection, we will discuss the contact mean
curvature M_, for more complex adhesion systems as provided by
curved surfaces and chemically patterned substrates.

When the vesicle adheres to a large spherical particle with radius R,
the bound membrane segment has the mean curvature M, = —=1/R
= —1/R,, parallel to
the contact line. Within the unbound membrane segment, the

a2

which implies the membrane curvature G

|co

second principal curvature C,, perpendicular to the contact line
is given by

CLC() :\[2|W| /K _1/Rpa

as obtained by minimization of the bending energy (Seifert and
Lipowsky, 1990). As a consequence, the contact mean curvature
has the form

(5.245)

1/2

1 W 1

Mco = 7(CHCO + CJ_CO) = u —— (5246)
2 2K Ry

or
1 1 . . .
Mo =—————(spherical particle of radius R,,)  (5.247)
Ry Ry

where we used the definition of the adhesion length Ry, as given
by Eq. 5.229. The general criterion Eq. 5.236 for the onset of

membrane adhesion now assumes the form (Agudo-Canalejo and
Lipowsky, 2015a)

Mps < Mo = LN (adhesion to spherical particle) (5.248)
Ry Ry

where M, is the mean curvature of the membrane segment that
comes initially in contact with the particle. The contact mean
curvature is positive for large particles with R, > Ry, and negative
for small particles with R, < Ry,

Note that the principal curvature C,, and the mean
curvature M are again discontinuous along the contact
line. The principal curvature C,, jumps from the value

C\eo = —1/R, within the bound membrane segment to the value
Cleo=+2|W|/x -1/ Rpa within the unbound membrane seg-
ment. In fact, the curvature discontinuity as given by /2|7 | /k

is independent of the particle size and thus applies also to the
limit of a large R, corresponding to a planar surface. Likewise,
as we move across the contact line, the mean curvature jumps
from M = —1/R,, within the bound membrane segment to
M= M, = 1/Ry— 1/R,,. Therefore, the discontinuity of the
mean curvature is always equal to the inverse adhesion length,
irrespective of the particle size R,.

When the vesicle adheres to a large spherical cavity with radius R_,,
the bound membrane segment has the mean curvature M, = 1/R_,
parallel to the

contact line. The membrane curvature C,, perpendicular to the

which also applies to the membrane curvature q

|co

contact line is given by

Clco:\IZ‘W|/K+1/RcaV

as obtained by minimization of the energy functional. As a conse-

(5.249)

quence, the contact mean curvature now has the form

1/2
1 W
Mco = 7(C”CO + CJ_co) = (Hj
2 ) 2K (5.250)
+ -

cav

(spherical cavity of radius Re,y ).

It now follows from the general adhesion criterion Eq. 5.236 that
a membrane segment with mean curvature M, starts to adhere to
the cavity wall if

1 1
74_7

Mg < Mo =
ms “ RW’ Rcav

(adhesion to a spherical cavity)

(5.251)

with the adhesion length Ry, as defined by Eq. 5.229. Therefore, as
we move across the contact line, the mean curvature now jumps
from M = 1/R_,, within the bound membrane segment to

M=M= 1/Ry,+ 1/R_, within the unbound membrane seg-
ment, with the curvature discontinuity being again equal to 1/Ry,

12 The limiting case with M, = M_, can be further elucidated for nanoparticles
with R, <R, see Eq. 5.257 below.
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Finally, let us consider the adhesion of vesicles to a planar but
chemically structured surface which contains two types of
surface domains, D, and D,. These two types of domains are
characterized by two different adhesive strengths, W, and W,
with |W,| < |W)|, i.e., the D, domain is less adhesive than the
D, domain.

If the contact line of an adhering vesicle is located within the
D, domain, the contact mean curvature is given by

1/2
Myg:['Wl'j |

5.252
o (5.252)

Likewise, for a contact line within the D, domain, the contact
mean curvature is

1/2
MEJ = (Wﬂj < Mco,l . (5253)

2K

On the other hand, if a contact line segment (CLS) of the vesicle
is pinned to the boundary between the two surface domains, the
contact curvature radius M, = ME" is not fixed but can vary
within the range (Lipowsky et al., 2005)
2) pin n
MCO S MCO S MCO

(pinned CLS). (5.254)

This freedom of the contact mean curvature ME™ along the
boundaries of surface domains leads to transitions between dif-
ferent shapes of adhering vesicles (Lipowsky et al., 2005). One
example is provided by a vesicle on a striped surface domain
that is strongly adhesive and surrounded by another surface
domain that is non-adhesive or only weakly adhesive. When the
volume-to-area ratio v is close to a sphere, the adhering vesicle
has a fairly compact shape and a relatively small contact area.
During deflation, the vesicle then undergoes a morphological
transition from this compact shape to a thin tube-like state with
a large contact area.

The adhesion of nanoparticles to cell membranes represents the
first step for the process of endocytosis which is essential for the
cellular uptake of such particles, see Chapter 8 of this book.

In general, the endocytosis of a nanoparticle that comes into
contact with the outer leaflet of the membrane consists of three
steps: Onset of particle adhesion, spreading of the membrane over
the particle surface until the particle is completely engulfed by
the membrane, and cleavage (or scission) of the membrane neck
connecting the completely engulfed particle with the mother
membrane.

When a particle in contact with the outer leaflet becomes com-
pletely engulfed, the membrane forms a limit shape with a closed
membrane neck. For this limit shape, the mean curvature Mg
of the unbound membrane segment adjacent to the membrane
neck satisfies the neck closure condition (Agudo-Canalejo and
Lipowsky, 2015a)

1 1
Mipns + Moo = Mps +—————=2m
Ry Ry

(5.255)
with the contact mean curvature M as given by Eq. 5.247.
Comparison with the neck closure condition for spherical in- and
out-buds as described by Eq. 5.50 and Figure 5.14 shows that the
mean curvature of the bud is now replaced by the contact mean
curvature M, of the adhesive nanoparticle. Furthermore, the
closed neck is stable provided

Mins + Meo —2m >0 (stable neck, endocytosis). (5.256)
in close analogy to the case of an in-bud with a stably closed neck
as described by Eq. 5.61.

The presumably simplest way to derive the neck closure
condition in Eq. 5.255 is to require that the bending energy
density of the membrane as given by 2x(M — m)?, see Eq. 5.12,
is continuous across the neck. The latter requirement implies
(Mo —m)* = (Mg — m)* or Mo — m = +(Mpns — m). The root
with the plus sign leads to M, = M, and thus to a continuous
variation of the mean curvature. The root with the minus sign,
on the other hand, is equivalent to the neck closure condition in
Eq. 5.255. In (Agudo-Canalejo and Lipowsky, 2016), the two
relations in Eqgs 5.255 and 5.256 have been derived in a system-
atic manner by calculating the free energy of certain membrane
shapes with small neck radii R, and taking the limit of zero R,.

In the limit of small particles with R, < Ry, one can identify
the mean curvature My, of the unbound membrane segment
adjacent to the closed neck for the completely engulfed particle
with the mean curvature M, of the membrane segment that
comes initially into contact with the particle, see Eq. 5.248
(Agudo-Canalejo and Lipowsky, 2015b). One can then explicitly
calculate the local (free) energy landscape E as a function of the
area fraction ¢ of the particle surface that is covered by the vesicle
membrane. The physically meaningful range of g-values corre-
sponds to 0 < g < 1. For small particles, the energy landscape is
then found to have the simple quadratic form (Agudo-Canalejo
and Lipowsky, 2017)

E(g) = EQ)+16aK Rou[(M = Meo)g+(m—M)g®]  (5.257)
which depends on three parameters: the local mean curvature

M = M = My the contact mean curvature M, and the spon-
taneous curvature 7.

Complete engulfment with a stable membrane neck corresponds
to an energy landscape £(g) that has a boundary minimum at

q = 1. The latter criterion is equivalent to the stability condition
in Eq. 5.256. Furthermore, the completely engulfed particle state
represents the globa/ minimum of this energy landscape when the
three curvatures satisfy the inequalities

Meog2M 22m—Mc,. (5.258)



The first inequality corresponds to the local criterion for the
onset of adhesion, the second inequality to a completely engulfed
particle with a stable membrane neck. Therefore, the inequalities
in Eq. 5.258 imply both adhesion and complete engulfment of
the nanoparticle.

The stability relation as given by Eq. 5.256, which applies to a
stably closed neck for the complete engulfment of a nanoparticle,
can be generalized by including an external force /> 0 that acts
to constrict the membrane neck. Such a force contributes the
term /R, to the energy of the vesicle-particle system which is pro-
portional to the neck radius R, (Agudo-Canalejo and Lipowsky,
2016). One then finds the stability relation

L+M;5+Mco—2mzo

5.259
4rK ( )

which defines the effective constriction force

felf’f = 47K (Mins + Mco —2m)  for endocytosis.  (5.260)

For small My, i.e., for a weakly curved membrane of the mother
vesicle, the effective constriction force behaves as

&~ [P+ S (5.261)
with the adhesion-induced constriction force
in 1 1
S =dnr| ———— (5.262)
Ry Rn
and the curvature-induced constriction force
fin = _8mkcm, (5.263)

where /i has the same form as in Eq. 5.137.

The final step of endocytosis corresponds to the cleavage
(or scission) of the membrane neck. As explained in Section 5.4,
the cleavage of a neck with radius R, leads to two bilayer edges
and to a free energy barrier of the order of 47R, A 4 which
depends on the edge tension 1.4. To overcome this barrier, the
effective constriction force must be sufficiently large and satisfy

B P SR> ATy, (5.264)
Inspection of Eq. 5.262 for the adhesion-induced constriction
force fii” shows that this force facilitates neck cleavage for strong
adhesion with 1/Ry,>> 1/R, . Thus, even for a symmetric mem-
brane with 7 = 0 and f,;" =0, strong adhesion with

fLIVn > 4—7[}.6(1 or Ry< ],L (5265)

ed

leads to neck cleavage and, thus, to the release of the membrane-
enclosed nanoparticle from the mother membrane. Using the
typical value k = 107" J for the bending rigidity and the estimate

Aed 2,1 pN for the edge tension, the inequality in Eq. 5.265
predicts neck cleavage for an adhesion length Ry, that is small
compared to 100 nm.

The membranes considered in the previous sections were taken
to have a laterally uniform composition which implies later-

ally uniform curvature-elastic properties even if they contained
several molecular components. However, when a multi-component
membrane is in contact with an adhesive surface, different
membrane components will typically experience different
molecular interactions with this surface, which implies that the
membrane-surface interactions can lead to an enrichment or
depletion of the different components within the bound segment
of the vesicle membrane. As a consequence, the bound membrane
segment will, in general, differ in its composition from the
unbound segment of the membrane which provides an example
for ambience-induced segmentation of membranes as displayed in
Figure 5.31a (Rouhiparkouhi et al., 2013; Lipowsky et al., 2013;
Lipowsky, 2014b). For two-component membranes, this kind of
segmentation has been theoretically studied in some detail, see
Appendix 5.G.

The adhesion geometry in Figure 5.31a corresponds to a
chemically uniform substrate surface which leads to only two
membrane segments, one bound and one unbound segment. If
the substrate surface is chemically patterned as in Figure 5.31b
and consists of two chemically distinct surface domains, both
of which are adhesive but differ in their adhesive strengths, the
vesicle membrane is partitioned into three different segments,
corresponding to two different bound segments and one unbound
segment. An even more complex geometry is depicted in
Figure 5.31c: three vesicle membranes that differ in their overall

0
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(b) (d)

Ambience-induced segmentation of membranes that
are exposed to different local environments: (a) Vesicle adhering to
a planar, chemically uniform substrate surface; (b) Vesicle adhering
to a planar and chemically patterned surface; (c) Cluster of three
vesicles adhering to a planar, chemically uniform surface and to
each other; and (d) Cartoon of a macrophage that moves along a
solid surface and engulfs a small particle. The colors of the mem-
branes represent their overall compositions. For each membrane,
the numbers [k] = [1], [2], etc indicate the different ambience-
induced membrane segments. Because of the different molecular
interactions between the membrane components and the differ-
ent environments, each membrane segment will, in general, have
a molecular composition that differs from the overall composition.
(From Lipowsky, R. Biol. Chem., 395, 253-274, 2014.)
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compositions and interact both with the solid support and with
other membranes. In addition, Figure 5.31d displays, in a rather
schematic manner, the outer cell membrane of a macrophage that
moves along a solid surface, contains some cytoskeletal filaments,
and engulfs a microparticle.

In all examples displayed in Figure 5.31, the different mem-
brane segments, labeled by [£] = 1, 2, ..., K, can differ in their
molecular composition which implies that they can also differ
in their curvature-elastic properties. We are then led to consider
membrane segments with different bending rigidities k¥ and
different spontaneous curvatures 7%, This approach has been
recently applied to clathrin-dependent endocytosis which involves
two membrane segments, corresponding to the presence and
absence of the clathrin-containing protein coat (Agudo-Canalejo
and Lipowsky, 2015a). The latter process is discussed in more
detail in Chapter 8 of this book.

Ambience-induced segmentation of vesicle membranes has
been recently observed for giant vesicles that adhere to planar
electrodes (Steinkiihler et al., 2016). The vesicles contained
anionic lipids and adhered to the positively charged electrode at
the bottom of the chamber. Using fluorescence quenching assays,
the bound membrane segment was observed to have a differ-
ent composition than the unbound segment, but, in contrast to
naive expectations, only the outer leaflet of the bilayer membrane
was affected and the bound segment of this latter segment was
depleted of anionic lipids.

Ambience-induced segmentation will play an important role in
the next two sections on membrane phase separation (Section 5.8)
and membrane wetting (Section 5.9). Indeed, the interplay of
ambience-induced segmentation and membrane phase separation
(Section 5.8.5) confines the phase transition, for a given composi-
tion, to one of the membrane segments and each of these phase
transitions occurs for a reduced range of compositions. In the
case of wetting, the membranes are exposed to different aqueous
phases that provide different local environments for these mem-
branes, in close analogy to the adhesive substrate surfaces that
have been discussed in the present section.

5.8

Biological and biomimetic membranes are fluid, contain several
molecular components, and represent two-dimensional systems.
As a consequence, the membranes should be able to undergo
phase separation into two different liquid phases, in close anal-
ogy to phase separation of liquid mixtures in three dimensions.
Membrane phase separation proceeds via the formation of
intramembrane domains that differ in their molecular com-
position from the surrounding membrane matrix. The pres-
ence of domains implies the appearance of a new parameter,
the line tension, which acts to shorten the domain boundaries
(Lipowsky, 1992).

In the context of liquid droplets, the tension of the
three-phase contact line, which was already considered by
Gibbs, represents a relatively small correction term to the
interfacial free energies that can be completely ignored on
the micrometer scale. In contrast, the line tension associated
with intramembrane domains has a rather strong effect on the

Domain-induced budding of a growing liquid-disordered
(Ld) domain within an liquid-ordered (Lo) matrix: (1) Essentially flat Ld
domain; (2) Partial Ld bud; and (3) Complete Ld bud. During the time
evolution from (1) to (3) the domain boundary between the Ld domain
and the Lo matrix shortens and the line energy of this boundary
decreases continuously. In the following, the letters a and b will be
used to indicate two coexisting fluid phases within the membranes.
These membrane phases can be pure lipid phases or involve mem-
brane proteins as well. (With kind permission Springer Science +
Business Media: J. Phys. Il France, Budding of membranes induced by
intramembrane domains, 2, 1992, 1825-1840. Lipowsky, R.)

shape of membranes and vesicles. Indeed, the line tension of
the domain boundaries can induce new types of shape trans-
formations such as domain-induced budding, displayed in
Figures 5.32 and 5.3. The latter process was first predicted theo-
retically (Lipowsky, 1992, 1993; Jiilicher and Lipowsky, 1993)
and then confirmed experimentally by optical microscopy of
giant vesicles (Baumgart et al., 2003, 2005; Bacia et al., 2005;
Dimova et al., 2007; Semrau et al., 2008).

At the beginnings of the 1990s, it was rather difficult to find
experimental evidence for the coexistence of two fluid phases in
membranes. This situation has now changed completely because
many ternary lipid mixtures have been identified which exhibit
two coexisting fluid phases, a liquid-ordered (Lo) and a liquid-
disordered (Ld) phase. These lipid mixtures, which consist of a
saturated lipid such as sphingomyelin, an unsaturated phospho-
lipid, and cholesterol, form vesicles with several intramembrane
domains. The intense experimental study of these mixtures
was triggered by the proposal (Simons and Ikonen, 1997) that
biological membranes contain intramembrane domains or rafts
that are rich in sphingomyelin and cholesterol. In order to
directly visualize the different domains formed in lipid vesicles,
it was also crucial to find appropriate fluorescent probes that
have a preference for one of the two fluid phases (Korlach et al.,
1999; Dietrich et al., 2001; Veatch and Keller, 2003; Baumgart
etal.,, 2003).

In this section, we will review the morphologies of multi-
domain membranes and vesicles. We will consider multi-com-
ponent membranes that consist of lipids and proteins and form
two coexisting membrane phases, both of which are in a fluid
state. Thus, the intramembrane domains could be pure lipid
domains but they could also contain membrane proteins that
participate in the phase separation. In the next subsection, the
process of domain-induced budding as depicted in Figure 5.32
will be discussed. Second, the shape functional for two-domain
vesicles will be described in some detail. The morphologies of
these vesicles involve again closed membrane necks which are
now governed by the interplay between the spontaneous cur-
vatures of the two types of domains and the line tension of the



domain boundary. In addition, the Gaussian curvature moduli
of the two membrane domains also affect the vesicle shape and
determine the relative position of domain boundary and mem-
brane neck. If the two domains differ in their bending rigidities,
this rigidity difference can stabilize multi-domain vesicles with
more than two domains and thus truncate the phase separation
process. Such multi-domain vesicles undergo morphological
transitions which involve changes of both the vesicle shape and
the domain pattern (Gutlederer et al., 2009; Hu et al., 2011).
Finally, in Section 7.6, we will address the interplay between
membrane phase separation and ambience-induced segmentation
which acts to confine the phase separation to single membrane
segments. The experimental methods to identify two coexisting
fluid phases within the membranes of GUVs are reviewed in
Chapter 18 of this book.

This section is supplemented by two appendices: Appendix 5.F
on the matching conditions and curvature discontinuities along
domain boundaries; and Appendix 5.G which discusses the inter-
play of segmentation and phase separation for two-component
membranes.

To be specific, let us consider a single Ld domain embedded in a
larger Lo matrix as shown in Figure 5.32. Because the two phases
differ in their molecular composition, they will also differ in their
curvature-elastic parameters. First, the Ld phase is more flexible
than the Lo phase. Second, the two phases will, in general, have
different spontaneous curvatures. One mechanism that generates
such a difference in preferred curvature is provided by adsorbate
molecules with different affinities to the two phases. In addition,
the domain boundary contributes a line (free) energy that is pro-
portional to its length; the corresponding free energy per length
defines the line tension A (Lipowsky, 1992, 1993).

To simplify the notation, the Lo and Ld phases will now be
denoted by the letters # and 4. The Lo- or a-phase has the bend-
ing rigidity k, and the spontaneous curvature 7z,. Likewise, the
Ld- or b-domain has the bending rigidity x, and the spontaneous
curvature 72, We will first ignore possible contributions from
the Gaussian curvature moduli which will be discussed further
below.

In order to focus on the #-domain, let us further assume that
the z-matrix is weakly curved and that its spontaneous curvature 7z,
can be ignored. After nucleation, the 4-domain is weakly curved as
well, see state (1) in Figure 5.32. The domain area A, then grows by
diffusion-limited aggregation. For a circular domain, the domain
has the radius L, =+/A4; / © which implies the domain boundary
length 27L,. The domain energy is then given by

E(l) = ZEL;,A + ZAbK'bl%bz (5266)

where the first term represents the line energy of the domain
boundary and the second term the bending energy of the flat
b-domain with spontaneous curvature 7, If we transform the
flat domain into a spherical bud connected to the a-matrix by a
narrow membrane neck, see state (3) in Figure 5.32, we get essen-
tially rid of the line energy. We now assume that the budding

process is sufficiently fast and that we may ignore changes in the
domain area 4, during this process. The bud then has the radius
R, = %Lb and the energy

Fia) =8y (1= Ry | my |)°. (5.267)

Budding is energetically favored for 3 — E;, < 0 or (Lipowsky,
1992)

48
>——2* =],

P (5.268)
(bud energetically favored)

1, =2R,

with the invagination length

Ey=Kyp/ A (5.269)
This simple argument shows that the competition between bending
and line tension leads to two regimes for the bud size, depending on
the relative size of the invagination length &, and the spontaneous
curvature 7z, If the spontaneous curvature 7z, is small compared to
the inverse invagination length 1/&, = A/k,, the budding process is
dominated by the line tension, and the bud radius R, = 4&,. On the
other hand, if the spontaneous curvature 7, is large, the budding
process is dominated by this curvature and R, ~1/| 7 |.

The argument just described ignores the stability of the closed
neck between the 4-bud and the weakly curved z-matrix. As
discussed further below, such a neck is stable if

48

L, =2R,>—F>—
1428 | my |

=1, (stability of closed neck).

(5.270)

Comparison of the two criteria Eqs 5.268 and 5.270 indicates
that the budding transition at L, = L, occurs before the closed
neck of the bud becomes stable at L, = L, > L, . This conclusion
is corroborated by systematic energy minimization calculations

(Juilicher and Lipowsky, 1993, 1996) as described next.

When a vesicle membrane undergoes phase separation into

two coexisting phases 2 and 4, it will initially form many small
a- and/or small /-domains which will then coarsen into larger
domains.!? In this subsection, we will consider the simplest situ-
ation in which the completion of this coarsening process leads to
one large @-domain coexisting with one large /-domain. Further
below, we will also discuss the possibility that the coarsening
process is truncated and leads to an equilibrium state of a multi-
domain vesicle with more than two domains.

Now, consider a vesicle of volume V that is bounded by a mem-
brane with one 2 domain and one 4 domain. We can then decom-
pose the vesicle shape S into three components: the shapes S, and
S, of the two domains as well as the shape S, of the 26 domain

13 We focus here on the nucleation regime close to the binodal line of the
membrane phase diagram. Further away from this line, the multi-component
membrane phase separates via spinodal decomposition for which the descrip-
tion in terms of sharp domain boundaries does not apply.
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boundary. The # and & domains have the surface areas A, and 4,
respectively. The total area of the vesicle membrane is then given by
A=A+ Ay =A{S, 1+ ALS)) (5.271)
where A{.} denotes the area functional as before. The 26 domain
boundary with shape S, has a certain length, £{S,,} = L., where
L{.} denotes the length functional.
The energy of a two-domain vesicle can be decomposed into
several contributions: the curvature energy of the 2 domain,
the curvature energy of the & domain, and the line energy of
the 26 domain boundary. As for a GUV with a uniform or
single-domain membrane, the curvature energies can be further
decomposed into bending and Gaussian curvature contributions.
The energy functional of the two-domain vesicle then has the
form
EnolS} = EpelSut+ EbelSit + Ec{Sa, Sut + AL . (5.272)
The last term on the right hand side of this equation represents
the contribution of the domain boundary which is proportional
to the line tension 4 (Lipowsky, 1992). Any stable domain pat-
tern implies that the line tension 4 has to be positive as will be
assumed in the following. The energy functional

EatSi 83} = k6 [A,G ey a6 (5.273)
represents the combined Gaussian curvature terms of both
domains and depends on the Gaussian curvature moduli k., and
K¢, of the a- and b-domains. Finally, the bending energy func-
tionals &,.{S, and &,.{S;} have the form

&)e{Sd}ZZKdJ-dAa(M—Mg)Z and &, {5,} =2k, JdAb(M—mb)z
(5.274)

which generalizes the spontaneous curvature model for a uniform
membrane to the case of two different domains. These energy
functionals depend on the bending rigidities k, and k, as well as
on the spontaneous curvatures 72, and 7z,

The equilibrium shapes of a two-domain vesicle are obtained

by minimizing the energy functional Eq. 5.272 for a certain
volume "= V{§} and for certain areas A, and 4, of the 2- and
b-domains. These three constraints can be taken into account by
three Lagrange multipliers AP, X, and X,. As a consequence, the
shape functional of the two-domain vesicle has the form

FopotS} =—APV{S}+Z, A{S, )+ 2 A{S)} + Expot ST}
(5.275)

So far, a systematic minimization of this functional has been
performed for axisymmetric vesicles using the shooting method
(Julicher and Lipowsky, 1993, 1996) and, to some extent, by
numerical minimization of discretized membranes (Gutlederer
et al., 2009; Hu et al., 2011). In these numerical studies, the

spontaneous curvatures were taken to be relatively small.
The same energy functional has also be used to calculate doubly-
periodic bicontinuous shapes corresponding to “lattices of pas-

sages” (G6zdz" and Gompper 1998).

The energy functional of a two-domain vesicle contains the
Gaussian curvature term £g{S5,,5)} as given by Eq. 5.273. If the
two Gaussian curvature moduli k¢, and k, are equal, this term
does not depend on the shape but only on the topology of the
vesicle and is then given by

gg{éyﬂ,fb} = 271')(1((; for Kcs =Koh =K (5276)
where y denotes the Euler characteristic of the whole vesicle, see
Appendix 5.B. In the following, we will consider two-domain vesicles
that have a spherical topology characterized by y = 2.

If the Gaussian curvature moduli of the 2- and 4-phases are dif-

ferent, however, the Gaussian curvature terms also make a shape-

dependent contribution. Indeed, the Gaussian curvature term in

Eq. 5.273 then becomes (Jiilicher and Lipowsky, 1993, 1996)

5@{&7,5},} = —AKcéd[Cg + Zﬂ(KGa + KG/,). (5277)
with the difference

AKG =KGas —KGh (5.278)
of the Gaussian curvature moduli. The first term on the right hand
side of Eq. 5.277 is proportional to this difference Ak, and to the
line integral of the geodesic curvature C, along the domain bound-
ary. To obtain the correct sign of this term, the orientation of the line
element d/has to be chosen in such a way that the line integral moves
around the 4-domain in a clockwise manner when one looks down
onto this domain from the exterior solution. The line integral along
the domain boundary implies that the first term on the right hand
side of Eq. 5.277 depends on the shape S, of the domain boundary.
In contrast, the second term on the right hand side of Eq 5.277 does
not depend on the morphology of the vesicle but reflects its spherical
topology. For k,, = k;, = K, the first term vanishes and the second
term reduces to 47k as in Eq. 5.276 with y = 2.

The first variation of the shape functional Fp,{S} as given by

Eq 5.275 leads to two Euler-Lagrange equations for the (local) mean
curvature M and the (local) Gaussian curvature G within the mem-
brane domains with shapes S, and S;. These equations have the form

AP =28, M — 2i;VEgM — dic;m; M — dic;,[ M — ;|| M? - G|
(5.279)

with 7 = a4, b, the total membrane tensions
S, =3+ 2km7, (5.280)

and the Laplace-Beltrami operator Vg, generalizing the Euler-
Lagrange Eq. 5.25 for a uniform membrane. When the two types



of domains form spherical segments, the terms proportional to
M? — G vanish and we obtain two quadratic equations for the
corresponding constant mean curvatures M = M, and M = M,
Each of these quadratic equations can have up to two solutions
which implies that the two-domain vesicles can form coexisting
spherical segments with up to four different mean curvatures.
One example is a two-domain vesicle with three closed membrane
necks: one neck connects two membrane segment of # phase,

one neck two membrane segments of 4 phase, and the third neck
connects the 2 domain with the 4 domain. The latter neck is
governed by a neck condition that includes the line tension of the
domain boundary, see further below.

In addition to the two Euler-Lagrange Eqs 5.279, we need to
impose appropriate matching conditions along the boundary
between the two membrane domains. In the theoretical descrip-
tion considered here, we ignore the width of the 26 domain
boundary." This simplification is justified when the linear size

of the 2 and 4 domain is large compared to the boundary width,
a condition that is usually fulfilled for the optically resolvable
membrane domains of giant vesicles. Because we ignore the width
of the domain boundary, the bending rigidity and the spon-
taneous curvature change abruptly as we cross this boundary.
Nevertheless, we can still impose the physical requirement that
the shapes of the two membrane domains meet “smoothly” along
the domain boundary, i.e., that these shapes have a common
tangent along this boundary, as explicitly shown for axisymmetric
vesicle shapes (Jiilicher and Lipowsky, 1996).

Even for axisymmetric vesicle shapes with smooth contours,
the matching conditions turn out to be somewhat complex.
Indeed, these matching conditions can lead to discontinuities
along the domain boundary, both for the curvature and for the
mechanical tension. For an axisymmetric vesicle, one of the
principal curvatures, say C,, is provided by the contour curvature.
As described in Appendix 5.F, the contour curvature C, attains,
in general, two different values C}, and C,, when we approach
the domain boundary from the 4 and 2 domain, respectively.
Defining the mean curvatures M,(s,) and M,(s;) at the 2- and
b-sides of the domain boundary, see Appendix 5.F, the curvature
discontinuity can be written in the concise form

Ko My(s1) = ma] = Kp| My (s1) — mp] = %(ch —KGa)Ca(s1)
(5.281)

where C,(s,) is the second principal curvature which is continuous
across the domain boundary.

'The curvature discontinuity also affects the difference £, — %,
of the mechanical tensions within the two membrane domains.
In order to describe this tension difference, we use the parametri-
zation of axisymmetric shapes as shown in Figure 5.33. Because
of axisymmetry, the shape is determined by a one-dimensional

!4 The width of the domain boundary is set by the correlation length for the com-
positional fluctuations. Far away from a critical demixing (or consolute) point,
this correlation length will be comparable to the size of the lipid head groups
while it becomes large compared to molecular length scales close to a critical
point.

Contour of an axisymmetric vesicle with two domains, a
(broken line) and b (full line). The contour is parametrized by the arc
length s, the interval 0 < s < s, corresponds to the b-domain and the
interval s; < s <'s, to the a-domain. The circular domain boundary is
located at s = s;. The shape of the contour is described by the radial
coordinate r = r(s) and the tilt angle y = y(s) which varies from y(s = 0) =0
at the north pole to y(s = s,) = 7 at the south pole.

contour which can be parametrized by the radial coordinate r = #(s)
and the tilt angle y = y(s), both of which depend on the arc length
s of the contour, see Appendix 5.F. The domain boundary is located
at s =5, and the tension difference X,— X, depends on the radius

7, = r(s) of the circular domain boundary and the tilt angle y; = w(s,)
at this boundary. The tension difference then has the form

20—2/, 21%+A2
n

(5.282)

with Ay as given by the expression Eq. 5.17. The latter expres-
sion involves several terms and depends on the contour curva-
tures C,,(s;) and C,,(s;) and on the second principal curvature
C»(s1) =sinyq / n at the domain boundary. If both membrane
domains have identical curvature-elastic properties, the additional
term Ay vanishes and we are left with the balance between the

line tension A and the mechanical tensions X, and X, within the
two membrane domains. Finally, if the line tension A vanishes as
well, the mechanical tension within the z-domain is equal to the
mechanical tension within the 4-domain. The equality £, = Z, also
holds for two domains with identical curvature-elastic properties
if the radius 7, = 7(s,) of the domain boundary is a local minimum
of 7(s) as in Figure 5.33, corresponding to the tilt angle y;, = w(s,)
= 7/2 and cos(y1) = 0. The latter situation applies to two mem-
brane domains that have the same Gaussian curvature modulus,
K¢, = K¢, but is, in general, not valid for kg, # k¢, see last sub-
section of Section 5.8.3.

The morphology of two-domain vesicles depends on three geo-
metric parameters, the vesicle volume Vas well as on the partial
areas A, and A,. Using again the vesicle size Ry = /A /47 as the
basic length scale, we are left with two dimensionless parameters,
the reduced volume v ~ VIA*? withA=A,+ A,and 0 < v <1 as
well as the area fraction

A4
A,+A, A

(5.283)

Xb
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of the /-domain with 0 < x, < 1. The area fraction x, of the
a-domain in then given by x, = 1 — x;,

In addition, the morphology of two-domain vesicles depends
on six curvature-elastic parameters: the spontaneous curva-
tures 7, and m,, the bending rigidities , and x;, the difference
K¢, — K¢, of the Gaussian curvature moduli, and the line ten-
sion A. Using the bending rigidity k, as the basic energy scale,
we obtain five dimensionless parameters: the dimensionless
curvatures

Wy =maRee and  my = mpRye, (5.284)
the rigidity ratios
K, Ak KGa—Kep
px=— and pg=—"=—""", (5.285)
K K K
as well as the dimensionless line tension
7= M (5.286)
Kp

The bending rigidity ratio p, is expected to be of order one. If
we again identify the /- and the 2-domains with the Ld and Lo
phases of three-component lipid bilayers, the value p, =~ 4.5 has
been measured for a certain tie line within the two-phase coex-
istence region (Heinrich et al., 2010). The rigidity ratio p is also
expected to be of order one. Two groups (Baumgart et al., 2005;
Semrau et al., 2008) have compared the experimentally observed
shapes of two-domain vesicles with those calculated from the
theory reviewed here and developed in (Jiilicher and Lipowsky,
1993, 1996). As a result, these groups obtained the estimates

P 3.9 (Baumgart et al., 2005) and 1.1 < p; < 2.5 (Semrau
etal., 2008).

An order of magnitude estimate of the line tension leads to
the value 4 ~ 107! N or 10 pN (Lipowsky, 1992). For the ternary
lipid mixtures studied in (Baumgart et al., 2003, 2005; Semrau
et al., 2008), the line tensions deduced from the experiments var-
ied between 1072 and 107" N, reflecting the vicinity of critical
demixing points in these mixtures. For giant vesicles with a size
R, between 10 and 50 pm, the dimensionless line tension A then
varies within the range 1 < A < 500.

The shape functional F>p,{S} in Eq. 5.275 has been minimized
in order to determine the equilibrium morphologies within the
subspace of axisymmetric shapes (Jiilicher and Lipowsky, 1993,
1996). As discussed in the previous subsection, these shapes
depend on seven dimensionless parameters, two geometric

and five material parameters. In order to illustrate the equilib-
rium morphologies of two-domain shapes, the next subsection
describes the dependence of domain-induced budding on the
volume-to-area volume » and on the line tension 1, keeping all
other parameters fixed. We will see that closed membrane necks
play again a prominent role. The closure and the stability of these
necks is governed by generalized neck conditions that depend on
the line tension.

We now consider a two-domain vesicle with area fraction x, = 0.1,
corresponding to a relatively small 4-domain, and study the shape
of this vesicle as a function of volume-to-area ratio » and line
tension A . In order to reduce the dimension of the parameter
space, the a- and /-domain are taken to have the same bending
rigidity, k, = k;, and zero spontaneous curvatures, 7, = m, = 0.
Furthermore, we will also assume that the difference Ak between
the Gaussian curvature moduli is small and can be ignored.

We are then left with a 2-dimensional (s, A )-section across the
7-dimensional parameter space. The corresponding morphology
diagram is shown in Figure 5.34a.

This diagram contains two lines of limit shapes, Z and Z,,..
The limit shapes L  have volume-to-area ratio v = ». = 0.885
and line tension A > A+ = 8.43. These shapes consist of two
spheres, a smaller b-sphere and a larger a-sphere that are con-
nected by a closed neck. The domain boundary is located
within this neck and has, thus, zero length. The a-sphere has
radius R, =/ A, /47n and mean curvature M, = 1/R, while
the 4-sphere has radius R, =/.A4;, / 47 and mean curvature
M, = 1/R,. Therefore, the geometry of the limit shapes L is
completely determined by the partial areas A, and A,. When
we inflate one of the limit shapes L, thereby increasing the

7\’ L T T T T T T T T T l T T T T i
L open (@) |

10 | closed necks necks _
B Lss T
L open )/ _
L necks Lps/' .
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(a) Morphology diagram for two-domain vesicles as a
function of reduced volume v and line tension 4 and (b) Shapes of
two-domain vesicles for 1 = 9 and variable v (bottom row), corre-
sponding to the horizontal dashed line in (a). The b-domain covers the
area fraction x, = 0.1; both domains are taken to have the same bend-
ing rigidity and the same Gaussian curvature modulus as well as zero
spontaneous curvatures. The limit shapes L consist of two spheres,

a larger sphere formed by the a-domain and a smaller sphere formed
by the b-domain. The limit shapes L, consist of an a-prolate and

a b-sphere. In (a), the two lines of limit shapes meet at the point
(v,A) = (v.,A.) = (8.43,0.885). As we deflate a vesicle for 1 > 4.,

we first reach the limit shape L, at which the open neck closes, move
across the shaded region (yellow) of persistent shapes with closed
necks, and eventually reach the limit shape L, at which the neck
starts to open again. (Reproduced from Jilicher, F. and Lipowsky, R.
Phys. Rev. E, 53, 2670-2683, 1996.)



volume-to-area ratio to v > v., the neck opens up and the domain
boundary acquires a nonzero length.

The limit shapes Z,, are located at v, ()< v. and again restricted
to A > i, see Figure 5 34a. The latter shapes consist of an a-prolate
and a b-sphere. The b-sphere of the limit shape Z,, is identical with
the b-sphere of the limit shape L and, thus, has the same radius
Ry, =] Ay / 4 . This b-sphere is connected to the pole of the a-
prolate via a closed neck, and the domain boundary is again located
within this neck. At its pole, the a-prolate has the mean curvature

M, = L—M Z)L —J4r /A, .
Kp

5.287
2, (5.287)

The latter relation represents an example for the neck closure con-
dition of domain-induced budding, see further below. When we
deflate one of the limit shapes Z, thereby decreasing the vol-

the neck opens up and the domain
boundary acquires a nonzero length.

Inspection of Figure 5.34a shows that the two lines of limit
shapes, L, and L, enclose an intermediate parameter regime in
which all two-domain shapes have a closed neck. Now, assume
that we move across this regime by inflation, thereby increasing the
parameter v for fixed value of the line tension A > A«. We start with
a shape that has a volume-to-area ratio » < v (2.) and a slightly
open neck, see Figure 5.34b. As we reach the limit shape Z,, by
inflation, the neck closes and the two mean curvatures M, and M,
adjacent to this neck fulfill the neck closure condition in Eq. 5.287.
Further inflation does not affect the 4-sphere but increases the vol-
ume of the a-prolate, thereby producing different persistent shapes
@, with a closed neck. The volume of the a-prolate increases until
it is transformed into an a-sphere. During this transformation, the
mean curvature M, at the pole of the a-prolate decreases continu-
ously until it reaches the limiting value M, = /47 /A, of the
a-sphere. After this transformation, the two-domain vesicle forms
the limit shape L. Because the line tension forces the domain
boundary to be located within the neck, a further increase in the
vesicle volume necessarily leads to an open neck.

ume-to-area ratio to v < v,

The (», A )-diagram discussed in the previous subsection, see
Figure 5.34a, contains a large parameter region for which the
shape of the two-domain vesicle involves a closed membrane neck.
'This abundance of necks is also obtained for other choices of the
area fraction x;, different values of the bending rigidities x, and
K, and nonzero values of the spontaneous curvatures 72, and 7,
In all of these cases, the domain boundary is again located within
the neck provided the difference A, of the Gaussian curvature
moduli is small and can be neglected. Such @b necks that com-
pletely eliminate the domain boundary will now be considered in
more detail.

If the 4-domain forms an out-bud as in Figure 5.34b, the closed
ab-neck is stable if the mean curvatures M, and M, of the - and
b-segments adjacent to the neck satisfy the relation (Jiilicher and

Lipowsky, 1993, 1996)

Kd(Md—md)+K/,(M;,—mb)£%l for K¢, = K¢p- (5.288)

The equality sign of this relation provides the neck closure con-
dition for the limit shapes, the inequality sign the closed neck
condition. The relation in Eq. 5.288 for a domain-induced out-
bud has been confirmed by numerical energy minimization for
a large number of different parameter values. This relation can
also be derived by parametrizing the shape of the two-domain
vesicle in terms of membrane segments with constant mean
curvature, compare Section Stability of closed necks. Recently,
the neck closure condition corresponding to the equality sign in
Eq. 5.288 has been shown to apply to non-axisymmetric shapes
as well (Yang et al., 2017).

One should note that the matching condition along the
domain boundary no longer applies when we reach a limit shape
with a closed neck for which the domain boundary has zero
length. Indeed, consider the simplest case of two membrane
domains that have the same curvature-elastic parameters. In the
latter case, the matching condition in Eq. 5.281 has the simple
form M, = M), corresponding to a continuous variation of
the mean curvature across the domain boundary. In contrast,
the limit shape is characterized by the neck closure condition
in Eq. 5.288 which reduces to M, 2’% — M, when the two
domains have the same curvature-elastic parameters. If we
combined the latter relation with M, = M,, we would con-
clude that M, = M, = T which is, however, inconsistent with
M, = [4n /A, asin Eq 5.287. The same conclusion follows
also by inspection of the limit shape Z,, in Figure 5.34 which
clearly shows that M, # M,

If the /-domain forms an in-bud with a closed z6-neck, this neck
is stable if (Lipowsky, 2014b)

Ka(Ma—md)+Kb(M;,—mb>Z—%l for KG, =KG (5289)

This relation can again be derived by an appropriate hemisphere-
unduloid parametrization of the vesicle shape or, alternatively,
by changing the sign of all curvatures that appear in Eq. 5.288.
Because the line tension of the domain boundary is necessar-

ily positive, the right hand side of the inequality in Eq. 5.289 is

always negative.

It is instructive to consider some special cases of the neck closure
condition corresponding to the equality in Eqs 5.288 and 5.289.
If the - and 4-domains have the same lipid composition and,
thus, the same curvature-elastic parameters, the line tension 4
vanishes and the neck closure condition becomes M, + M, = 2m,
corresponding to the neck closure relations Eqs 5.52 and 5.53 for
a uniform membrane. For a weakly curved a-segment, a spherical

b-bud then has the radius

1
| My |

(uniform membrane,
2|m|

R, = (5.290)

weakly curved a-segment).

Another simple case is provided by a weakly curved z-membrane
characterized by a small spontaneous curvature | 7, |<| 7, |.
In this case, the b-domain forms a spherical bud with radius
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1 1
CIMy | | myt A/ (2k5)]|

Ry (weakly curved

a-membrane, small | 7, |). .29
Thus, depending on the relative size of the spontaneous cur-
vature |m,| and the reduced line tension 1/(2k,), the bud size
may be dominated by spontaneous curvature or by line ten-
sion. For some ternary lipid mixtures, the measured line ten-
sion was found to be of the order of 10712 N (Baumgart et al.,
2005; Semrau et al., 2008). The bending rigidity «, has a

typical value of the order of 1071 J. Thus, in these systems, the
inverse length scale 1/(2x,) ~ 1/(200nm) which implies that

the bud size is dominated by line tension with R, ~ 2k,/A for

| 7, << 1/ (200 nm) and governed by spontaneous curvature with
R, = 1/|my| for | m; |>1/ (200 nm).

In the previous subsection, it was tacitly assumed that the differ-
ence Ak = K¢, — K¢, between the Gaussian curvature moduli of
the 2 and 4 domain can be ignored. This simplification will be
valid as long as Ak is small compared to the bending rigidities k,
and k. For larger values of Ak, this difference has a significant
effect on the location of the domain boundary, see Figure 5.35.

For an axisymmetric shape as shown in the top figure of
Figure 5.35, the shape contour can be parametrized by the arc
length s, the radial coordinate , and the angle y between the nor-
mal vector and the symmetry axis, see Figure 5.33. The Gaussian
curvature contribution in Eq. 5.277 can then be expressed in
terms of the tilt angle y; = w(s) at the domain boundary and
becomes (Jiilicher and Lipowsky, 1993, 1996)

EASa, S} =2m(KGa —Kap)cos(w1) = Eg(wr) . (5.292)

af 3
(a) (b)
e b
.............. -
KGa > Kgp

(Top) Side view of a vesicle that consists of a large a
domain and a small b bud. The two domains are connected by a
membrane neck which contains the ab domain boundary (arrow);
(Bottom) More detailed view of the neck region which shows that
the domain boundary position (arrows) depends on the relative size
of the Gaussian curvature moduli kg, and kg, of the a and b domains.
For kg, > kgp, the domain boundary is shifted towards the b bud.
For kg, < kgp, this boundary is displaced towards the a domain. In both
cases (a) and (b), the domain boundary is shifted out of the neck
towards the domain with the smaller k5-value, and the neck is then
formed by the domain with the larger Gaussian curvature modulus
(Julicher and Lipowsky, 1993, 1996). Such shifts of the domain bound-
aries have been experimentally observed by (Baumgart et al., 2005;
Semrau et al., 2008). (Reproduced from Jilicher, F. and Lipowsky, R.,
Phys. Rev. E, 53, 2670-2683, 1996.)

If the domain boundary is located in the neck, i.e., at the clos-
est point of the shape contour to the symmetry axis, the angle
w, = 7/2 and the energy term E.(y;) = 0.

Depending on the sign of k¢, — k¢, the energy term E;
becomes negative as the domain boundary moves out of the
neck towards the 4 or towards the @ domain. If k;, > k., this
term becomes negative for y; > /2 which implies that the
domain boundary prefers to move up towards the & domain as in
Figure 5.35a. On the other hand, if k¢, < k¢, E; becomes nega-
tive for y; < /2 which implies that the domain boundary prefers
to move down towards the # domain, see Figure 5.35b. In both
cases, the neck is then formed by the domain with the larger
Gaussian curvature modulus.

The actual displacement of the domain boundary is limited
by the line tension. Indeed, as the domain boundary moves out
of the neck, the energy gain |E;(y;)| arising from the Gaussian
curvature terms is bounded by

(5.293)

| EG(l//1) |S 21 | KGa —KGh for any value of V1

whereas the line energy of the domain boundary increases mono-
tonically with the length of this boundary.

Such displacements of the domain boundaries away from
the neck have indeed been observed experimentally for two-
domain vesicles formed by ternary lipid mixtures (Baumgart
et al., 2005; Semrau et al., 2008). Based on the observed loca-
tion of the domain boundaries, the difference Ak, = k¢, — k¢,
in the Gaussian curvature moduli has been estimated to be
Ak;~ 3.9 X 107 ] in (Baumgart et al., 2005) and 3 X 107" J in
(Semrau et al., 2008). So far, these values which are of the same
order of magnitude as the bending rigidities represent the only
experimentally deduced information about the Gaussian curva-
ture moduli of lipid bilayers.

When we quench a vesicle membrane from the one-phase into
the two-phase region, the phase separation process within the
membrane starts with the formation of many small domains
which then grow and merge into larger domains. Domain
growth by coalescence, which is driven by the reduction in the
line energy of the domain boundaries, has been observed both
in computer simulations (Kumar et al., 2001) and in giant
vesicle experiments (Veatch and Keller, 2003). If the line tension
is sufficiently large, the coarsening process will often lead to
complete phase separation and to two large membrane domains
as studied in the previous subsections. However, if the two lipid
phases differ in their bending rigidity, a multi-domain pattern
with more than two domains can be energetically more favor-
able (Gutlederer et al., 2009; Hu et al., 2011). Some examples
with 1 + 3 and 1 + 4 domains are displayed in Figure 5.36.
Inspection of these figures shows that the more rigid 2-domains
are only weakly curved whereas the more flexible /-domains
form the more strongly curved membrane segments. A reduction
in the number of 4-domains would reduce the line energy of
these domains but, at the same time, increase the bending energy
of the vesicle, and the bending energy increase outweighs the line
energy reduction.



Multi-domain vesicles with two membrane domains that
differ in their bending rigidities: (a, c) Snapshots from Monte Carlo
simulations with (a) three and (c) four domains of the b phase (red)
within a single domain of a phase (white); and (b, d) Corresponding
images obtained by optical microscopy (Veatch and Keller, 2003;
Gudheti et al., 2007). The a phase corresponds to the more rigid
liquid-ordered phase, which forms a single, multiply-connected and
weakly curved domain, whereas the b phase represents the more
flexible liquid-disordered phase which forms three or four discon-
nected and more strongly curved domains. (Hu, J. et al., Soft Matter,
7, 6092-6102, 2011. Reproduced by permission of The Royal Society
of Chemistry.)

The shape energy of multi-domain vesicles with /V, and N,
domains is obtained by summing up the bending and Gaussian
curvature energies over all V, + /N, domains and the line ener-
gies over all domain boundaries. The minimization of this shape
energy has been performed both by solving the corresponding
shape equations assuming certain symmetries of the domain pat-
terns (Gutlederer et al., 2009) and by Monte Carlo simulations
(Hu et al., 2011). As a result, the multi-domain vesicles are found
to undergo new types of morphological transformations at which
both the vesicle shape and the domain pattern are changed in a
discontinuous manner. Presumably the simplest way to explore
these morphological transitions is by changing the vesicle volume
via osmotic deflation or inflation as illustrated in Figure 5.37.

Each vesicle morphology shown in Figure 5.37 is characterized
by a different spatial symmetry: both with respect to the vesicle
shape and with respect to the domain pattern. Therefore, all tran-
sitions that can be observed between these different morphologies
are discontinuous and exhibit hysteresis. As we deflate the vesicle
for fixed area fraction x, = A,/(A, + A,), we can encounter the
sequence of vesicle morphologies I, I,, I, I, and 11, displayed in
Figure 5.37b. The corresponding transitions I, — I, involve the
fission of Vinto (N + 1) b-domains. Such a fission process has to
overcome an energy barrier that involves longer domain boundar-
ies and, thus, an increased line energy. In contrast, during infla-
tion, the reverse transitions I,; = I, lead to a reduction in the
number of 4-domains and are thus facilitated by the line tension.
Therefore, it should be easier to experimentally observe these mor-
phological transitions during inflation processes.

As explained in Section 7.6 and illustrated in Figure 5.31,
membranes are often exposed to different local environments
which act to enrich or deplete certain molecular components of
the membranes. As a result, the membranes are partitioned into
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Morphological transitions of multi-domain vesicles
that simultaneously change the vesicle shape and the domain pat-
tern. (@) Morphology diagram as a function of area fraction x, of the
b-domains and volume-to-area ratio or reduced volume v. The dia-
gram exhibits five different morphologies, labeled by I, 1, I, I, and Il
and depicted in (b). The dashed vertical line at x, = 0.7 indicates a
possible deflation/inflation trajectory; and (b) Sequence of vesicle
morphologies and morphological transitions that the vesicle explores
as we move along the dashed vertical line in (a). For each morphol-
ogy, the white domain corresponds to the more rigid a or Lo phase,
the red domains to the more flexible b or Ld phase. The multi-domain
vesicle follows the sequence |; = |, = I; = |, — Il; during deflation and
the reverse sequence during inflation. All transitions |, & |, & |; <
I, & Il; break a spatial symmetry. Therefore, all of these transitions are
discontinuous and exhibit hysteresis. The transitions from Iy, ; = Iy,
as induced by inflation, are facilitated by the line tension and should
thus be easier to observe experimentally. (Hu, J. et al., Soft Matter 7,
6092-6102, 2011. Reproduced by permission of The Royal Society of
Chemistry.)

several segments that can differ in their molecular composition.
The interplay between this ambience-induced segmentation and
membrane phase separation has some interesting consequences
as shown theoretically for membranes consisting of two molecu-
lar components, see Appendix 5.G (Rouhiparkouhi et al., 2013;
Lipowsky et al., 2013). First, the phase separation within the
multi-component membrane is always spatially confined to a
single segment as illustrated in Figure 5.38. Second, when the
membrane is partitioned into K different membrane segments, we
encounter K separate coexistence regions as we vary the mem-
brane composition and/or the temperature. Third, the size of the
coexistence regions, i.e., the range of compositions that exhibits
two-phase coexistence, shrinks with increasing K. These generic
properties have direct consequences for cell membranes.

The environment of a cell membrane is rather heterogeneous
and the molecular interactions experienced by the different

@ ®) ©

Multi-component vesicles with three different composi-
tions. The top row displays the non-adhering vesicles with composi-
tions that belong to (a) the liquid-disordered phase Ld (white), (b) the
two-phase coexistence region, and (c) the liquid-ordered phase Lo
(blue). The bottom row displays the same vesicles now adhering to a
rigid surface or solid support. In the adhering state, membrane phase
separation and domain formation can occur either in the bound or in
the unbound segment but not in both segments simultaneously.
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molecular components of the membrane change on nanoscopic
scales. When we focus on the interactions with the cytoskeleton,
we can distinguish at least two types of membrane segments,
contact segments that interact with the cytoskeletal proteins and
noncontact segments that do not experience such interactions
(Sako and Kusumi, 1994; Saxton and Jacobson, 1997; Fujiwara
et al., 2002; Kusumi et al., 2005). In addition, different contact
segments are, in general, exposed to cytoskeletal structures that
differ in their molecular composition of actin-binding proteins
(Skau and Kovar, 2010; Michelot and Drubin, 2011) and non-
contact segments involve additional supramolecular structures
such as the protein scaffolds formed during clathrin-dependent
endocytosis that have a lifetime in the range between 20 and 80s
(Loerke et al., 2009; Cureton et al., 2012).

Thus, cell membranes are expected to be partitioned into
many distinct membrane segments that are exposed to different
local environments. If lipid phase domains form in such a cell
membrane, this domain formation is necessarily restricted to one
of the membrane segments and, thus, hard to detect (Lipowsky,
2014b). In the limiting case in which the environmental heteroge-
neities act as long-lived random fields on the cellular membranes,
these heterogeneities would completely destroy the two-phase
coexistence region, in analogy to the Ising model with random
fields (Binder, 1983; Aizenman and Wehr, 1989; Fischer and
Vink, 2011). This view is in agreement with experimental observa-
tion on membrane phase separation in giant plasma membrane
vesicles (Baumgart et al., 2007; Veatch et al., 2008) because the
latter vesicles have no cytoskeleton.

In contrast to lipid phase domains, the formation of intra-
membrane domains via the clustering of membrane proteins
is frequently observed in vivo. One example is provided by
clathrin-dependent endocytosis which can be understood as
a domain-induced budding process that is governed by the
membrane’s spontaneous curvature. When the endocytic
vesicles contain nanoparticles or other types of cargo, the
uptake of this cargo becomes maximal at a certain, optimal
cargo size (Agudo-Canalejo and Lipowsky, 2015a) as experi-
mentally observed for the uptake of gold nanoparticles by HeLa
cells (Chithrani et al., 2006; Chithrani and Chan, 2007) and
discussed in more detail in Chapter 8 of this book. In gen-
eral, protein-rich membrane domains or membrane domains
induced by an extended protein coat should always undergo
domain-induced budding as long as the lipid-protein domains
remain in a fluid state. Recent examples are domain-induced
budding processes arising from the clustering of Shiga toxin
(Pezeshkian et al., 2016) and from the sequential adsorption of
two types of ESCRT proteins (Avalos-Padilla et al., 2018).

5.9

Aqueous two-phase systems, also called aqueous biphasic systems,
have been used for a long time in biochemical analysis and bio-
technology and are intimately related to water-in-water emulsions
(Albertsson, 1986; Helfrich et al., 2002; Esquena, 2016). One
prominent example are PEG-dextran solutions that undergo aque-
ous phase separation when the weight fractions of the polymers

exceed a few percent. The corresponding interfacial tensions are
ultralow, of the order of 107°—10~% N/m, reflecting the vicinity
of a critical demixing point in the phase diagram (Scholten et al.,
2002; Liu et al., 2012; Atefi et al., 2014; de Freitas et al., 2016).
The corresponding phase diagram is displayed in Figure 5.39
based on the experimental data in (Liu et al., 2012). As explained
in the following section, aqueous two-phase systems and water-
in-water emulsions also provide insight into the wetting behavior
of membranes and vesicles. The experimental procedures used to
encapsulate aqueous two-phase systems by GU'Vs are reviewed in
Chapter 29 of this book.

In the experimental studies of phase separation of PEG-
dextran solutions within GUVs, (Li et al., 2011; Liu et al., 2016)
the GUV membranes were observed to form many nanotubes.
More precisely, such tubes were formed by the membrane
segments in contact with the PEG-rich aqueous phase. Thus,
deflation of the PEG-dextran solutions led simultaneously to

Phase diagram and membrane wetting behavior of
aqueous PEG-dextran solutions as a function of the weight fractions
w, and w, for PEG and dextran as determined experimentally in (Liu
et al., 2012). For low weight fractions, the polymer mixture forms a
spatially uniform aqueous phase corresponding to the one-phase
region (white) in the phase diagram. The coexistence region of the
PEG-rich phase a and the dextran-rich phase  contains two sub-
regions, a complete wetting region (pink) close to the critical point
and a partial wetting region (turquoise) further away from it. In the
pink subregion, the membrane is completely wetted by the PEG-rich
phase a which encloses the dextran-rich phase . The corresponding
wetting morphology is depicted in the left inset: the outer leaflet of
the uniform vesicle membrane (red) is in contact with the exterior
phase 7, the inner leaflet with the interior phase a but not with the
interior phase f3 (gravitational effects arising from the different mass
densities of the two phases have been ignored). In the turquoise
subregion, the membrane is partially wetted by both phases as shown
in the right inset: both interior phases a and f§ are now in contact with
the vesicle membrane and induce two distinct membrane segments
(red and purple). Within the phase diagram, the boundary between
the complete and partial wetting subregions is provided by a certain
tie line (red dashed line), the precise location of which depends on
the lipid composition of the membrane. Along this tie line, the system
undergoes a complete-to-partial wetting transition. The dashed
tie-line partitions the binodal line into two line segments (red and
blue). If one approaches the red segment of the binodal line from the
one-phase region, a wetting layer of the a phase starts to form at the
membrane and becomes mesoscopically thick as one reaches this
line segment. No such layer is formed along the blue segment of the
binodal line.
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In-wetting morphologies arising from phase separation into two aqueous phases, a (yellow) and 8 (blue), within a giant vesicle.

The vesicle is surrounded by the bulk liquid y (white) which plays the role of an inert spectator phase. Red and purple segments of the vesicle
membrane are in contact with the a and  droplets, respectively. The af interfaces are depicted as dashed orange lines: (a) Partial wetting of
the vesicle membrane by both the a and the g phase. This morphology involves a three-phase contact line (black circles). On the micrometer
scale, the vesicle shape exhibits a kink along this contact line which directly reveals the capillary forces acting onto the vesicle membrane; (b)
Complete wetting of the membrane by the a phase; (c) Complete wetting by the  phase; and (d) Special morphology for which the a and the
droplet are separated by a closed membrane neck. The latter morphology, which resembles complete wetting by the y phase, is only possible if
the membrane has a certain minimal area A = A,,, to enclose both spherical droplets completely, see Eq. 5.294.

both wetting and tubulation of the GUVs. However, wetting and
tubulation should be regarded as two distinct and independent
processes. First, nanotubes can be formed in the absence of aque-
ous phase separation as predicted theoretically for uniform mem-
branes, see Section 5.6, and observed experimentally (Liu et al.,
2016) for GUVs exposed to asymmetric PEG solutions without
dextran. Second, membrane wetting is expected to always gener-
ate some spontaneous curvature but tubulation can only occur if
the spontaneous curvature is sufficiently large compared to the
inverse vesicle size as explained in Section 5.6. In the following
subsections, we will first focus on wetting and ignore the possibil-
ity of tube formation. The additional aspects related to spontane-
ous tubulation will be addressed in a later subsection.

This section is supplemented by two Appendices: Appendix
5.H on wetting of two membraneless droplets and Appendix 5.1
on out-wetting of membranes and vesicles by droplets that origi-
nate from the exterior solution.

Wetting phenomena arise in aqueous systems with three separate
aqueous phases that will be denoted by a, f, and y. In the pres-
ence of a GUV membrane, which separates the aqueous solution
into an interior and exterior compartment, only two of these
phases, say a and f, will be in chemical equilibrium and able to
form two coexisting phases. We can then distinguish two dif-
ferent cases, out-wetting and in-wetting, depending on whether
these coexisting phases are formed within the exterior or interior
compartment. For out-wetting, the exterior solution under-

goes aqueous phase separation into a and f droplets while the
interior solution forms a spatially uniform y phase. The y phase
does not participate in the wetting process and, thus, represents
an inert spectator phase. For in-wetting, the interior solution
separates into a and f§ droplets while the exterior solution forms
a spatially uniform y phase which again plays the role of an inert
spectator phase.

In order to simplify the following discussion, I will focus in
this section on the case of in-wetting. The case of out-wetting is
considered in Appendix 5.1. In-wetting has been studied experi-
mentally for PEG-dextran solutions, using two different methods
to induce the phase separation within the GUVs: temperature

changes (Helfrich et al., 2002; Long et al., 2008) and osmotic
deflation (Li et al., 2008, 2011; Kusumaatmaja et al., 2009;

Liu et al., 2016; Dimova and Lipowsky, 2016). After the phase
separation has been completed, the vesicle contains two aqueous
droplets consisting of the PEG-rich phase @ and the dextran-rich
phase f, which are both separated from the exterior phase y by the
GUV membrane.

In general, an aqueous solution with three distinct aqueous
phases a, f and y can form three different liquid-liquid interfaces,
an af, an ay, and a Py interface. When the interior aqueous
solution within the GUV undergoes aqueous phase separation
as considered here, the membrane is partitioned into an ay and
a fy membrane segment. In principle, one can then distinguish
four wetting morphologies: a partial wetting morphology which
is characterized by a three-phase contact line and three distinct
morphologies of complete wetting as depicted in Figure 5.40.

For the PEG-dextran solutions, complete wetting of the mem-
brane by the f phase as in Figure 5.40c has not been observed.
Complete wetting of the membrane by the PEG-rich phase a
as in Figure 5.40b was observed close to the critical point of the
PEG-dextran mixture, see pink region in Figure 5.39. Partial
wetting as in Figure 5.40a was found further away from the criti-
cal point, see turquoise region in Figure 5.39. Deflation of the
partial wetting morphologies should eventually lead to complete
wetting of the aff interface by the y phase, see Figure 5.40d.

In the latter case, the GUV membrane consists of three segments:
an ay segment around the a droplet, a fy segment around the f
droplet, and a membrane neck (or nanotube) connecting the ay
with the fy segment. The latter morphology is not possible if the
volume-to-area ratio of the GUV is too large. Indeed, if the a and
f droplets have the volumes V, and Vj, they cannot be completely
enclosed by the vesicle membrane if the membrane area 4 is too
small and satisfies the inequality"

A< Ay =(4m /9) (VO%/ Serp 3). (5.294)

15 If the vesicle membrane forms nanotubes, the area 4 corresponds to the appar-
ent area of the mother vesicle.
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In the following, I will first focus on systems that fulfill the
geometric constraint Eq. 5.294 and thus cannot attain the limit
shape with A = A, in Figure 5.40d. The latter morphology will
be discussed in Section 5.9.8 further below.

In the phase diagram of Figure 5.39, the complete and partial
wetting subregions are separated by a certain tie line, at which
the system undergoes a complete-to-partial wetting transition.
The precise location of this tie line depends on the lipid compo-
sition of the membranes. So far, three compositions have been
studied: binary lipid mixtures consisting of DOPC and GM1 (Li
et al., 2008, 2011) as well as ternary mixtures containing DOPC,
dipalmytoyl phosphatidyl choline (DPPC) and cholesterol (Liu
etal., 2016). In general, the wetting transition along this tie line
can be continuous or discontinous depending on the manner in
which the contact angle vanishes as we approach the transition
from the partial wetting regime. So far, the experimental data do
not allow us to draw firm conclusions about the continuous or
discontinuous nature of the transition.

A particularly interesting class of water-in-water droplets is pro-
vided by membraneless organelles and biomolecular condensates
that have been discovered iz vivo and are enriched in intrinsi-
cally disordered proteins such as FUS (Brangwynne et al., 2009).
It has been recently shown that a FUS-rich droplet in contact
with a lipid vesicle can attain three different wetting morpholo-
gies depending on the salt concentration in the exterior solution
(Knorr et al., under review). First, the droplet may form a thin
wetting layer that spreads over the whole vesicle membrane, corre-
sponding to complete wetting by the FUS-rich phase. Second, the
droplet may have a limited contact area with the vesicle membrane
and can then be characterized by apparent contact angles. Third,
the droplet may also avoid the contact with the membrane cor-
responding to dewetting of the FUS-rich phase.

The distinction between dewetting, partial wetting, and com-
plete wetting as described in the previous subsection emphasizes
the different morphologies of an aqueous droplet in contact
with a vesicle membrane. Alternatively, we may also focus on
the response of the membrane to such a droplet. This response
reflects the fluid-elastic molding mechanisms by which the
droplet shapes the membranes. These mechanisms involve the
adhesion of the droplets to the membranes, the capillary forces
that the aff interface exerts onto the membrane, as well as the
bilayer asymmetry and curvature generation arising from the dif-
ferent aqueous phases in contact with the two membrane leaflets.
For a large bilayer asymmetry and low membrane tension, the
membrane forms nanobuds and nanotubes as observed for vesicle
membranes in contact with PEG-dextran solutions (Li et al.,
2011; Lipowsky, 2013; Liu et al., 2016).

The different molding mechanisms are governed by different
fluid-elastic parameters. First of all, the contact areas between
the different aqueous phases and the GUV membrane can be
characterized by different adhesive strengths, W, and W, which
represent the adhesion free energies of the ay and fy segments per
unit area. If the a droplets are attracted towards the membrane,
in a background of f# phase, the corresponding affinity contrast

W,, — Wj, is negative. In such a situation, the a droplet tries

to increase its contact area A, with the membrane. However,
an increase of the contact area 4, for fixed volume V, usually
implies an increase in the area A, of the af interface and, thus,
of the interfacial free energy A,4%,; which is proportional to the
interfacial tension Z.

On the other hand, the a droplet can simultaneously increase
the contact area A,, with the membrane and decrease the area
A, of the af interface when it is partially or completely engulfed
by the membrane. Complete engulfment of the a droplet as
depicted in Figure 5.40d is only possible if the membrane area A
is sufficiently large and satisfies 4 > A,, with the area threshold
Ay, as in Eq. 5.294. In general, complete engulfment of a liquid
droplet by a vesicle membrane requires some area reservoir or,
equivalently, a sufficiently small lateral stress X acting within the
membrane. Vice versa, a large lateral stress as generated, e.g., by
osmotic inflation reduces the contact area for partial wetting and
suppresses engulfment.

The interfacial tension X of an aqueous two-phase system or
water-in-water emulsion can be very small and only of the order
0f 107°—10~> N/m. In spite of these ultra-low tension values, the
resulting capillary forces generate strong shape deformations of
the vesicle membrane along the three-phase contact line. Indeed,
when viewed with conventional optical resolution, the membrane
shape exhibits an apparent kink along this contact line as sche-
matically depicted in Figures 5.40a and 5.49a for partial in- and
out-wetting, respectively.

Finally, both for in- and for out-wetting, the two leaflets
of the different membrane segments are exposed to different
aqueous solutions which implies that the membrane segments
acquire a certain spontaneous curvature. For a sufficiently
large spontaneous curvature, the membrane segment forms
nanobuds and nanotubes as observed for giant vesicles in
contact with phase-separated PEG-dextran solutions (Li et al.,
2011; Lipowsky, 2013; Liu et al., 2016). In the latter case,
the spontaneous curvature was generated by PEG adsorption
which implies that the nanobuds and nanotubes were formed
by the membrane segments ay in contact with the PEG-rich
phase, reflecting the more negative adhesive strength W, of
these segments.

As previously mentioned, multicomponent membranes exposed to
two different aqueous solutions are partitioned into two segments
that will, in general, differ in their molecular compositions. These
different compositions reflect the different molecular interactions
between the membrane molecules and the two aqueous phases.
Membrane segmentation can also arise via two alternative mecha-
nisms, (i) phase separation within the membrane as discussed in
the previous Section 5.8 and (ii) curvature sorting, i.e., the prefer-
ence of some membrane molecules for highly curved membrane
segments.

In the present section, we consider membrane compositions
that belong to the one-phase region when the vesicle membrane
is exposed to a uniform aqueous environment provided by any
of the three liquid phases @, f, and y. Furthermore, to simplify



the following discussion, we will assume that curvature sorting is
negligible and can be ignored.'® In such a situation, the different
molecular compositions of the ay and fy membrane segments are
determined by the different molecular interactions of the mem-
brane molecules with the two distinct aqueous phases, molecular
interactions that will be described by the corresponding adhesion
free energies.

The in-wetting morphologies in Figure 5.40 involve one @ and
one f droplet enclosed by the vesicle membrane. It will be useful
to decompose the corresponding shape § into several components.
First, we define the shapes S, and S, of the two droplets with
volumes

Vo =W{Sq} and Vg =W{Sp} (5.295)
The total volume of the vesicle is then given by
V=Vy+1g. (5.296)

These volumes can be considered to be constant at constant
temperature and fixed osmotic conditions. The two droplets are
bounded by three surface segments: the aff interface between
the @ and the f droplet as well as two membrane segments, the
ay segment in contact with the @ droplet and the fy segment
exposed to the f droplet. The shapes of these three surfaces will
be denoted by S, S,,, and S, respectively. Their surface areas
are then given by

Aop = A{Saﬂ}, Aoy = A{Say}, and  Ag, = A{Sgy }.
(5.297)

All three surface segments meet along the three-phase contact line

which has the shape S, and the length

Lapy = L{Sapy } (5.298)
where L{} is the length functional as before.

The af interface can adapt its area A, to changes in the
droplet and membrane morphologies. As before, the total mem-
brane area A will be taken to be constant at constant tempera-
ture. The vesicle-droplet system is then characterized by three
geometric constraints as provided by the volumes V, and V}; of
the two droplets as well as the total membrane area 4. In order
to determine the morphology of the vesicle-droplet system, we
will minimize the (free) energy of the system, taking these three
constraints into account.

The three surface segments and the contact line make different
contributions to the total (free) energy of the vesicle-droplet
system. One contribution arises from the interfacial tension X

16 Tn general, curvature sorting should be limited to highly curved membrane

segments. For in-wetting morphologies as considered here, high curvatures can
be present along the three-phase contact line. In addition, one type of mem-
brane segment may form nanotubes (Li et al., 2011; Liu et al., 2016) which
represent highly curved membrane segments as well.

of the interface between the two liquid phases a and f. The lat-
ter contribution is proportional to the interfacial area A, and
given by

ZopAap = ZaﬁA{Saﬁ I3 (5.299)

The curvature elasticity of each membrane segment jy with j = a

or f# makes two contributions, a bending energy that depends

on the bending rigidity x;, and the spontaneous curvature 2, as
well as a contribution from the Gaussian curvature modulus x,.
In close analogy to the bending energy of a two-domain vesicle,
see Eq. 5.274, the bending energy functional of a partially wetted

membrane has the form

EbelSay»Spy} = Eaiy (Say s + €5, Spy} (5.300)

with
£ 1 =2, '[dA,y(M—mﬂ)Z for j=ctor f (5.301)

which depends on the (local) mean curvature M of the mem-
brane. In addition, the Gaussian curvature energy functional is
given by

EctSupy} = (Ke.ay —Ke.py )(}Sd/cg 2 (Ke.ay + K py), (5.302)

where the first term involves the line integral over the geodesic
curvature C, along the three-phase contact line as follows from the
Gauss-Bonnet theorem, see the analogous expression for two-
domain vesicles in Eq. 5.277. To obtain the correct sign of this
term, the orientation of the line element d/ has to be chosen in such
a way that the ay segment is surrounded in a clockwise manner
when one looks down onto this segment from the exterior phase y.
We will again focus on membrane compositions with (at least)
one molecular species, such as cholesterol, that undergoes
frequent flip-flops between the two leaflets. We can then ignore
additional bending energy terms arising from area-difference
elasticity as described by Eqs 5.63 and 5.64. Furthermore, as
emphasized at the beginning of the present section, we will also
assume that this multi-component membrane has no tendency
to phase separate and has a laterally uniform composition when
exposed to spatially uniform aqueous environments.

In addition, the molecular interactions between the aqueous
droplets and the membrane lead to two additional contributions,
the adhesion free energies of the droplets and the free energy of
the three-phase contact line. The latter contribution is propor-

tional to the length L, of the contact line and given by

affy

Aco Lapy = Aco LS apy } (5.303)

with the contact line tension A_,. The latter line tension can be
positive or negative in contrast to the line tension 4 of a domain
boundary, which must be positive to ensure the stability of the
intramembrane domains. Finally, the adhesion free energies will
now be discussed in some detail.
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In order to determine the adhesion free energies of the droplets
in contact with the vesicle membrane, we denote the outer and
inner leaflet of the bilayer membrane by the subscript “ol” and
“il,” respectively, and view the leaflet-water interfaces as “walls”
with different interfacial tensions, depending on whether they are
exposed to the a or to the f phase.

To each shape S of the wetting morphology depicted in
Figure 5.40a, we can define a reference system with the same
shape but with both the a and § droplet replaced by y phase.
The intermolecular interactions between the leaflets and the adja-
and X,

ol,y il,y
of the corresponding leaflet-water interfaces and the combined

cent y phases then lead to the interfacial tensions X

interfacial free energy functional of both leaflet-water interfaces
has the form

Ty {Say,Spy} = Zoty + Zity ) (AlSay } + AlS gy }). (5.304)

On the length scale of several nanometers, we should be able to
ignore the dependence of the interfacial tensions on the interfacial
curvatures which implies that both leaflet-water interfaces are
governed by the same interfacial tension

Ty =Zoy =2y (5.305)
corresponding to the leaflet-water interfaces of a planar bilayer
membrane.

If we now go back to the wetting morphology in Figure 5.40a,
the interfacial free energy of the leaflet-water interfaces becomes

'Z;Zﬁ {Say ,Sﬁy} =g + Zly)A{Say P+ Zip +2Z1y )A{Sﬁy 1. (5.306)

The adhesion free energy functional £ ; of the a and the f droplet
in contact with one of the bilayer leaflets is then defined by

EaalSay Syt =Tap =Ty =Way A{Sey } +Wp, A{Sp, + (5.307)

with the adhesion free energies per unit area, W,, and W}, given
by (Lipowsky, 2018a)

Wy =%1g -2, and Wp, =S-3,  (5.308)
for the @ and S droplet in contact with the inner bilayer leaflet.
Thus, the system can be characterized by two adhesive
strengths, W, and W}, in close analogy to (i) the adhesive
strength Whbetween a membrane and a substrate surface as
discussed in Section 5.7 and to (ii) the adhesion of nanoparticles
as described in Chapter 8 of this book. When the leaflet prefers
the a phase over the y phase, the adhesive strength W, < 0.
Likewise, when the leaflet prefers the  phase over the y phase,
Wj, < 0. The adhesive strength W), also represents the revers-
ible work that has to be expended per unit area to replace the y
phase by the phase j with j = a,f. In addition, we can also com-
pare the adhesion of the @ and f droplets to one of the leaflets
without any reference to the y phase. Thus, the reversible work
per unit area to replace a droplet of  phase in contact with a
leaflet by a phase is given by

Wap =210 —2Zi1g =Woy —Wpy (5.309)
which is negative if the leaflet prefers the a phase over the f
phase.

Now, let us collect the different terms described previously. As a
result, we obtain the energy functional

52nll)r {Y} = EaﬂA{SaB} + glig {Say ,Sﬁy } + gad {Say 5 Sﬁy } (5.310)
+ Saﬂy {5 afy }

with the contact line contribution

EapyiSapy t = EciSapy } + Aco LASapy - (5.311)
The subscript 2Dr stands for “two droplets” and the superscript
“in” indicates that the energy functional £ corresponds to in-
wetting and should be distinguished from out-wetting. In fact,
the only energy contribution that is different for in- and out-
wetting is the one that arises from the bending energy Eye{S} of
the two membrane segments, as described by Eq. 5.300, because
the spontaneous curvatures change sign when we swap the a and

p phases with the y phase.

In addition to the different energetic contributions of the vesicle-
droplet system, we have to take the constraints on the membrane
area A and the droplet volumes V, and V} into account. The con-
straint on the membrane area 4 is implemented by the Lagrange
multiplier ¥ which can be identified with the lateral stress that
acts to stretch (or compress) the membrane as explicitly shown
for uniform membranes in Appendix 5.D. In addition, we have
to enforce certain values for the volumes V, and V/, of the & and
p droplets. These volumes are determined by the pressures P,
Py, and P, within the three liquid phases a, f3, and y or, more
precisely, by the pressure differences P, — P, and P; — P,. We are
then led to study the stationary shapes (minima, maxima, and
saddle points) of the shape functional

Fiel S} = (By = Pa)V{Sa} +(By = Pp)V{Sp} + ZALS} + ExbelS)
(5.312)

where the last term Ezhf)r{.f } represents the energy functional for
in-wetting as given by Eq. 5.310. Both the pressure differences
P,— P,and P, — Pjas well as the lateral stress X will be used as
Lagrange multipliers to fulfill the geometric constraints that the
droplet volumes V, and Vj; as well as the total membrane area A
have certain prescribed values.

The shape functional as given by Eq. 5.312 contains the term

2 A{S} which depends on the lateral membrane stress X and the
adhesion term &,4{S} as given by Eq. 5.307 which depends on the
adhesive strengths of the two aqueous phases. When we combine
these two terms, we obtain

SALSH+Ea(S) = S0y AlSa, )+ 25, AlSp, ) (5.313)



with the mechanical segment tensions (Lipowsky, 2018a)

Yoy =X+ Weyy and g, =X+ W, . (5.314)
Thus, each segment tension X, depends both on the lateral
membrane stress X and on the adhesive strength W, Individual
vesicles from a given vesicle preparation are usually character-
ized by different X-values corresponding to different membrane
areas and vesicle shapes. In contrast, the adhesive strength W, is
determined by the molecular interactions across the leaflet-water
interfaces and should have the same value for all GUVs from the
same batch, assuming that their membranes have the same lipid-
protein composition and are exposed to aqueous solutions with
the same solute composition. As a consequence, the difference

2oy —2py =Way —Wpy =Woyp (5.315)
of the two segment tensions is only determined by the adhesive
strengths and should also have the same value for all GUVs from
the same batch.

The first variation of the shape functional in Eq. 5.312 leads to
two Euler-Lagrange or shape equations for the two membrane
segments ay and fy, in close analogy to the shape Eqs 5.279 for
two-domain vesicles. Indeed, the shape equations for the two
membrane segments have the form

- 2 2
Pj =B =2 jy M = 2K ;, VigM = 4K jyym jy M

5 (5.316)
- 4K/‘y[M—7ﬁ/‘y][M —G]
with j = @, ff and the total segment tensions
Sjy=%,+0,, =S+W; +0, (5.317)
which include the spontaneous segment tensions
G iy = 2Ky (5.318)

As before, the Vig symbol represents the Laplace-Beltrami opera-
tor, see Eq. 5.24, and G is the (local) Gaussian curvature. For the
partial in-wetting morphologies depicted in Figure 5.40a, the
pressure differences P, — P, and P; — P, are positive.

In addition to the shape equations for the two membrane seg-
ments, the first variation of the shape functional also leads to
certain boundary or matching conditions for the two segments
along the contact line. For axisymmetric vesicles as depicted

in Figure 5.41, these matching conditions can be obtained by
generalizing the corresponding conditions for two-domain
vesicles as discussed in Section 5.8 and Appendix 5.E Indeed, the

(a) (b)

(a) Axisymmetric shape corresponding to partial in-wetting:
As in Figure 5.33, the 2-dimensional shape of the membrane is
uniquely determined by the 1-dimensional shape contour (red-purple)
in the (r, 2)-plane defined by the coordinate z along the symmetry
axis and the radial coordinate r. The shape contour is parametrized
by its arc length s, with the north and south pole of the vesicle being
located at s = 0 and s = s,, respectively, and the contact line at s =s,.
The angle y describes the tilt of the tangent vector at the shape
contour from the horizontal r-direction; and (b) The ay segment (red)
and the fy segment (purple) meet at the contact line with a common
tangent. The angles between this tangent and the tangent to the af
interface (dashed orange) represent the intrinsic contact angles 0,
and 0, with 0, +6; = .

axisymmetric shape shown in Figure 5.41 is quite similar to the
one in Figure 5.33, the only difference is the presence of the two
droplets a and f as well as the aff interface between these droplets.
In Figure 5.41, the symmetry axis is again chosen to be the z-axis
and the shape contour is again parametrized in terms of the arc
length s, the radial coordinate » = 7(s), and the tilt angle y = w(s).
We can now directly use the matching conditions described in
Appendix 5.F.1 if we substitute the domain indices & and « with
the segment indices ay and fy, respectively.

The first variation of the shape functional with respect to
the variable y(s,) is obtained by using the substitution 2 — fy
and 4 — ay in Eqs 5.2 and 5.3 which leads to the curvature
discontinuity

Kpy Ci(s1+ &) — Koy Ci(s1 —€) = Ok Co(51) + 2K gy gy — 2K ey sy
(5.319)

of the contour curvature C, along the three-phase contact line
with the parameter

OK =Koy —KBy +KG oy —KG,py - (5.320)
Note that the individual contour curvatures C,(s; + €) and

C\(s; — €) are usually quite large compared to the orthogonal
curvature Cy(s;) that satisfies Co(51) =siny (s1) / 7(s1) £ 1/ r(s1).
The discontinuity C(s; + €) — C,(s; — &) of the contour curvature
vanishes if the two membrane segments have the same curvature-
elastic properties, i.e., the same spontaneous curvature, bending
rigidity, and Gaussian curvature modulus. The latter situation has
been studied in (Kusumaatmaja et al., 2009) with the additional
simplification that both membrane segments have zero spontane-
ous curvatures, i.e., 7,, = mg, = 0.
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A second boundary or matching condition is obtained from the
first variation of the shape functional with respect to the vari-
able 7, = r(s;) which represents the radius of the contact line.

The resulting condition can be obtained from Eq. 5.F16, supple-
mented by one additional term arising from the interfacial tension
X5 We then obtain the balance condition (Lipowsky, 2018a)

cosy/q

2y —Zay = Zap c050q + Aeo +Asco  (5.321)

with the intrinsic contact angle 67, and the tilt angle y; = y(s),
see Figure 5.41. The last term in Eq. 5.321 has the explicit form

1 1
Asco = E’(ﬁ;’Qﬁy (s1+€)— E’cayQay (s1—¢) (5322
with the curvature-dependent terms

Oy (s)=CE()=[Ca(s)=2mp ) for j=a,B. (5.323)
These relations describe the balance between the capillary forces
arising from the interfacial tension X, the tensions X, and

Z,,, of the two membrane segments, and the line tension 4.

The additional term Ay, in Eq. 5.321 arises from the differ-

ent curvature-elastic properties of the two membrane segments.
Indeed, the term Ay
have the same curvature-elastic properties. In the latter case, the
force balance condition Eqs 5.321 simplifies and becomes

vanishes if the two membrane segments

Cco

cosyy

28y —Zay =Wy —Way = Zap c0s0g + Ao (5.324)

which depends on the difference of the two adhesive strengths
Wj, and W, the interfacial tension X4, and the contact line
tension A . Thus, if the vesicle membrane continued to have
laterally uniform curvature-elastic properties even when it is
partially wetted by the two aqueous droplets, the force balance
along the contact line as described by Eq. 5.324 would involve
neither the bending rigidity nor the spontaneous curvature of the

ovy segment

o

of} interface

membrane. For GUVs, the radius 7, of the contact line is typically
of the order of many micrometers. In such a situation, the term
proportional to the line tension A, in (5.324) can be neglected
which implies that the intrinsic contact angle 6, depends only
on two material parameters, the difference W, — W, of the two
adhesive strengths and the interfacial tension Z ; of the water-
water interface.

If the two membrane segments have different spontaneous cur-
vatures but the same bending rigidities k and the same Gaussian
curvature moduli, the additional term Ay, becomes

As co = 4K[mpy — may || M(s1—€) = may | (5.325)

with the mean curvature M = %(Q +C») which satisfies, for «,, =

K4, = K and K, = K 45,, the matching condition
M(s1+&)=mpy = M(s1— €)= mgy (5.326)

along the contact line as follows from Eq. 5.319. Thus, the

discontinuity in the mean curvature, M(s, + €) — M(s; — ¢€),

is now equal to the difference in the spontaneous curvatures,

=

discontinuity.

— m,,, and the additional term Ay, is proportional to this

At present, both the curvature discontinuities and the addi-
tional term Ay, that enters the force balance relation (5.321)
cannot be used to analyze the shapes of GUVs because the
local membrane curvatures along the contact line have not been
resolved by optical microscopy. Therefore, these matching condi-
tions will not be further pursued in the following. On the other
hand, the experimental observations revealed one universal fea-
ture of the partial wetting morphologies for GUVs, namely that
the shapes of the two membrane segments are very well described
by spherical caps which is a direct consequence of the capillary
forces exerted by the af interface onto the vesicle membrane.
Because the af interface necessarily forms a spherical cap as
follows from the classical Laplace equation, the partial wetting
morphologies consist of three surface segments that form three
spherical caps and meet along the three-phase contact line, as
displayed in Figure 5.42.

- - —@- - - - |- -

1
By segment &;C

(a) (b)

Q
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(c) (d)

Cross-section of partial in-wetting morphology as observed experimentally: (a) Three spherical surface segments corresponding to the
ap interface (dotted orange line) and to the two membrane segments ay (red) and fy (purple). These three spherical caps meet along an appar-
ent contact line (black circles); (b, c) The three-spherical-cap shape is determined by the curvature radii R,,, R;, and R,; of the three spherical caps

ayt

as well as by the contact line radius R_,. The three centers C,,, C,, and C,; of the three spherical caps are located on the rotational symmetry axis
(vertical dashed line). In order to obtain a unique shape, we also need to specify the locations of these cap centers relative to the contact line plane
Pe (full horizontal line), see main text; and (d) At the contact line, the tangent planes to the three spherical surface segments define the three
apparent contact angles Ggp, 03P, and Ofp with ng +0%P 4 Gfp = 27x. (From Lipowsky, R. J. Phys. Chem. B, 122, 3572-3586, 2018a.)
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From the optical microscopy images, we can directly deduce
the curvature radii of the three spherical caps which will be
denoted by R4, R,,, and Ry, respectively, see Figure 5.42b, c,
wp Cpp and C,. We
will again use the sign convention that all radii are always taken

and the centers of the spherical caps by C
to be positive. Because the three spherical caps meet along the
apparent contact line, the three cap centers C,,, Cj, and C,
are necessarily colinear. The straight line through these cen-
ters represents the axis of rotational symmetry for the three-
spherical-cap shape corresponding to the vertical dashed line in
Figure 5.42b,c. To obtain a certain three-spherical-cap shape,
we also need to specify the radius R, of the apparent contact
line in addition to the curvature radii, see Figure 5.42c. In fact,
the four length scales R4, R,,, R;,, and R, are not quite suf-
ficient to uniquely define the three-spherical-cap shape because
we still need to specify (i) whether the two cap centers C,, and
Cj, of the two membrane segments are located above or below
the apparent contact line plane p, as depicted by the horizontal
full line in Figure 5.42b,c; and (ii) whether the cap center C,4
of the liquid-liquid interface is above or below this contact line
plane corresponding to an af interface that bulges towards the
B or towards the a droplet.

For the example shown in Figure 5.42, the cap centers C,,
and C, are located above and below the apparent contact line
plane p.,, respectively. This location of the two cap centers
implies that both membrane segments form spherical caps with
an equator (or “belly”). In addition, the center C, of the af
interface is located below the plane p,, which implies that the af
interface bulges towards the a droplet corresponding to a pres-
sure Py in the # droplet that exceeds the pressure P, in the a
droplet. Keeping the four length scales fixed as well as the loca-
tions of the two cap centers C,, and Cj,, we may also place the
center C,,5 above the contact line plane p,, which then leads to an
af interface that bulges towards the f droplet corresponding to P,
> Py

We now introduce the sign convention that the mean curva-
ture M, of the af interface is positive, i.c.,

Mg = L >0 for P, >Pg (5.327)
Rap
and negative with
Maﬂ :—L<O for Pﬁ > P, (5328)
Rop

With this sign convention, the classical Laplace equation for the
af interface assumes the form

)
—Pp =25 apMap =+ (5.329)
Rop

where the plus and minus sign applies to 2, > P;and P, > P,
respectively.

As previously mentioned, the vesicle-droplet systems are charac-
terized by three geometric constraints as provided by the droplet
volumes V, and Vj as well as by the total membrane area A. These
three quantities can be expressed in terms of the four radii R,
R,,
radii. The solution of these three equations may be parametrized

Ry, and R, which leads to three equations between the four

in terms of V, Vi, A, and a suitable reaction coordinate such as
the apparent contact line radius R.,. As a result of this reparame-
trization, we obtain a one-parameter family of three-spherical-cap
shapes that fulfill all three geometric constraints.

Another set of geometric quantities that can be directly deduced
from the optical microscopy images are the apparent contact
angles 057, 0, and 9;13, with 05F + QEP + 9;‘3 =27 introduced in
Figure 5.42d. The sines of these angles can be expressed in terms
of the three curvature radii and the apparent contact line radius
R.,. In general, one has to distinguish several cases depending

on the relative locations of the cap centers C,, Cj,, and C,; with
respect to the contact line plane p .. When these cap centers have
the relative locations as in Figure 5.42b,c, corresponding to 25 > P,

we obtain the explicit relationships (Lipowsky, 2018a)

R
sineaf’:$( R?
‘ RaﬁRay \/ op

—R%, +\[RY - R, ) (5.330)

Sin 0’ ——( R, RS R Rfo), (5.331)
B RaﬂRB \/aﬁ \/ﬁ}’

with R,; > R, and

sm@ap—RaCO (\/Ra;/ Rczo \/R/iy Rczo) (5.332)
7

If the two cap centers C,, and Cj;, have the same locations as in
Figure 5.42 but the cap center C,,; is moved to a location above
the contact line plane p_, corresponding to P, > Py, these rela-
tions assume the slightly modified form

sinOf = Reo (\/

with Rys>R,,

~R%, RS, R, ) (5.333)

C

RapRpy

ap 2 2 2
sin0f = (\/Rﬂ R+ \[RE, - RCO), (5.334)

and

sin Qap = Ra (\/Ray Rczo \/Rﬁ}/ Rczo ) (5335)
v

The latter expression is identical with Eq. 5.332 but the first two
expressions differ from Eqs 5.330 and 5.331 in the signs before
the second square root.
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These explicit relations between the sines of the apparent
contact angles and the four radii directly demonstrate that the
apparent contact angles are determined by the size and shape of
the GUVs. In particular, all three angles change when we vary
the apparent contact line radius R,

Finally, using some trigonometric relations, it is not difficult to
show that the curvature radii and the apparent contact angles
satisfy the relation

. ap
_sin0,

Rop

. ap
sin@ 5
Ray

_sin 0P

(5.336)
Rgy

where the minus and plus sign applies to an aff interface
that bulges towards the a and the f droplet, respectively.
The equalities in Eq. 5.336, which do not depend on

the apparent contact line radius R

co’

may be used to estimate
the accuracy of the measured values for the curvature radii
and apparent contact angles. When expressed in terms of
the mean curvatures, the purely geometric relation (5.336)
becomes

Mep sin pr = Mgy sin sz — Mgy sin 05. (5.337)

When the membrane segments ay and fy assume spherical cap
shapes, the shape Eqs 5.316 assume the simplified form
P;~P, =28, M (5.338)

2 o
y —4K jymjy M3, with j=a,p

with the total segment tensions X ;, =X, +0 ;, =X +W,, +0
as in Eq. 5.317 and the spontaneous segment tensions
Oy = ZK'/'},/?Z?';/ as in Eq. 5.318. The shape Eqs 5.338 can be
rewritten in the more compact form

P—P, =

234 My, with  j=a,p (5.339)

with the effective tensions

Sy =2y =2y myy My =3 jy +0 5y = 2K jymjy My (5.340)
which depend on the mean curvatures ;. Note that these shape
equations now determine the constant mean curvatures M, and
s, of the two spherical membrane segments. Because both mean
curvatures are necessarily positive, a positive Value of - P,
implies a positive value of the effective tension X /y
A linear combination of the Laplace Eq. 5.329 for the af
interface and the shape Eqs 5.339 for the two membrane seg-
ments can be used to eliminate the three pressure differences. As
a result, we obtain the relation
ZapMap = Zéty May =25 Mp, (5.341)
between the interfacial tension X,; and the effective tensions ngyf
and 3¢ experienced by the two membrane segments.

By

Using a combination of the geometric relation, Eq. 5.337, and
the curvature-tension relation, Eq. 5.341, we can now eliminate
the mean curvature M, of the af interface which leads to the
relationship (Lipowsky, 2018a)

cff i O2P eff a
My, Za % -M 2["7 ﬂ (5.342)
! Zaﬁ sin 0" ! Zop  sin6yF

between the effective tensions, the apparent contact angles, and
the mean curvatures of the ay and ffy membrane segments. It is
important to note that the derivation of Eq. 5.342 was based

(i) on the purely geometric relation, Eq. 5.337, which applies to
three spherical caps that intersect along the apparent contact
line and (ii) on the shape equations for the spherical membrane
segments and the af interface. In particular, this derivation did
not make any assumptions about the mechanical balance of the
interfacial and membrane tensions along the apparent contact
line.

The relationship in Eq. 5.342 is reminiscent of the relation
as given by Eq. 5.H7 in Appendix 5.H which applies to two
membraneless droplets adhering to each other within a bulk
liquid without a vesicle. The latter relation depends only on the
contact angles and on the interfacial tensions, both of which
represent material parameters. In contrast, the relationship in
Eq. 5.342 for partial in-wetting of GUVs depends on several
geometry-dependent parameters: (i) Explicitly on the mean
o= 1/R,, and My = 1/R;,
segments; (i) Implicitly on these two curvatures via the effective
tensions Zeﬁ and ZEH, and (iii) On the apparent contact angles
which are determrned by the three-spherical-cap geometry as
described in Eqs 5.330 to 5.332 for Py > P, and in Egs 5.333 to
5.335 for P, > Py.17

curvatures M of the two membrane

On the other hand, many of the parameters that enter Eq. 5.342
can be determined experimentally. The interfacial tension Z
represents a material parameter that can be obtained via experi-
mental studies of macroscopic af interfaces as demonstrated

for PEG-dextran solutions in (Liu et al., 2012). In addition,

the apparent contact angles and the mean curvatures can be
obtained, for each vesicle-droplet couple, from optical microscopy
experiments. It is less obvious how to determine the parameter
combinations that enter the effective membrane tensions Zc-fyf as
given by Eq. 5.340. These parameter comblnatlons are the total
segment tensions Z/y =X+, + ZKﬂ,mﬁ, as defined by Eq 5.317
and the combinations «; 7;, with j = & or 8. Without prior
knowledge about the bending rigidities and the spontaneous cur-
vatures, these four parameter combinations should be regarded

as unknowns that enter the relationship in Eq. 5.342 in a linear
fashion. In order to determine four unknowns, we need four
linearly independent equations.

7 In both cases, the cap centers C,, and Cy, are located on different sides of the
contact line plane p,. Slightly different relations apply if these two cap centers
are located on the same side of p_, which implies that one of the membrane

segments attains a spherical cap without an equator.



To obtain such a set of equations, we might want to apply
the relationship in Eq. 5.342 to four different vesicle-droplet
couples as obtained from the same vesicle batch or the same
preparation protocol. The four couples should then have the
same composition of the vesicle membrane and the same com-
position of the different aqueous phases. As a consequence, all
four vesicle-droplet couples should be characterized by the same
interfacial tension X, the same adhesive strengths W), the

same spontaneous curvatures 72, and the same bending rigidi-

ties k;, because all of these quan]tities represent material param-
eters. However, the total segment tensions also include the
overall lateral stress X that does 7ot represent a material param-
eter but depends on the vesicle geometry and, thus, will vary
from vesicle to vesicle even within the same batch. Therefore, if
we applied the relationship in Eq. 5.342 to four different vesicle-
droplet couples, the corresponding total segment tensions would
involve four different stresses. As a consequence, each additional
vesicle-droplet system would introduce one additional unknown
as provided by the lateral stress experienced by the correspond-
ing vesicle membrane.

To address this difficulty, two strategies can be pursued. First,
we could consider GUVs with low lateral stresses X that fulfill the
condition

|Z | W)y +2K jym5, for j=a ot B (5.343)
We could then ignore these stresses and estimate the total seg-
ment tensions by their asymptotic behavior

2y =Wy + 26y (5.344)
In the latter case, the total segment tensions would have the same
values for all vesicle-droplet couples from the same batch. On the
one hand, one would expect intuitively that the lateral stresses
can be strongly reduced by osmotic deflation of the GUVs. On
the other hand, the inequality in Eq. 5.343 involves two terms
that may have different signs: the spontaneous tension 2k jym%, is
always positive but the affinity strength W), will be negative when
the membranes prefers the j phase over the y phase. These two
terms could cancel each other to a large extent, implying that the
lateral stress must become ultralow in order to fulfill the inequal-
ity in Eq. 5.343.

A second strategy that does not involve any assumption about
the magnitude of the lateral stress X is to consider several droplets
adhering to the same vesicle. This strategy is described in the next
paragraph.

Thus, consider a situation in which several a droplets adhere to
the interior leaflet of the same GUV membrane. These droplets
coexist with one large § droplet inside the GUV. The different
a droplets are labeled by 7 =1, 2, ..., N. The vesicle membrane
is then partitioned into /V+ 1 segments labeled by 7y and fy.
The different 7y segments experience the effective membrane
tensions

25}2 =X+ Way +0ay — ZKay”fayMg;/) (5.345)

where all parameters on the right hand side are independent of 7
apart from the mean curvatures Mg;,) of the ny segments. For such
a geometry, we obtain N relationships of the form

Zg’; sin 9;{7)

o sin 6"
M) — b 1= Mp, | P22 (5.346)
Zop  sinby Zop  sinby
with 7 =1, 2, ..., N. This set of equations can be rewritten in the
form

n H () . () eff
Z&y) sin Qﬁ sin By Dy
—— =M /4
By Sme}gﬂ) Br Sup (5.347)

Zap  sin 957])

Y = M)

where the last term is independent of the droplet label 7. We then
conclude that (Lipowsky, 2018a)

Y9 =12 =...= Y. (5.348)

Therefore, from three different 7y segments with three distinct
mean curvatures M(%,) and, thus, three distinct expressions Y(Of};,
we obtain two linearly independent equations from which can
deduce the two parameter combinations (£ + W, + ¢,,)/Z 5 and

Ky Mgyl iy for any value of Z.

So far, we did not consider the force balance along the appar-
ent contact line of the three spherical cap segments. We

now address this force balance using a somewhat different
approach. We start from the energy functional &1, {5} and the
shape functional 73D, {S} as given by Eqs 5.310 and 5.312 and
apply these functionals to the three-spherical-cap shapes § =
S* which include the spherical cap shapes Sg; and_S;Cy of the
two membrane segments. The energy functional £;b,{S} then
assumes the form

EDe {8} = E™(Rup, Ray , Rpy , Reo) (5.349)

where the energy E™ represents an explicit function of the

four variables R4, R,,, Ry, and R,,. The contributions from

the Gaussian curvature energies and from the line tension are
confined to the true contact line which is embedded in a highly
curved membrane segment. These latter segment is lost when we
use the three-spherical-cap approximation and replace the true

by the apparent contact line. Therefore, we will now ignore these
two energetic contributions. The energy function £ then has the
form

in _ in ; in _ypr 4. in
BT = Z Ejy  with Ejy =Wy Ajy + Ejy be
Jj=a.p

(5.350)

which consists of the adhesion free energies W, 4, and the bend-
ing energy contributions

,n 2
Ely be = 2K jy Ay (M/y "y ) (5.351)
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with j = & or f# and constant mean curvatures M;, = 1/R,,.
Likewise, when we apply the shape functional in Eq. 5.312 to
the three-spherical-cap shape §*, the resulting expression

FIS* = F (Ropy, Ray Ry, Reo) (5.352)
also becomes an explicit function F™ of the four radii. This func-
tion has the form

Fin = (By = Po)Vg +(Py = Pp)Vp + Z( Ay + Apgy )+ ED (5.353)
with the energy function E'™ as given by Eq. 5.350. It will be
convenient to rewrite this shape function according to

F™ = (B, — Py)Vo + (B, — Pg)l g + AF™ (5.354)

with
AF in

=ZapAap + Loy Aay +ZpyApy + Z Efybe  (5355)
J=a.p

and the mechanical segment tensions X, = X + W, as defined in
Eq. 5.314.

In order to obtain a self-consistent description, we will
now consider two limiting cases corresponding to small spon-
taneous curvatures and small bending energies as well as large
spontaneous curvatures and large spontaneous tensions.

For membrane segment jy, the regime of small spontaneous cur-
vature will be defined by

(A= DM jy <mjy <A+ |n|)M j,  (small curvature 7 jy ) (5.356)

with a dimensionless coefficient |57] > 0 of order one. For these
> . in .

m,-values, the segment’s bending energy 7} b satisfies the

inequality

i 2
EJy be = 2K iy (M jy = mjy ) Ay 2%y |0 P My Ay (5.357)
In terms of the curvature radius R of membrane segment 77>
we obtain the squared mean curvature M B = =R;? 7y and the

SCngl’lt area

A .
e (5.358)

Ajy =47 jy R
JY é/}’ 7Y 47TR/2'y

with C/’}’ =

which implies the inequality

B e <87k NP ¢, with 0<¢j, <1 (5.359)
for the bending energy of the jy segment.

The small bending energy regime for the jy segment will
now be defined by the condition that this energy is small com-

pared to the interfacial free energy ¥ 44, i.e., by the condition

ES 1o < Zgp Agp  (small bending energy E be).  (5.360)
Using the two inequalities in Eq. 5.359, the condition in
Eq. 5.360 can be fulfilled by
B 1e 87K jy |1 [P < Zap Aap (5.361)
or
Aap > 87 0| ”ﬁ (5.362)
Zq

with the dimensionless coefficient |57| of order one, see
Eq 5.356.1

Thus, if the spontaneous curvature 7, is small and satisfies
the inequalities in Eq. 5.356 and if the interfacial area 4, is large
and satisfies the inequality in Eq. 5.362, we can ignore the bend-
ing energy E7} pe of the membrane segment jy compared to the
interfacial free energy ¥ 5A,,5. The energy contribution from this
segment, see Eq. 5.350, then has the simple form

EYy =W Ay, (5.363)

i.e., this contribution is dominated by the adhesion free energy
between the membrane and the a or f droplet.

For segment jy, the regime of large spontaneous curvatures is

defined by

[,y || M ;| (regime of large m ;). (5.364)
In the latter regime, the bending energy E™ v be of the jy segment
becomes

b = 2K jymly Ajy =0y Ajy (.365)

with the spontaneous tension o;, which implies the contribution

ES (W, +0,,)Ay (5.366)

of the jy segment to the energy function £ in Eq. 5.350.

If both segments belong to the small spontaneous curvature and
small bending energy regime, the shape function AF™ as given by
Eq. 5.355 simplifies and becomes AF™
dependent shape function

= AF}, with the area-

AF =308 Aup +Zay Auy +Zpy Ap,  (small +small regime)

(5.367)

which depends on the mechanical segment tensions X, and Z;,.
On the other hand, if both membrane segments belong to the

= 3/2 in (Lipowsky, 2018a).

18 The numerical value of |57] was taken to be ||



large spontaneous curvature regime, we obtain the shape function
AF™ = AFD, with
AF/if/ =2op Aap + ia}, Agy + ) py Apy  (large +large regime).
(5.368)

with the total segment tensions s Jy =2y +0 =2 AWy +2K mf},
asin Eq. 5.317.

Finally, if one membrane segment, say ay, has a large spontane-
ous curvature whereas the other membrane segment, f7, has

a small spontaneous curvature, the shape function becomes
AF™ = AF/® with

AF®, = B Aap + iay Aoy +2py Ap,  (large + small regime).

(5.369)

Note that we can obtain the shape function for the small-small
regime from the shape function for the large-large regime by
putting the spontaneous curvatures 72, and, thus, the spon-
taneous segment tensions o;, equal to zero for both segments
which implies that the total segment tensions ¥ , reduce to the
mechanical segment tensions ¥, Likewise, we obtain the shape
function for the large-small regime from the shape function

of the large-large regime by putting the spontaneous tension

oy, of the fy membrane segment equal to zero which leads to
Zpy =2py.

Constrained energy minimization within the subspace of three-
spherical-cap shapes then implies the four stationarity conditions
(Lipowsky, 2018a)

oF =0, or =0, or =0, and LF =0.

(5.370)
ORyp ORy, ORg, OReo

It is not difficult to show that the first condition dF™/dR,; = 0

is equivalent to the classical Laplace Eq. 5.329 for the curvature
radius R, of the af interface. We should also require that the
two stationarity relations dF™"/0R,, = 0 and 0F"/0R,, = 0 lead
back to the shape Eqs 5.339 for the curvature radii R,, and R, of
the two membrane segments. The latter requirement is, however,
not fulfilled in general but only for certain regions of the param-
eter space.

These special parameter regions include the small-small,
large-large, and large-small regimes described in the previous
subsection and defined by the shape functions AF™" in Eqs 5.367
to 5.369. All of these shape functions have the same form as the
shape function AF, for two membraneless droplets as given by
Eq 5.HI2 in Appendix 5.H when we substitute the interfacial
tensions X, and X, of the membraneless droplets by the mechan-
ical or total tensions of the membrane segments. Using the same
substitution in the force balance Eq. 5.H9 for membraneless
droplets, we obtain the corresponding force balance conditions
for the membrane-enclosed droplets.

As explained above, we can recover the small-small regime from
the large-large regime by putting the spontaneous tensions of the
two membrane segments equal to zero. Likewise, we can recover
the large-small regime from the large-large regime by putting the
spontaneous tension 6y, equal to zero. Therefore, it is sufficient
to consider the substitution in the force balance Eq. 5.H9 for the
large-large regime. In the latter case, the interfacial tensions X,
and ¥, in Eq. 5.H9 for membraneless droplets have to be substi-
tuted by the total segment tensions Say and 2y, respectively. As a
result, we obtain the force balance conditions

Zap _ iay _ iﬁy
sin 0" sinGEp sin O

(5.371)

(large-large regime)

between the af interface and the two membrane segments along
the apparent contact line. These conditions are equivalent to the
two linearly independent relationships

ia _sin 0F B s pr _sin 0F

sm9 P

and

(large-large regime)
aﬂ sin 9; p Zaﬁ

(5.372)

between the tensions and the contact angles (Lipowsky, 2013,
2014b). The force balance as given by Eq. 5.371 represents the
law of sines for a triangle with the three sides Zaﬂ, Yay, and Zgy
as displayed in Figure 5.43b. For membraneless droplets, the cor-
responding triangle is displayed in Figure 5.48.

oy segment

oy o

= of 9&‘) ﬁ

By segment S B

(a) (b)

Force balance along the apparent contact line for
small and large spontaneous curvatures: (a) Partial in-wetting
morphology of vesicle (red, purple) enclosing two aqueous droplets
of a (yellow) and g (blue) phase immersed in the exterior liquid y
(white). As in Figure 5.42, the membrane segments ay (red) and
By (purple) form spherical caps that meet the af interface (broken
orange) along the apparent contact line (small black circles) where
the three surface segments form the apparent contact angles
o, 0 , and Oap and (b) Force balance between the interfacial
ten3|on Z,; as weII as the total tensions Zay and zﬂy of the two
membrane segments as defined by Eq. 5.317. The three tensions
form a triangle which implies the relations in Eqs 5.371 and 5.372
(Lipowsky, 2013, 2018a). The latter relations can be explicitly
derived for three parameter regimes: (i) if both spontaneous cur-
vatures are large as defined by Eq. 5.364, (ii) if both spontaneous
curvatures are small and the interfacial area A, is sufficiently large
as in Egs 5.356 and 5.362, which implies £, ~ £ ,,; and (iii) for one
small and one large spontaneous curvature.

/7'
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Essentially the same force balance conditions apply to the
small-small and large-small regimes. If the fy membrane seg-
ment belongs to the regime of small spontaneous curvature
and small bending energy, the corresponding force balance
conditions are obtained from those in Egs 5.371 and 5.372
by replacing the total segment tension gy =X, +0p, by the
mechanical segment tension X, Likewise, the conditions for
the small-small regime are obtained by replacing the total seg-
ment tensions iﬂ of both segments by the mechanical segment
tensions X,

Subtracting the two force balance relations in Eq. 5.372 from
each other, we obtain the difference

Spy —Say _Wpy —Way +0py —Cay

=E(0,00.6;") (5.373)

Zap Zap

with the function

- _ sinx—sin y
E(X:%Z)— . >
sing

(5.374)
as in Eq. 5.H19. Note that the overall lateral stress X, which
depends on the vesicle geometry, drops out from the differ-
ence gy — Zay. As a consequence, Eq. 5.373 provides a relation
between the apparent contact angles oiF, GEP, and Bﬁp, the adhe-
sive strengths W, and W}, and the spontaneous tensions ¢, and
0y, i.., between the apparent contact angles and material param-
eters. As shown in Appendix 5.H.4, the function E(Q&pﬁ;pﬁfp )
satisfies the inequalities

—1<E0",05,0,7) < +1 (5.375)
as follows from the triangle inequalities for the triangle in
Figure 5.43b. The upper bound Z = +1 is obtained for the
apparent contact angles 05" =0 and 65" = 0;" =, correspond-
ing to complete wetting of the membrane by the a phase as
in Figure 5.40b. The lower bound & = —1 is obtained for
the angles 03 = 0 and 05" = 6;" =7, corresponding to com-
plete wetting of the membrane by the # phase as shown in
Figure 5.40c.

For some special parameter regions, we can also obtain a sim-
ple relation between the apparent contact angles in Figure 5.42
and the intrinsic contact angle in Figure 5.41. We now con-
sider two membrane segments that have essentially the same
curvature-elastic properties which implies the simplified

force balance

2y —Zay = Zap cosOy (5.376)

along the true contact line as described by Eq. 5.324 where we
assumed a large contact line radius and ignored the term propor-
tional to the line tension 4. Two membrane segments with the

same curvature-elastic properties have the same spontaneous ten-
sions. Therefore, the difference £;, — X, between the mechanical
tensions of the two segments is equal to the difference Xgy —Zay
between the total segment tensions. For small or large spontane-
ous curvatures, we then obtain

~ ~ sin 0P sin@y
Y5 — Sy =Sy —Say = Sep 0% b (5.377)
Py “ br “ op sin pr op sin pr

where the second equality follows from Eq. 5.372. A combination
of Eq. 5.377 with Eq. 5.376 then leads to the relation

O _ cin O2P
cosOy = S0P 778 ba” —sin 913 (5.378)
sin0yF
between the intrinsic contact angle 0,, that is not accessible to
conventional optical microscopy and the apparent contact angles
that can be obtained from the microscopy images.

In (Kusumaatmaja et al., 2009), the relation in Eq. 5.378 was
originally derived for the special case of vanishing spontaneous
curvatures for both membrane segments, i.e., 7,, = mz, = 0,
and was then used to analyze the shapes of vesicles that enclosed
one PEG-rich and one dextran-rich droplet. Even though the
apparent contact angles of these vesicles were quite different,
the relation in Eq. 5.378 led to a fairly constant value for the

intrinsic contact angle 0;. Later experiments revealed, however,
that the spontaneous curvatures 7,, must be quite large because
the ay membrane segments in contact with the PEG-rich phase
formed nanotubes, see Figures 5.4 and 5.21 corresponding to a
spontaneous curvature of about 1/(125 nm) for the Ld phase and
1/(600 nm) for the Lo phase. (Li et al., 2011; Liu et al., 2016)
Furthermore, the experimental data as well as molecular dynam-
ics simulations provided strong evidence that this large spontane-
ous curvature was generated by asymmetric adsorption of PEG
molecules. Therefore, it is tempting to assume that the spontane-
ous curvature 72, of the fy membrane segments in contact with
the dextran-rich phase was comparatively small. A small value
would justify the use of Eq 5.372
to describe the force balance along the apparent contact line but
it would not justify the use of Eq. 5.376 to describe the force
balance along the true contact line because the latter equa-

of mg, and a large value of m,,

tion is based on the assumption that both membrane segments
have essentially the same spontaneous curvature. On the other
hand, if we assumed that the spontaneous curvature 7z, is large
as well and comparable to ,,, we could justify the use of both
Eqs 5.372 and 5.376. Therefore, it would be rather valuable to
determine the spontaneous curvature 7, in an independent
manner, e.g., by studying GUVs that are completely filled with
the dextran-rich phase, corresponding to a point in the aqueous
phase diagram of Figure 5.39 that is located on the binodal line
between the partial wetting regime of the two-phase coexistence
region and the uniform phase at high dextran concentrations, see
lower blue segment of the binodal in Figure 5.39. Deflation of
such a GUV will lead to budding for small spontaneous cur-
vatures as in Section 5.5 or to tubulation for large spontaneous
curvatures as in Section 5.6.



As shown in Figure 5.39, the phase diagram of aqueous PEG-
dextran solutions exhibits a two-phase coexistence region with
both a complete wetting regime close to the critical point and

a partial wetting regime further away from this point. The two
wetting regimes are separated by a certain tie line corresponding
to the dashed straight line in Figure 5.39. For complete wetting,
the whole GUV membrane is exposed to the PEG-rich phase
whereas, for partial wetting, only the ay membrane is in contact
with this aqueous phase. Therefore, in the complete and partial
wetting regime, nanotubes were formed by the whole GUV mem-
brane and the ay membrane segment, respectively. Furthermore,
for complete wetting, the tubes stayed away from the af interface
whereas they accumulated on this interface for partial wetting.

In the latter case, the adhesion of the tubes to the af interface
lowers the (free) energy of the vesicle-droplet system as shown in
(Liu et al., 2016). Each tube that adheres to the @ interface is in
contact with both the @ and the f phase and, thus, forms both an
ay and a fy membrane segment separated by a contact line paral-
lel to the long tube axis. Along these microscopic contact lines,
the angle between the af interface and the ay tube segments is

again given by the intrinsic contact angle 8, with the same local
geometry as depicted in Fig. 5.41b, because the y phase within the
tubes is identical with the exterior aqueous phase.

If the ay membrane segment forms nanotubes, the segment
tension X, =X + W, is small compared to the spontaneous
tension ¢, of this segment (Lipowsky, 2013) as follows from
the mechanical equilibrium between the highly curved tubes
and the weakly curved spherical ay segments, see the detailed
discussion of this aspect in Section 5.6. The corresponding
tension-angle relationship in Eq. 5.372 then assumes the sim-

plified form

2 o 0P
Oay 2K oy My ~ Sln@ﬂ

(tubulated ay segments) (5.379)
Zap Zap

. a
sin6,

which can be used to estimate the spontaneous curvature 7,
from the apparent contact angles (Liu et al., 2016).

For partial in-wetting, the vesicle membrane is in contact with
two enclosed droplets, as displayed in Figure 5.43a. When we
deflate such a two-droplet vesicle, it can decrease its interfacial
energy by reducing the area A, of the a interface. The cor-
responding energy gain is governed by A4,;¥; where A4, is
the change in interfacial area. Such a morphological change is,

in fact, rather likely unless one of the membrane segments has a
sufficiently large spontaneous curvature to form nanobuds and
nanotubes. If the ay segment forms nanotubes, for example, the
energy gain is A4,,6,, with the area A4, stored in the nanotubes
and the spontaneous tension Gy, = 2Kayméy. So, we expect that
osmotic deflation of a partially wetted vesicle leads to a reduction
of the interfacial area whenever o, < X¢g. This competition
between different morphological pathways is more systemati-
cally described in Appendix 5.] for the special case of two-droplet
vesicles with up-down symmetry.

Thus, in the absence of bud and tube formation, the area of
the af interface will eventually shrink to zero and the vesicle
membrane will then form a closed membrane neck around this
point-like interface as in Figure 5.40d. For such a morphol-
ogy, which looks like the limit shape Zp<* in Figure 5.15a but
involves two different interior solutions @ and f3, the vesicle
membrane has the area A = A, oc VO%/3 + VE/S, which is
determined by the volumes V, and V/, of the two spherical
droplets as in Eq. 5.294.

As described in Section 5.8.3 on domain-induced bud-
ding, spherical buds with closed necks are also formed by
two-domain vesicles arising from lipid phase separation within
multi-component membranes. Compared to such two-domain
vesicles, the closed neck of a two-droplet vesicle is further stabi-
lized by the formation of the af interface during neck open-
ing. If we assume an axisymmetric neck and ignore a possible
difference of the Gaussian curvature moduli «,, and k. 4,, the
contact line is located within the membrane neck and the con-
tact line radius 7, is equal to the neck radius R,.. Furthermore,
because of the assumed axisymmetry, the neck-spanning af
interface has the shape of a spherical cap that meets the mem-
brane along the circular contact line with the intrinsic contact

angle 0, of the a droplet, see Figure 5.41b. The free energy of

the membrane neck then includes the interfacial free energy

21

ZopAap = Yop R (5.380)

. *
1+sin 6,

which grows quadratically with increasing neck radius R, ..

The bending energy of the vesicle membrane that consists of two
membrane segments and forms an open neck of radius R, can
be obtained from the corresponding expression for two-domain
vesicles as derived in (Jiilicher and Lipowsky, 1996). Adding the
free energy of the contact line, we then obtain

Ebe(Ruoe)+ 27 RocAco = Epe(Roe = 0)—4mEjRy.  for small Ry

(5.381)

with
1
Er =Ky (May —may)+ K, (Mpy —Mﬂy)—glco. (5.382)

The closure of the neck and the stability of the closed neck are
governed by the behavior of the combined free energy %44, +

E (R, + 27R A, for small R . In the latter limit, the leading
term is provided by the E|-term in (5.381) because the interfacial
free energy o Aap ~ RZ.. Therefore, we obtain the stability crite-

rion E; < 0 which is equivalent to

1
Kpy (Mpy —mpy)+ Kay(May —may) < Eﬂm (KG,py = KG,ay)-
(5.383)

The equality in Eq (5.383) describes the neck closure condi-
tion for limit shapes obtained from vesicle shapes with open
necks whereas the inequality describes the stability of closed
necks. Because the additional term arising from the af
interface is irrelevant in the limit of small neck radius R,
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the stability criterion in Eq. 5.383 has the same form as the
corresponding criterion for two-domain vesicles as given by
Eq. 5.288 with the line tension 1 of the domain boundary
replaced by the line tension 1, of the three-phase contact line.
It is important to note, however, that the stability condition
in Eq. 5.383 has been obtained under the implicit assumption
that the membrane neck is axisymmetric. The latter assump-
tion is justified for a positive value of the contact line tension
A, but may not apply to a negative value of .. Indeed, recent
molecular simulations have shown that a negative contact

line tension can lead to a spontaneous symmetry breaking

of the rotational symmetry and to a tight-lipped contact line
(Satarifard et al., 2018).

In general, phase separation in liquid mixtures may proceed via
nucleation and growth of small droplets or via spinodal decom-
position. In the nucleation regime, the droplets are formed by
the minority phase and have to overcome a certain free energy
barrier in order to grow. This barrier is reduced if a droplet is
nucleated at an adhesive surface. For a rigid surface as provided
by a tense membrane, the barrier reduction depends primarily
on the contact angle of the droplet. For a flexible and deformable
membrane, as considered here, the barrier may be further reduced
by the elastic response of the membrane which can adapt its shape
and composition to the molecular interactions with the droplet.
As in the previous subsections, we focus on phase separation
of the interior aqueous solution into two coexisting liquid phases,
a and f. For complete wetting of the vesicle membrane by the a
phase, the intrinsic contact angle 6, vanishes which implies that
the phase separation starts via the formation of a thin a layer at
the inner leaflet of the vesicle membrane, see pink subregion in
Figure 5.39. For partial wetting, on the other hand, the intrinsic

(@)

(b) (c)

In-wetting: Nucleation and growth of an aqueous
nanodroplet (yellow) consisting of @ phase in contact with an aqueous
B phase and the inner leaflet of a weakly curved vesicle membrane
(blue/red) that separates the a and f§ phases from the exterior aque-
ous phase 7. The contact line with the af interface (broken orange)
divides the membrane into two segments, an ay segment (blue) and a
By segment (red). Both segments are exposed to asymmetric aqueous
environments which act to induce spontaneous curvatures m,, and
m,. Here, we focus on the case my, ~ 0 and |m,,[»> mj,: (a) Initially,
the aff interface has the shape of a spherical cap and forms the
intrinsic contact angle 0, with the adjacent ay segment (blue) of the
membrane; (b) For negative values of m,,, the ay membrane segment
prefers to form a spherical in-bud that is filled with exterior y phase.
The closure and stability of the in-bud’s neck depends only on m,,;
and (c) For positive values of m,, the ay membrane segment prefers
to engulf the a droplet, in particular if the volume of the droplet
matches the preferred bud size. Complete engulfment leads to a
closed membrane neck that replaces the af interface, thereby elimi-
nating the contribution of this interface to the system's free energy.

contact angle 0, is finite, and the phase separation within the
nucleation regime starts with nanodroplets of a phase that are
formed at the inner membrane leaflet as shown in Figure 5.44a.

For such a small droplet, the intrinsic contact angle will be
affected by the tension 4, of the contact line, see Eqs 5.321
and 5.324. This contact line tension can be positive or negative,
in contrast to the line tension of domain boundaries which is
always positive. In fact, recent molecular simulation indicate
that the contact line tension 4, can be negative (Satarifard
et al., 2018) which implies that it acts to decrease the contact
angle 0y of small droplets compared to larger ones.

After an a droplet as in Figure 5.44a has been formed, the
ay segment of the membrane in contact with this droplet is
exposed to an asymmetric environment and can acquire an
appreciable spontaneous curvature 7,,. In order to simplify the
following discussion, let us assume that the spontaneous curva-
ture 7, is large compared to the spontaneous curvature 7, of
the fy segment and that the latter curvature is small and can be
ignored.

If the spontaneous curvature 7, is negative as in the case of
PEG-dextran solutions that undergo phase separation within
the vesicle interior, the membrane prefers to curve towards the
inner leaflet and to form a spherical in-bud of radius R, that is
filled with the exterior y phase as in Figure 5.44b. As shown in
this figure, all membrane segments adjacent to the closed neck
are formed by the ay membrane with spontaneous curvature
m,,. The mlembrane neck is then characterized by the condition
0> Mye = E(ZVIl + M2) = mey where M, and M, = —1/R, are
the mean curvatures of the two membrane segments 1 and 2 on
the two sides of the neck. Because these two membrane seg-
ments have the same curvature-elastic properties, this stability
condition is identical with Eq. 5.57 for uniform membranes, see
also Figure 5.14(d—f) in Section 4.6. Inspection of Figure 5.44b
reveals that the in-bud displaces some volume of a phase and
increases the area of the af interface which implies that the a
droplet has to reach a sufficiently large volume before the in-
bud becomes energetically favorable. After such an in-bud has
been formed, the bud radius increases until the spherical shape
becomes unstable and transforms into a short necklace-like tube
as displayed in Figure 5.23.

On the other hand, if the droplet-induced curvature ,, is
positive, the ay membrane segment prefers to curve towards the
outer leaflet of the vesicle membrane and to form a spherical out-
bud of radius R, that is filled with & phase as in Figure 5.44c. As
shown in the latter panel, the two membrane segments adjacent
to the neck of the out-bud are now provided by the ay and the fy
segments which have, in general, different spontaneous curva-
tures m

ay
energy of the membrane-droplet system by (i) adapting the mean

and my,. The formation of the out-bud reduces the free

curvature of the ay segment to its spontaneous curvature 7z,, and

a

(ii) replacing the af interface by a closed membrane neck whyich
implies a strong reduction of the interfacial free energy. The corre-
sponding neck condition is given by Eq. 5.383 if both membrane
segments have essentially the same Gaussian curvature modulus,
K gy = Kgqp 1f the Gaussian curvature moduli are different, the
vesicles may still form closed membrane necks but the domain
boundaries are then shifted away from these necks and, thus,

have a finite length, compare Figure 5.35.



5.10

In the previous sections, we focused on processes that do

not change the topology of the membranes. Now, let us briefly
consider two important topology-transforming processes,
membrane fusion and membrane fission (or scission). During
membrane fusion, two separate membranes are combined into a
single one; during fission, a single membrane is divided up into
two separate ones. These processes are ubiquitous in eukaryotic
cells: Both the outer cell membrane and the inner membranes of
organelles act (i) as donor membranes that continuously produce
vesicles via budding and fission and (ii) as acceptor membranes
that integrate such vesicles via adhesion and fusion. One example
for fission is provided by the closure of autophagosomes which are
double-membrane organelles (Knorr et al., 2012, 2015).

It is instructive to consider the free energy landscapes for fusion
and fission as schematically depicted in Figure 5.45. Fusion is
exergonic, if the free energy G, of the 2-vesicle state exceeds the
free energy G, of the 1-vesicle state. In the opposite case with

G, > G,, fission is exergonic. Exergonic fusion or fission processes
occur spontaneously but the kinetics of these processes is gov-
erned by the free energy barriers A between the 1-vesicle and the
2-vesicle state, see Figure 5.45. Because these barriers are typi-
cally large compared to 457, even exergonic fusion and fission
processes will be rather slow unless coupled to other molecular
processes that act to reduce these barriers. Indeed, in the liv-

ing cell, the fusion and fission of biomembranes is controlled by
membrane-bound proteins such as SNAREs and dynamin as

Free energy landscape
Free energy landscape

4
4

Reaction coordinate Reaction coordinate

Free energy landscapes for membrane fusion and fission
(or scission): (a) Schematic landscape for an exergonic fusion process.
In this case, the free energy G, of the 2-vesicle state exceeds the
free energy G, of the 1-vesicle state; and (b) Schematic landscape for
an exergonic fission process. In the latter case the free energy G, of
the 1-vesicle state is larger than the free energy G, of the 2-vesicle
state. The cartoons (top row) show a 1-vesicle state on the left and
a 2-vesicle state on the right; both states have the same membrane
area. The small vesicle of the 2-vesicle state has the radius R, which
is much smaller than the radius of the large vesicle. The blue mem-
branes in (a) have a spontaneous curvature with magnitude |m| < 1/R,,
whereas the red membranes in (b) have a large spontaneous curva-
ture with m =~ 1/(2R,,). In both (a) and (b), the free energy difference
G, — G, determines the direction in which the processes can proceed
spontaneously (black arrows) while the kinetics of these processes is
governed by the free energy barriers A.

will be discussed in later chapters of this book. It should also be
emphasized that the free energy landscape may involve several
barriers as has been observed in molecular dynamics simulations
of tension-induced fusion (Grafmiiller et al., 2007, 2009).

The free energy difference G, — G, between the 2-vesicle and the
1-vesicle state can be estimated if one ignores energetic contribu-
tions arising from changes in volume and focuses on changes in
curvature energy (Lipowsky, 2013). Because of the topological
changes, we need to take the Gaussian curvature and the associ-
ated Gaussian curvature modulus k; into account. (Helfrich,
1973) Stability arguments indicate that =2 < k/k < 0 (Helfrich
and Harbich, 1987). For the following considerations, it will be
sufficient to use the rough estimate k>~ —k which is consistent
with both experimental (Derzhanski et al., 1978; Lorenzen et al.,
1986) and simulation (Hu et al., 2012) studies. A small spherical
vesicle that is cleaved off from a donor membrane then changes
the total curvature energy by a certain amount that can be used
to estimate the free energy difference G, — G,. It is important

to note, however, that this change in curvature energy depends
strongly on the magnitude of the spontaneous curvature.

Let us consider a 1-vesicle state corresponding to a spherical GUV
that acts as the donor membrane and a 2-vesicle state obtained
from this GUV by cleaving off a much smaller spherical vesicle,
see top row of Figure 5.45. Both states have the same membrane
area. The small vesicle of the 2-vesicle state has the radius R,
which is taken to be much smaller than the radius of the GUV.
We may then ignore any constraints on the vesicle volumes and
assume that the large vesicle of the 2-vesicle state has a spherical
shape as well. If the GUV membrane is uniform and the magni-
tude || of its spontaneous curvature is much smaller than the

inverse size, 1/R, of the small vesicle, the free energy difference

s

between the 2-vesicle and 1-vesicle state is positive and given by

Gy — Gy =871k +4nie = +4nk  for|m|<K 1/ R (5.384)
where the estimate k; ~ —k has been used. In this case, the fission
process is endergonic whereas the fusion process is exergonic, see
the corresponding free energy landscape in Figure 5.45a. For the
typical rigidity value k =~ 2047, the relation Eq. 5.384 leads to
the fairly large free energy difference G, — G| =~ + 250k;7"!

On the other hand, if the magnitude || of the spontaneous
curvature is large, the GUV can form a small spherical bud with
radius R ~ 1/(2|m|) as in Figure 5.45b as follows from the closed
neck condition for the corresponding limit shapes ZP<* and L

as discussed in Section 5.5.2. If this bud is cleaved off, the free
energy difference between the resulting 2-vesicle state and the
initial 1-vesicle state is now negative and given by

Gy — Gy =8mKc(1=2Rys | m|)
+ 47K G 2 4TTKG ™~ —4TTK (5.385)

for Ry =1/ 2| m]).
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In the latter case, the fission process is exergonic and the fusion
process is endergonic, corresponding to a free energy landscape
as in Figure 5.45b. Now, the free energy difference G, — G, =~
—250kyT for a typical value k =~ 2047 of the bending rigidity.
Biological membranes often form intramembrane domains
with an appreciable spontaneous curvature 7,,. One example
for this latter case is provided by clathrin-dependent endocytosis
which leads to membrane domains with a spontaneous curvature
my, = —1/(40nm) (Agudo-Canalejo and Lipowsky, 2015a). Now,
consider a GUV with a small membrane domain that has an
appreciable spontaneous curvature 7y, whereas the spontaneous
curvature of the remaining GUV membrane is again negligible.
The membrane domain can then form a small spherical bud
of size R, = 1/|my,| as follows from the closed neck condition
for domain-induced budding, see Eq. 5.291. If the latter bud
is cleaved off; the free energy difference between the resulting
2-vesicle state and the initial 1-vesicle state is again negative and
has the form

Gy — Gy =8k (1= 2R | mao | ) + 47K
A (5.386)

| do |

—4r ~ 127K — 41

| do

where 1 denotes the line tension of the domain boundary. Because
this line tension has to be positive, the fission of a domain-induced
bud is an exergonic process that leads to an even larger free energy
gain |G, — G| > 127k 2 750k, T for bending rigidity k =~ 20k, 7.

5.11

This chapter addressed the multi-responsive behavior of giant

vesicles from a theoretical point of view. Because the vesicle mem-
branes are fluid, they can respond to external perturbation by
remodeling both their shape and their local membrane composi-
tion. Two curvature-elastic parameters that play a prominent role
in the whole chapter are the spontaneous curvature 7, which pro-
vides a quantitative measure for bilayer asymmetry (Section 3.5),
and the spontaneous tension 6 = 2km?, which provides the
intrinsic tension scale of curvature elasticity (Section 5.4.2).

If molecular flip-flops between the two leaflets of the bilayer
membrane can be ignored, the spontaneous curvature becomes an
effective spontaneous curvature 7,4 that contains both a local and
a non-local contribution, the latter arising from area-difference-
elasticity, see Eqs 5.66 and 5.67.

All biomembranes are asymmetric in the sense that the two
leaflets have different lipid compositions (Fadeel and Xue, 2009)
and that the membrane proteins have a preferred orientation
related to their biological function. It is important to realize that
both lipids and membrane proteins as well as adsorbed solutes
and anchored macromolecules can contribute to the spontaneous
curvature as illustrated by the examples in Box 5.1. In fact, the
framework of curvature elasticity as reviewed here applies to giant
vesicles irrespective of the chemical nature of the molecular mem-
brane components as long as the vesicle membranes are in a fluid
state. Thus, these vesicles may be built up from different lipid
components, membrane proteins, or other amphiphilic molecules
such as diblock copolymers.

The shapes and shape transformations of membranes with
laterally uniform curvature-elastic properties are governed by two
dimensionless parameters, the volume-to-area ratio (or reduced
volume) v and the spontaneous curvature 7 = Ryz. These two
parameters can be controlled by changes in the osmotic con-
ditions and by one of the curvature-generating mechanisms
in Box 5.1. The resulting shape transformations often lead to
budding and tubulation processes, which create nanobuds and
nanotubes as described in Sections 5.5 and 5.6. The buds and
tubes represent additional membrane compartments that are still
connected to the mother vesicle via closed or narrow membrane
necks. These necks are a direct consequence of curvature elasticity
(Section 5.4.6, Figure 5.14) and can be used to deduce the spon-
taneous curvature from the GUV morphology as described in
Box 5.2. The latter deduction is based on the /ocal stability condi-
tions for closed necks as given by Eqs 5.60 and 5.61 which relate
the neck curvature to the spontaneous curvature. In the absence
of flip-flops, one obtains the generalized stability conditions in
Eqs 5.68 and 5.69. Sufficiently large values of 74 lead to the
cleavage of the membrane neck and thus to complete membrane
fission, see Section 5.5.4.

In cell biology, the closure and cleavage of such membrane
necks represents an essential step for many processes such as
endo- and exocytosis, the secretion of giant plasma membrane
vesicles (or “blebs”) (Scott, 1976; Baumgart et al., 2007; Veatch
et al., 2008; Keller et al., 2009) and outer membrane vesicles
(Kulp and Kuehn, 2010; Schertzer and Whiteley, 2012) from
eukaryotic and prokaryotic cells, as well as cytokinesis during cell
division.

When a GUV undergoes spontaneous tubulation, the total
membrane tension is dominated by the spontaneous tension as
described by Eqs 5.193 and 5.215 for necklace-like and cylin-
drical nanotubes, respectively. Because the spontaneous tension
is a material parameter, tubulated vesicles behave, to a large
extent, like liquid droplets with a variable surface area and with
an effective interfacial tension that is provided by the sponta-
neous tension o. This droplet-like behavior, which reflects the
area reservoir that the nanotubes provide for the mother vesicle,
leads to an increased robustness against mechanical perturba-
tions as has been recently demonstrated by micropipette aspira-
tion and cycles of osmotic deflation and inflation (Bhatia et al.,
2018).

Membrane nanotubes are also formed within eukaryotic cells
and provide ubiquitous structural elements of many membrane-
bound organelles such as the endoplasmic reticulum, the Golgi,
the endosomal network, and mitochondria (Marchi et al., 2014;
van Weering and Cullen, 2014; Westrate et al., 2015). These
intracellular nanotubes are used for molecular sorting, signal-
ing, and transport. Intercellular (or “tunneling”) nanotubes
formed by the plasma membranes of two or more cells provide
long-distance connections for cell-cell communication, intercel-
lular transport, and virus infections (Wang and Gerdes, 2015;
He et al.,, 2010; Sowinski et al., 2008). It seems rather plausible
to assume that these tubes are also generated by spontane-
ous curvature and/or locally applied forces but the relative
importance of these two tubulation mechanisms remains to be
elucidated.



Additional shape transformations of membranes and vesicles
can be induced by adhesive surfaces as described in Section 5.7.
The onset of adhesion is governed by the simple stability relation in
Eq. 5.236 which depends on the adhesion length Ry = 2k /|7 |.
This length can vary over several orders of magnitude as illus-
trated by the membrane-particle couples in Table 5.2. Analogous
stability relations play an important role for the engulfment of
nanoparticles by membranes as described in Chapter 8 of this
book.

The adhesion of a vesicle to a rigid substrate or solid support
leads to the segmentation of the vesicle membrane into a bound
and unbound membrane segment. For multi-component vesicle
membranes, these two segments can differ in their molecular
composition and thus in their curvature-elastic properties when
the vesicle membrane contains several molecular components,
as explained in Section 7.6. Therefore, the adhesion of multi-
component membranes provides a relatively simple example for
ambience-induced segmentation. This kind of segmentation plays
an important role for the adhesion of nanoparticles by membrane-
anchored receptors (Agudo-Canalejo and Lipowsky, 2015a), see
the more detailed discussion in Chapter 8 of this book.

Multi-component membranes can undergo phase separation
into two fluid phases, a process that is now firmly established
for a variety of three-component membranes as discussed in
Section 2.4 and at the beginning of Section 5.8. Membrane phase
separation leads to multi-domain vesicles, the shape of which is
governed by the interplay between the curvature-elastic proper-
ties of the intramembrane domains and the line tension of the
domain boundaries. One prominent example for this interplay
is domain-induced budding, see Figure 5.32 and Section 5.8.3.
Another example is provided by transformations between differ-
ent patterns of intramembrane domains, which are coupled to
drastic shape changes of the vesicles as illustrated in Figure 5.37.

Membrane phase separation of multi-component vesicles
is strongly affected by ambience-induced segmentation of the
vesicle membranes as explained in Section 5.8.5. Indeed, if the
membrane is partitioned into several segments that differ in
their molecular composition, membrane phase separation is
only possible in one of the segments but not in several segments
simultaneously. Because cellular membranes are exposed to rather
heterogeneous environments, the associated segmentation acts
to suppress the formation of intramembrane domains within
such membranes. The latter mechanism explains the difficulty
to detect lipid phase separation iz vivo, in contrast to the large
intramembrane domains frequently observed in multi-component
lipid membranes.

Another interesting example for ambience-induced segmenta-
tion is provided by membranes and vesicles exposed to aqueous
two-phase systems or water-in-water emulsions as described in
Section 5.9. To simplify the discussion, Section 5.9 focused on
aqueous phase separation within the GUVs which leads to the
in-wetting morphologies displayed in Figure 5.40. Out-wetting
morphologies arising from phase separation of the exterior aque-
ous solution are addressed in Appendix 5.1. For partial in-wetting
as shown in Figure 5.40a, the interface between the two aqueous
phases a and f exerts capillary forces onto the GUV membrane
along the three-phase contact line. On the micrometer scale,

these forces lead to apparent kinks of the membrane shapes.

This response of the membranes to the capillary forces is quite
remarkable because the interfacial tension of the af interface is
ultralow, of the order of 107°=10~% N/m, reflecting the vicinity of
a critical demixing point in the aqueous phase diagram.

However, the apparent kink of the membrane shape should
not persist to the nanoscale because such a kink would imply a
very large bending energy of the GUV membrane. Therefore,
when viewed on the nanometer scale, the membrane should be
smoothly curved, which implies the existence of an intrinsic con-
tact angle as depicted in Figure 5.41. This angle is related to the
difference of the segment tensions as given by the force balance
Eq. 5.321. The latter equation also depends on the local curva-
tures of the two membrane segments at the contact line. At pres-
ent, these curvatures cannot be determined experimentally which
implies that the force balance Eq. 5.321 cannot be scrutinized by
experiment.

On the other hand, the optical micrographs of the GUV shape
showed that the two membrane segments in contact with the
and f droplets form spherical caps to a very good approxima-
tion. The extrapolation of these spherical cap shapes defines an
apparent contact line and apparent contact angles as shown in
Figures 5.42 and 5.43. The spherical cap geometry leads to the
simplified shape Eqs 5.338 which imply the general relationship
in Eq. 5.342. The latter relationship depends on the effective
tensions and curvature radii of the two membrane segments as
well as on the interfacial tension and the apparent contact angles.
This relationship can be used to obtain the curvature-elastic
parameters of the membrane segments from the observed wetting
morphology.

For certain regions of the parameter space corresponding to
small and large spontaneous curvatures, a simplified set of ten-
sion-angle relationships can be derived for the force balance along
the apparent contact lines. For small spontaneous curvatures
as defined by Eq. 5.356, the bending energies can be neglected
compared to the interfacial free energy of the af interface if the
interfacial area 4, is sufficiently large and satisfies the inequality
in Eq. 5.362. In this parameter regime, we obtain the relation-
ships in Eqs 5.371 and 5.372 which relate the total membrane
tensions and the interfacial tension to the apparent contact angles,
corresponding to the force triangle in Figure 5.43b. The same
relationships apply to large spontaneous curvatures for which the
bending energy is dominated by the spontaneous tension and
behaves as in Eq. 5.365. If one of the membrane segments forms
membrane nanotubes, one can ignore the mechanical tension
within this segment compared to its spontaneous tension and use
the simpler relationship in Eq. 5.379 to estimate the spontaneous
curvature of the tubulated segment.

In the context of synthetic biology, GUVs are very attractive
as possible microcompartments for the bottom-up assembly of
artificial protocells (Walde et al., 2010; Fenz and Sengupta, 2012;
Schwille, 2015; Weiss et al., 2018). One practical problem that
has impeded research in this direction is the limited robustness of
GUVs against mechanical perturbations. Very recently, this limita-
tion has been overcome by two different strategies. One strategy
is based on the formation of GUVs within emulsion droplets
that support and stabilize the GUVs (Weiss et al., 2018), see also
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Chapter 30 of this book. The other strategy uses the special proper-
ties of tubulated GUVs as discussed in Section 5.6. The nanotubes
increase the robustness of the giant vesicles by providing a mem-
brane reservoir for the mother vesicles which can then adapt their
surface area to avoid membrane rupture (Bhatia et al., 2018). In the
latter study, the increased robustness has already been demonstrated
by micropipette experiments and by repeated cycles of osmotic
deflation and inflation. Giant vesicles with membrane nanotubes
will also tolerate other mechanical perturbations, arising, e.g., from
the adhesion and engulfment of microparticles, in close analogy

to cellular uptake via phagocytosis and pinocytosis, or in response
to constriction forces that can lead to membrane fission and the
formation of smaller membrane compartments. The latter process
of artificial cytokinesis is an important objective for the bottom-

up assembly of artificial protocells. Thus, both droplet-stabilized
and tubulated GUVs provide new and promising modules for the
bottom-up assembly of such artificial protocells.

I thank all my collaborators for enjoyable and fruitful interactions
and Jaime Agudo-Canalejo and Rumiana Dimova for detailed
comments on earlier versions of this manuscript.

5.A

Any membrane shape S can be described in terms of two surface
coordinates s = (s',s%) and a vector-valued function X = X(s)
that maps the surface coordinates into three-dimensional space
(see, e.g., do Carmo, 1976). At any point P of the membrane sur-
face, the tangent vectors X; with 7= 1, 2 and the normal vector 7
are then given by

where the symbol X denotes the vector product in three-
dimensional space. The three vectors }?1, 5(2, and 7 represent
a right-handed trihedron at any point P of the membrane
surface. Note that the normal vector 7 is a unit vector which is
orthogonal to the plane spanned by the two tangent vectors.
In general, the tangent vectors X1 and X are neither unit vec-
tors nor orthogonal to each other. These tangent vectors define
the metric tensor

where the symbol - denotes the scalar product. As we move along
the membrane surface, the normal vector 7 is tilted and this tilt
can be expressed in terms of the tangent vectors because the nor-
mal vector is a unit vector with 77 =1and ﬂ -7=0. The tilt of
the normal vector then defines the curvatur€tensor b via

o % < X
7”14 =-h’X,; = —5' X1 = b7 X
0

(5.A3)

where the second equation explains the summation over the
repeated index j. The principal curvatures C; and C, discussed
in Section 3.2 are the eigenvalues of the curvature tensor —j,/.
This definition of the principal curvatures implies that a sphere
is characterized by the principal curvatures C; = C, > 0. Using
the definition of the normal vector in Eq. 5.A1, we can express
the first derivatives % of the normal vector via the second

aj,_éj, of the vector-valued function X(s). Therefore,
in order to define the principal curvatures at a certain point on

0

derivatives

the membrane surface, the components of the vector X(s) that
describes the membrane shape in the vicinity of this point must
be sufficiently smooth and twice differentiable with respect to the
surface coordinates s'.

5.B

Giant vesicles that do not experience external forces or constraints

form closed membrane surfaces without pores or edges. In general,
the topology of such a surface can be characterized by two related
integers: (i) the number of handles, also known as the genus g of
the surface, and (ii) the Euler characteristic y = 2—2g. For any
segmentation or partitioning of the membrane surface in terms of
(curved) polygons, the Euler characteristic y is equal to the number
of polygons minus the number of edges plus the number of corners.

Three surfaces with genus g =0,1, and 2 are displayed in
Figure 5.46: A surface with g =0 and y = 2 is topologically equiv-
alent to a sphere, a doughnut or torus is characterized by g =1and
x =0, and the Lawson surface with two handles has genus g =2
and Euler characteristic y = —2. Furthermore, a set of several
such surfaces has an Euler characteristic that is equal to the sum
of the individual Euler characteristics.

Thus, a set of n spheres has the Euler characteristics y = 2n.

For a closed membrane surface without bilayer edges, the
Gauss-Bonnet theorem implies that the integrated Gaussian cur-
vature is given by Ia’AG =21y =2m(2—-2g) as in Eq. 5.10. On the
other hand, if the membrane surface has pores (or holes) that are
bounded by bilayer edges, each edge makes a contribution to the
integrated Gaussian curvature as given by

g=0

g=1 g=2

A sphere has no handle and genus g =0; a torus has
one handle and genus g =1; the Lawson surface on the right has two
handles and genus g =2. The genus is a topological invariant and
does not change for arbitrary shape deformations as long as we do
not rupture or porate the surface.

1 Most text books on differential geometry take the principal curvatures to be
the eigenvalues of 4, instead of —4,. This conventional choice leads to C, = C,
< 0 for a sphere.
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which depends on the line integral of the geodesic curvature C,
along the bilayer edge. In general, each bilayer edge will also contrib-
ute an edge energy which is proportional to the length of the edge.

Vesicles of genus g = 2 as illustrated by the rightmost shape in
Figure 5.46 can undergo thermally excited shape transformations
that correspond to conformal transformations of the vesicle shape,
for which the vesicle volume, the membrane area, and the inte-
grated mean curvature of the vesicle remain constant. This con-
formal diffusion in shape space was first predicted theoretically
(Julicher et al., 1993) and subsequently confirmed experimentally
(Michalet and Bensimon, 1995).

5.C

As explained in Section 5.4.1, the spontaneous curvature model
as defined by the curvature energy functional in Eq. 5.11 is
obtained from a small curvature expansion up to second order
in the principal curvatures C; and C, and ignores terms of
higher order in these curvatures. These higher-order terms have
the general form

£l = 'fdAKp,q[c{’Cg LCLCH) with prg=3 (5C)
A somewhat different classification using symmetry arguments
has been given by (Mitov, 1978).

A rough estimate for the magnitude of these terms can be
obtained by dimensional analysis. The elastic parameter «,,
has the dimension of energy multiplied by length to the power
p+ g — 2. 1f we take the bending rigidity k as the basic energy
scale and the membrane thickness /. as the basic molecular
length, we obtain k, , ~ k025772 On the other hand, a vesicle
with membrane area 4 has the overall size R =/ A/ (47) .
Therefore, dimensional analysis implies that the higher-order
terms behave as

ELT ~ k(Rye/lme)*™ D) (5.C2)
and decay to zero, in the limit of large Rye// me, provided p +
q23.

The estimate in Eq. 5.C2 indicates that, for Rye 2 50 e ~ 20 nm,
all higher-order terms with p 4+ g > 4 should be negligible com-
pared to the second-order terms of the spontaneous curvature
model as given by Eq. 5.11. On the other hand, third-order
terms with p + ¢ = 3 could make a significant contribution for
50me S Rye S 204 e ~ 80 nm. The latter terms have the general
form C7 + C3 and C£C, + C3Cy and involve the additional elastic
parameters k3, and &, ;.

The same conclusion applies to small spherical buds with
radius R, 4 and narrow cylindrical tubes with radius R,,. Thus,
all higher-order terms should be negligible for Ry,,q 2 80 nm and
Ry, 2,80 nm but third-order terms could make a significant con-
tributions for smaller values of Ry, or R,. In order to study the

latter contributions in a systematic manner, molecular simulations
should be rather useful.

As described in Section 5.4.6, closed membrane necks arise as
limit shapes from the smooth solutions of the Euler-Lagrange or
local shape equation. As the neck closes and the neck radius R,
goes to zero, the adjacent membrane segment becomes highly
curved because the curvature 1/R,, diverges. This divergence is
truncated because the membrane curvature cannot exceed the
inverse membrane thickness 1// .

Taking the molecular structure of the bilayer membrane into
account, this structure should be strongly perturbed in the vicinity of
a closed neck and this perturbed molecular structure might lead to a
finite “defect energy” 6F, of the neck. A simple estimate of this latter
energy can be obtained as follows. As explained in Section 5.3.1, cur-
vature as a continuum concept emerges for membrane patches with a
lateral dimension, say /, that is about twice the membrane thickness.
If we assume that the neck strongly perturbs the bilayer structure of a
membrane patch of area £ 2, we obtain the estimate

2
§Fne =25 = L (5.C3)
8nx 4w
which behaves as
2,2
— m A
O0FE,. ~ . for large | 2| > | Mpe |. (5.C4)

This neck energy should be compared with the bending energy
Epe(R)=(1- ng)z of a spherical bud with radius R,. Bud and
neck then have the combined energy

2

Epe + 8 Ene ~ m°R3| 1+ LZ for large | m|>| Mpye | (5.C5)
47TR2

Thus, if we take £ ~ 8 nm, the correction term arising from
the putative defect energy of the neck can be safely ignored
for buds with radius R, 2 40 nm. In order to obtain a reliable
estimate for smaller buds, molecular simulations should again
be quite useful.

5.D

In this appendix, we consider vesicles with compressible mem-

branes and determine their equilibrium shapes by minimizing the
combined bending and stretching energy with respect to mem-
brane area for fixed vesicle volume.

In the absence of external forces or constraints, a bilayer mem-
brane attains a certain optimal area 4., which corresponds to
the optimal packing of its molecules. The membrane experiences
a tension, X, when its area A is stretched and deviates from the

optimal value 4. This stretch tension can be expressed as

A_Ao
To(A) =K 4—

opt

(5.D1)
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up to first order in A — A, which defines the area compress-
ibility modulus K. The stretch tension X, must be smaller
than the tension of rupture, . For lipid bilayers, the rupture
tension X

rup

is about two orders of magnitude smaller than
the area compressibility modulus K, and of the order of a few
mN/m.

The work of stretching or compression, starting from the ini-

tial area A = A, defines the stretching energy

opt?

A A- Ao z
Eg(A)= I dx g (x) = %K Y <Aipt)

Aopt

(5.D2)
opt

For an arbitrary vesicle shape S, we define the stretching energy
functional via

&S} = B (ALS)). (5.D3)

The total elastic energy of a compressible membrane, which consists
of its combined bending and stretching energy, is now equal to

Ea (S} = Enc(S)+ EalS). (5.D4)
The corresponding shape functional has the form
FalS}=—APV{S}+ Epet S} + Ect S} (5.D5)

where the pressure difference AP is used, as before, as a Lagrange
multiplier to ensure that V{§} =1".

The minimization of the shape functional Eq. 5.D5 can be per-
formed in two steps:

(i) First, we minimize the shape functional Eq. 5.22 for the
spontaneous curvature model using the Lagrange multiplier
tension X to enforce the membrane area A{S} =A. As a
result, we obtain the bending energy function

Ebc(VaA;K,m5j):gbc{S‘/} (5.D6)
as in Eq. 5.28, which represents the membrane’s bending
energy as a function of volume Vand membrane area A along
a branch of (meta)stable equilibrium shapes §'. In general, we
expect to find several branches of such shapes as illustrated in
Figure 5.12 for vanishing spontaneous curvature, 7 = 0.

(ii) Second, we minimize the combined elastic energy functional
Ea = Epe + & with respect to membrane area A for fixed vol-
ume V. Because the stretching energy is an explicit function
of the membrane area, we can replace the minimization of the
elastic energy functional & by the minimization of the elastic
energy function

Eel(Va A) = Ebe(V’A> + Est(A)

(A= Aopr)?
e

= EbC(V,A)—F%KA 5.D7)

()p[

The relation (4E,(V, A)/dA),, = 0 then determines the equilibrium
value A = A% of the membrane area via

K4 (5.D8)

Anpt dA “d

A= Ay _[dEbe(I/,A‘:q)J

18
In this way, the minimization of the combination of bending and
stretching energy has been reduced to the minimization of the
bending energy functional alone, which determines the bending
energy Ej. as a function of Vand 4.

The relation as given by Eq. 5.D8 has a very simple physical inter-
pretation. By definition, the left hand side of Eq. 5.D8 is equal to
the stretch tension X, see Eq. 5.D1, whereas the right hand side
of this equation corresponds to the relationship Eq. 5.32 which
expresses the Lagrange multiplier tension X as the derivative of
the bending energy with respect to membrane area A. Therefore,
the relation Eq. 5.D8 is equivalent to

So=K4 A= Aope _ _(dEbe(V,A“l)

: =% (5.DY)
)

Aopt

which reveals that the Lagrange multiplier tension X is, in fact,
identical with the stretch tension Z . The identity Eq. 5.D9 is

not restricted to a specific form of the bending energy but holds
for any such energy, when minimized for fixed vesicle volume and
fixed membrane area. An analogous equation also holds for the
bilayer coupling model (Svetina and Zeks, 1989), in which the
bending energy function £, depends on the volume V, membrane
area A, as well as total mean curvature Iy = .[dAM ,and the partial
derivative on the right hand side of Eq. 5.D9 has to be taken at
constant volume V and constant total mean curvature /.

5.E

In this appendix, we will consider three variants of the curvature

model: the spontaneous curvature (SC) model as studied in the
main text, the bilayer coupling model, and the area-difference-
elasticity model. Two general results will be shown explicitly: (i)
all three models lead to the same stationary shapes of vesicles; and
(ii) all stationary shapes of the area-difference-elasticity model are
also stationary shapes of the spontaneous curvature model with
an effective spontaneous curvature 7.

As in the main text, all functionals will be denoted by calli-
graphic letters. Thus, we again consider the geometric functionals
V{S},ALSEHAAL{S}, and Z);{S} and denote their values for the
stationary shapes S = §t by V; 4, A4, and /,,.

For the sake of clarity, it is convenient to start with the bilayer
coupling (BC) model which is defined by the bending energy
functional

Epc{S) = ZKIdA M?. (5.E1)



In this model, one considers vesicle shapes with fixed volume V;
fixed area A4, and integrated mean curvature /;, where the latter
quantity is proportional to area difference A4 between the two
leaflets of the bilayer membrane. The stationary shapes SHc of this
model follow from the first variation of the shape functional

fBC {Y} =—Psc V{S} +2ZBC A{S} + QBC T {Y} + SBC {5}. (5E2)

The stationary shapes Sic again form several branches labeled
by j. The stationary shapes on branch j will be denoted by S%.
The energies of these stationary shapes defines the energy func-
tions as given by

Epc(V, A Ius; /) = EsciSic) (5.E3)
along the branch j. Interpreting the relation between the energy

functional &g and the shape functional ¢ as a Legendre trans-
formation, we obtain the relations

dE dE
Pac =( BCJ , ZBC =—( BC] ,  (5.E4)
v Ay VI

and

(5.E5)

dERc
QBC:_( BL)
dlyr 1, A

for the three Lagrange multipliers Pyc, Xg¢, and Qpe.

The spontaneous curvature (SC) model studied in the main
text is defined by the energy functional

EsclSY = EoelS) = Epc{SY — 4k mTo{S} + 2km* ALS}.  (5.E6)
In this model, one considers vesicle shapes with fixed volume V'

and fixed area A. The stationary shapes S$¢ of this model follow
from the first variation of the shape functional
FscAS}=—BcViST+ Zsc AL+ Esc S} (5.E7)

with Py = AP.
A direct comparison of the two shape functionals ¢ and Fsc in

Eqs 5.E2 and 5.E7 shows that these shape functionals are identi-
cal provided one chooses

Pac =DPsc, Zpc=Zsc+2km’, and Qpc =—4km. (5.E8)
or
2
Psc =Psc, Zsc=Zsnc _Lic and  m= —@- (5.E9)
8K 4K

As a consequence, the Euler-Lagrange equations of the two
models are also identical. The Euler-Lagrange equation of the SC
model has the form

D¢ = 23sc M — 2V igM —4k(M — m)[ M(M + m)—G] (5.E10)

as given by Eq. 5.23 with P = AP and Z4 = X. The Euler-
Lagrange equation of the BC model is obtained from Eq. 5.E10
by the parameter mapping Eq. 5.E9. Therefore, the stationary
shapes of the SC model are also stationary shapes of the BC
model and vice versa when we map the parameters of the two
models according to Eq. 5.E8 or Eq. 5.E9, and we can identify
the stationary shapes for each branch j, i.e., ¢ = S§c, as well as
the associated limit shapes.

The bending energy functional of the area-difference-elasticity
model as given by Eq. 5.63 can be rewritten in the form

EADE{S) = Ecd S} — 4k mT{Sy + 2km” A{S} + Dape{S} (5.E11)

with the nonlocal bending energy term Dapg{S} as in Eq. 5.64.

In the area-difference-elasticity model, one again considers
vesicle shapes with fixed volume V'and fixed area A. In order to
deal with the nonlocal character of DApg{S}, it is useful to use
a two-step variational procedure (Miao et al., 1994). In the first
step, we determine the stationary shapes of Eq. 5.E11 for fixed
volume V] fixed area A, and fixed integrated mean curvature I,
These shapes are obtained from the first variation of the shape
functional

FapeiS}=—PVIS+Eapp AL} + Oaprs Tar (S} +Eapr S} (5.E12)

For fixed area A and fixed integrated mean curvature /,;, the energy
functional in Eq. 5.E11 reduces to Eapp{S} = Epc{S} + const.
Therefore, the stationary shapes §{p5y; of the ADE model for the
given values of V; A, and [/, are identical with the stationary shapes
St of the BC model for the same values of V, 4, and /,, and, thus,
fulfill the same Euler-Lagrange equation as given by Eq. 5.E10 with
the parameter mapping as in Eq. 5.E9. The energy function

Eape(V, A, Int; /) = Eape{Sipe} (5.E13)

is then equal to

. T —1Ino)?
Eape = Esc(V, A, Iy j)—4kcm] yp+2Km* A+27K A (v =Tar0)”

(5.E14)

Furthermore, the Lagrange multiplier Oapg in Eq. 5.E12 fulfills
the relation

dEADE

OADE = —( iy

J = Opc +4Km—4ﬂKAw (5.E15)
17,4

with Qy¢ as in Eq. 5.E5).

In the second step of the variational procedure, we determine
the values of the integrated mean curvature /,, that lead to extrema
of the energy function FEapg for fixed volume V and fixed area A.
These extrema follow from the condition
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dEADE —0

Inserting this condition into Eq. 5.E15, we obtain the identity

(5.E106)

]M_]M,O

Qg = —4Kkm+4nK, (5.E17)

Finally, we use the relation between Q¢ and the spontaneous
curvature as given by Eq. 5.E8 with m = m.g As a result, we
obrtain the expression Eq. 5.66 for the effective spontaneous cur-
vature m,.¢ of the equivalent spontaneous curvature model.

5.F

This appendix, which supplements Section 5.8 on multi-domain
membranes and vesicles, describes the matching conditions for
the domain shapes along a domain boundary in some detail.
Even for axisymmetric vesicle shapes with smooth contours, these
matching conditions turn out to be somewhat complex. Indeed,
these matching conditions imply discontinuities along the
domain boundary, both for the curvature and for the mechanical
tension. In order to describe these discontinuities, we parametrize
the contour of the axisymmetric shape by its arc length s starting
from the north pole of the shape. We could then use cylindrical
coordinates, 7 and z, to describe the vesicle shape but it is more
convenient to use the coordinate 7 and the tilt angle y;,%° see
Figure 5.33.

For an axisymmetric shape as in Figure 5.33, the two principal
curvatures are given by

C1=d—WEy) and C,=22¥

5.F1
ds r ( )

where C, represents the curvature of the shape contour. The sec-
ond principal curvature C, is continuous at the domain boundary
with s = s; because both the tilt angle y(s) and the coordinate 7(s)
are continuous at this s-value. In contrast, the contour curvature
C, can change discontinuously at the domain boundary.

This discontinuity follows from the matching condition (Jiilicher

and Lipowsky, 1996)

K (51 +&)— K (51— &) =Sk Cos1)+ 2K,m, — 26y (5.F2)
with
OK=K),—K,+Kcp —KGa- (5.F3)
We now introduce the notation
Cro(s)=y(si+€) and Cuy(s)=y(si—e)  (5.F4)

20 The two variables y and 7 satisfy the relation % = cosy, a condition that is

incorporated into the variational calculation by a Lagrange parameter func-

tion (Seifert et al., 1991; Jiilicher and Lipowsky, 1996).

for the contour curvatures and

Mﬂ(ﬁ) = [C1d(§1)+C2(§1)] and

(5.F5)

My (s1)=—Crp(s1) + Ca(s1)]

N = N =

for the mean curvatures at the two sides of the domain bound-
ary. Using this notation, the matching condition Eq. 5.F2 can be
rewritten as

Kol Ma(s1) = ma] =K My (s1) = mp] = %(KG/} —KGa)Ca(s1). (5.F6)

The above matching conditions imply the discontinuity

Cra(s1)=Crp(s1) =y (s1+ &) -y (s1—€) =\ (5.F7)
of the contour curvature C; with
h — Ra 0 aa h
A= Ky —K. C11,(51)+K—KC2($1)+2M (5.F8)

a a a

as follows from Eq. 5.F2. Note that the discontinuity A; depends
(i) on the contour curvature C,,(s;) along the b-side of the domain
boundary and (ii) on the second principal curvature Cy(s;) at

this boundary. Rearranging the terms in Eq. 5.F7, we obtain the
discontinuity

M, (s1)— My(s1) = %Al (5.F9)

of the mean curvature M. Note also that the curvature dis-
continuities as described by Eqs 5.F7 and 5.F9 depend only
on local properties of the vesicle shape close to the domain
boundary.

The matching conditions for the curvatures simplify when
we consider two membrane domains for which some of the
curvature-elastic parameters are identical. If both membrane
domains have the same Gaussian curvature moduli, the expres-
sion Eq. 5.F8 becomes

Ay =2 Ky —Kq4 Ka#q — Kyt (5.F10)

My, +2
Kﬂ Kﬂ

(Kb =KGa)

and the matching condition Eq. 5.F6 attains the simple and
concise form

Ka M (s1)=m, | =5 Myp(s1)—mp] (KGh =KGa)- (5.F11)
If both domains have the same Gaussian curvature modulj and
the same bending rigidity, the discontinuity A; becomes

A1 = Z(Zﬁﬂ —mb) (KGb =KGa and Ky = K'g). (S.Flz)

In this case, the curvature discontinuity is independent of the
principal curvatures at the domain boundary and proportional to
the difference 7, — m, of the spontaneous curvatures. Using the
matching condition in the form Eq. 5.F11, we also obtain
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M/;(ﬂ) —mp = Mg(n) —m, forkg, =K¢, and K, =K,,. (SFIB)
Therefore, the deviation of the mean curvature from the spon-
taneous curvature is continuous across the domain boundary if
the two membrane domains have the same Gaussian curvature
modulus and the same bending rigidity. Likewise, the discontinu-
ity simplifies to

Ky —K,
A= ZL[Mb(ﬁ)—m] for my, = m, =m and K¢ = K¢,
Kﬂ

(5.F14)

In the latter case, the curvature discontinuity is proportional to
the difference k, — «, of the bending rigidities and to the devia-
tion M,(s;) — m of the mean curvature M,(s;) along the 4-side

of the domain boundary from the spontaneous curvature 7.
Finally, the curvature discontinuity A, vanishes if both membrane
domains have the same curvature-elastic properties, i.c.,

A1 =0 for my =m,, Ky =K,, and K¢y = K. (5.F15)

‘The discontinuity A, of the contour curvature C; at the domain
boundary also affects the difference X, — X, of the mechanical
tensions within the two membrane domains. Using the results of
(Juilicher and Lipowsky, 1996), one finds the tension difference

5, -5, = A S0WE) A (5.F16)
r(s1)
with
1 1
As EEKaQa(J1)—EKbe(J1) (5.F17)
and
Q,(s)= C'f].(sl)—[Cz(sl)—2m].]2 for j=a,b. (5.F18)

It follows from the relations in Eqs 5.F2, 5.F3, and 5.F6 that the
curvature discontinuities along the domain boundary depend
on the difference kg, — K, of the Gaussian curvature moduli.
Therefore, the expression Eq. 5.F17 for Ay implicitly depends on
Kgp — K¢, as well.

Inspection of the expression Eq. 5.F17 shows that Ay contains
only two shape-independent terms as given by the spontaneous
tensions o ; = 21(/-;%3 with j = a, b. Thus, we can decompose the
expression Eq. 5.F17 according to

Ay = —21(/773 + 21(/,77/52 +Ag=-0,+0,+Ag (5.F19)

with

As= %Kﬂ,@a(ﬁ) —%’%@b(ﬁ) (5.F20)

and

0 (51)=CF(s1) = C3(s1) +4Ca(s1)m,. (5.F21)

The tension difference in Eq. 5.F16 can then be rewritten as

$, -8, =200 A (5.F22)
r(s1)

If both membrane domains have the same bending rigidity x and

the same Gaussian curvature modulus, the quantities Ay and A

become

As =2K(my —mp) [ M, (51) = 2, + Mp(s1) = m23]

(Kb =K,, and KGp = KGa) (5F23)

and

Ag =2K(my —mp) [ My (s1) + Mp(s1)]

(5.F24)
(Kb =K, and KGp = KG(,).
Note that M,(s,) — m, = M,(s,) — m, according to Eq. 5.F13 for
two domains with the same bending rigidity and the same Gaussian
curvature modulus. Finally, if all curvature-elastic parameters of the
two membrane domains are identical, the contour curvature is con-
tinuous across the domain boundary, see Eq. 5.F15, which implies

Cyls) = C(s1), Qulsy) = Q,(s)), and

Az =A5 =0 for mpy = m,,Kjp :Kd,and Koy =KGa- (SFZS)
Therefore, in this case, the balance between the mechanical mem-
brane tensions X, and £, within the two domains and the line
tension y of the domain boundary is described by

5 3, = S0V
r(s1)

for my, = m, Ky =K,,and K¢y = KG,-

(5.F20)

The minimization of the energy functional Eq. 5.272 also implies
a third matching condition that describes a jump in ¥/, i.e., in the
first derivative of the contour curvature C; =y with respect to
the arc length 5.2!

5.G

The interplay of ambience-induced segmentation and phase
separation of membranes has been theoretically studied in some
detail for membranes with two lipid components, say /, and /,
(Rouhiparkouhi et al., 2013; Lipowsky et al., 2013). If the mem-
branes contains more than two components, we can single out one
special component, denote this component by /,, and combine all

2! In order to derive this third matching condition, it is useful to start from
the shape equation for ¥ within the two domains, see Eq. (A.13) in
(Jiilicher and Lipowsky, 1996), from which one can determine the quantity
K/ (51 + &) — k(51 — €). The latter quantity depends only on local properties
of the vesicle shape close to the domain boundary.
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other components into an effective second component /,, thereby
mapping a multi-component membrane onto a two-component
one. To simplify the following discussion, we will ignore differ-
ences in the molecular areas of the two lipid components and take
both molecular areas to be equal to A,. If the membrane contains
N, lipids /, and IV, lipids /,, the total membrane area A4 is then
given by

1
A= E(]\/T/ﬂ + ]\‘T//, )A/ (SGI)

where the factor 1/2 takes into account that the bilayer membrane
consists of two leaflets.

The membrane is exposed to K'local environments that differ
in their molecular compositions and thus partition the membrane
into several segments distinguished by the superscript [£] with
k=1,2, ... Kas in Figure 5.31. The total membrane area A is
then partitioned into the segmental areas A with

A=Ay A8 ¢ 4 41K, (5.G2)
Furthermore, the total number of /, and /, molecules contained
in segment [#] is fixed and equal to A¥/A,. Therefore, when
one molecule diffuses from segment [£] to a neighboring seg-
ment [k], another molecule must diffuse from segment [£] to
segment [£].

When a lipid molecule /, or /, is located in segment [#4], the
molecular interactions with the adjacent environment [£] lead
to the interaction energies U}f] and U%e ], respectively, where
effectively attractive interactions are described by negative values
Ugf] <0and U}f I <0. The enrichment or depletion of the two
lipid species adjacent to environment [#4] is then determined by
the relative affinity

AU U Ul within segment[£], (5.G3)
which is negative if environment [£] prefers the /, lipids and posi-
tive if this environment prefers the /, lipids.

For a homogeneous environment with interaction energies
U}fj =0and U//f] =0, the two lipid species have the chemical
potentials 1, and p,. These chemical potentials are not inde-
pendent because the lipid numbers N, and N, are related via
Eq. 5.G1. The membrane system is then described by the semi-
grand canonical ensemble with the relative chemical potential
(Lipowsky et al., 2013)

A= iy, — . (5.G4)
Within this statistical ensemble, the phase transition occurs along
the line

Ap=Ape(T) for T, <T <T, (5.G5)
in the (Au, T') plane where 7, and 7, are the temperatures of the tri-
ple point and the critical demixing point, respectively. The function
Ap.(7) is obtained from the free energy in the semigrand canonical
ensemble and depends on all parameters that describe the interac-
tions between the lipid components (Lipowsky et al., 2013).

When the membrane is now partitioned into several seg-
ments by the different local environments, the chemical
potentials are shifted by the interaction energies UY*! and U1,
Each segment [#] is now characterized by the relative chemical
potential

A = g, + U — (g + ULy = Ap+ AU (5.G6)
which is equal to the relative chemical potential of the homogeneous
system shifted by the relative affinity AU™. As a consequence, each
segment [£] undergoes a phase transition along the line

A = A+ AU = A (TY+ AUYD for T, < T < T, (5.G7)

and the membrane consisting of K segments exhibits K phase
transitions as shown in Figure 5.47. The transition lines for seg-
ment [k + 1] and segment [£] are separated by
ApE AR = gl AUTAT = AU, (5.G8)

with the affinity contrast AU, between segment [# + 1] and
segment [£].

In the canonical ensemble, the relative chemical potential
A is replaced by the mole fraction X, of the /, lipids with 0 <
X, < 1. Each transition line within the (Ay, 7) phase diagram
as displayed in Figure 5.47 is then mapped onto a coexistence
region within the (X),, 7) phase diagram. Because the resulting X
coexistence regions have to be accommodated, at each temperature
T, within the interval 0 < X}, < 1, the average width of a single
coexistence region is necessarily smaller than 1/K and therefore
decreases monotonically with increasing number K of distinct local
environments.

5.H

Wetting of a vesicle membrane, arising from the aqueous phase

separation within the vesicle, leads to two aqueous drop-
lets enclosed by this membrane as depicted in the insets of

Temperature T

VA

Relative chemical potential ApL

Phase diagram for a two-component membrane exposed
to K = 4 different environments as a function of relative chemical
potential Au and temperature T with T, < T < T.. Segment [k] undergoes
a phase transition along the demixing line Ay = Ayl as given by Eq. 5.G7.
The demixing lines Aulk + 1 and Aul¥ are separated by the affinity contrast
AU, between segment [k + 1] and segment [k] as in Eq. 5.G8. Each
demixing line has a critical pointat T=T_.



Figure 5.39. This appendix describes the analogous but some-
what simpler situation corresponding to the wetting of two drop-
lets in the absence of the membrane. The two droplets consist of
the two liquid phases a and f and are completely immersed into
the bulk liquid phase 7, see Figure 5.48. The latter wetting sys-
tem will now be discussed in some detail to reveal the similari-
ties and differences compared to the wetting of membranes, see
Section 9.3.

The two droplets in Figure 5.48 consist of two aqueous phases,

a and f, which are immersed into a third liquid phase .

The geometry of such a droplet pair involves three interfaces: the
ay interface between the a droplet and the exterior y phase; the
Py interface between the f droplet and the y phase; and the aff
interface between the a and the f droplets. All three interfaces
form spherical segments that meet at the three-phase contact line
as shown in Figure 5.48a. The curvature radii of the three spheri-
cal radii are denoted by R,,, R;,, and R,; which are all taken to be
positive.?? Along the contact line, the tangent planes of the three
interfaces form the three contact angles 6, 8, and 6, with 6, +
0y + 6, = 2m, see Figure 5.48b. It is not difficult to show that the
shape consisting of three spherical segments implies the geometric
relation

. sin0), _ sinfy  sinBp

- Rap Rgy Roy

(5.H1)

or

ii _ sin Oy /sin O 3 sinBOp/sin 0, (5.H2)
Rop Rpy Ray

where the plus and minus sign corresponds to an af interface
that bulges towards the a and the f§ phase, respectively. Thus,

 Aay interace]

(0

(a)

the plus sign applies, in particular, to the geometry displayed in
Figure 48a,b.

To proceed, let us consider the balance between the Laplace pres-
sures and the interfacial tensions X, X, and X ; of the three
interfaces. The mean curvatures M,, = 1/R,, and M, = 1/R,, of
the ay and fy interfaces satisfy the two Laplace equations

ay’

APy =P — P, =2%;, My, =25, /Ry, >0 for i=a,B. (5.H3)
These equations are also valid when the two droplets are not in
contact with each other and form two separate spheres immersed
into the y phase. For the partial wetting geometry, on the other
hand, the mean curvature M,; = +1/R,; of the af interface satis-
fies another Laplace equation as given by

Pg =Py =230 Mg = 22248/ Rop. (5.H4)
As before, the plus and minus sign corresponds to an af interface
that bulges towards the a and f# phase, respectively. The pres-

sure differences can be eliminated by a combination of all three
Laplace equations which leads to the relationship

izaﬁ _ py _Zay

(5.H5)
Rop  Rpy  Ray
or
ii — Zﬁ}’ /zaﬁ _ Za}’ /Za,B ) (5H6)
Rop Rgy Rey

between the three interfacial tensions.

z

ay
QZ By
>

ap

(b)

(a) Partial wetting of an a droplet (yellow) and a g droplet (blue) immersed in the liquid bulk phase y (white). The two droplets are
bounded by the ay, af, and py interfaces. All three interfaces form spherical segments that meet at the three-phase contact line (small black
circles); (b) Along the contact line, the tangent planes of the three interfaces form the three contact angles 6,, 0, and 0, with 6, + 6, + 0, =
2r; and (c) The interfacial tensions Z 5 2o and Zy pull at the contact line in the directions of the three tangent planes. In mechanical equilib-
rium, the three tensions must balance and add up to zero which implies that they form the sides of a triangle (upper panel) which is known as

Neumann'’s triangle.

22 Note that the af interface may bulge towards the a phase as in Figure 5.48a or towards the § phase depending on the relative magnitude of the pressures within the

a and f phases.
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If we combine the relationship Eq. 5.H6 between the three ten-
sions with the purely geometric relation Eq. 5.H2, we obtain

1 [Zgy sinfp | 1 (Zpgy, siny,
Roy \ Zop  sind, Rgy | Zgp  sind, .
Both the interfacial tensions and the contact angles are material
parameters that do not depend on the droplet geometry, provided
the droplets are sufficiently large and we can ignore the contact
line tension. As a consequence, the relation (5.7) can only hold

for arbitrary values of the radii R,, and Ry, if the terms in the two
parentheses vanish separately. Therefore, we conclude that

(5.H7)

5 .
_d and  ZBr _ sin Oy

Zap

(5.H8)

sin6,

which relate the interfacial tensions to the contact angles. It is
interesting to note that the derivation of Eq. 5.H8 was based
(i) on the purely geometric relation Eq. 5.H2 for three spheri-
cal caps and (ii) on the Laplace Eqs 5.H3 and 5.H4 for the
mechanical equilibrium of the spherical cap segments of the
three interfaces away from the contact line. On the other hand,
the relationships Eq. 5.H8 can also be derived from the force
balance between the three interfacial tensions at the contact
line. Indeed, in mechanical equilibrium, the three tensions
must add up to zero which implies that these tensions form the
sides of a triangle as shown in the upper panel of Figure 5.48c.
In the literature on capillary forces, this triangle is known as
Neumann’s triangle (Rowlinson and Widom, 1989). The law of
sines for triangles then leads to the equalities

Loy _ Zpy

sin Oy

sinfp

Zap
sin0,

(5.H9)

which are equivalent to the relations Eq. 5.HS8.

It is instructive to rederive the force balance conditions as
described by Eqs 5.8 or by the equivalent Eqs 5.9 using a varia-
tional approach. To do so, we start from the parametrization of
the three-spherical-cap geometry in terms of the four radii R,
R, R;, and R, as described in Section 9.5.1 and consider the
(free) energy of the three interfaces which has the form

Ey(Rap s Ray s Rpy Reo) = Zap Aap + Zay Aay +Zpy Apy. (5.H10)
The three interfacial areas can be written as explicit functions of

the four radii. To minimize this energy function for fixed droplet
volumes V,, and V, we define the shape function

F,(Rap,Ray s Ry s Reo) = (P — Py )V + (P, — Pg)I g + AF, (5.H11)
with

AF, =E, = %4p Aup +Zay Awy +Ep, Ap,  (5.HI2)

where the two droplet volumes V,, and Vj are again explicit func-
tions of the four radii. The stationary three-spherical-cap shapes
are then obtained from

OF, oOF, or;,

=0, =0, = oF,
ORyp ORpy

OR

0, and =0. (5.H13)

From these stationarity conditions, we recover the three Laplace
Eqs 5.3 and 5.4 as well as the force balance Eqgs 5.8 along the

contact line.

Inspection of Figure 5.48c shows that the three contact angles are
the exterior angles of the triangle formed by the three tensions.
So far, it has been tacitly assumed that all three contact angles are
neither zero nor equal to 7. In fact, as one of the contact angle
goes to zero, the two other angles must approach the limiting
value 7. In this limit, the interface of two phases is completely wet
by the third phase. As an example, consider complete wetting

of the py interface by the a phase. In the latter case, the con-

tact angle L} and the two other contact angles have the values

0p =0, = r. The a phase then forms a thin wetting layer between
the f and the y phases. In such a situation, one side of the tension
triangle becomes equal to the sum of the two other sides and the
triangle collapses.

For any triangle, the length of a given side must be smaller
than or equal to the sum of the lengths of the two other sides.
For the tension triangle in Figure 5.48¢, the corresponding tri-
angle relations are given by

Ea}, SZBy +Eaﬂ,

Ypy SXgy +Zgp and Zgp <Xy +Zpy.

(5.H14)

It will be instructive to rewrite these relations in a somewhat
redundant manner as given by

—2op SZpgy — Loy S+Zgg, (5.H15)

2oy SLpy —Zop S+2g (5.H16)
and

—2pgy SXpy —Lay S+Zpy (5.H17)

which provide lower and upper bounds for all tension differ-
ences. In fact, multiplying these inequalities by (—1), we obtain
inequalities of the form =X, <¥ —%, <+ X ;etc. Therefore,
the difference between any two tensions is larger or equal to (—1)
times the third tension and smaller or equal to (+1) times the
third tension.

The inequalities in these triangle relations correspond to
partial wetting while the equalities correspond to complete
wetting.



As an example, consider the bounds for the tension difference
%, — Z,, as given by Eq. 5.H15. Using the relations in Eq. 5.H8,
we obtain the expression

2py —Zoy _sinly —sinOp

5.H18

Sy sin6, ( )
It will be convenient to define the function
- sin x —sin

E(x, yog)= e o (5.H19)

smng

Combining the relations Eqs 5.H18 and 5.H15, we obtain the

inequalities

~1<5(0,,0p,0,) < +1 (5.H20)

for the function Z that depends on all three contact angles.

The lower bound
Ely =m,05=0,0, =m)=-1 (5.H21)

describes complete wetting of the ay interface by the ff phase
whereas the upper bound

B0y =0,0p = 7,0, =7)=+1 (5.H22)

corresponds to complete wetting of the By interface by the a
phase.

5.

In the main text, we focused on in-wetting morphologies of
GUVs that arise from aqueous phase separation within the giant
vesicles, see Figure 5.40. Wetting of vesicle membranes has also
been observed when the vesicles were exposed to PEG-dextran
solutions that underwent phase separation outside the GUVs

(Li et al., 2012). The aqueous minority phase then forms droplets
that can adhere to the vesicle membrane.

The interaction of the membrane with one such droplet leads

to several out-wetting morphologies as shown in Figure 5.49.
The morphologies in Figure 5.49a and b have been observed

for PEG-dextran solutions (Li et al., 2012). The morphology

in Figure 5.49a corresponds to partial wetting of the vesicle
membrane by the coexisting liquid phases a and f. This mor-
phology is again characterized by a three-phase contact line that
partitions the membrane into two segments. When viewed with
optical resolution, the shape contour has an apparent kink at
the contact line which should be replaced by a smoothly curved
membrane segment when we look at this line with nanoscale
resolution.

For partial out-wetting, the af interface partitions the vesicle
membrane into an ya segment and a yff segment. At first sight,
swapping the subscripts y and & as well as y and f for out-wetting
compared to in-wetting morphologies might seem a bit pedantic
but turns out to be important because of the spontaneous curva-
tures. These curvatures have a sign that is taken to be positive and
negative if the membrane prefers to bulge towards the exterior
and interior solution, respectively. Therefore, when we swap the
interior and exterior solutions, the spontaneous curvature m,; for
out-wetting morphologies will differ from the spontaneous curva-

ture m

L, = =, for in-wetting morphologies.

The out-wetting morphologies in Figure 5.49 involve the specta-
tor phase ¥ inside the GUV as well as a single # droplet coexisting
with the bulk phase @ in the exterior solution. The shape S of the
vesicle-droplet system can again be decomposed into several com-
ponents. First, we define the shape S, of the interior £ droplet,
which is identical with the vesicle shape, and the shape S of the
droplet. The corresponding droplet volumes are denoted by

Vy =V{$y} and 17 =V{Sg}. (5.11)

(@) (b)

(d)

Out-wetting morphologies of giant vesicles arising from phase separation of the exterior solution into two aqueous phases, a (white)
and S (blue). The vesicle is filled with the aqueous spectator phase y. (yellow) The af interfaces are depicted as dashed orange lines, the mem-

brane segments in contact with the @ and 8 droplets as red and purple lines, respectively: (a) Partial wetting of the vesicle membrane by a and f as
observed on the micrometer scale. The apparent kink at the contact line (black circles) reveals the capillary forces that the af interface exerts onto
the vesicle membrane; (b) Special morphology for which the  droplet and the bulk phase a are separated by a closed membrane neck. This mor-
phology resembles complete wetting by the y phase and required a sufficiently small reduced volume v of the vesicle; (c) Complete wetting of the
membrane by the  phase; and (d) Complete wetting by the a phase which leads to the release of the g droplet from the vesicle.
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The vesicle volume is now identical with the volume of the y drop-
let, i.e., V'=V,. These volumes can be considered to be constant
at constant temperature and fixed osmotic conditions. The two
droplets are bounded by three surface segments: the af interface
between the # droplet and the aqueous bulk phase a as well as
two membrane segments, the ya segment in contact with the a
phase and the fy segment exposed to the § droplet. The shapes of
these three surfaces will be denoted by S, S,,, and S, 5, respec-

ya
tively, with surface areas

Aup = AlSap), A = A8}, and  Apg=A{Sp) (512)

The total surface area A of the vesicle membrane is then given by

A= Ay + Ag. (5.13)
All three surface segments meet along the three-phase contact line

which has the shape S, and the length

Lopy = L{Sapy }- (5.14)
The af interface can adapt its area A, to changes in the droplet
and membrane morphologies. As before, the total membrane area
A will be taken to be constant at constant temperature. The vesicle-
droplet system is then characterized by three geometric constraints
as provided by the volumes V, and Vj of the two droplets as well as
the total membrane area A. In order to determine the morphology
of the vesicle-droplet system, we will minimize the (free) energy of
the system, taking these three constraints into account.

The adhesion free energy per unit contact area between the outer
leaflet of the vesicle membrane and the aqueous bulk phase
will be denoted by W,.. Likewise, the adhesive strength W,
describes the adhesion free energy per unit contact area between
the outer leaflet of the vesicle membrane and the f droplet.

The adhesion free energy of the vesicle-droplet system then has

the form
Ed = Wya Ay + Wi Ayp (5.15)
corresponding to the adhesion free energy functional
EadlSyas Sy} = Wya A{Sya } + Wiy A{Sy8 ) (5.16)

We ignore any curvature-dependence of the adhesive strengths
W, and W,; which leads to the identities

Wy =Wgay and Wy =Wpy, (5.17)
i.e., the adhesive strengths W), and W, for out-wetting are identi-
cal with the adhesive strengths W, and W, for in-wetting as
defined in Eq. 5.308. Therefore, the adhesion free energy func-
tional for out-wetting has the same form as for in-wetting.

The adhesive strengths W, and W, contribute to the mechanical
tensions

Sia=2+W,, and T,p=%+Wy (5.18)

of the two membrane segments where Z is again the overall stress
of the vesicle membrane arising from the constraint on the total
membrane area. If the two segments have a spontaneous curvature,
the weakly curved segments experience the spontaneous tension

_ 2 _ 2
Oya = 2Kyamyq and Oyp = 2K,g 1. (5.19)
The mechanical and the spontaneous segment tensions add up to
the total segment tensions

$ya =%, +0yq and £y5 = %5 +0p (5.110)

which enter the shape equations for the two membrane segments
ya and yf.

In close analogy to Eq. 5.312 for in-wetting, the shape functional
for out-wetting has the form

FoBedSt = (Py = BYVLS, b+ (PBy — Pp)V{S g} + ZALS )+ E55: S}
(5.111)

with the energy functional

Ebr 1= ZaBA{LYaﬂ }+gl;)eut{5‘ya ,SyB 3+&d {5701 ,Syp I+ gaﬁy {Saﬁy }-
(5.112)

Compared to the energy functional for in-wetting, the energy
functional for out-wetting differs only in the bending energy
functional which has the form

E Sy, Sy} = Z 2KydeAy/(M—my/»)2 (5.113)
J=a.p

for out-wetting. As mentioned, the spontaneous curvatures
m,; for out-wetting and m;, for in-wetting are different and
related by

iﬂy/‘ = —777/‘7. (5114)
In contrast, the bending rigidities K,; for out-wetting are identical
with the bending rigidities K,; for in-wetting.

The out-wetting morphologies observed experimentally are well-
described by three-spherical-cap shapes as depicted in Figure 5.49.
The af interface always forms a spherical cap with mean curva-
ture M,; = 1/R,; > 0. Furthermore, when viewed on the microm-
eter scale as in Figure 5.49a, the two membrane segments ya and
yP also form two spherical caps with mean curvatures M, =
1/R,, > 0 and M,; = +1/R;,. These mean curvatures are governed
by the shape equations
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P —P;=25IM,; with j=a,p (5.115)
with the effective, curvature-dependent tensions
S =S4 W, + 0y =2y my My (5.116)

of the two membrane segments ya and yf. Because the mean
curvature M, of the membrane segment ya in contact with the
bulk phase a is necessarily positive, the effective tension Z%,f has
the same sign as the pressure difference P, — P,. In contrast, the
mean curvature M, of the membrane segment in contact with
the f# droplet may be positive or negative which implies that the
effective tension Z;g need not have the same sign as the pressure
difference P, — P

In addition, we introduce three apparent contact angles 6,7, GEP,
and 04 that open up towards the three liquid phases 7, f3, and a.
The tension-angle-curvature relationship for partial out-wetting is
then given by

My S sin0f o, {z;g sin6

Zop  sin0yF Zop  sin0yF

]. (5.117)

In contrast to in-wetting, the mean curvature M, ; of the yp
membrane segment can now be negative corresponding to a y/3
segment that bulges towards the y phase within the vesicle.

If several f# droplets adhere to the exterior leaflet of a single
GUYV, we obtain several yf segments which we can distinguish by
the label » =1, 2, ..., V. These yf segments have the mean cur-
vatures M%) and experience the effective tensions ") We then

obtain the relations Y% = Y% =...= Yg,? with
Sine(ﬂ> Z(”) P ()
Ygfﬂﬁ) = My —b () 2. _sin0e , (5.118)

sinBy(ﬂ> w Zop sin@ﬁw

in close analogy to the relations as given by Eqs 5.347 and 5.348

for in-wetting. Thus, from three different yf segments with three
distinct mean curvatures M'%, we can obtain the two parameter

combinations (X +<E>Vﬂ3 +0,5)/Z,5and k,gm, 5/ %, 5 that determine
the tension ratios Zyﬁ/Zaﬁ.

In order to describe the force balance between the two mem-
brane segments and the af interface in a self-consistent manner,
we consider again special parameter regimes in close analogy

to the force balance for in-wetting morphologies. Thus, we can
distinguish small-small, large-large, and large-small regimes for
out-wetting as well.

The relationships between the effective tensions and apparent
contact angles as given by Egs. 5.17 and 5.18 depend on the mean
curvatures of the different membrane segments. We can again

derive curvature-independent relationships if we consider mem-
brane segments characterized by small spontaneous curvatures and
small bending energies or large spontaneous curvatures and large
spontaneous tensions. The corresponding shape function has the
form

FOU = (Py =PIy +(Py — Pg)l/g + AF" (5.119)
where the area-dependent shape function AF°u is somewhat dif-
ferent for the different regimes. If both membrane segments have
large spontaneous curvatures, the area-dependent shape function

AF°" has the form

AFR =S ap Aup +Zra Aya + L8 Arp

(5.120)
for large-large regime.
Likewise, we obtain AF°"" = AFS% with
AP = Zop Aap + Zya Aya +Zyp Ayp (5.121)
for small-small regime. ‘
and AF" = AR with
AP =Zop Aap +Zya Aya +Zyp Ayp (5.122)

for small-small regime.

Comparison with the area-dependent shape functions for in-wet-
ting as given by Egs 5.367-5.369 shows that, in all three regimes,
the area-dependent shape function AFe for out-wetting is identi-
cal with the shape function AF™ for in-wetting when we replace
the segment labels ya and yf by the segment labels ay and fy.

Minimization of the shape function AP* with respect to the four
curvature radii R, R,; and R,; as well as with respect to the
contact line radius R, leads to the shape equations for the three

spherical caps as well as to the force balance relations

iyﬁ sinfg”

N . pap
M sin@

Zre 7B gnd —
sin 0"

(5.123)
Zaﬁ sin pr zaﬁ

More precisely, the latter relations describe the force balance along
the apparent contact line if both membrane segments ya and yf
belong to the large spontaneous curvature regime. If the ya seg-
ment belongs to the small spontaneous curvature and small bend-
ing energy regime, the total segment tension Zyq in Eq. 5.123 is
replaced by the mechanical segment tension Z,,,. Likewise, if the
yP segment belongs to the latter regime, the total segment tension
2y is replaced by the mechanical segment X .

5.J

In this appendix, we address the deflation of two-droplet vesicles
that belong to the partial in-wetting regime as illustrated in
Figure 5.40a. When such a vesicle is osmotically deflated, it may
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follow two distinct morphological pathways. The first pathway
leads to the engulfment of both droplets by the membrane as in
Figure 5.40d. The second pathway leads to the formation of many
nanobuds and nanotubes as in Figure 5.21. In order to discuss

the competition between these two morphological pathways, it is
instructive to consider a simplified case corresponding to two-
droplet vesicles with an up-down symmetry.

Such a two-droplet vesicle contains one a and one f# droplet, both
of which have the same volume V, = Vj; = V). The two droplets
are separated by a planar af interface, corresponding to apparent
contact angles 0" =607, Likewise, the two membrane segments
ay and Py in contact with the @ and f phase have the same areas
A,, = Ay, = A,. Therefore, the vesicle volume Vand the mem-
brane area A are given by

U =Vy+1p =2V and A= Agy + Ag, =241 (5.J1)
Before deflation, the initial shape of the vesicle is taken to be a
sphere with volume

4r .
Vini :TRQ; with Rye =[A/(47)

5.J2)

which implies the reduced volume v = v, ; = 1.

In order to preserve the up-down symmetry during deflation,
the two phases @ and f# and the two membrane segments ay and
Py are taken to have the same fluid-elastic parameters. Thus, both
phases adhere to the membrane with the same adhesive strength
W,, = W}, = W, and both membrane segments are characterized
by the same bending rigidity «,, = k;, = k and the same spontane-
ous curvature 7z,, = mg, = n.

First, consider the case of a small spontaneous curvature with
| 7| << 1/Rye. The free energy E, ; of the initial spherical shape is
then given by

Eini ® Zap Aap + 87K with Agp = A/ 4 (small|#z|).  (5.]3)
Because both droplets have the same adhesive strength, the
adhesion free energy WA does not depend on the shape of the
vesicle and thus plays no role when we compare different vesicle
morphologies.

For small ||, the vesicle membrane cannot form any stable
nanobuds or nanotubes and osmotic deflation from the initial
volume V[ to the volume

ini

Veng = Vini /N2 (5.J4)

leads to the engulfment of both droplets as in Figure 5.40d. Each
droplet forms a sphere which is enclosed by the corresponding
membrane segment. The two spherical segments are connected by a
closed membrane neck which replaces the af interface. Therefore,

the free energy E,,, of this two-sphere shape does not involve any
contribution from the interfacial tension X ; and has the form

Eeng ® 167k (small |2]). (5.J5)
arising from the bending energy of two spherical membrane
segments.

The two-sphere shape without an af interface has a lower free
energy than the initial one-sphere shape if £,,, — £,; < 0 which
implies the inequalities

8k

Zap

for the interfacial tension and the membrane area. Therefore, for
small ||, deflation of the initial spherical vesicle leads to the two-
sphere morphology without an af interface for sufficiently large

A>

8K
Z(Zﬁ > 7 or

(5.J6)

interfacial tension X, or sufficiently large membrane area 4.

For large spontaneous curvatures with |7|> 1/R,., the initial
spherical vesicle with volume V= V[ ; has the free energy

Eini = (%Zaﬁ +0)A (large|m|) (5.J7)

which depends on the spontaneous tension ¢ = 2xm?.
When we deflate this vesicle to obtain the smaller volume
Veng = mi/\/z, the vesicle membrane may again engulf the
two droplets completely, thereby replacing the aff interface
by a closed membrane neck. The free energy £, of the latter
shape is now given by

(asge )

Eeng ~0cA (5]8)

which is smaller than E| ;. Therefore, the first morphological
pathway which eliminates the af interface always reduces the free
energy of the vesicle-droplet system.

However, for large ||, the deflated vesicle can also form
nanobuds and nanotubes. To simplify the following discussion,
the buds and tubes are built up from zero-energy spherules with
radius R, = 1/|m| as described in Sections 5.5 and 5.6. As a result
of this second morphological pathway, the membrane forms a
spherical mother vesicle with radius R, and N spherules of radius
1/|m| which are connected by closed membrane necks. The vol-

ume V,;, of this shape is given by

41 5 4t N
Kul)=7Rm\fi7|m|3

(5.J9)

where the plus and minus sign corresponds to out- and in-spher-
ules, respectively, and the conserved membrane area A can be
decomposed according to

J\/T
7 (5J10)

A=47R>, +41
v/



In order to compare the two morphological pathways of engulf-
ment and tubulation, we now consider the same deflation depth
in both cases corresponding to 1y, = Veng = Vini / J2 asin

Eq 5.J4. The latter equality implies

AT s A N4 R

35T 3w 3 A2

(5.J11)

In addition, the conservation of the membrane area leads to

A=47R% =4nR%, +AA (5.J12)
with the excess area
AA=4rn ﬁz
m (5.J13)

stored in the nanobuds and nanotubes. Thus, the area fraction ¢
stored in the NV spherules is given by

AA N
¢ = a1 2 (5.J14)
When expressed in terms of the dimensionless radius
rmV E RmV/RVC (5-]15)

and the dimensionless spontaneous curvature 7 = 7Ry, the two
relationships in Eqs 5.11 and 5.12 attain the form

3.0 1

oy £ ——= N3 and 72, +@=1. (5.J16)

These two equations determine the two unknown variables 7,
and ¢ in terms of 7. The solutions of these two equations have
the asymptotic behavior

N 242-1
=—F~——7==0.195 5J17
PR Y GJ17)
and
fmvy =+/1—@ = 0.897 for large | 7]. (5.J18)

The asymptotic behavior for the area fraction ¢ = N / 7* also fol-
lows from Eq. 5.171 with » =1/+/2.

Because the spherules with radius R, = 1/|m| do not contribute
to the bending energy of the vesicle membrane, the tubulated
vesicle has the free energy

Euwp = Zaﬂﬂ'Rr%N +O4TRE, = (%Zaﬁ +o)(A-AA) (5]19)

which implies

1
Enb — Eini = —(ZZap +0)AA<0 (large|m|) (5.]20)

as follows from the expression for E,; in Eq. 5.]7. Therefore, the
second morphological pathway induced by deflation also reduces
the free energy of the vesicle-droplet system.

What remains to be done is to compare the free energies £,
and E,,,, both of which are smaller than £ ;. Using Egs 5.8 and

5.19, we obtain the free energy difference

1 1
Eeb — Eeng = ZzaﬁA - (Zzaﬂ + U)AA (5]21)
which is negative if
AA Xop
=—> 5.J22
¢ A 4o +Zaﬁ ( J )
or
1-¢
c>—Xup. (5.J23)
4o

Furthermore, the area fraction ¢ (as4nEg—5J23) attains the
2-1

constant value %% =0.195 for large |m| as in Eq. 5.J17. Using
this asymptotic behavior, we find that

cr>1+\/5

Etu) <E -
' 42-2)

for

eng e =1.030 (large|»]).
Zop

(5.J24)

Therefore, the free energy E,, of the tubulated vesicle is lower
than the free energy £, of the vesicle with two completely
engulfed droplets if the spontaneous tension o is large compared
to the interfacial tension Z .

In the previous discussion, we did not have to specify the spa-

tial location of the spherules which may be attached to the two
membrane segments or to other spherules within necklace-like
tubes. Indeed, because the spherules have zero bending energy, the
free energy E,;, depends only on the number N of the spherules
but not on their spatial locations. In particular, for equal adhesive
strengths W, = W), as considered above, an arbitrary number of
N, spherules can be in contact with the @ phase which implies that
Ny = N — N, spherules are in contact with the f# phase, extending
the morphological complexity discussed in Section 5.6.4.

This degeneracy is, however, lifted if the adhesive strength W,
of the a droplet differs from the adhesive strength W, of the 8
droplet. If the a droplet is more adhesive than the § droplet, cor-
responding to W, < W, a spherule in contact with the a phase
gains the adhesion free energy (W,, — W}, )4x/|m|* compared
to a spherule in contact with the f phase. Therefore, if both
membrane segments are still characterized by the same fluid-
elastic parameters, the morphology with the lowest free energy is
provided by NV spherules that are all in contact with the a phase
for W, < W,.
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( N )
f locally applied pulling force acting on a small
, membrane segment
Symbols for membrane geometry and topology o effective constriction force acting on the neck of
A membrane area . an '”‘l?Ud o .
A{S} area functional of vesicle shape S f:f‘r‘ effective constriction force acting on the neck of
Aso membrane area bound to rigid substrate surface an QUt'bUd o )
AA area difference between two leaflets of bilayer fex >0 pul!mg force pointing towards the exterior
membrane vesicle compartment
C,, C,  two principal curvatures of membrane surface fin <0 pul!ing force pointing towards the interior
c Euler characteristic, y =2-2g i out vesmlg cgmpartment
g topological genus of vesicle, i.e., number of A S constriction forces generated by spontaneous
handles curvature
G determinant of metric tensor g; F shape energy, F = —APV + XA + Epe
gy metric tensor, gj = X; - X F{S} shape functional of vesicle shape S
h! curvature tensor Imo integrated mean curvature of vesicle shape
G Gaussian curvature of membrane surface, with an optimal area difference
G=CG, K bending rigidity of membrane, used as basic
Iy integrated mean curvature, Iy = [dAM energy scale
Imi{S} integrated mean curvature functional of mem- KA second bending rigidity for area difference
brane shape S elasticity
lme membrane thickness KG Gaussian curvature modulus
M mean curvature of membrane surface, Ka area compressibility modulus
M= 3(C1+Co) Aed line tension of bilayer edge

M,, M,  mean curvature of two segments adjacent to a

closed neck m spontaneous curvature of bilayer membrane
. T dimensionless spontaneous curvature,
M. (effective) neck curvature, Mpe = %(M1 +M>) m — P
= . . = m=mRye
Mhe dimensionless neck curvature, Mpe = MheRye m composite curvature, Meom = m+f / (47x)
A unit vector normal to membrane surface mcom effeftive S ontaneou’s ct;orr?/a_ture Mk — M+ m
W tilt angle along the contour of an axisymmetric eff P o eff nlo
- Mhlo nonlocal spontaneous curvature
vesicle shape P : ithin i .
r radial coordinate for the contour of an axisym- n osmotic pressure within interior compartment
metric vesicle shape Pex osmotic pressure within exterior compartment
gcy raj!us o; cylmc:)rlcal memkbrane segment AP osmotic pressure difference across the mem-
e radius of membrane nec brane AP =P. _P
Rso radius of spherical membrane segment o o noe ) .
R, vesicle size, Rye = JA/(47) , used as basic length S stationary shape, i.e., §tat|onary solution of the
scale Euler-Lagrange equation
S shape of vesicle o c spontaneous tension, o = 2km?
s two-dimensional surface coordinates, s =(s',s%), 5 . .
of membrane shape = mechanical membrane tension
X vector-valued function X = X(s) in three z total membrane tension, X=X +o
- dimensions
Xi }(WO E;?S/;g”it vectors to membrane surface, Symbols for spheres and tubules (Sections 5.5 and 5.6)
i= s
vV volume of vesicle T bifurcation point for (1+ N)-sphere vesicle at
V{S} volume functional of vesicle shape S (m,v) = (mi,vi)
v volume-to-area ratio or reduced volume, BS bifurcation point for (1+ N)-sphere vesicle at
3/2 0 ~ P
v=6JzV/A (m,v) = (mg,vg)
[Pe? limit shape of two-sphere vesicle with m>0
Symbols for curvature models of uniform membranes [sto limit shape of two-sphere vesicle with m <0
. . . il . . . . .
Aopt optimal membrane area corresponding to opti- e limit shape of two-sphere vesicle consisting of
mal molecular packing , two equal spheres
Epe bending energy Lo limit shape of two-sph.ere vesicle cgnsisting of
Eoe dimensionless bending energy, . two nested spheres with equal radius
Epe = Eue / (877K) L limit shape of (1+ N)-sphere vesicle at B with
&e{S}  bending energy functional of vesicle shape S . lk?alfanied voIlmee, Vi = ILIVZ cle dominated
&o{S}  dimensionless bending energy functional, L imit shape of (1+ N)-sphere vesicle dominate

by r-sphere, vi > Nv;

gbe = &pe / (87) 4 L . .
&ufSt  curvature energy functional of vesicle shape S L limit shape of (1+ N)-sphere vesicle dominated
by r>-spheres, vi < Nv;




N )
in . . . .
(B limit shape of (1+N)-sphere vesicle at B; with N ;/e5|<1:|/e| rs?whrsr?dv::ol\lb:nSizsg:ztgjve radius
=
vi=Vv ) : .
" 12 , . zout vesicle shape with one out-bud that has radius
[ limit shape of (1+ N)-sphere vesicle consisting of v — 1/ and zero bending ener
A (1+ N) equal spheres out 2= ) 9 9y .
in . o - Zy vesicle shape with N out-buds that have radius
L limit shape with in-necklaces containing N small i ;
IN] spheres r; =1/m and zero bending energy
[ limit shape with out-necklaces containing N . . '
(N] P 9 Symbols for adhesion of vesicles (Section 5.7)
small spheres
my m-value of bifurcation point B}, Apo area of bound membrane segment adhering to
mi = %(1+N1/3)3/2 the substrate surface
@g m-value of bifurcation point BY, M = A+ N Aun area of un.bhour?d m;mbrane segment not in
Mn2 (effective) neck curvature of 12-neck of necklace- contact with the surface .
like tube Cleo membrane curvature parallel to the contact line
Mo (effective) neck curvature of 22-neck of necklace- Cleo membrane curvature perpendicular to the contact
like tube line
N number of rz—spheres for (1+ N)-sphere vesicles Eog adhesion (free) energy
and necklace-like tubes ) .
s : . . Ead adhesion (free) energy functional
ol persistent two-sphere vesicle with m>0 . . .
+ . . Env energy functional of adhering vesicle
: persistent (1+ N)-spheres, same geometry as L; in rout ) L
shape but with m > m? w: ' effective constriction forces generated by
®F persistent (1+ N)-spheres, same geometries as L} adhesion , . .
. = Fav shape functional of adhering vesicle
shapes but with larger m-values i )
CDE persistent (1+ N)-spheres, same geometries as LE hul2 two lipid species
shapes but with larger m-values Mpo mean curvature of membrane segment bound to
n,r2 dimensionless radii of two-sphere vesicle, adhesive surface
ri = Ri/Rye Mco contact mean curvature of unbound membrane
Rey radius of cylindrical membrane segment segment .
Rpip radius of cylindrical pipette Roe radius of sehencal bead )
Rsp radius of spherical membrane segment Rjco membrar\es curvature radius parallel to the
Ri,R2 two radii of two-sphere shape contact line ) )
o1 volume fraction of large ri-sphere, p1=v1/(Nv2) Rico mer:b;alpes curvature radius perpendicular to the
2 volume fraction of N small r-spheres, contactfine
p p2=Nvo /vi =1/ pq 275p Rw adhesion length, Rw = /2x/ | W |
- spontaneous tension, o = 2xm? Sbo shape of bound membrane segment in contact
. DO ith the adhesive surface
) mechanical membrane tension Wi )
C : . Sun shape of unbound membrane segment not in
Zasp aspiration tension as given by Eq. 5.210 - .
$ total membrane tension, § — s contact with the adhesive surface
e h le with e bﬂé fiod Ocff effective contact angle of adhering vesicle for
twol;sp ecli’.e.vesm e with an in-bud, unspecifie strong adhesion
out neck condition ) . o [W | adhesion free energy density or adhesive
(e two-sphere vesicle with an out-bud, unspecified strength
neck condition [w dimensionless adhesive strength,
V1 dimensionless volume of single ri-sphere, v1 = r13 |w =W |R% /
V2 dimensionless volume of single r-sphere, v2 = r23
v v-value of bifurcation point Bf, vi' =2/ (1+N"3)3/2 Symbols for multi-domain vesicles (Section 5.8)
Vi v-value of bifurcation point B, vi =1/y/1+N ab indices for different membrane phases
Vs smallest possible volume of (1+ N)-sphere vesicle A, A, area of intramembrane domain formed by
with mutual contacts of out-buds membrane phases a and b
vPea volume of limit shape LP® AxG difference in Gaussian curvature moduli,
Vadad volume of limit shape L**° AKG = KGa ~ KGb
vt volume of limit shape 2" consisting of two Ka,kp  bending rigidities of a- and b-domains
o equal spheres . KGa,KGb Gaussian curvature moduli of a- and b-domains
VIN] volume of limit shape L'[r,'\,] with in-necklaces of £} length functional
total length N . Lab length of ab domain boundary, Lap = £{Sap}
Vil volume of limit shape Ljy; with out-necklaces of LdLo liquid-disordered and liquid-ordered phase of
. total length N lipid mixtures
z" vesicle shape with one in-bud that has radius A line tension of domain boundary between
r2 =1/|m|and zero bending energy intramembrane domains
J L J
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( N )
A dimensionless line tension, 4 = ARye/kp 02'0,929,9;” apparent contact angles which depend on
ma,Mp  spontaneous curvatures of a and b domain X the vesicle geometry
ma,mp  dimensionless spontaneous curvatures, Oc intrinsic contact angle between ay mem-
M, = MaRye brane segment and af interface

M, mean curvature of a-domain adjacent to closed 0p intrinsic contact angle between iy mem-
neck brane segment and «f interface

Mp mean curvature of b-domain adjacent to closed Tay free energy of leaflet-water interfaces for
neck partial in-wetting morphology

Ma(s1) mean curvature of a-domain along domain T,y free energy of leaflet-water interfaces in
boundary of axisymmetric shape contact with y phase only

Mp(s1) mean curvature of b-domain along domain Vi Vp volumes of droplets formed by aqueous a
boundary of axisymmetric shape and g phase

Sa,Sp shapes of intramembrane domains consisting of Wey adhesion (free) energy density of o phase
membrane phases a and b replacing y phase

Sab shape of domain boundary between a and b Wi, adhesion (free) energy density of B phase
domain replacing y phase

s1 value of arc length s at the domain boundary of L J
axisymmetric shape

X2, Zb mechanical membrane tensions in the a and b
domains

Xa Xp  area fractions of two-domain vesicles, x; = A;/A

and xp = Ap/A

Symbols for wetting of membranes (Section 5.9)

a, By indices for different aqueous phases

af index for interface between a and g phase

oy index for membrane segment between «
droplet and external phase y

By index for membrane segment between f8
droplet and external phase y

Ead adhesion free energy arising from the

_ membrane-droplet interactions

24 index for jy membrane segment with j=a
or p .

Kijy bending rigidity of J¥ membrane segment

Aeo line tension of contact line

mjy, spontaneous curvature of jy membrane
segment

M, mean curvature of jy membrane segment,
three-spherical cap shape

r radius of true contact line

Rap curvature radius of the ab interface, three-
spherical-cap shape

R;, curvature radius of J¥ membrane segment,
three-spherical-cap shape

Reo radius of apparent contact line

Cjy spontaneous tension of J7 segment,
Coay = 2Ka},m§;,

P overall lateral stress, Lagrange multiplier for
the total membrane area

Zop interfacial tension of af8 interface

iy mechanical tension of jy segment,
Ty =T+ W, )

yeff effective membrane tension of J¥ segment,

Iy eff &

. ij =2jy —2ijmijj;,

Zjy total membrane tension of jy segment,
Zjy =Xjy +0ojy
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